Financial Toolbox ${ }^{\text {TM }}$

 User's GuideR2014a

MATLAB

How to Contact MathWorks

www. mathworks.com
comp.soft-sys.matlab
Web
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Financial Toolbox ${ }^{\text {TM }}$ User's Guide

© COPYRIGHT 1995-2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

October 1995 First printing
January 1998 Second printing
January 1999 Third printing
November 2000 Fourth printing
May 2003
June 2004
Online only
August 2004 Online only

September 2005
March 2006 Online only Fifth printing Online only September 2006 Sixth printing March 2007 Online only
September 2007
March 2008 Online only
Online only
October 2008
March 2009 Online only

September 2009 Online only

March 2010 Online only

September 2010 Online only

April 2011 Online only

September 2011
March 2012
September 2012 Online only Online only

March 2013 Online only

Septer Online only
Online only
March 2014 Online only

Revised for Version 1.1
Revised for Version 2.0 (Release 11)
Revised for Version 2.1.2 (Release 12)
Revised for Version 2.3 (Release 13)
Revised for Version 2.4 (Release 14)
Revised for Version 2.4.1 (Release 14+)
Revised for Version 2.5 (Release 14SP3)
Revised for Version 3.0 (Release 2006a)
Revised for Version 3.1 (Release 2006b)
Revised for Version 3.2 (Release 2007a)
Revised for Version 3.3 (Release 2007b)
Revised for Version 3.4 (Release 2008a)
Revised for Version 3.5 (Release 2008b)
Revised for Version 3.6 (Release 2009a)
Revised for Version 3.7 (Release 2009b)
Revised for Version 3.7.1 (Release 2010a)
Revised for Version 3.8 (Release 2010b)
Revised for Version 4.0 (Release 2011a)
Revised for Version 4.1 (Release 2011b)
Revised for Version 4.2 (Release 2012a)
Revised for Version 5.0 (Release 2012b)
Revised for Version 5.1 (Release 2013a)
Revised for Version 5.2 (Release 2013b)
Revised for Version 5.3 (Release 2014a)

Getting Started

1

Financial Toolbox Product Description 1-2
Key Features 1-2
Expected Users 1-3
Analyze Sets of Numbers Using Matrix Functions 1-4
Introduction 1-4
Key Definitions 1-4
Referencing Matrix Elements 1-5
Transposing Matrices 1-6
Matrix Algebra Refresher 1-7
Introduction 1-7
Adding and Subtracting Matrices 1-7
Multiplying Matrices 1-8
Dividing Matrices 1-13
Solving Simultaneous Linear Equations 1-13
Operating Element by Element 1-17
Using Input and Output Arguments with Functions 1-18
Input Arguments 1-18
Output Arguments 1-20
Interest Rate Arguments 1-21
Performing Common Financial Tasks
2
Introduction 2-2
Handle and Convert Dates 2-4
Date Formats 2-4
Date Conversions 2-5
Current Date and Time 2-8
Determining Dates 2-9
Format Currency 2-12
Charting Financial Data 2-13
Introduction 2-13
High-Low-Close Chart Example 2-14
Bollinger Chart Example 2-15
Analyzing and Computing Cash Flows 2-17
Introduction 2-17
Interest Rates/Rates of Return 2-17
Present or Future Values 2-18
Depreciation 2-19
Annuities 2-19
Pricing and Computing Yields for Fixed-Income Securities 2-21
Introduction 2-21
Fixed-Income Terminology 2-21
Framework 2-26
Default Parameter Values 2-27
Coupon Date Calculations 2-30
Yield Conventions 2-31
Pricing Functions 2-31
Yield Functions 2-32
Fixed-Income Sensitivities 2-33
Treasury Bills Defined 2-36
Computing Treasury Bill Price and Yield 2-37
Introduction 2-37
Treasury Bill Repurchase Agreements 2-37
Treasury Bill Yields 2-39
Term Structure of Interest Rates 2-41
Introduction 2-41
Deriving an Implied Zero Curve 2-42
Pricing and Analyzing Equity Derivatives 2-44
Introduction 2-44
Sensitivity Measures 2-44
Analysis Models 2-45
Portfolio Analysis
3
Analyzing Portfolios 3-2
Portfolio Optimization Functions 3-3
Portfolio Construction Examples 3-5
Introduction 3-5
Efficient Frontier Example 3-5
Portfolio Selection and Risk Aversion 3-8
Introduction 3-8
Optimal Risky Portfolio 3-9
Constraint Specification 3-12
Example 3-12
Linear Constraint Equations 3-14
Specifying Additional Constraints 3-17
Active Returns and Tracking Error Efficient Frontier 3-20
Mean-Variance Portfolio Optimization Tools
Portfolio Optimization Theory 4-2
Portfolio Optimization Problems 4-2
Portfolio Problem Specification 4-3
Return Proxy 4-4
Risk Proxy 4-5
Portfolio Set for Portfolio Optimization 4-8
Default Portfolio Problem 4-15
Portfolio Object 4-17
Portfolio Object Properties and Methods 4-17
Working with Portfolio Objects 4-22
Setting and Getting Properties 4-23
Displaying Portfolio Objects 4-24
Saving and Loading Portfolio Objects 4-24
Estimating Efficient Portfolios and Frontiers 4-24
Arrays of Portfolio Objects 4-25
Subclassing Portfolio Objects 4-25
Conventions for Representation of Data 4-26
Constructing the Portfolio Object 4-27
Syntax 4-27
Portfolio Problem Sufficiency 4-28
Constructor Examples 4-28
Common Operations on the Portfolio Object 4-35
Naming a Portfolio Object 4-35
Configuring the Assets in the Asset Universe 4-35
Setting Up a List of Asset Identifiers 4-36
Truncating and Padding Asset Lists 4-38
Setting Up an Initial or Current Portfolio 4-39
Asset Returns and Moments of Asset Returns 4-42
Assignment Using the Portfolio Constructor 4-42
Assignment Using the setAssetMoments Method 4-44
Scalar Expansion of Arguments 4-45
Estimating Asset Moments from Prices or Returns 4-46
Estimating Asset Moments with Missing Data 4-49
Estimating Asset Moments from Time Series Data 4-52
Working with a Riskless Asset 4-54
Working with Transaction Costs 4-54
Working with Portfolio Constraints 4-59
Setting Default Constraints for Portfolio Weights 4-59
Working with Bound Constraints 4-62
Working with Budget Constraints 4-64
Working with Group Constraints 4-66
Working with Group Ratio Constraints 4-69
Working with Linear Equality Constraints 4-73
Working with Linear Inequality Constraints 4-75
Working with Average Turnover Constraints 4-77
Working with One-Way Turnover Constraints 4-79
Validate the Portfolio Problem 4-84
Validating a Portfolio Set 4-84
Validating Portfolios 4-86
Estimate Efficient Portfolios 4-89
Obtaining Portfolios Along the Entire Efficient Frontier 4-89
Obtaining Endpoints of the Efficient Frontier 4-91
Obtaining Efficient Portfolios for Target Returns 4-93
Obtaining Efficient Portfolios for Target Risks 4-96
Efficient Portfolio that Maximizes Sharpe Ratio 4-98
Choosing and Controlling the Solver 4-101
Estimate Efficient Frontiers 4-103
Obtaining Portfolio Risks and Returns 4-103
Plotting the Efficient Frontier 4-105
Postprocessing Results 4-111
Setting Up Tradable Portfolios 4-111
Troubleshooting Portfolio Optimization Results 4-113
Asset Allocation 4-116
Defining the Portfolio Problem 4-116
Simulating Asset Prices 4-117
Setting Up the Portfolio Object 4-119
Validating the Portfolio Problem 4-121
Plotting the Efficient Frontier 4-121
Evaluating Gross vs. Net Portfolio Returns 4-122
Analyzing Descriptive Properties of the Portfolio Structures 4-123
Obtaining a Portfolio at the Specified Return Level on the Efficient Frontier 4-124
Obtaining a Portfolio at the Specified Risk Levels on the Efficient Frontier 4-125
Displaying the Final Results 4-128
Portfolio Optimization Examples 4-130

CVaR Portfolio Optimization Tools

5

Portfolio Optimization Theory 5-2
Portfolio Optimization Problems 5-2
Portfolio Problem Specification 5-3
Return Proxy 5-3
Risk Proxy 5-5
Portfolio Set for Portfolio Optimization 5-8
Default Portfolio Problem 5-15
PortfolioCVaR Object 5-17
PortfolioCVaR Object Properties and Methods 5-17
Working with PortfolioCVaR Objects 5-23
Setting and Getting Properties 5-23
Displaying PortfolioCVaR Objects 5-24
Saving and Loading PortfolioCVaR Objects 5-24
Estimating Efficient Portfolios and Frontiers 5-25
Arrays of PortfolioCVaR Objects 5-25
Subclassing PortfolioCVaR Objects 5-26
Conventions for Representation of Data 5-26
Constructing the PortfolioCVaR Object 5-28
Syntax 5-28
PortfolioCVaR Problem Sufficiency 5-29
Constructor Examples 5-29
Common Operations on the PortfolioCVaR Object 5-37
Naming a PortfolioCVaR Object 5-37
Configuring the Assets in the Asset Universe 5-37
Setting Up a List of Asset Identifiers 5-38
Truncating and Padding Asset Lists 5-40
Setting Up an Initial or Current Portfolio 5-41
Asset Returns and Scenarios 5-44
How Stochastic Optimization Works 5-44
What Are Scenarios? 5-45
Setting Scenarios Using the PortfolioCVaR Constructor 5-46
Setting Scenarios Using the setScenarios Method 5-47
Estimating the Mean and Covariance of Scenarios 5-47
Simulating Normal Scenarios 5-48
Simulating Normal Scenarios from Returns or Prices 5-48
Simulating Normal Scenarios with Missing Data 5-51
Simulating Normal Scenarios from Time Series Data 5-52
Simulating Normal Scenarios with Mean and Covariance 5-54
Working with a Riskless Asset 5-55
Working with Transaction Costs 5-56
Working with CVaR Portfolio Constraints 5-61
Setting Default Constraints for Portfolio Weights 5-61
Working with Bound Constraints 5-64
Working with Budget Constraints 5-66
Working with Group Constraints 5-68
Working with Group Ratio Constraints 5-71
Working with Linear Equality Constraints 5-75
Working with Linear Inequality Constraints 5-77
Working with Average Turnover Constraints 5-79
Working with One-Way Turnover Constraints 5-82
Validate the CVaR Portfolio Problem 5-86
Validating a CVaR Portfolio Set 5-86
Validating CVaR Portfolios 5-88
Estimate Efficient Portfolios 5-91
Obtaining Portfolios Along the Entire Efficient Frontier 5-91
Obtaining Endpoints of the Efficient Frontier 5-93
Obtaining Efficient Portfolios for Target Returns 5-95
Obtaining Efficient Portfolios for Target Risks 5-98
Choosing and Controlling the Solver 5-101
Estimate Efficient Frontiers 5-104
Obtaining CVaR Portfolio Risks and Returns 5-104
Obtaining Portfolio Standard Deviation and VaR 5-106
Plotting the Efficient Frontier 5-107
Postprocessing Results 5-114
Setting Up Tradable Portfolios 5-114
Working with Other Portfolio Objects 5-116

MAD Portfolio Optimization Tools

6

Portfolio Optimization Theory 6-2
Portfolio Optimization Problems 6-2
Portfolio Problem Specification 6-3
Return Proxy 6-3
Risk Proxy 6-5
Portfolio Set for Portfolio Optimization 6-8
Default Portfolio Problem 6-15
PortfolioMAD Object 6-17
PortfolioMAD Object Properties and Methods 6-17
Working with PortfolioMAD Objects 6-22
Setting and Getting Properties 6-23
Displaying PortfolioMAD Objects 6-24
Saving and Loading PortfolioMAD Objects 6-24
Estimating Efficient Portfolios and Frontiers 6-24
Arrays of PortfolioMAD Objects 6-25
Subclassing PortfolioMAD Objects 6-25
Conventions for Representation of Data 6-26
Constructing the PortfolioMAD Object 6-27
Syntax 6-27
PortfolioMAD Problem Sufficiency 6-28
Constructor Examples 6-28
Common Operations on the PortfolioMAD Object 6-36
Naming a PortfolioMAD Object 6-36
Configuring the Assets in the Asset Universe 6-36
Setting Up a List of Asset Identifiers 6-37
Truncating and Padding Asset Lists 6-39
Setting Up an Initial or Current Portfolio 6-40
Asset Returns and Scenarios 6-44
How Stochastic Optimization Works 6-44
What Are Scenarios? 6-45
Setting Scenarios Using the PortfolioMAD Constructor 6-46
Setting Scenarios Using the setScenarios Method 6-47
Estimating the Mean and Covariance of Scenarios 6-47
Simulating Normal Scenarios 6-48
Simulating Normal Scenarios from Returns or Prices 6-49
Simulating Normal Scenarios with Missing Data 6-51
Simulating Normal Scenarios from Time Series Data 6-53
Simulating Normal Scenarios for Mean and Covariance 6-54
Working with a Riskless Asset 6-55
Working with Transaction Costs 6-56
Working with MAD Portfolio Constraints 6-61
Setting Default Constraints for Portfolio Weights 6-61
Working with Bound Constraints 6-64
Working with Budget Constraints 6-66
Working with Group Constraints 6-68
Working with Group Ratio Constraints 6-72
Working with Linear Equality Constraints 6-75
Working with Linear Inequality Constraints 6-77
Working with Average Turnover Constraints 6-79
Working with One-Way Turnover Constraints 6-82
Validate the MAD Portfolio Problem 6-85
Validating a MAD Portfolio Set 6-85
Validating MAD Portfolios 6-87
Estimate Efficient Portfolios 6-90
Obtaining Portfolios Along the Entire Efficient Frontier 6-90
Obtaining Endpoints of the Efficient Frontier 6-93
Obtaining Efficient Portfolios for Target Returns 6-95
Obtaining Efficient Portfolios for Target Risks 6-98
Choosing and Controlling the Solver 6-101
Estimate Efficient Frontiers 6-103
Obtaining MAD Portfolio Risks and Returns 6-103
Obtaining Portfolio Standard Deviation 6-105
Plotting the Efficient Frontier 6-106
Postprocessing Results 6-113
Setting Up Tradable Portfolios 6-113
Working with Other Portfolio Objects 6-115
Troubleshooting MAD Portfolio Optimization Results 6-118
Overview of Performance Metrics 7-2
Performance Metrics Types 7-2
Performance Metrics 7-3
Using the Sharpe Ratio 7-6
Introduction 7-6
Sharpe Ratio 7-6
Using the Information Ratio 7-8
Introduction 7-8
Information Ratio 7-8
Tracking Error 7-10
Introduction 7-10
Tracking Error 7-10
Risk-Adjusted Return 7-11
Introduction 7-11
Risk-Adjusted Return 7-11
Sample and Expected Lower Partial Moments 7-14
Introduction 7-14
Sample Lower Partial Moments 7-14
Expected Lower Partial Moments 7-15
Maximum and Expected Maximum Drawdown 7-17
Introduction 7-17
Maximum Drawdown 7-17
Expected Maximum Drawdown 7-21
Credit Risk Analysis
8
Credit Rating by Bagging Decision Trees 8-2
Estimation of Transition Probabilities 8-18
Introduction 8-18
Estimate Transition Probabilities 8-19
Estimate Transition Probabilities for Different Rating Scales 8-22
Estimate Point-in-Time and Through-the-Cycle Probabilities 8-24
Estimate t-Year Default Probabilities 8-27
Estimate Bootstrap Confidence Intervals 8-28
Group Credit Ratings 8-30
Work with Nonsquare Matrices 8-32
Remove Outliers 8-34
Estimate Probabilities for Different Segments 8-35
Work with Large Datasets 8-37
Forecasting Corporate Default Rates 8-40
Credit Quality Thresholds 8-64
Introduction 8-64
Compute Credit Quality Thresholds 8-64
Visualize Credit Quality Thresholds 8-66
Regression with Missing Data
9
Multivariate Normal Regression 9-2
Introduction 9-2
Multivariate Normal Linear Regression 9-3
Maximum Likelihood Estimation 9-4
Special Case of Multiple Linear Regression Model 9-5
Least-Squares Regression 9-5
Mean and Covariance Estimation 9-5
Convergence 9-6
Fisher Information 9-6
Statistical Tests 9-7
Maximum Likelihood Estimation with Missing Data 9-9
Introduction 9-9
ECM Algorithm 9-10
Standard Errors 9-10
Data Augmentation 9-11
Multivariate Normal Regression Functions 9-12
Multivariate Normal Regression Without Missing Data 9-14
Multivariate Normal Regression With Missing Data 9-14
Least-Squares Regression with Missing Data 9-15
Multivariate Normal Parameter Estimation with Missing Data 9-15
Support Functions 9-16
Multivariate Normal Regression Types 9-17
Regressions 9-18
Multivariate Normal Regression 9-18
Multivariate Normal Regression Without Missing Data 9-18
Multivariate Normal Regression with Missing Data 9-18
Least-Squares Regression 9-18
Least-Squares Regression Without Missing Data 9-19
Least-Squares Regression with Missing Data 9-19
Covariance-Weighted Least Squares 9-19
Covariance-Weighted Least Squares Without Missing Data 9-20
Covariance-Weighted Least Squares with Missing Data 9-20
Feasible Generalized Least Squares 9-20
Feasible Generalized Least Squares Without Missing Data 9-21
Feasible Generalized Least Squares with Missing Data 9-21
Seemingly Unrelated Regression 9-21
Seemingly Unrelated Regression Without Missing Data 9-23
Seemingly Unrelated Regression with Missing Data 9-23
Mean and Covariance Parameter Estimation 9-23
Troubleshooting Multivariate Normal Regression 9-24
Slow Convergence 9-25
Nonrandom Residuals 9-25
Nonconvergence 9-25
Portfolios with Missing Data 9-27
Valuation with Missing Data 9-35
Introduction 9-35
Capital Asset Pricing Model 9-35
Estimation of the CAPM 9-36
Estimation with Missing Data 9-37
Estimation of Some Technology Stock Betas 9-37
Grouped Estimation of Some Technology Stock Betas 9-40

Solving Sample Problems

10
Introduction 10-2
Common Problems in Finance 10-3
Sensitivity of Bond Prices to Interest Rates 10-3
Bond Portfolio for Hedging Duration and Convexity 10-6
Bond Prices and Yield Curve Parallel Shifts 10-9
Bond Prices and Yield Curve Nonparallel Shifts 10-12
Greek-Neutral Portfolios of European Stock Options 10-14
Term Structure Analysis and Interest-Rate Swaps 10-18
Producing Graphics with the Toolbox 10-21
Introduction 10-21
Plotting an Efficient Frontier 10-21
Plotting Sensitivities of an Option 10-24
Plotting Sensitivities of a Portfolio of Options 10-26
Financial Time Series Analysis
11
Analyzing Financial Time Series 11-2
Creating Financial Time Series Objects 11-3
Introduction 11-3
Using the Constructor 11-3
Transforming a Text File 11-14
Visualizing Financial Time Series Objects 11-18
Introduction 11-18
Using chartfts 11-18
Zoom Tool 11-21
Combine Axes Tool 11-24
Using Financial Time SeriesIntroduction $12-2$
Working with Financial Time Series Objects 12-3
Introduction 12-3
Financial Time Series Object Structure 12-3
Data Extraction 12-4
Object-to-Matrix Conversion 12-6
Indexing a Financial Time Series Object 12-8
Financial Time Series Operations 12-15
Data Transformation and Frequency Conversion 12-19
Using Time Series to Predict Equity Return 12-25
Overview 12-25
Load the Data 12-26
Create Financial Time Series Objects 12-26
Create Closing Prices Adjustment Series 12-27
Adjust Closing Prices and Make Them Spot Prices 12-28
Create Return Series 12-28
Regress Return Series Against Metric Data 12-28
Plot the Results 12-29
Calculate the Dividend Rate 12-30
Financial Time Series App
13
What Is the Financial Time Series App? 13-2
Getting Started with the Financial Time Series App 13-4
Loading Data with the Financial Time Series App 13-6
Overview 13-6
Obtaining External Data 13-6
Obtaining Internal Data 13-8
Viewing the MATLAB Workspace 13-10
Using the Financial Time Series App 13-12
Creating a Financial Time Series Object 13-12
Merge Financial Time Series Objects 13-13
Converting a Financial Time Series Object to a MATLAB Double-Precision Matrix 13-14
Plotting the Output in Several Formats 13-14
Viewing Data for a Financial Time Series Object in the Data Table 13-15
Modifying Data for a Financial Time Series Object in the Data Table 13-17
Viewing and Modifying the Properties for a FINTS Object 13-19
Using the Financial Time Series App with GUIs 13-20
Financial Time Series Graphical User Interface
14
Financial Time Series Graphical User Interface 14-2
Main Window 14-2
Using the Financial Time Series GUI 14-7
Getting Started 14-7
Data Menu 14-9
Analysis Menu 14-13
Graphs Menu 14-15
Saving Time Series Data 14-19
Trading Calendars Graphical User Interface 15-2
UICalendar Graphical User Interface 15-4
Using UICalendar in Standalone Mode 15-4
Using UICalendar with an Application 15-5
Technical Analysis
16
Technical Indicators 16-2
Examples 16-4
Overview 16-4
Moving Average Convergence/Divergence (MACD) 16-4
Williams \%R 16-6
Relative Strength Index (RSI) 16-7
Relative Strength Index (RSI)) 16-8
Stochastic Differential Equations
17
SDEs 17-2
SDE Modeling 17-2
Trials vs. Paths 17-3
NTRIALS, NPERIODS, and NSTEPS 17-4
SDE Class Hierarchy 17-5
SDE Models 17-7
Introduction 17-7
Creating SDE Objects 17-7
Drift and Diffusion 17-13
Available Models 17-14
SDE Methods 17-15
Base SDE Models 17-16
Overview 17-16
Example: Base SDE Models 17-17
Drift and Diffusion Models 17-19
Overview 17-19
Example: Drift and Diffusion Rates 17-20
Example: SDEDDO Models 17-21
Linear Drift Models 17-23
Overview 17-23
Example: SDELD Models 17-23
Parametric Models 17-25
Creating Brownian Motion (BM) Models 17-25
Example: BM Models 17-25
Creating Constant Elasticity of Variance (CEV) Models 17-26
Creating Geometric Brownian Motion (GBM) Models 17-27
Creating Stochastic Differential Equations from Mean-Reverting Drift (SDEMRD) Models 17-29
Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion Models 17-30
Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models 17-31
Creating Heston Stochastic Volatility Models 17-33
Simulating Equity Prices 17-35
Simulating Multidimensional Market Models 17-35
Inducing Dependence and Correlation 17-52
Dynamic Behavior of Market Parameters 17-55
Pricing Equity Options 17-61
Simulating Interest Rates 17-65
Simulating Interest Rates 17-65
Ensuring Positive Interest Rates 17-73
Stratified Sampling 17-77
Performance Considerations 17-83
Managing Memory 17-83
Enhancing Performance 17-84
Optimizing Accuracy: About Solution Precision and Error 17-85
Pricing American Basket Options by Monte Carlo Simulation 17-92
Functions - Alphabetical List
18
Bibliography
A
Bond Pricing and Yields A-2
Term Structure of Interest Rates A-3
Derivatives Pricing and Yields A-4
Portfolio Analysis A-5
Investment Performance Metrics A-6
Financial Statistics A-8
Standard References A-9
Credit Risk Analysis A-11
Portfolio Optimization A-12
Stochastic Differential Equations A-13

Glossary

Getting Started

- "Financial Toolbox Product Description" on page 1-2
- "Expected Users" on page 1-3
- "Analyze Sets of Numbers Using Matrix Functions" on page 1-4
- "Matrix Algebra Refresher" on page 1-7
- "Using Input and Output Arguments with Functions" on page 1-18

Financial Toolbox Product Description

Analyze financial data and develop financial models

Financial Toolbox ${ }^{\mathrm{TM}}$ provides functions for mathematical modeling and statistical analysis of financial data. You can optimize portfolios of financial instruments, optionally taking into account turnover and transaction costs. The toolbox enables you to estimate risk, analyze interest rate levels, price equity and interest rate derivatives, and measure investment performance. Time series analysis functions and an app let you perform transformations or regressions with missing data and convert between different trading calendars and day-count conventions.

Key Features

- Mean-variance and CVaR-based object-oriented portfolio optimization
- Cash flow analysis, risk analysis, financial time-series modeling, date math, and calendar math
- Basic SIA-compliant fixed-income security analysis
- Basic Black-Scholes, Black, and binomial option pricing
- Regression and estimation with missing data
- Basic GARCH estimation, simulation, and forecasting
- Technical indicators and financial charts

Expected Users

In general, this guide assumes experience working with financial derivatives and some familiarity with the underlying models.

In designing Financial Toolbox documentation, we assume that your title is like one of these:

- Analyst, quantitative analyst
- Risk manager
- Portfolio manager
- Asset allocator
- Financial engineer
- Trader
- Student, professor, or other academic

We also assume your background, education, training, and responsibilities match some aspects of this profile:

- Finance, economics, perhaps accounting
- Engineering, mathematics, physics, other quantitative sciences
- Focus on quantitative approaches to financial problems

Analyze Sets of Numbers Using Marrix Functions

In this section...
"Introduction" on page 1-4
"Key Definitions" on page 1-4
"Referencing Matrix Elements" on page 1-5
"Transposing Matrices" on page 1-6

Introduction

Many financial analysis procedures involve sets of numbers; for example, a portfolio of securities at various prices and yields. Matrices, matrix functions, and matrix algebra are the most efficient ways to analyze sets of numbers and their relationships. Spreadsheets focus on individual cells and the relationships between cells. While you can think of a set of spreadsheet cells (a range of rows and columns) as a matrix, a matrix-oriented tool like MATLAB ${ }^{\circledR}$ software manipulates sets of numbers more quickly, easily, and naturally. For more information, see "Matrix Algebra Refresher" on page 1-7.

Key Definitions

Matrix. A rectangular array of numeric or algebraic quantities subject to mathematical operations; the regular formation of elements into rows and columns. Described as a " m-by- n " matrix, with m the number of rows and n the number of columns. The description is always "row-by-column." For example, here is a 2-by-3 matrix of two bonds (the rows) with different par values, coupon rates, and coupon payment frequencies per year (the columns) entered using MATLAB notation:

```
Bonds = [1000 0.06 2
    500 0.055 4]
```

Vector. A matrix with only one row or column. Described as a "1-by-n" or " m-by-1" matrix. The description is always "row-by-column." For example, here is a 1-by- 4 vector of cash flows in MATLAB notation:

Cash $=\left[\begin{array}{llll}1500 & 4470 & 5280 & -1299\end{array}\right]$

Scalar. A 1-by-1 matrix; that is, a single number.

Referencing Matrix Elements

To reference specific matrix elements, use (row, column) notation. For example:

Bonds(1,2)
ans =
0.06

Cash (3)
ans =

```
5280.00
```

You can enlarge matrices using small matrices or vectors as elements. For example,

```
AddBond = [1000 0.065
2];
```

Bonds = [Bonds; AddBond]
adds another row to the matrix and creates
Bonds =

1000	0.06	2
500	0.055	4
1000	0.065	2

Likewise,
Prices = [987.50
475.00
995.00]

Bonds = [Prices, Bonds]
adds another column and creates

Bonds =

987.50	1000	0.06	2
475.00	500	0.055	4
995.00	1000	0.065	2

Finally, the colon (:) is important in generating and referencing matrix elements. For example, to reference the par value, coupon rate, and coupon frequency of the second bond:

```
BondItems = Bonds(2, 2:4)
```

BondItems =

```
500.00 0.055 4
```


Transposing Matrices

Sometimes matrices are in the wrong configuration for an operation. In MATLAB, the apostrophe or prime character (') transposes a matrix: columns become rows, rows become columns. For example,

Cash $=\left[\begin{array}{llll}1500 & 4470 & 5280 & -1299\end{array}\right]^{\prime}$
produces
Cash =

1500
4470
5280
-1299

Matrix Algebra Refresher

In this section...
"Introduction" on page 1-7
"Adding and Subtracting Matrices" on page 1-7
"Multiplying Matrices" on page 1-8
"Dividing Matrices" on page 1-13
"Solving Simultaneous Linear Equations" on page 1-13
"Operating Element by Element" on page 1-17

Introduction

The explanations in the sections that follow should help refresh your skills for using matrix algebra and using MATLAB functions.

In addition, William Sharpe's Macro-Investment Analysis also provides an excellent explanation of matrix algebra operations using MATLAB. It is available on the Web at:
http://www.stanford.edu/~wfsharpe/mia/mia.htm

Tip When you are setting up a problem, it helps to "talk through" the units and dimensions associated with each input and output matrix. In the example under "Multiplying Matrices" on page 1-8, one input matrix has "five days' closing prices for three stocks," the other input matrix has "shares of three stocks in two portfolios," and the output matrix therefore has "five days' closing values for two portfolios." It also helps to name variables using descriptive terms.

Adding and Subtracting Matrices

Matrix addition and subtraction operate element-by-element. The two input matrices must have the same dimensions. The result is a new matrix of the same dimensions where each element is the sum or difference of each corresponding input element. For example, consider combining portfolios of
different quantities of the same stocks ("shares of stocks A, B, and C [the rows] in portfolios P and Q [the columns] plus shares of A, B, and C in portfolios R and S ").

```
Portfolios_PQ = [100 200
    500 400
    300 150];
Portfolios_RS = [175 125
    200 200
    100 500];
NewPortfolios = Portfolios_PQ + Portfolios_RS
NewPortfolios =
```

275	325
700	600

Adding or subtracting a scalar and a matrix is allowed and also operates element-by-element.

```
SmallerPortf = NewPortfolios-10
```

SmallerPortf =
$265.00 \quad 315.00$
$690.00 \quad 590.00$
$390.00 \quad 640.00$

Multiplying Matrices

Matrix multiplication does not operate element-by-element. It operates according to the rules of linear algebra. In multiplying matrices, it helps to remember this key rule: the inner dimensions must be the same. That is, if the first matrix is m-by- 3 , the second must be 3 -by- n. The resulting matrix is m-by- n. It also helps to "talk through" the units of each matrix, as mentioned in "Analyze Sets of Numbers Using Matrix Functions" on page 1-4.

Matrix multiplication also is not commutative; that is, it is not independent of order. A*B does not equal B*A. The dimension rule illustrates this property.

If A is 1-by- 3 matrix and B is 3 -by- 1 matrix, $A * B$ yields a scalar (1-by- 1) matrix but $\mathrm{B} * \mathrm{~A}$ yields a 3 -by- 3 matrix.

Multiplying Vectors

Vector multiplication follows the same rules and helps illustrate the principles. For example, a stock portfolio has three different stocks and their closing prices today are:

```
ClosePrices = [42.5 15 78.875]
```

The portfolio contains these numbers of shares of each stock.
NumShares = [100
500
300]
To find the value of the portfolio, multiply the vectors

```
PortfValue = ClosePrices * NumShares
```

which yields:
PortfValue =

$3.5413 e+004$

The vectors are 1-by-3 and 3-by-1; the resulting vector is 1-by-1, a scalar. Multiplying these vectors thus means multiplying each closing price by its respective number of shares and summing the result.

To illustrate order dependence, switch the order of the vectors

```
Values = NumShares * ClosePrices
Values =
    1.0e+004 *
    0.4250 0.1500 0.7887
    2.1250 0.7500 3.9438
    1.2750 0.4500 2.3663
```

which shows the closing values of 100,500 , and 300 shares of each stock, not the portfolio value, and meaningless for this example.

Computing Dot Products of Vectors

In matrix algebra, if X and Y are vectors of the same length

$$
\begin{aligned}
& Y=\left[y_{1}, y_{2}, \ldots, y_{n}\right] \\
& X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]
\end{aligned}
$$

then the dot product

$$
X \sqsubset Y=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}
$$

is the scalar product of the two vectors. It is an exception to the commutative rule. To compute the dot product in MATLAB, use sum (X . * Y) or sum (Y . * $X)$. Just be sure the two vectors have the same dimensions. To illustrate, use the previous vectors.

```
Value = sum(NumShares .* ClosePrices')
```

Value =
$3.5413 \mathrm{e}+004$

```
Value = sum(ClosePrices .* NumShares')
```

```
Value =
```

$3.5413 e+004$
As expected, the value in these cases matches the PortfValue computed previously.

Multiplying Vectors and Matrices

Multiplying vectors and matrices follows the matrix multiplication rules and process. For example, a portfolio matrix contains closing prices for a week. A second matrix (vector) contains the stock quantities in the portfolio.

```
WeekClosePr = [42.5 15 78.875
    42.125 15.5 78.75
    42.125 15.125 79
    42.625 15.25 78.875
    43 15.25 78.625];
PortQuan = [100
    500
    300];
```

To see the closing portfolio value for each day, simply multiply
WeekPortValue $=$ WeekClosePr * PortQuan
WeekPortValue =
$1.0 e+004$ *
3.5412
3.5587
3.5475
3.5550
3.5513

The prices matrix is 5-by-3, the quantity matrix (vector) is 3-by-1, so the resulting matrix (vector) is 5-by-1.

Multiplying Two Matrices

Matrix multiplication also follows the rules of matrix algebra. In matrix algebra notation, if A is an m-by- n matrix and B is an n-by- p matrix

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & \cdots & a_{i n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], \quad B=\left[\begin{array}{ccccc}
b_{11} & \cdots & b_{1 j} & \cdots & b_{1 p} \\
b_{21} & \cdots & b_{2 j} & \cdots & b_{2 p} \\
\vdots & & \vdots & & \vdots \\
b_{n 1} & \cdots & b_{n j} & \cdots & b_{n p}
\end{array}\right]
$$

then $C=A^{*} B$ is an m-by- p matrix; and the element c_{ij} in the i th row and j th column of C is

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{12}+\ldots+a_{i n} b_{n j} .
$$

To illustrate, assume there are two portfolios of the same three stocks above but with different quantities.

```
Portfolios = [100 200
    500 400
    300 150];
```

Multiplying the 5 -by- 3 week's closing prices matrix by the 3 -by- 2 portfolios matrix yields a 5 -by- 2 matrix showing each day's closing value for both portfolios.

```
PortfolioValues = WeekClosePr * Portfolios
```

PortfolioValues =
$1.0 e+004$ *
$3.5412 \quad 2.6331$
$3.5587 \quad 2.6437$
$3.5475 \quad 2.6325$
$3.5550 \quad 2.6456$
$3.5513 \quad 2.6494$
Monday's values result from multiplying each Monday closing price by its respective number of shares and summing the result for the first portfolio, then doing the same for the second portfolio. Tuesday's values result from multiplying each Tuesday closing price by its respective number of shares and summing the result for the first portfolio, then doing the same for the second portfolio. And so on through the rest of the week. With one simple command, MATLAB quickly performs many calculations.

Multiplying a Matrix by a Scalar

Multiplying a matrix by a scalar is an exception to the dimension and commutative rules. It just operates element-by-element.

```
Portfolios = [100 200
    500 400
    300 150];
```

```
DoublePort = Portfolios * 2
DoublePort =
    200 400
    1000 800
    600 300
```


Dividing Matrices

Matrix division is useful primarily for solving equations, and especially for solving simultaneous linear equations (see "Solving Simultaneous Linear Equations" on page 1-13). For example, you want to solve for X in $A^{*} X=B$.

In ordinary algebra, you would divide both sides of the equation by A, and X would equal B / A. However, since matrix algebra is not commutative ($A^{*} X$ $\neq X^{*} A$), different processes apply. In formal matrix algebra, the solution involves matrix inversion. MATLAB, however, simplifies the process by providing two matrix division symbols, left and right (\backslash and /). In general,
$X=A \backslash B$ solves for X in $A^{*} X=B$ and
$X=B / A$ solves for X in $X * A=B$.
In general, matrix A must be a nonsingular square matrix; that is, it must be invertible and it must have the same number of rows and columns. (Generally, a matrix is invertible if the matrix times its inverse equals the identity matrix. To understand the theory and proofs, consult a textbook on linear algebra such as Elementary Linear Algebra by Hill listed in Appendix A, "Bibliography".) MATLAB gives a warning message if the matrix is singular or nearly so.

Solving Simultaneous Linear Equations

Matrix division is especially useful in solving simultaneous linear equations. Consider this problem: Given two portfolios of mortgage-based instruments, each with certain yields depending on the prime rate, how do you weight the portfolios to achieve certain annual cash flows? The answer involves solving two linear equations.

A linear equation is any equation of the form

$$
a_{1} x+a_{2} y=b
$$

where a_{1}, a_{2}, and b are constants (with a_{1} and a_{2} not both 0), and x and y are variables. (It's a linear equation because it describes a line in the $x y$-plane. For example, the equation $2 x+y=8$ describes a line such that if $x=2$, then $y=4$.)

A system of linear equations is a set of linear equations that you usually want to solve at the same time; that is, simultaneously. A basic principle for exact answers in solving simultaneous linear equations requires that there be as many equations as there are unknowns. To get exact answers for x and y, there must be two equations. For example, to solve for x and y in the system of linear equations

$$
\begin{aligned}
& 2 x+y=13 \\
& x-3 y=-18
\end{aligned}
$$

there must be two equations, which there are. Matrix algebra represents this system as an equation involving three matrices: A for the left-side constants, X for the variables, and B for the right-side constants

$$
A=\left[\begin{array}{cc}
2 & 1 \\
1 & -3
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad B=\left[\begin{array}{c}
13 \\
-18
\end{array}\right],
$$

where $A^{*} X=B$.
Solving the system simultaneously means solving for X. Using MATLAB,

```
A = [ll
    1 -3];
B = [13
    -18];
X = A \ B
```

solves for X in $A * X=B$.
$X=\left[\begin{array}{ll}3 & 7\end{array}\right]$

So $x=3$ and $y=7$ in this example. In general, you can use matrix algebra to solve any system of linear equations such as

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

by representing them as matrices

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], \quad X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad B=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

and solving for X in $A^{*} X=B$.

To illustrate, consider this situation. There are two portfolios of mortgage-based instruments, M1 and M2. They have current annual cash payments of $\$ 100$ and $\$ 70$ per unit, respectively, based on today's prime rate. If the prime rate moves down one percentage point, their payments would be $\$ 80$ and $\$ 40$. An investor holds 10 units of M1 and 20 units of M2. The investor's receipts equal cash payments times units, or $R=C * U$, for each prime-rate scenario. As word equations:

	M1	M2
Prime flat:	$\$ 100 * 10$ units	$+\$ 70 * 20$ units $=\$ 2400$ receipts
Prime down:	$\$ 80 * 10$ units	$+\$ 40 * 20$ units $=\$ 1600$ receipts

As MATLAB matrices:

```
Cash = [100 70
    80 40];
Units = [10
    20];
Receipts = Cash * Units
Receipts =
```

 2400
 1600
 Now the investor asks this question: Given these two portfolios and their characteristics, how many units of each should I hold to receive $\$ 7000$ if the prime rate stays flat and $\$ 5000$ if the prime drops one percentage point? Find the answer by solving two linear equations.

	M1	M2
Prime flat:	$\$ 100 * x$ units	$+\$ 70 * y$ units $=\$ 7000$ receipts
Prime down:	$\$ 80 * x$ units	$+\$ 40 * y$ units $=\$ 5000$ receipts

In other words, solve for U (units) in the equation R (receipts) = C (cash) * U (units). Using MATLAB left division

```
Cash = [100 70
    80 40];
Receipts = [7000
    5000];
Units = Cash \ Receipts
Units =
```

43.7500
37.5000

The investor should hold 43.75 units of portfolio M1 and 37.5 units of portfolio M2 to achieve the annual receipts desired.

Operating Element by Element

Finally, element-by-element arithmetic operations are called array operations. To indicate a MATLAB array operation, precede the operator with a period (.). Addition and subtraction, and matrix multiplication and division by a scalar, are already array operations so no period is necessary. When using array operations on two matrices, the dimensions of the matrices must be the same. For example, given vectors of stock dividends and closing prices

Dividends $=\left[\begin{array}{llll}1.90 & 0.40 & 1.56 & 4.50\end{array}\right] ;$
Prices $=\left[\begin{array}{llll}25.625 & 17.75 & 26.125 & 60.50\end{array}\right] ;$

Yields = Dividends ./ Prices

Yields =

0.0741	0.0225	0.0597	0.0744

Using Input and Output Arguments with Functions

In this section...
"Input Arguments" on page 1-18
"Output Arguments" on page 1-20
"Interest Rate Arguments" on page 1-21

Input Arguments

Matrix Input

MATLAB software was designed to be a large-scale array (vector or matrix) processor. In addition to its linear algebra applications, the general array-based processing facility can perform repeated operations on collections of data. When MATLAB code is written to operate simultaneously on collections of data stored in arrays, the code is said to be vectorized. Vectorized code is not only clean and concise, but is also efficiently processed by the underlying MATLAB engine.

Because MATLAB can process vectors and matrices easily, most Financial Toolbox functions allow vector or matrix input arguments, rather than just single (scalar) values. For example, the irr function computes the internal rate of return of a cash flow stream. It accepts a vector of cash flows and returns a scalar-valued internal rate of return. However, it also accepts a matrix of cash flow streams, a column in the matrix representing a different cash flow stream. In this case, irr returns a vector of internal rates of return, each entry in the vector corresponding to a column of the input matrix. Many other toolbox functions work similarly.

As an example, suppose you make an initial investment of $\$ 100$, from which you then receive by a series of annual cash receipts of $\$ 10, \$ 20, \$ 30, \$ 40$, and $\$ 50$. This cash flow stream may be stored in a vector

CashFlows = [-100 10203040 50]'
which MATLAB displays as
CashFlows =

The irr function can compute the internal rate of return of this stream.
Rate $=$ irr(CashFlows)
The internal rate of return of this investment is

```
Rate =
    0.1201
```

or 12.01%.
In this case, a single cash flow stream (written as an input vector) produces a scalar output - the internal rate of return of the investment.

Extending this example, if you process a matrix of identical cash flow streams

```
Rate = irr([CashFlows CashFlows CashFlows])
```

you should expect to see identical internal rates of return for each of the three investments.

```
Rate =
    0.1201 0.1201 0.1201
```

This simple example illustrates the power of vectorized programming. The example shows how to collect data into a matrix and then use a toolbox function to compute answers for the entire collection. This feature can be useful in portfolio management, for example, where you might want to organize multiple assets into a single collection. Place data for each asset in a different column or row of a matrix, then pass the matrix to a Financial Toolbox function. MATLAB performs the same computation on all of the assets at once.

Matrices of String Input

Enter MATLAB strings surrounded by single quotes ('string').
Strings are stored as character arrays, one ASCII character per element. Thus, the date string

DateString = '9/16/2001'
is actually a 1 -by- 9 vector. Strings making up the rows of a matrix or vector all must have the same length. To enter several date strings, therefore, use a column vector and be sure all strings are the same length. Fill in with spaces or zeros. For example, to create a vector of dates corresponding to irregular cash flows

```
DateFields = ['01/12/2001'
    '02/14/2001'
    '03/03/2001'
    06/14/2001'
    '12/01/2001'];
```

DateFields actually becomes a 5-by-10 character array.
Don't mix numbers and strings in a matrix. If you do, MATLAB treats all entries as characters. For example,

Item $=\left[\begin{array}{lll}83 & 90 & 99 \\ \text { '14-Sep-1999'] }\end{array}\right.$
becomes a 1-by-14 character array, not a 1-by-4 vector, and it contains
Item =

SZc14-Sep-1999

Output Arguments

Some functions return no arguments, some return just one, and some return multiple arguments. Functions that return multiple arguments use the syntax
[A, B, C] = function(variables...)
to return arguments A, B, and C. If you omit all but one, the function returns the first argument. Thus, for this example if you use the syntax

```
X = function(variables...)
```

function returns a value for A , but not for B or C .
Some functions that return vectors accept only scalars as arguments. Why could such functions not accept vectors as arguments and return matrices, where each column in the output matrix corresponds to an entry in the input vector? The answer is that the output vectors can be variable length and thus will not fit in a matrix without some convention to indicate that the shorter columns are missing data.

Functions that require asset life as an input, and return values corresponding to different periods over that life, cannot generally handle vectors or matrices as input arguments. Those functions are:

amortize	Amortization
depfixdb	Fixed declining-balance depreciation
depgendb	General declining-balance depreciation
depsoyd	Sum of years' digits depreciation

For example, suppose you have a collection of assets such as automobiles and you want to compute the depreciation schedules for them. The function depfixdb computes a stream of declining-balance depreciation values for an asset. You might want to set up a vector where each entry is the initial value of each asset. depfixdb also needs the lifetime of an asset. If you were to set up such a collection of automobiles as an input vector, and the lifetimes of those automobiles varied, the resulting depreciation streams would differ in length according to the life of each automobile, and the output column lengths would vary. A matrix must have the same number of rows in each column.

Interest Rate Arguments

One common argument, both as input and output, is interest rate. All Financial Toolbox functions expect and return interest rates as decimal fractions. Thus an interest rate of 9.5% is indicated as 0.095 .

Performing Common Financial Tasks

- "Introduction" on page 2-2
- "Handle and Convert Dates" on page 2-4
- "Format Currency" on page 2-12
- "Charting Financial Data" on page 2-13
- "Analyzing and Computing Cash Flows" on page 2-17
- "Pricing and Computing Yields for Fixed-Income Securities" on page 2-21
- "Treasury Bills Defined" on page 2-36
- "Computing Treasury Bill Price and Yield" on page 2-37
- "Term Structure of Interest Rates" on page 2-41
- "Pricing and Analyzing Equity Derivatives" on page 2-44

Introduction

Financial Toolbox software contains functions that perform many common financial tasks, including:

- "Handle and Convert Dates" on page 2-4

Calendar functions convert dates among different formats (including Excel ${ }^{\circledR}$ formats), determine future or past dates, find dates of holidays and business days, compute time differences between dates, find coupon dates and coupon periods for coupon bonds, and compute time periods based on $360-$ - 365 -, or 366 -day years.

- "Format Currency" on page 2-12

The toolbox includes functions for handling decimal values in bank (currency) formats and as fractional prices.

- "Charting Financial Data" on page 2-13

Charting functions produce a variety of financial charts including Bollinger bands, high-low-close charts, candlestick plots, point and figure plots, and moving-average plots.

- "Analyzing and Computing Cash Flows" on page 2-17

Cash-flow evaluation and financial accounting functions compute interest rates, rates of return, payments associated with loans and annuities, future and present values, depreciation, and other standard accounting calculations associated with cash-flow streams.

- "Pricing and Computing Yields for Fixed-Income Securities" on page 2-21

Securities Industry Association (SIA) compliant fixed-income functions compute prices, yields, accrued interest, and sensitivities for securities such as bonds, zero-coupon bonds, and Treasury bills. They handle odd first and last periods in price/yield calculations, compute accrued interest and discount rates, and calculate convexity and duration. Another set of functions analyzes term structure of interest rates, including pricing bonds from yield curves and bootstrapping yield curves from market prices.

- "Pricing and Analyzing Equity Derivatives" on page 2-44

Derivatives analysis functions compute prices, yields, and sensitivities for derivative securities. They deal with both European and American options.

Black-Scholes functions work with European options. They compute delta, gamma, lambda, rho, theta, and vega, as well as values of call and put options.
Binomial functions work with American options, computing put and call prices.

- "Analyzing Portfolios" on page 3-2

Portfolio analysis functions provide basic utilities to compute variances and covariance of portfolios, find combinations to minimize variance, compute Markowitz efficient frontiers, and calculate combined rates of return.

- Modeling volatility in time series.

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) functions model the volatility of univariate economic time series. (Econometrics Toolbox ${ }^{\mathrm{TM}}$ software provides a more comprehensive and integrated computing environment. For information, see the Econometrics Toolbox documentation or the financial products Web page at http://www.mathworks.com/products/finprod.)

Handle and Convert Dates

In this section...
"Date Formats" on page 2-4
"Date Conversions" on page 2-5
"Current Date and Time" on page 2-8
"Determining Dates" on page 2-9

Date Formats

Since virtually all financial data is dated or derives from a time series, financial functions must have extensive date-handling capabilities. You most often work with date strings (14-Sep-1999) when dealing with dates. Financial Toolbox software works internally with serial date numbers (for example, 730377). A serial date number represents a calendar date as the number of days that has passed since a fixed base date. In MATLAB software, serial date number 1 is January 1, 0000 A.D. MATLAB also uses serial time to represent fractions of days beginning at midnight; for example, 6 p.m. equals 0.75 serial days. So 6:00 p.m. on 14-Sep-1999, in MATLAB, is date number 730377.75.

Note If you specify a two-digit year, MATLAB assumes that the year lies within the 100-year period centered about the current year. See the function datenum for specific information. MATLAB internal date handling and calculations generate no ambiguous values. However, whenever possible, programmers should use serial date numbers or date strings containing four-digit years.

Many toolbox functions that require dates accept either date strings or serial date numbers. If you are dealing with a few dates at the MATLAB command-line level, date strings are more convenient. If you are using toolbox functions on large numbers of dates, as in analyzing large portfolios or cash flows, performance improves if you use date numbers.

The Financial Toolbox software provides functions that convert date strings to serial date numbers, and vice versa.

Date Conversions

Functions that convert between date formats are

datedisp	Displays a numeric matrix with date entries formatted as date strings
datenum	Converts a date string to a serial date number
datestr	Converts a serial date number to a date string
m2xdate	Converts MATLAB serial date number to Excel serial date number
x2mdate	Converts Excel serial date number to MATLAB serial date number

Another function, datevec, converts a date number or date string to a date vector whose elements are [Year Month Day Hour Minute Second]. Date vectors are mostly an internal format for some MATLAB functions; you would not often use them in financial calculations.

Input Conversions

The datenum function is important for using Financial Toolbox software efficiently. datenum takes an input string in any of several formats, with 'dd-mmm-yyyy', 'mm/dd/yyyy' or 'dd-mmm-yyyy, hh:mm:ss.ss' most common. The input string can have up to six fields formed by letters and numbers separated by any other characters:

- The day field is an integer from 1 through 31.
- The month field is either an integer from 1 through 12 or an alphabetical string with at least three characters.
- The year field is a nonnegative integer: if only two numbers are specified, then the year is assumed to lie within the 100 -year period centered about the current year; if the year is omitted, the current year is used as the default.
- The hours, minutes, and seconds fields are optional. They are integers separated by colons or followed by 'am' or 'pm'.

For example, if the current year is 1999, then these are all equivalent

```
'17-May-1999'
'17-May-99'
'17-may'
'May 17, 1999'
'5/17/99'
'5/17'
```

and both of these represent the same time.
'17-May-1999, 18:30'
'5/17/99/6:30 pm'
Note that the default format for numbers-only input follows the American convention. Thus $3 / 6$ is March 6, not June 3.

With datenum you can convert dates into serial date format, store them in a matrix variable, then later pass the variable to a function. Alternatively, you can use datenum directly in a function input argument list.

For example, consider the function bndprice that computes the price of a bond given the yield-to-maturity. First set up variables for the yield-to-maturity, coupon rate, and the necessary dates.

```
Yield = 0.07;
CouponRate = 0.08;
Settle = datenum('17-May-2000');
Maturity = datenum('01-Oct-2000');
```

Then call the function with the variables
bndprice(Yield, CouponRate, Settle, Maturity)
Alternatively, convert date strings to serial date numbers directly in the function input argument list.
bndprice(0.07, 0.08, datenum('17-May-2000'),... datenum('01-Oct-2000'))
bndprice is an example of a function designed to detect the presence of date strings and make the conversion automatically. For these functions date strings may be passed directly.
bndprice(0.07, 0.08, '17-May-2000', '01-Oct-2000')
The decision to represent dates as either date strings or serial date numbers is often a matter of convenience. For example, when formatting data for visual display or for debugging date-handling code, it is often much easier to view dates as date strings because serial date numbers are difficult to interpret. Alternatively, serial date numbers are just another type of numeric data, and can be placed in a matrix along with any other numeric data for convenient manipulation.

Remember that if you create a vector of input date strings, use a column vector and be sure all strings are the same length. Fill with spaces or zeros. See "Matrices of String Input" on page 1-20.

Output Conversions

The function datestr converts a serial date number to one of 19 different date string output formats showing date, time, or both. The default output for dates is a day-month-year string, for example, 24-Aug-2000. This function is quite useful for preparing output reports.

Format	Description
01-Mar-2000 15:45:17	day-month-year hour:minute:second
01-Mar-2000	day-month-year
03/01/00	month/day/year
Mar	month, three letters
M	month, single letter
3	month
03/01	month/day
1	day of month
Wed	day of week, three letters
W	day of week, single letter
2000	year, four numbers
99	year, two numbers

Format	Description
Mar01	month year
$15: 45: 17$	hour:minute:second
$03: 45: 17$ PM	hour:minute:second AM or PM
$15: 45$	hour:minute
$03: 45$ PM	hour:minute AM or PM
Q1-99	calendar quarter-year
Q1	calendar quarter

Current Date and Time

The functions today and now return serial date numbers for the current date, and the current date and time, respectively.
today
ans =
730693
now
ans $=$
730693.48

The MATLAB function date returns a string for today's date.
date
ans =

26-Jul-2000

Determining Dates

The Financial Toolbox software provides many functions for determining specific dates, including functions which account for holidays and other nontrading days. For example, you schedule an accounting procedure for the last Friday of every month. The lweekdate function returns those dates for 2000; the 6 specifies Friday.

Fridates = lweekdate(6, 2000, 1:12);
Fridays = datestr(Fridates)

Fridays =
28-Jan-2000
25-Feb-2000
31-Mar-2000
28-Apr-2000
26-May-2000
30 -Jun-2000
28-Jul-2000
25-Aug-2000
29-Sep-2000
27-Oct-2000
24-Nov-2000
29-Dec-2000

Or your company closes on Martin Luther King Jr. Day, which is the third Monday in January. The nweekdate function determines those dates for 2001 through 2004.

MLKDates = nweekdate(3, 2, 2001:2004, 1);
MLKDays = datestr(MLKDates)

MLKDays =

15-Jan-2001
21-Jan-2002
20-Jan-2003
19-Jan-2004

Accounting for holidays and other nontrading days is important when examining financial dates. The Financial Toolbox software provides the holidays function, which contains holidays and special nontrading days for the New York Stock Exchange between 1950 and 2030, inclusive. In addition, you can use nyseclosures to evaluate all known or anticipated closures of the New York Stock Exchange from January 1, 1885 to December 31, 2050. nyseclosures returns a vector of serial date numbers corresponding to market closures between the dates StartDate and EndDate, inclusive.

In this example, you can use holidays to determine the standard holidays in the last half of 2000:

```
LHHDates = holidays('1-Jul-2000', '31-Dec-2000');
LHHDays = datestr(LHHDates)
LHHDays =
```

04-Jul-2000
04-Sep-2000
23-Nov-2000
25-Dec-2000

Now use the toolbox busdate function to determine the next business day after these holidays.

LHNextDates = busdate(LHHDates);
LHNextDays = datestr(LHNextDates)
LHNextDays =
05-Jul-2000
05-Sep-2000
24-Nov-2000
26-Dec-2000

The toolbox also provides the cfdates function to determine cash-flow dates for securities with periodic payments. This function accounts for the coupons per year, the day-count basis, and the end-of-month rule. For example, to determine the cash-flow dates for a security that pays four coupons per year
on the last day of the month, on an actual/365 day-count basis, just enter the settlement date, the maturity date, and the parameters.

```
PayDates = cfdates('14-Mar-2000', '30-Nov-2001', 4, 3, 1);
PayDays = datestr(PayDates)
PayDays =
31-May-2000
31-Aug-2000
30-Nov-2000
28-Feb-2001
31-May-2001
31-Aug-2001
30-Nov-2001
```


Format Currency

Financial Toolbox software provides several functions to format currency and chart financial data. The currency formatting functions are

cur2frac	Converts decimal currency values to fractional values
cur2str	Converts a value to Financial Toolbox bank format
frac2cur	Converts fractional currency values to decimal values

These examples show their use.
Dec $=$ frac2cur('12.1', 8)
returns Dec $=12.125$, which is the decimal equivalent of $12-1 / 8$. The second input variable is the denominator of the fraction.

Str $=$ cur2str(-8264, 2)
returns the string ($\$ 8264.00$). For this toolbox function, the output format is a numerical format with dollar sign prefix, two decimal places, and negative numbers in parentheses; for example, $(\$ 123.45)$ and $\$ 6789.01$. The standard MATLAB bank format uses two decimal places, no dollar sign, and a minus sign for negative numbers; for example, -123.45 and 6789.01.

Charting Financial Data

In this section...
"Introduction" on page 2-13
"High-Low-Close Chart Example" on page 2-14
"Bollinger Chart Example" on page 2-15

Introduction

The following toolbox financial charting functions plot financial data and produce presentation-quality figures quickly and easily.

bolling	Bollinger band chart
bollinger	Time series Bollinger band
candle	Candlestick chart
candle	Time series candle plot
pointfig	Point and figure chart
highlow	High, low, open, close chart
highlow	Time series High-Low plot
movavg	Leading and lagging moving averages chart

These functions work with standard MATLAB functions that draw axes, control appearance, and add labels and titles. The toolbox also provides a comprehensive set of charting functions that work with financial time series objects, see "Chart Technical Indicators".

Here are two plotting examples: a high-low-close chart of sample IBM^{\circledR} stock price data, and a Bollinger band chart of the same data. These examples load data from an external file (ibm.dat), then call the functions using subsets of the data. The MATLAB variable ibm, which is created by loading ibm. dat, is a six-column matrix where each row is a trading day's data and where columns 2,3 , and 4 contain the high, low, and closing prices, respectively.

Note The data in ibm. dat is fictional and for illustrative use only.

High-Low-Close Chart Example

First load the data and set up matrix dimensions. load and size are standard MATLAB functions.
load ibm.dat;
[ro, co] = size(ibm);
Open a figure window for the chart. Use the Financial Toolbox highlow function to plot high, low, and close prices for the last 50 trading days in the data file.
figure;
highlow(ibm(ro-50:ro,2),ibm(ro-50:ro,3),ibm(ro-50:ro,4),[],'b');
Add labels and title, and set axes with standard MATLAB functions. Use the Financial Toolbox dateaxis function to provide dates for the x-axis ticks.

```
xlabel('');
ylabel('Price ($)');
title('International Business Machines, 941231 - 950219');
axis([0 50 -inf inf]);
dateaxis('x',6,'31-Dec-1994')
```

MATLAB produces a figure like this. The plotted data and axes you see may differ. Viewed online, the high-low-close bars are blue.

Bollinger Chart Example

The bolling function in Financial Toolbox software produces a Bollinger band chart using all the closing prices in the same IBM stock price matrix. A Bollinger band chart plots actual data along with three other bands of data. The upper band is two standard deviations above a moving average; the lower band is two standard deviations below that moving average; and the middle band is the moving average itself. This example uses a 15 -day moving average.

Assuming the previous IBM data is still loaded, execute the function.
bolling(ibm(:,4), 15, 0);
Specify the axes, labels, and titles. Again, use dateaxis to add the x-axis dates.

```
axis([0 ro min(ibm(:,4)) max(ibm(:,4))]);
```

ylabel('Price (\$)');

```
title(['International Business Machines']);
dateaxis('x', 6,'31-Dec-1994')
```


For help using MATLAB plotting functions, see "Create 2-D Graph and Customize Lines" in the MATLAB documentation. See the MATLAB documentation for details on the axis, title, xlabel, and ylabel functions.

Analyzing and Computing Cash Flows

In this section...
"Introduction" on page 2-17
"Interest Rates/Rates of Return" on page 2-17
"Present or Future Values" on page 2-18
"Depreciation" on page 2-19
"Annuities" on page 2-19

Introduction

Financial Toolbox cash-flow functions compute interest rates and rates of return, present or future values, depreciation streams, and annuities.

Some examples in this section use this income stream: an initial investment of $\$ 20,000$ followed by three annual return payments, a second investment of $\$ 5,000$, then four more returns. Investments are negative cash flows, return payments are positive cash flows.

```
Stream = [-20000, 2000, 2500, 3500, -5000, 6500,...
    9500, 9500, 9500];
```


Interest Rates/Rates of Return

Several functions calculate interest rates involved with cash flows. To compute the internal rate of return of the cash stream, execute the toolbox function irr

ROR $=\operatorname{irr}($ Stream $)$
which gives a rate of return of 11.72%.
Note that the internal rate of return of a cash flow may not have a unique value. Every time the sign changes in a cash flow, the equation defining irr can give up to two additional answers. An irr computation requires solving a polynomial equation, and the number of real roots of such an equation can depend on the number of sign changes in the coefficients. The equation for internal rate of return is

$$
\frac{c f_{1}}{(1+r)}+\frac{c f_{2}}{(1+r)^{2}}+\ldots+\frac{c f_{n}}{(1+r)^{n}}+\text { Investment }=0
$$

where Investment is a (negative) initial cash outlay at time $0, c f_{\mathrm{n}}$ is the cash flow in the nth period, and n is the number of periods. irr finds the rate r such that the present value of the cash flow equals the initial investment. If all of the $c f_{\mathrm{n}} \mathrm{s}$ are positive there is only one solution. Every time there is a change of sign between coefficients, up to two additional real roots are possible.

Another toolbox rate function, effrr, calculates the effective rate of return given an annual interest rate (also known as nominal rate or annual percentage rate, APR) and number of compounding periods per year. To find the effective rate of a 9% APR compounded monthly, enter

```
Rate = effrr(0.09,

The answer is \(9.38 \%\).
A companion function nomrr computes the nominal rate of return given the effective annual rate and the number of compounding periods.

\section*{Present or Future Values}

The toolbox includes functions to compute the present or future value of cash flows at regular or irregular time intervals with equal or unequal payments: fvfix, fvvar, pvfix, and pvvar. The -fix functions assume equal cash flows at regular intervals, while the -var functions allow irregular cash flows at irregular periods.

Now compute the net present value of the sample income stream for which you computed the internal rate of return. This exercise also serves as a check on that calculation because the net present value of a cash stream at its internal rate of return should be zero. Enter

NPV = pvvar(Stream, ROR)
which returns an answer very close to zero. The answer usually is not exactly zero due to rounding errors and the computational precision of the computer.

Note Other toolbox functions behave similarly. The functions that compute a bond's yield, for example, often must solve a nonlinear equation. If you then use that yield to compute the net present value of the bond's income stream, it usually does not exactly equal the purchase price, but the difference is negligible for practical applications.

\section*{Depreciation}

The toolbox includes functions to compute standard depreciation schedules: straight line, general declining-balance, fixed declining-balance, and sum of years' digits. Functions also compute a complete amortization schedule for an asset, and return the remaining depreciable value after a depreciation schedule has been applied.

This example depreciates an automobile worth \(\$ 15,000\) over five years with a salvage value of \(\$ 1,500\). It computes the general declining balance using two different depreciation rates: \(50 \%\) (or 1.5), and \(100 \%\) (or 2.0, also known as double declining balance). Enter
```

Decline1 = depgendb(15000, 1500, 5, 1.5)
Decline2 = depgendb(15000, 1500, 5, 2.0)
which returns

```
```

Mecline1 = 150.00 3150.00 2205.00 1543.50 2101.50

```
Mecline1 = 150.00 3150.00 2205.00 1543.50 2101.50
Decline2 =
Decline2 =
    6000.00 3600.00 2160.00 444.00
```

 6000.00 3600.00 2160.00 444.00
    ```

These functions return the actual depreciation amount for the first four years and the remaining depreciable value as the entry for the fifth year.

\section*{Annuities}

Several toolbox functions deal with annuities. This first example shows how to compute the interest rate associated with a series of loan payments when only the payment amounts and principal are known. For a loan whose original value was \(\$ 5000.00\) and which was paid back monthly over four years at \(\$ 130.00 /\) month

Rate \(=\) annurate \((4 * 12,130,5000,0,0)\)

The function returns a rate of 0.0094 monthly, or about \(11.28 \%\) annually.

The next example uses a present-value function to show how to compute the initial principal when the payment and rate are known. For a loan paid at \(\$ 300.00 /\) month over four years at \(11 \%\) annual interest

Principal \(=\) pvfix(0.11/12, 4*12, 300, 0, 0)
The function returns the original principal value of \(\$ 11,607.43\).
The final example computes an amortization schedule for a loan or annuity. The original value was \(\$ 5000.00\) and was paid back over 12 months at an annual rate of \(9 \%\).
[Prpmt, Intpmt, Balance, Payment] = ...
amortize(0.09/12, 12, 5000, 0, 0);
This function returns vectors containing the amount of principal paid,
```

Prpmt = [l399.76 402.76 405.78 408.82 411.89 414.97
418.09 421.22 424.38 427.56 430.77 434.00]

```
the amount of interest paid,
Intpmt \(\left.=\begin{array}{rrrrrr}37.50 & 34.50 & 31.48 & 28.44 & 25.37 & 22.28 \\ 19.17 & 16.03 & 12.88 & 9.69 & 6.49 & 3.26\end{array}\right]\)
the remaining balance for each period of the loan,
```

Balance = [l4600.24 4197.49 3791.71 3382.89 2971.01
2556.03 2137.94 1716.72 1292.34 864.77
434.00 0.00]

```
and a scalar for the monthly payment.
Payment = 437.26

\section*{Pricing and Computing Yields for Fixed-Income Securities}

\author{
In this section... \\ "Introduction" on page 2-21 \\ "Fixed-Income Terminology" on page 2-21 \\ "Framework" on page 2-26 \\ "Default Parameter Values" on page 2-27 \\ "Coupon Date Calculations" on page 2-30 \\ "Yield Conventions" on page 2-31 \\ "Pricing Functions" on page 2-31 \\ "Yield Functions" on page 2-32 \\ "Fixed-Income Sensitivities" on page 2-33
}

\section*{Introduction}

The Financial Toolbox product provides functions for computing accrued interest, price, yield, convexity, and duration of fixed-income securities. Various conventions exist for determining the details of these computations. The Financial Toolbox software supports conventions specified by the Securities Industry and Financial Markets Association (SIFMA), used in the US markets, the International Capital Market Association (ICMA), used mainly in the European markets, and the International Swaps and Derivatives Association (ISDA). Note that for historical reasons, SIFMA is referred to in Financial Toolbox documentation as SIA and ICMA is referred to as International Securities Market Association (ISMA).

\section*{Fixed-Income Terminology}

Since terminology varies among texts on this subject, here are some basic definitions that apply to these Financial Toolbox functions. The "Glossary" on page Glossary-1 contains additional definitions.

The settlement date of a bond is the date when money first changes hands; that is, when a buyer pays for a bond. It need not coincide with the issue date, which is the date a bond is first offered for sale.

The first coupon date and last coupon date are the dates when the first and last coupons are paid, respectively. Although bonds typically pay periodic annual or semiannual coupons, the length of the first and last coupon periods may differ from the standard coupon period. The toolbox includes price and yield functions that handle these odd first and/or last periods.

Successive quasi-coupon dates determine the length of the standard coupon period for the fixed income security of interest, and do not necessarily coincide with actual coupon payment dates. The toolbox includes functions that calculate both actual and quasi-coupon dates for bonds with odd first and/or last periods.

Fixed-income securities can be purchased on dates that do not coincide with coupon payment dates. In this case, the bond owner is not entitled to the full value of the coupon for that period. When a bond is purchased between coupon dates, the buyer must compensate the seller for the pro-rata share of the coupon interest earned from the previous coupon payment date. This pro-rata share of the coupon payment is called accrued interest. The purchase price, the price actually paid for a bond, is the quoted market price plus accrued interest.

The maturity date of a bond is the date when the issuer returns the final face value, also known as the redemption value or par value, to the buyer. The yield-to-maturity of a bond is the nominal compound rate of return that equates the present value of all future cash flows (coupons and principal) to the current market price of the bond.

The period of a bond refers to the frequency with which the issuer of a bond makes coupon payments to the holder.

\section*{Period of a Bond}
\begin{tabular}{ll|}
\hline Period Value & Payment Schedule \\
\hline 0 & No coupons (Zero coupon bond) \\
1 & Annual \\
2 & Semiannual \\
3 & Tri-annual \\
4 & Quarterly \\
\hline
\end{tabular}

\section*{Period of a Bond (Continued)}
\begin{tabular}{ll}
\hline Period Value & Payment Schedule \\
6 & Bi-monthly \\
12 & Monthly \\
\hline
\end{tabular}

The basis of a bond refers to the basis or day-count convention for a bond. Basis is normally expressed as a fraction in which the numerator determines the number of days between two dates, and the denominator determines the number of days in the year. For example, the numerator of actual/actual means that when determining the number of days between two dates, count the actual number of days; the denominator means that you use the actual number of days in the given year in any calculations (either 365 or 366 days depending on whether the given year is a leap year).

The day count convention determines how accrued interest is calculated and determines how cash flows for the bond are discounted, thereby effecting price and yield calculations. Furthermore, the SIA convention is to use the actual/actual day count convention for discounting cash flows in all cases.

\section*{Basis of a Bond}
\begin{tabular}{l|l|l}
\hline Basis Value & Meaning & Description \\
\hline 0 (default) & actual/actual & \begin{tabular}{l} 
Actual days held over \\
actual days in coupon \\
period. Denominator is \\
365 in most years and \\
\\
\end{tabular} \\
& & 366 in a leap year. \\
\hline 1 & \(30 / 360\) (SIA) & \begin{tabular}{l} 
Each month contains \\
30 days; a year contains \\
360 days. Payments \\
are adjusted for bonds \\
that pay coupons on the \\
last day of February.
\end{tabular} \\
\hline
\end{tabular}

Basis of a Bond (Continued)
\begin{tabular}{l|l|l}
\hline Basis Value & Meaning & Description \\
\hline 2 & actual/360 & \begin{tabular}{l} 
Actual days held over \\
360.
\end{tabular} \\
\hline 3 & actual/365 & \begin{tabular}{l} 
Actual days held over \\
365, even in leap years.
\end{tabular} \\
\hline 4 & \begin{tabular}{l}
\(30 / 360\) BMA (Bond \\
Market Association)
\end{tabular} & \begin{tabular}{l} 
Each month contains \\
30 days; a year contains \\
360 days. If the last \\
date of the period is the \\
last day of February, \\
the month is extended \\
to 30 days.
\end{tabular} \\
\hline 5 & \begin{tabular}{l}
\(30 / 360\) ISDA \\
(International Swap \\
Dealers Association)
\end{tabular} & \begin{tabular}{l} 
Variant of 30/360 with \\
slight differences for \\
calculating number of \\
days in a month.
\end{tabular} \\
\hline 6 & \(30 / 360\) European & \begin{tabular}{l} 
Variant of 30/360 used \\
primarily in Europe.
\end{tabular} \\
\hline 7 & actual/365 Japanese & \begin{tabular}{l} 
All years contain 365 \\
days. Leap days are \\
ignored.
\end{tabular} \\
\hline 8 & actual/actual (ICMA) & \begin{tabular}{l} 
Actual days held over \\
actual days in coupon \\
period. Denominator \\
is 365 in most years \\
and 366 in a leap year. \\
This basis assumes an \\
annual compounding \\
period.
\end{tabular} \\
\hline 9 & actual/360 (ICMA) & \begin{tabular}{l} 
Actual days held \\
over 360. This basis \\
assumes an annual \\
compounding period.
\end{tabular} \\
\hline & &
\end{tabular}

\section*{Basis of a Bond (Continued)}
\begin{tabular}{l|l|l}
\hline Basis Value & Meaning & Description \\
\hline 10 & actual/365 (ICMA) & \begin{tabular}{l} 
Actual days held over \\
365, even in leap years. \\
This basis assumes an \\
annual compounding \\
period.
\end{tabular} \\
\hline 11 & \(30 / 360 \mathrm{E}\) (ICMA) & \begin{tabular}{l} 
The number of days in \\
every month is set to 30. \\
If the start date or the \\
end date of the period \\
is the 31st of a month, \\
that date is set to the \\
30th. The number of \\
days in a year is 360.
\end{tabular} \\
\hline 12 & actual/365 (ISDA) & \begin{tabular}{l} 
This day count fraction \\
is equal to the sum \\
of number of interest \\
accrual days falling \\
with a leap year divided \\
by 366 and the number \\
of interest accrual days \\
not falling within a leap \\
year divided by 365.
\end{tabular} \\
\hline 13 & & BUS/252 \\
\hline
\end{tabular}

Note Although the concept of day count sounds deceptively simple, the actual calculation of day counts can be quite complex. You can find a good discussion of day counts and the formulas for calculating them in Chapter 5 of Stigum and Robinson, Money Market and Bond Calculations in Appendix A, "Bibliography".

The end-of-month rule affects a bond's coupon payment structure. When the rule is in effect, a security that pays a coupon on the last actual day of a month will always pay coupons on the last day of the month. This means, for example, that a semiannual bond that pays a coupon on February 28 in nonleap years will pay coupons on August 31 in all years and on February 29 in leap years.

\section*{End-of-Month Rule}
\begin{tabular}{ll}
\hline End-of-Month Rule Value & Meaning \\
1 (default) & Rule in effect. \\
0 & Rule not in effect. \\
\hline
\end{tabular}

\section*{Framework}

Although not all Financial Toolbox functions require the same input arguments, they all accept the following common set of input arguments.

\section*{Common Input Arguments}
\begin{tabular}{ll}
\hline Input & Meaning \\
Settle & Settlement date \\
Maturity & Maturity date \\
Period & Coupon payment period \\
Basis & Day-count basis \\
EndMonthRule & End-of-month payment rule \\
\hline
\end{tabular}

\section*{Common Input Arguments (Continued)}
\begin{tabular}{ll}
\hline Input & Meaning \\
IssueDate & Bond issue date \\
FirstCouponDate & First coupon payment date \\
LastCouponDate & Last coupon payment date \\
\hline
\end{tabular}

Of the common input arguments, only Settle and Maturity are required. All others are optional. They will be set to the default values if you do not explicitly set them. Note that, by default, the FirstCouponDate and LastCouponDate are nonapplicable. In other words, if you do not specify FirstCouponDate and LastCouponDate, the bond is assumed to have no odd first or last coupon periods. In this case, the bond is a standard bond with a coupon payment structure based solely on the maturity date.

\section*{Default Parameter Values}

To illustrate the use of default values in Financial Toolbox functions, consider the cfdates function, which computes actual cash flow payment dates for a portfolio of fixed income securities regardless of whether the first and/or last coupon periods are normal, long, or short.

The complete calling syntax with the full input argument list is
```

CFlowDates = cfdates(Settle, Maturity, Period, Basis, ...
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

```
while the minimal calling syntax requires only settlement and maturity dates
```

CFlowDates = cfdates(Settle, Maturity)

```

\section*{Single Bond Example}

As an example, suppose you have a bond with these characteristics
```

Settle = '20-Sep-1999'
Maturity = '15-Oct-2007'
Period = 2

```
```

Basis = 0
EndMonthRule = 1
IssueDate = NaN
FirstCouponDate = NaN
LastCouponDate = NaN

```

Note that Period, Basis, and EndMonthRule are set to their default values, and IssueDate, FirstCouponDate, and LastCouponDate are set to NaN.

Formally, a NaN is an IEEE \({ }^{\circledR}\) arithmetic standard for Not-a-Number and is used to indicate the result of an undefined operation (for example, zero divided by zero). However, NaN is also a very convenient placeholder. In the SIA functions of Financial Toolbox software, NaN indicates the presence of a nonapplicable value. It tells the Financial Toolbox functions to ignore the input value and apply the default. Setting IssueDate, FirstCouponDate, and LastCouponDate to NaN in this example tells cfdates to assume that the bond has been issued before settlement and that no odd first or last coupon periods exist.

Having set these values, all these calls to cfdates produce the same result.
```

cfdates(Settle, Maturity)
cfdates(Settle, Maturity, Period)
cfdates(Settle, Maturity, Period, [])
cfdates(Settle, Maturity, [], Basis)
cfdates(Settle, Maturity, [], [])
cfdates(Settle, Maturity, Period, [], EndMonthRule)
cfdates(Settle, Maturity, Period, [], NaN)
cfdates(Settle, Maturity, Period, [], [], IssueDate)
cfdates(Settle, Maturity, Period, [], [], IssueDate, [], [])
cfdates(Settle, Maturity, Period, [], [], [], [],LastCouponDate)
cfdates(Settle, Maturity, Period, Basis, EndMonthRule, ...
IssueDate, FirstCouponDate, LastCouponDate)

```

Thus, leaving a particular input unspecified has the same effect as passing an empty matrix ([ ]) or passing a NaN - all three tell cfdates (and other Financial Toolbox functions) to use the default value for a particular input parameter.

\section*{Bond Portfolio Example}

Since the previous example included only a single bond, there was no difference between passing an empty matrix or passing a NaN for an optional input argument. For a portfolio of bonds, however, using NaN as a placeholder is the only way to specify default acceptance for some bonds while explicitly setting nondefault values for the remaining bonds in the portfolio.

Now suppose you have a portfolio of two bonds.
```

Settle = '20-Sep-1999'
Maturity = ['15-Oct-2007'; '15-Oct-2010']

```

These calls to cfdates all set the coupon period to its default value (Period \(=2\) ) for both bonds.
```

cfdates(Settle, Maturity, 2)
cfdates(Settle, Maturity, [2 2])
cfdates(Settle, Maturity, [])
cfdates(Settle, Maturity, NaN)
cfdates(Settle, Maturity, [NaN NaN])
cfdates(Settle, Maturity)

```

The first two calls explicitly set Period = 2. Since Maturity is a 2 -by- 1 vector of maturity dates, cfdates knows you have a two-bond portfolio.

The first call specifies a single (that is, scalar) 2 for Period. Passing a scalar tells cfdates to apply the scalar-valued input to all bonds in the portfolio. This is an example of implicit scalar-expansion. Note that the settlement date has been implicit scalar-expanded as well.

The second call also applies the default coupon period by explicitly passing a two-element vector of 2's. The third call passes an empty matrix, which cfdates interprets as an invalid period, for which the default value will be used. The fourth call is similar, except that a NaN has been passed. The fifth call passes two NaN's, and has the same effect as the third. The last call passes the minimal input set.

Finally, consider the following calls to cfdates for the same two-bond portfolio.
```

cfdates(Settle, Maturity, [4 NaN])
cfdates(Settle, Maturity, [4 2])

```

The first call explicitly sets Period \(=4\) for the first bond and implicitly sets the default Period \(=2\) for the second bond. The second call has the same effect as the first but explicitly sets the periodicity for both bonds.

The optional input Period has been used for illustrative purpose only. The default-handling process illustrated in the examples applies to any of the optional input arguments.

\section*{Coupon Date Calculations}

Calculating coupon dates, either actual or quasi dates, is notoriously complicated. Financial Toolbox software follows the SIA conventions in coupon date calculations.

The first step in finding the coupon dates associated with a bond is to determine the reference, or synchronization date (the sync date). Within the SIA framework, the order of precedence for determining the sync date is:

1 The first coupon date
2 The last coupon date
3 The maturity date

In other words, a Financial Toolbox function first examines the FirstCouponDate input. If FirstCouponDate is specified, coupon payment dates and quasi-coupon dates are computed with respect to FirstCouponDate; if FirstCouponDate is unspecified, empty ([]), or NaN, then the LastCouponDate is examined. If LastCouponDate is specified, coupon payment dates and quasi-coupon dates are computed with respect to LastCouponDate. If both FirstCouponDate and LastCouponDate are unspecified, empty ([ ]), or NaN, the Maturity (a required input argument) serves as the sync date.

\section*{Yield Conventions}

There are two yield and time factor conventions that are used in the Financial Toolbox software - these are determined by the input basis. Specifically, bases 0 to 7 are assumed to have semiannual compounding, while bases 8 to 12 are assumed to have annual compounding regardless of the period of the bond's coupon payments (including zero-coupon bonds). In addition, any yield-related sensitivity (that is, duration and convexity), when quoted on a periodic basis, follows this same convention. (See bndconvp, bndconvy, bnddurp, bnddury, and bndkrdur.)

\section*{Pricing Functions}

This example shows how easily you can compute the price of a bond with an odd first period using the function bndprice. Assume you have a bond with these characteristics:
```

Settle = '11-Nov-1992';
Maturity = '01-Mar-2005';
IssueDate = '15-0ct-1992';
FirstCouponDate = '01-Mar-1993';
CouponRate = 0.0785;
Yield = 0.0625;

```

Allow coupon payment period (Period = 2), day-count basis (Basis = 0), and end-of-month rule (EndMonthRule \(=1\) ) to assume the default values. Also, assume there is no odd last coupon date and that the face value of the bond is \(\$ 100\). Calling the function
```

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, ...
Maturity, [], [], [], IssueDate, FirstCouponDate)

```
returns a price of \(\$ 113.60\) and accrued interest of \(\$ 0.59\).
Similar functions compute prices with regular payments, odd first and last periods, and prices of Treasury bills and discounted securities such as zero-coupon bonds.

Note bndprice and other functions use nonlinear formulas to compute the price of a security. For this reason, Financial Toolbox software uses Newton's method when solving for an independent variable within a formula. See any elementary numerical methods textbook for the mathematics underlying Newton's method.

\section*{Yield Functions}

To illustrate toolbox yield functions, compute the yield of a bond that has odd first and last periods and settlement in the first period. First set up variables for settlement, maturity date, issue, first coupon, and a last coupon date.
```

Settle = '12-Jan-2000';
Maturity = '01-Oct-2001';
IssueDate = '01-Jan-2000';
FirstCouponDate = '15-Jan-2000';
LastCouponDate = '15-Apr-2000';

```

Assume a face value of \(\$ 100\). Specify a purchase price of \(\$ 95.70\), a coupon rate of \(4 \%\), quarterly coupon payments, and a 30/360 day-count convention (Basis = 1).
```

Price = 95.7;
CouponRate = 0.04;
Period = 4;
Basis = 1;
EndMonthRule = 1;

```

Calling the function
```

Yield = bndyield(Price, CouponRate, Settle, Maturity, Period,...
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

```
returns
Yield = 0.0659 (6.60\%).

\section*{Fixed-Income Sensitivities}

Financial Toolbox software supports the following options for managing interest-rate risk for one or more bonds:
- bnddurp and bnddury support duration and convexity analysis based on market quotes and assume parallel shifts in the bond yield curve.
- bndkrdur supports key rate duration based on a market yield curve and can model nonparallel shifts in the bond yield curve.

\section*{Calculating Duration and Convexity for Bonds}

The toolbox includes functions to perform sensitivity analysis such as convexity and the Macaulay and modified durations for fixed-income securities. The Macaulay duration of an income stream, such as a coupon bond, measures how long, on average, the owner waits before receiving a payment. It is the weighted average of the times payments are made, with the weights at time T equal to the present value of the money received at time T . The modified duration is the Macaulay duration discounted by the per-period interest rate; that is, divided by (1+rate/frequency).

To illustrate, the following example computes the annualized Macaulay and modified durations, and the periodic Macaulay duration for a bond with settlement (12-Jan-2000) and maturity (01-Oct-2001) dates as above, a \(5 \%\) coupon rate, and a \(4.5 \%\) yield to maturity. For simplicity, any optional input arguments assume default values (that is, semiannual coupons, and day-count basis = 0 (actual/actual), coupon payment structure synchronized to the maturity date, and end-of-month payment rule in effect).
```

CouponRate = 0.05;
Yield = 0.045;
[ModDuration, YearDuration, PerDuration] = bnddury(Yield,...
CouponRate, Settle, Maturity)

```

The durations are
```

ModDuration = 1.6107 (years)
YearDuration = 1.6470 (years)
PerDuration = 3.2940 (semiannual periods)

```

Note that the semiannual periodic Macaulay duration (PerDuration) is twice the annualized Macaulay duration (YearDuration).

\section*{Calculating Key Rate Durations for Bonds}

Key rate duration enables you to evaluate the sensitivity and price of a bond to nonparallel changes in the spot or zero curve by decomposing the interest rate risk along the spot or zero curve. Key rate duration refers to the process of choosing a set of key rates and computing a duration for each rate. Specifically, for each key rate, while the other rates are held constant, the key rate is shifted up and down (and intermediate cash flow dates are interpolated), and then the present value of the security given the shifted curves is computed.

The calculation of bndkrdur supports:
\[
k r d u r_{i}=\frac{\left(P V_{\text {down }}-P V_{u p}\right)}{(P V \times \text { ShiftValue } \times 2)}
\]

Where \(P V\) is the current value of the instrument, \(P V \_u p\) and \(P V \_d o w n\) are the new values after the discount curve has been shocked, and ShiftValue is the change in interest rate. For example, if key rates of 3 months, 1, 2, 3, \(5,7,10,15,20,25,30\) years were chosen, then a 30 -year bond might have corresponding key rate durations of:
\begin{tabular}{ccccccccccc}
3 M & 1 Y & 2 Y & 3 Y & 5 Y & 7 Y & 10 Y & 15 Y & 20 Y & 25 Y & 30 Y \\
.01 & .04 & .09 & .21 & .4 & .65 & 1.27 & 1.71 & 1.68 & 1.83 & 7.03
\end{tabular}

The key rate durations add up to approximately equal the duration of the bond.

For example, compute the key rate duration of the U.S. Treasury Bond with maturity date of August 15, 2028 and coupon rate of \(5.5 \%\).
```

Settle = datenum('18-Nov-2008');
CouponRate = 5.500/100;
Maturity = datenum('15-Aug-2028');
Price = 114.83;

```

For the ZeroData information on the current spot curve for this bond, refer to http://www.treas.gov/offices/domestic-finance/debt-management/interest-rate/yield.shtml:
```

ZeroDates = daysadd(Settle ,[30 90 180 360 360*2 360*3 360*5 ...
360*7 360*10 360*20 360*30]);
ZeroRates = ([0.06 0.12 0.81 1.08 1.22 1.53 2.32 2.92 3.68 4.42 4.20]/100)';

```

Compute the key rate duration for a specific set of rates (choose this based on the maturities of the available hedging instruments):
```

krd = bndkrdur([ZeroDates ZeroRates],CouponRate,Settle,Maturity,'keyrates',[2 5 10 20])
krd =
0.2865 0.8729 2.6451 8.5778

```

Note, the sum of the key rate durations approximately equals the duration of the bond:
[sum(krd) bnddurp(Price,CouponRate,Settle,Maturity)]
ans =
\(12.3823 \quad 12.3919\)

\section*{Treasury Bills Defined}

Treasury bills are short-term securities (issued with maturities of 1 year or less) sold by the United States Treasury. Sales of these securities are frequent, usually weekly. From time to time, the Treasury also offers longer duration securities called Treasury notes and Treasury bonds.

A Treasury bill is a discount security. The holder of the Treasury bill does not receive periodic interest payments. Instead, at the time of sale, a percentage discount is applied to the face value. At maturity, the holder redeems the bill for full face value.

The basis for Treasury bill interest calculation is actual/360. Under this system, interest accrues on the actual number of elapsed days between purchase and maturity, and each year contains 360 days.

\section*{Computing Treasury Bill Price and Yield}

\section*{In this section...}
"Introduction" on page 2-37
"Treasury Bill Repurchase Agreements" on page 2-37
"Treasury Bill Yields" on page 2-39

\section*{Introduction}

Financial Toolbox software provides the following suite of functions for computing price and yield on Treasury bills.

\section*{Treasury Bill Functions}
\begin{tabular}{l|l}
\hline Function & Purpose \\
\hline tbilldisc2yield & Convert discount rate to yield. \\
\hline tbillprice & Price Treasury bill given its yield or discount rate. \\
\hline tbillrepo & Break-even discount of repurchase agreement. \\
\hline tbillyield & Yield and discount of Treasury bill given its price. \\
\hline tbillyield2disc & Convert yield to discount rate. \\
\hline tbillval01 & \begin{tabular}{l} 
The value of 1 basis point given the characteristics \\
of the Treasury bill, as represented by its \\
settlement and maturity dates. You can relate \\
the basis point to discount, money-market, or \\
bond-equivalent yield.
\end{tabular} \\
\hline
\end{tabular}

For all functions with yield in the computation, you can specify yield as money-market or bond-equivalent yield. The functions all assume a face value of \(\$ 100\) for each Treasury bill.

\section*{Treasury Bill Repurchase Agreements}

The following example shows how to compute the break-even discount rate. This is the rate that correctly prices the Treasury bill such that the profit from selling the tail equals 0 .
```

Maturity = '26-Dec-2002';
InitialDiscount = 0.0161;
PurchaseDate = '26-Sep-2002';
SaleDate = '26-0ct-2002';
RepoRate = 0.0149;
BreakevenDiscount = tbillrepo(RepoRate, InitialDiscount, ...
PurchaseDate, SaleDate, Maturity)
BreakevenDiscount =
0.0167

```

You can check the result of this computation by examining the cash flows in and out from the repurchase transaction. First compute the price of the Treasury bill on the purchase date (September 26).

PriceOnPurchaseDate = tbillprice(InitialDiscount, ... PurchaseDate, Maturity, 3)

PriceOnPurchaseDate =
99.5930

Next compute the interest due on the repurchase agreement.
RepoInterest = ...
RepoRate*PriceOnPurchaseDate*days360(PurchaseDate, SaleDate)/360

RepoInterest =
0.1237

RepoInterest for a \(1.49 \%\) 30-day term repurchase agreement (30/360 basis) is 0.1237 .

Finally, compute the price of the Treasury bill on the sale date (October 26).
PriceOnSaleDate = tbillprice(BreakevenDiscount, SaleDate, ... Maturity, 3)

PriceOnSaleDate =
99.7167

Examining the cash flows, observe that the break-even discount causes the sum of the price on the purchase date plus the accrued 30-day interest to be equal to the price on sale date. The next table shows the cash flows.

\section*{Cash Flows from Repurchase Agreement}
\begin{tabular}{lllll|}
\hline Date & Cash Out Flow & & Cash In Flow \\
\hline \(9 / 26 / 2002\) & Purchase T-bill & 99.593 & Repo money & 99.593 \\
\(10 / 26 / 2002\) & Payment of repo & 99.593 & Sell T-bill & 99.7168 \\
& Repo interest & 0.1238 & & \\
& Total & 199.3098 & & 199.3098 \\
\hline
\end{tabular}

\section*{Treasury Bill Yields}

Using the same data as before, you can examine the money-market and bond-equivalent yields of the Treasury bill at the time of purchase and sale. The function tbilldisc2yield can perform both computations at one time.
```

Maturity = '26-Dec-2002';
InitialDiscount = 0.0161;
PurchaseDate = '26-Sep-2002';
SaleDate = '26-Oct-2002';
RepoRate = 0.0149;
BreakevenDiscount = tbillrepo(RepoRate, InitialDiscount, ...
PurchaseDate, SaleDate, Maturity)
[BEYield, MMYield] = ...
tbilldisc2yield([InitialDiscount; BreakevenDiscount], ...
[PurchaseDate; SaleDate], Maturity)
BreakevenDiscount =
0.0167

```
```

BEYield =
0.0164
0.0170
MMYield =
0.0162
0.0168

```

For the short Treasury bill (fewer than 182 days to maturity), the money-market yield is \(360 / 365\) of the bond-equivalent yield, as this example shows.

\section*{Term Structure of Interest Rates}

\author{
In this section... \\ "Introduction" on page 2-41 \\ "Deriving an Implied Zero Curve" on page 2-42
}

\section*{Introduction}

The Financial Toolbox product contains several functions to derive and analyze interest rate curves, including data conversion and extrapolation, bootstrapping, and interest-rate curve conversion functions.

One of the first problems in analyzing the term structure of interest rates is dealing with market data reported in different formats. Treasury bills, for example, are quoted with bid and asked bank-discount rates. Treasury notes and bonds, on the other hand, are quoted with bid and asked prices based on \(\$ 100\) face value. To examine the full spectrum of Treasury securities, analysts must convert data to a single format. Financial Toolbox functions ease this conversion. This brief example uses only one security each; analysts often use 30,100 , or more of each.

First, capture Treasury bill quotes in their reported format
\begin{tabular}{llllll}
\(\%\) & Maturity & Days & Bid & Ask & AskYield \\
TBill \(=\) [datenum('12/26/2000') & 53 & 0.0503 & 0.0499 & \(0.0510] ;\)
\end{tabular}
then capture Treasury bond quotes in their reported format
\begin{tabular}{lcllll}
\(\%\) & Coupon & Maturity & Bid & Ask & AskYield \\
TBond \(=\left[\begin{array}{lll}0.08875 & \text { datenum }(2001,11,5) & 103+4 / 32\end{array}\right.\) & \(103+6 / 32\) & \(0.0564] ;\)
\end{tabular}
and note that these quotes are based on a November 3, 2000 settlement date.
```

Settle = datenum('3-Nov-2000');

```

Next use the toolbox tbl2bond function to convert the Treasury bill data to Treasury bond format.
```

TBTBond = tbl2bond(TBill)

```

TBTBond =
\[
\begin{array}{lllll}
0 & 730846 & 99.26 & 99.27 & 0.05
\end{array}
\]
(The second element of TBTBond is the serial date number for December 26, 2000.)

Now combine short-term (Treasury bill) with long-term (Treasury bond) data to set up the overall term structure.

TBondsAll = [TBTBond; TBond]

TBondsAll =
\begin{tabular}{rrrrr}
0 & 730846 & 99.26 & 99.27 & 0.05 \\
0.09 & 731160 & 103.13 & 103.19 & 0.06
\end{tabular}

The Financial Toolbox software provides a second data-preparation function, tr2bonds, to convert the bond data into a form ready for the bootstrapping functions. tr2bonds generates a matrix of bond information sorted by maturity date, plus vectors of prices and yields.
[Bonds, Prices, Yields] = tr2bonds(TBondsAll);

\section*{Deriving an Implied Zero Curve}

Using this market data, you can use one of the Financial Toolbox bootstrapping functions to derive an implied zero curve. Bootstrapping is a process whereby you begin with known data points and solve for unknown data points using an underlying arbitrage theory. Every coupon bond can be valued as a package of zero-coupon bonds which mimic its cash flow and risk characteristics. By mapping yields-to-maturity for each theoretical zero-coupon bond, to the dates spanning the investment horizon, you can create a theoretical zero-rate curve. The Financial Toolbox software provides two bootstrapping functions: zbtprice derives a zero curve from bond data and prices, and zbtyield derives a zero curve from bond data and yields. Using zbtprice
[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle)

ZeroRates =
0.05
```

 0.06
 CurveDates =
730846
7 3 1 1 6 0
CurveDates gives the investment horizon.
datestr(CurveDates)
ans =
26-Dec-2000
05-Nov-2001

```

Additional Financial Toolbox functions construct discount, forward, and par yield curves from the zero curve, and vice versa.
```

[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,...
Settle);
[FwdRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle);
[PYldRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...
Settle);

```

\section*{Pricing and Analyzing Equity Derivatives}

\author{
In this section... \\ "Introduction" on page 2-44 \\ "Sensitivity Measures" on page 2-44 \\ "Analysis Models" on page 2-45
}

\section*{Introduction}

These toolbox functions compute prices, sensitivities, and profits for portfolios of options or other equity derivatives. They use the Black-Scholes model for European options and the binomial model for American options. Such measures are useful for managing portfolios and for executing collars, hedges, and straddles.

\section*{Sensitivity Measures}

There are six basic sensitivity measures associated with option pricing: delta, gamma, lambda, rho, theta, and vega - the "greeks." The toolbox provides functions for calculating each sensitivity and for implied volatility.

\section*{Delta}

Delta of a derivative security is the rate of change of its price relative to the price of the underlying asset. It is the first derivative of the curve that relates the price of the derivative to the price of the underlying security. When delta is large, the price of the derivative is sensitive to small changes in the price of the underlying security.

\section*{Gamma}

Gamma of a derivative security is the rate of change of delta relative to the price of the underlying asset; that is, the second derivative of the option price relative to the security price. When gamma is small, the change in delta is small. This sensitivity measure is important for deciding how much to adjust a hedge position.

\section*{Lambda}

Lambda, also known as the elasticity of an option, represents the percentage change in the price of an option relative to a \(1 \%\) change in the price of the underlying security.

\section*{Rho}

Rho is the rate of change in option price relative to the risk-free interest rate.

\section*{Theta}

Theta is the rate of change in the price of a derivative security relative to time. Theta is usually very small or negative since the value of an option tends to drop as it approaches maturity.

\section*{Vega}

Vega is the rate of change in the price of a derivative security relative to the volatility of the underlying security. When vega is large the security is sensitive to small changes in volatility. For example, options traders often must decide whether to buy an option to hedge against vega or gamma. The hedge selected usually depends upon how frequently one rebalances a hedge position and also upon the standard deviation of the price of the underlying asset (the volatility). If the standard deviation is changing rapidly, balancing against vega is usually preferable.

\section*{Implied Volatility}

The implied volatility of an option is the standard deviation that makes an option price equal to the market price. It helps determine a market estimate for the future volatility of a stock and provides the input volatility (when needed) to the other Black-Scholes functions.

\section*{Analysis Models}

Toolbox functions for analyzing equity derivatives use the Black-Scholes model for European options and the binomial model for American options. The Black-Scholes model makes several assumptions about the underlying securities and their behavior. The binomial model, on the other hand, makes far fewer assumptions about the processes underlying an option. For further
explanation, see Options, Futures, and Other Derivatives by John Hull in Appendix A, "Bibliography".

\section*{Black-Scholes Model}

Using the Black-Scholes model entails several assumptions:
- The prices of the underlying asset follow an Ito process. (See Hull, page 222.)
- The option can be exercised only on its expiration date (European option).
- Short selling is permitted.
- There are no transaction costs.
- All securities are divisible.
- There is no riskless arbitrage.
- Trading is a continuous process.
- The risk-free interest rate is constant and remains the same for all maturities.

If any of these assumptions is untrue, Black-Scholes may not be an appropriate model.

To illustrate toolbox Black-Scholes functions, this example computes the call and put prices of a European option and its delta, gamma, lambda, and implied volatility. The asset price is \(\$ 100.00\), the exercise price is \(\$ 95.00\), the risk-free interest rate is \(10 \%\), the time to maturity is 0.25 years, the volatility is 0.50 , and the dividend rate is 0 . Simply executing the toolbox functions
```

[OptCall, OptPut] = blsprice(100, 95, 0.10, 0.25, 0.50, 0);
[CallVal, PutVal] = blsdelta(100, 95, 0.10, 0.25, 0.50, 0);
GammaVal = blsgamma(100, 95, 0.10, 0.25, 0.50, 0);
VegaVal = blsvega(100, 95, 0.10, 0.25, 0.50, 0);
[LamCall, LamPut] = blslambda(100, 95, 0.10, 0.25, 0.50, 0);
yields:

```
- The option call price OptCall \(=\$ 13.70\)
- The option put price OptPut \(=\$ 6.35\)
- delta for a call CallVal \(=0.6665\) and delta for a put PutVal \(=-0.3335\)
- gamma GammaVal \(=0.0145\)
- vega VegaVal \(=18.1843\)
- lambda for a call LamCall \(=4.8664\) and lambda for a put LamPut \(=-5.2528\)

Now as a computation check, find the implied volatility of the option using the call option price from blsprice.
```

Volatility = blsimpv(100, 95, 0.10, 0.25, OptCall);

```

The function returns an implied volatility of 0.500 , the original blsprice input.

\section*{Binomial Model}

The binomial model for pricing options or other equity derivatives assumes that the probability over time of each possible price follows a binomial distribution. The basic assumption is that prices can move to only two values, one up and one down, over any short time period. Plotting the two values, and then the subsequent two values each, and then the subsequent two values each, and so on over time, is known as "building a binomial tree." This model applies to American options, which can be exercised any time up to and including their expiration date.

This example prices an American call option using a binomial model. Again, the asset price is \(\$ 100.00\), the exercise price is \(\$ 95.00\), the risk-free interest rate is \(10 \%\), and the time to maturity is 0.25 years. It computes the tree in increments of 0.05 years, so there are \(0.25 / 0.05=5\) periods in the example. The volatility is 0.50 , this is a call ( \(\mathrm{flag}=1\) ), the dividend rate is 0 , and it pays a dividend of \(\$ 5.00\) after three periods (an ex-dividend date). Executing the toolbox function
```

[StockPrice, OptionPrice] = binprice(100, 95, 0.10, 0.25,...

```
0.05, 0.50, 1, 0, 5.0, 3);
returns the tree of prices of the underlying asset
```

StockPrice =

```
\begin{tabular}{rrrrrr}
100.00 & 111.27 & 123.87 & 137.96 & 148.69 & 166.28 \\
0 & 89.97 & 100.05 & 111.32 & 118.90 & 132.96 \\
0 & 0 & 81.00 & 90.02 & 95.07 & 106.32 \\
0 & 0 & 0 & 72.98 & 76.02 & 85.02 \\
0 & 0 & 0 & 0 & 60.79 & 67.98 \\
0 & 0 & 0 & 0 & 0 & 54.36
\end{tabular}
and the tree of option values.
```

OptionPrice =

```
\begin{tabular}{rrrrrr}
12.10 & 19.17 & 29.35 & 42.96 & 54.17 & 71.28 \\
0 & 5.31 & 9.41 & 16.32 & 24.37 & 37.96 \\
0 & 0 & 1.35 & 2.74 & 5.57 & 11.32 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

The output from the binomial function is a binary tree. Read the StockPrice matrix this way: column 1 shows the price for period 0 , column 2 shows the up and down prices for period 1 , column 3 shows the up-up, up-down, and down-down prices for period 2, and so on. Ignore the zeros. The OptionPrice matrix gives the associated option value for each node in the price tree. Ignore the zeros that correspond to a zero in the price tree.

\section*{Portfolio Analysis}
- "Analyzing Portfolios" on page 3-2
- "Portfolio Optimization Functions" on page 3-3
- "Portfolio Construction Examples" on page 3-5
- "Portfolio Selection and Risk Aversion" on page 3-8
- "Constraint Specification" on page 3-12
- "Active Returns and Tracking Error Efficient Frontier" on page 3-20

\section*{Analyzing Portfolios}

Portfolio managers concentrate their efforts on achieving the best possible trade-off between risk and return. For portfolios constructed from a fixed set of assets, the risk/return profile varies with the portfolio composition. Portfolios that maximize the return, given the risk, or, conversely, minimize the risk for the given return, are called optimal. Optimal portfolios define a line in the risk/return plane called the efficient frontier.

A portfolio may also have to meet additional requirements to be considered. Different investors have different levels of risk tolerance. Selecting the adequate portfolio for a particular investor is a difficult process. The portfolio manager can hedge the risk related to a particular portfolio along the efficient frontier with partial investment in risk-free assets. The definition of the capital allocation line, and finding where the final portfolio falls on this line, if at all, is a function of:
- The risk/return profile of each asset
- The risk-free rate
- The borrowing rate
- The degree of risk aversion characterizing an investor

Financial Toolbox software includes a set of portfolio optimization functions designed to find the portfolio that best meets investor requirements.

\section*{Portfolio Optimization Functions}

The portfolio optimization functions assist portfolio managers in constructing portfolios that optimize risk and return.
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Capital \\
Allocation
\end{tabular} & Description \\
\hline portalloc & \begin{tabular}{l} 
Computes the optimal risky portfolio on the efficient \\
frontier, based on the risk-free rate, the borrowing rate, \\
and the investor's degree of risk aversion. Also generates \\
the capital allocation line, which provides the optimal \\
allocation of funds between the risky portfolio and the \\
risk-free asset.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Efficient \\
Frontier \\
Computation
\end{tabular} & Description
\end{tabular} frontcon \begin{tabular}{l} 
Computes portfolios along the efficient frontier for a \\
given group of assets. The computation is based on sets \\
of constraints representing the maximum and minimum \\
weights for each asset, and the maximum and minimum \\
total weight for specified groups of assets.
\end{tabular}\(|\)
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Constraint \\
Specification
\end{tabular} & Description \\
\hline portcons & \begin{tabular}{l} 
Generates the portfolio constraints matrix for a portfolio \\
of asset investments using linear inequalities. The \\
inequalities are of the type A*Wts ' <= b, where Wts is a \\
row vector of weights.
\end{tabular} \\
\hline portvrisk & \begin{tabular}{l} 
Portfolio value at risk (VaR) returns the maximum \\
potential loss in the value of a portfolio over one period of \\
time, given the loss probability level RiskThreshold.
\end{tabular} \\
\hline pcalims & \begin{tabular}{l} 
Asset minimum and maximum allocation. Generates a \\
constraint set to fix the minimum and maximum weight \\
for each individual asset.
\end{tabular} \\
\hline pcgcomp & \begin{tabular}{l} 
Group-to-group ratio constraint. Generates a constraint \\
set specifying the maximum and minimum ratios \\
between pairs of groups.
\end{tabular} \\
\hline pcglims & \begin{tabular}{l} 
Asset group minimum and maximum allocation. \\
Generates a constraint set to fix the minimum and \\
maximum total weight for each defined group of assets.
\end{tabular} \\
\hline pcpval & \begin{tabular}{l} 
Total portfolio value. Generates a constraint set to fix the \\
total value of the portfolio.
\end{tabular} \\
\hline &
\end{tabular}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Constraint \\
Conversion
\end{tabular} & Description \\
\hline abs2active & \begin{tabular}{l} 
Transforms a constraint matrix expressed in absolute \\
weight format to an equivalent matrix expressed in active \\
weight format.
\end{tabular} \\
\hline active2abs & \begin{tabular}{l} 
Transforms a constraint matrix expressed in active \\
weight format to an equivalent matrix expressed in \\
absolute weight format.
\end{tabular} \\
\hline
\end{tabular}

\section*{Portfolio Construction Examples}

\author{
In this section... \\ "Introduction" on page 3-5 \\ "Efficient Frontier Example" on page 3-5
}

\section*{Introduction}

The efficient frontier computation functions require information about each asset in the portfolio. This data is entered into the function via two matrices: an expected return vector and a covariance matrix. The expected return vector contains the average expected return for each asset in the portfolio. The covariance matrix is a square matrix representing the interrelationships between pairs of assets. This information can be directly specified or can be estimated from an asset return time series with the function ewstats.

\section*{Efficient Frontier Example}

This example computes the efficient frontier of portfolios consisting of three different assets using the function frontcon. To visualize the efficient frontier curve clearly, consider 10 different evenly spaced portfolios.

Assume that the expected return of the first asset is \(10 \%\), the second is \(20 \%\), and the third is \(15 \%\). The covariance is defined in the matrix ExpCovariance.
ExpReturn \(=\left[\begin{array}{llrr}0.1 & 0.20 .15\end{array}\right] ;\)
ExpCovariance \(=\left[\begin{array}{rrrr} & 0.005 & -0.010 & 0.004 ; \\ & -0.010 & 0.040 & -0.002 ; \\ & 0.004 & -0.002 & 0.023\end{array}\right]\)

NumPorts = 10;
Since there are no constraints, you can call frontcon directly with the data you already have. If you call frontcon without specifying any output arguments, you get a graph representing the efficient frontier curve.
frontcon (ExpReturn, ExpCovariance, NumPorts);


Calling frontcon while specifying the output arguments returns the corresponding vectors and arrays representing the risk, return, and weights for each of the 10 points computed along the efficient frontier.
[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,... ExpCovariance, NumPorts)

PortRisk =
0.0392
0.0445
0.0559
0.0701
0.0858
0.1023
0.1192
0.1383
0.1661
0.2000

PortReturn =
\[
\begin{aligned}
& 0.1231 \\
& 0.1316 \\
& 0.1402 \\
& 0.1487 \\
& 0.1573 \\
& 0.1658 \\
& 0.1744 \\
& 0.1829 \\
& 0.1915 \\
& 0.2000
\end{aligned}
\]

PortWts =
\begin{tabular}{rrr}
0.7692 & 0.2308 & 0.0000 \\
0.6667 & 0.2991 & 0.0342 \\
0.5443 & 0.3478 & 0.1079 \\
0.4220 & 0.3964 & 0.1816 \\
0.2997 & 0.4450 & 0.2553 \\
0.1774 & 0.4936 & 0.3290 \\
0.0550 & 0.5422 & 0.4027 \\
0 & 0.6581 & 0.3419 \\
0 & 0.8291 & 0.1709 \\
0 & 1.0000 & 0.0000
\end{tabular}

The output data is represented row-wise. Each portfolio's risk, rate of return, and associated weights are identified as corresponding rows in the vectors and matrix.

For example, you can see from these results that the second portfolio has a risk of 0.0445 , an expected return of \(13.16 \%\), and allocations of about \(67 \%\) in the first asset, \(30 \%\) in the second, and \(3 \%\) in the third.

\section*{Portfolio Selection and Risk Aversion}

\author{
In this section... \\ "Introduction" on page 3-8 \\ "Optimal Risky Portfolio" on page 3-9
}

\section*{Introduction}

One of the factors to consider when selecting the optimal portfolio for a particular investor is degree of risk aversion. This level of aversion to risk can be characterized by defining the investor's indifference curve. This curve consists of the family of risk/return pairs defining the trade-off between the expected return and the risk. It establishes the increment in return that a particular investor will require in order to make an increment in risk worthwhile. Typical risk aversion coefficients range between 2.0 and 4.0 , with the higher number representing lesser tolerance to risk. The equation used to represent risk aversion in Financial Toolbox software is
\(U=E(r)-0.005^{*} A^{*}\) sig^2 \(^{\wedge}\)
where:
U is the utility value.
\(E(r)\) is the expected return.
A is the index of investor's aversion.
sig is the standard deviation.


\section*{Optimal Risky Portfolio}

This example computes the optimal risky portfolio on the efficient frontier based upon the risk-free rate, the borrowing rate, and the investor's degree of risk aversion. You do this with the function portalloc.

First generate the efficient frontier data using either portopt or frontcon. This example uses portopt and the same asset data from the previous example.

ExpReturn \(=\left[\begin{array}{lll}0.1 & 0.2 & 0.15\end{array}\right] ;\)

ExpCovariance \(=\left[\begin{array}{rrr}0.005 & -0.010 & 0.004 ; \\ & -0.010 & 0.040 \\ & 0.004 & -0.002 \\ & & 0.023] ;\end{array}\right]\); \(\left.\begin{array}{rl} & \end{array}\right]\)
This time consider 20 different points along the efficient frontier.
NumPorts = 20;
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,... ExpCovariance, NumPorts);

As with frontcon, calling portopt while specifying output arguments returns the corresponding vectors and arrays representing the risk, return, and weights for each of the portfolios along the efficient frontier. Use them as the first three input arguments to the function portalloc.

Now find the optimal risky portfolio and the optimal allocation of funds between the risky portfolio and the risk-free asset, using these values for the risk-free rate, borrowing rate and investor's degree of risk aversion.
```

RisklessRate = 0.08
BorrowRate = 0.12
RiskAversion = 3

```

Calling portalloc without specifying any output arguments gives a graph displaying the critical points.
portalloc (PortRisk, PortReturn, PortWts, RisklessRate,... BorrowRate, RiskAversion);


Calling portalloc while specifying the output arguments returns the variance (RiskyRisk), the expected return (RiskyReturn), and the weights (RiskyWts) allocated to the optimal risky portfolio. It also returns the fraction (RiskyFraction) of the complete portfolio allocated to the risky portfolio, and the variance (OverallRisk) and expected return (OverallReturn) of the optimal overall portfolio. The overall portfolio combines investments in the risk-free asset and in the risky portfolio. The actual proportion assigned to each of these two investments is determined by the degree of risk aversion characterizing the investor.
```

[RiskyRisk, RiskyReturn, RiskyWts,RiskyFraction, OverallRisk,...
OverallReturn] = portalloc (PortRisk, PortReturn, PortWts,...
RisklessRate, BorrowRate, RiskAversion)
RiskyRisk = 0.1288
RiskyReturn = 0.1791
RiskyWts = 0.0057 0.5879 0.4064
RiskyFraction = 1.1869
OverallRisk = 0.1529
OverallReturn = 0.1902

```

The value of RiskyFraction exceeds 1 (100\%), implying that the risk tolerance specified allows borrowing money to invest in the risky portfolio, and that no money will be invested in the risk-free asset. This borrowed capital is added to the original capital available for investment. In this example the customer will tolerate borrowing \(18.69 \%\) of the original capital amount.

\section*{Constraint Specification}
```

In this section...
"Example" on page 3-12
"Linear Constraint Equations" on page 3-14
"Specifying Additional Constraints" on page 3-17

```

\section*{Example}

This example computes the efficient frontier of portfolios consisting of three different assets, INTC, XON, and RD, given a list of constraints. The expected returns for INTC, XON, and RD are respectively as follows:

ExpReturn = [0.1 0.2 0.15];
The covariance matrix is
\begin{tabular}{rlrr} 
ExpCovariance \(=\) & \(\left.\left[\begin{array}{rrr}0.005 & -0.010 & 0.004 ; \\
-0.010 & 0.040 & -0.002 ; \\
& 0.004 & -0.002\end{array}\right) 0.023\right] ;\)
\end{tabular}
- Constraint 1
- Allow short selling up to \(10 \%\) of the portfolio value in any asset, but limit the investment in any one asset to \(110 \%\) of the portfolio value.

\section*{- Constraint 2}
- Consider two different sectors, technology and energy, with the following table indicating the sector each asset belongs to.
\begin{tabular}{llll}
\hline Asset & INTC & XON & RD \\
Sector & Technology & Energy & Energy \\
\hline
\end{tabular}

Constrain the investment in the Energy sector to \(80 \%\) of the portfolio value, and the investment in the Technology sector to \(70 \%\).

To solve this problem, use frontcon, passing in a list of asset constraints. Consider eight different portfolios along the efficient frontier:
```

NumPorts = 8;

```

To introduce the asset bounds constraints specified in Constraint 1, create the matrix AssetBounds, where each column represents an asset. The upper row represents the lower bounds, and the lower row represents the upper bounds.
```

AssetBounds = [-0.10, -0.10, -0.10;
1.10, 1.10, 1.10];

```

Constraint 2 needs to be entered in two parts, the first part defining the groups, and the second part defining the constraints for each group. Given the information above, you can build a matrix of 1 s and 0 s indicating whether a specific asset belongs to a group. Each column represents an asset, and each row represents a group. This example has two groups: the technology group, and the energy group. Create the matrix Groups as follows.
```

Groups = [$$
\begin{array}{ccc}{[0}&{1}&{1;}\\{1}&{0}&{0];}\end{array}
$$]

```

The GroupBounds matrix allows you to specify an upper and lower bound for each group. Each row in this matrix represents a group. The first column represents the minimum allocation, and the second column represents the maximum allocation to each group. Since the investment in the Energy sector is capped at \(80 \%\) of the portfolio value, and the investment in the Technology sector is capped at \(70 \%\), create the GroupBounds matrix using this information.
\[
\begin{aligned}
\text { GroupBounds }=\left[\begin{array}{ll}
0 & 0.80 ; \\
0 & 0.70
\end{array}\right]
\end{aligned}
\]

Now use frontcon to obtain the vectors and arrays representing the risk, return, and weights for each of the eight portfolios computed along the efficient frontier.
```

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,...
ExpCovariance, NumPorts, [], AssetBounds, Groups, GroupBounds)

```
```

PortRisk =

```
0.0416
0.0499
0.0624
0.0767
0.0920
0.1100
0.1378
0.1716
PortReturn =
0.1279
0.1361
0.1442
0.1524
0.1605
0.1687
0.1768
0.1850
PortWts =
\begin{tabular}{rrr}
0.7000 & 0.2582 & 0.0418 \\
0.6031 & 0.3244 & 0.0725 \\
0.4864 & 0.3708 & 0.1428 \\
0.3696 & 0.4172 & 0.2132 \\
0.2529 & 0.4636 & 0.2835 \\
0.2000 & 0.5738 & 0.2262 \\
0.2000 & 0.7369 & 0.0631 \\
0.2000 & 0.9000 & -0.1000
\end{tabular}

The output data is represented row-wise, where each portfolio's risk, rate of return, and associated weight is identified as corresponding rows in the vectors and matrix.

\section*{Linear Constraint Equations}

While frontcon allows you to enter a fixed set of constraints related to minimum and maximum values for groups and individual assets, you often need to specify a larger and more general set of constraints when finding
the optimal risky portfolio. The function portopt addresses this need, by accepting an arbitrary set of constraints as an input matrix.

The auxiliary function portcons can be used to create the matrix of constraints, with each row representing an inequality. These inequalities are of the type \(A * W t s{ }^{\prime}<=b\), where \(A\) is a matrix, \(b\) is a vector, and Wts is a row vector of asset allocations. The number of columns of the matrix A, and the length of the vector Wts correspond to the number of assets. The number of rows of the matrix \(A\), and the length of vector \(b\) correspond to the number of constraints. This method allows you to specify any number of linear inequalities to the function portopt.

In actuality, portcons is an entry point to a set of functions that generate matrices for specific types of constraints. portcons allows you to specify all the constraints data at once, while the specific portfolio constraint functions allow you to build the constraints incrementally. These constraint functions are pcpval, pcalims, pcglims, and pcgcomp.

Consider an example to help understand how to specify constraints to portopt while bypassing the use of portcons. This example requires specifying the minimum and maximum investment in various groups.

Maximum and Minimum Group Exposure
\begin{tabular}{lll}
\hline Group & Minimum Exposure & Maximum Exposure \\
North America & 0.30 & 0.75 \\
Europe & 0.10 & 0.55 \\
Latin America & 0.20 & 0.50 \\
Asia & 0.50 & 0.50 \\
\hline
\end{tabular}

Note that the minimum and maximum exposure in Asia is the same. This means that you require a fixed exposure for this group.

Also assume that the portfolio consists of three different funds. The correspondence between funds and groups is shown in the table below.

\section*{Group Membership}
\begin{tabular}{l|l|l|l}
\hline Group & Fund 1 & Fund 2 & Fund 3 \\
\hline North America & X & X & \\
\hline Europe & & & X \\
\hline Latin America & X & & \\
\hline Asia & & X & X \\
\hline
\end{tabular}

Using the information in these two tables, build a mathematical representation of the constraints represented. Assume that the vector of weights representing the exposure of each asset in a portfolio is called Wts = [W1 W2 W3].

Specifically
\begin{tabular}{llll}
1. & \(W 1+W 2\) & \(\geq\) & 0.30 \\
2. & \(W 1+W 2\) & \(\leq\) & 0.75 \\
3. & \(W 3\) & \(\geq\) & 0.10 \\
4. & \(W 3\) & \(\leq\) & 0.55 \\
5. & \(W 1\) & \(\leq\) & 0.20 \\
6. & \(W 2+W 3\) & \(=\) & 0.50 \\
7. & & & 0.50
\end{tabular}

Since you need to represent the information in the form A*Wts <= b, multiply equations 1,3 and 5 by -1 . Also turn equation 7 into a set of two inequalities: \(W 2+W 3 \geq 0.50\) and \(W 2+W 3 \leq 0.50\). (The intersection of these two inequalities is the equality itself.) Thus
1.
-W1-W2
\(\leq\)
-0.30
2.
\(W 1+W 2\)
\(\leq\)
0.75
3.
-W3
\(\leq\)
-0.10
\begin{tabular}{llll}
4. & \(W 3\) & \(\leq\) & 0.55 \\
5. & \(-W 1\) & \(\leq\) & -0.20 \\
6. & \(W 1\) & \(\leq\) & 0.50 \\
7. & \(-W 2-W 3\) & \(\leq\) & -0.50 \\
8. & \(W 2+W 3\) & \(\leq\) & 0.50
\end{tabular}

Bringing these equations into matrix notation gives
\(A=\left[\begin{array}{rrr}-1 & -1 & 0 ; \\ 1 & 1 & 0 ; \\ 0 & 0 & -1 ; \\ 0 & 0 & 1 ; \\ -1 & 0 & 0 ; \\ 1 & 0 & 0 ; \\ 0 & -1 & -1 ; \\ 0 & 1 & 1]\end{array}\right.\)
b = [-0.30;
0.75 ;
-0.10;
0.55 ;
-0.20;
0.50 ;
-0.50;
\(0.50]\)
Build the constraint matrix ConSet by concatenating the matrix \(A\) to the vector b.

ConSet = [A, b]

\section*{Specifying Additional Constraints}

The example above defined a constraints matrix that specified a set of typical scenarios. It defined groups of assets, specified upper and lower bounds for total allocation in each of these groups, and it set the total allocation of one of the groups to a fixed value. Constraints like these are common occurrences.

The function portcons was created to simplify the creation of the constraint matrix for these and other common portfolio requirements. portcons takes as input arguments a list of constraint-specifier strings, followed by the data necessary to build the constraint specified by the strings.

Assume that you need to add more constraints to the previous example. Specifically, add a constraint indicating that the sum of weights in any portfolio should be equal to 1 , and another set of constraints (one per asset) indicating that the weight for each asset must greater than 0 . This translates into five more constraint rows: two for the new equality, and three indicating that each weight must be greater or equal to 0 . The total number of inequalities in the example is now 13. Clearly, creating the constraint matrix can turn into a tedious task.

To create the new constraint matrix using portcons, use two separate constraint-specifier strings:
- 'Default ', which indicates that each weight is greater than 0 and that the total sum of the weights adds to 1
- 'GroupLims ', which defines the minimum and maximum allocation on each group

The only data requirement for the constraint-specifier string 'Default' is NumAssets (the total number of assets). The constraint-specifier string 'GroupLims ' requires three different arguments: a Groups matrix indicating the assets that belong to each group, the GroupMin vector indicating the minimum bounds for each group, and the GroupMax vector indicating the maximum bounds for each group. Based on the table Group Membership on page 3-16, build the Group matrix, with each row representing a group, and each column representing an asset.
Group \(=\)\begin{tabular}{rrr}
{\([1\)} & 1 & \(0 ;\) \\
0 & 0 & \(1 ;\) \\
1 & 0 & \(0 ;\) \\
0 & 1 & \(1]\)
\end{tabular}

The table Maximum and Minimum Group Exposure on page 3-15 has the information to build GroupMin and GroupMax.

GroupMin \(=\left[\begin{array}{llll}0.30 & 0.10 & 0.20 & 0.50\end{array}\right] ;\)

GroupMax \(=\left[\begin{array}{llll}0.75 & 0.55 & 0.50 & 0.50\end{array}\right] ;\)
Given that the number of assets is three, build the constraint matrix by calling portcons.

ConSet = portcons('Default', 3, 'GroupLims', Group, GroupMin,...
GroupMax) ;
In most cases, portcons('Default') returns the minimal set of constraints required for calling portopt. If ConSet is not specified in the call to portopt, the function calls portcons passing 'Default' as its only specifier.

Now use portopt to obtain the vectors and arrays representing the risk, return, and weights for the portfolios computed along the efficient frontier.
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,... ExpCovariance, [], [], ConSet)

PortRisk = 0.0586
Port Return = 0.1375
PortWts = 0.50 .250 .25
In this case, the constraints allow only one optimum portfolio.

\section*{Active Returns and Tracking Error Efficient Frontier}

Suppose you want to identify an efficient set of portfolios that minimize the variance of the difference in returns with respect to a given target portfolio, subject to a given expected excess return. The mean and standard deviation of this excess return are often called the active return and active risk, respectively. Active risk is sometimes referred to as the tracking error. Since the objective is to track a given target portfolio as closely as possible, the resulting set of portfolios is sometimes referred to as the tracking error efficient frontier.

Specifically, assume that the target portfolio is expressed as an index weight vector, such that the index return series may be expressed as a linear combination of the available assets. This example illustrates how to construct a frontier that minimizes the active risk (tracking error) subject to attaining a given level of return. That is, it computes the tracking error efficient frontier.

One way to construct the tracking error efficient frontier is to explicitly form the target return series and subtract it from the return series of the individual assets. In this manner, you specify the expected mean and covariance of the active returns, and compute the efficient frontier subject to the usual portfolio constraints.

This example works directly with the mean and covariance of the absolute (unadjusted) returns but converts the constraints from the usual absolute weight format to active weight format.

Consider a portfolio of five assets with the following expected returns, standard deviations, and correlation matrix based on absolute weekly asset returns.
\begin{tabular}{lllll} 
NumAssets \(=\) & \(5 ;\) \\
ExpReturn & \(=\left[\begin{array}{llllll}0.2074 & 0.1971 & 0.2669 & 0.1323 & 0.2535\end{array}\right] / 100 ;\) \\
Sigmas & \(=\left[\begin{array}{lllll}2.6570 & 3.6297 & 3.9916 & 2.7145 & 2.6133\end{array}\right] / 100 ;\) \\
& & & & \\
Correlations \(=\left[\begin{array}{lllll}1.0000 & 0.6092 & 0.6321 & 0.5833 & 0.7304 \\
0.6092 & 1.0000 & 0.8504 & 0.8038 & 0.7176 \\
& 0.6321 & 0.8504 & 1.0000 & 0.7723\end{array}\right) 0.7236\)
\end{tabular}
\begin{tabular}{lllll}
0.5833 & 0.8038 & 0.7723 & 1.0000 & 0.7225 \\
0.7304 & 0.7176 & 0.7236 & 0.7225 & \(1.0000] ;\)
\end{tabular}

Convert the correlations and standard deviations to a covariance matrix using corr2cov.

ExpCovariance = corr2cov(Sigmas, Correlations);
Next, assume that the target index portfolio is an equally-weighted portfolio formed from the five assets. Note that the sum of index weights equals 1 , satisfying the standard full investment budget equality constraint.
```

Index = ones(NumAssets, 1)/NumAssets;

```

Generate an asset constraint matrix using portcons. The constraint matrix AbsConSet is expressed in absolute format (unadjusted for the index), and is formatted as [A b], corresponding to constraints of the form \(A^{*} w<=\) b. Each row of AbsConSet corresponds to a constraint, and each column corresponds to an asset. Allow no short-selling and full investment in each asset (lower and upper bounds of each asset are 0 and 1, respectively). In particular, note that the first two rows correspond to the budget equality constraint; the remaining rows correspond to the upper/lower investment bounds.
```

AbsConSet = portcons('PortValue', 1, NumAssets, ...
'AssetLims', zeros(NumAssets,1), ones(NumAssets,1));

```

Now transform the absolute constraints to active constraints with abs2active.

ActiveConSet = abs2active(AbsConSet, Index);
An examination of the absolute and active constraint matrices reveals that they are differ only in the last column (the columns corresponding to the \(b\) in \(A^{*} w<=b\) ).
[AbsConSet(:,end) ActiveConSet(:,end)]
ans =
\begin{tabular}{rr}
1.0000 & 0 \\
-1.0000 & 0
\end{tabular}
\begin{tabular}{rr}
1.0000 & 0.8000 \\
1.0000 & 0.8000 \\
1.0000 & 0.8000 \\
1.0000 & 0.8000 \\
1.0000 & 0.8000 \\
0 & 0.2000 \\
0 & 0.2000 \\
0 & 0.2000 \\
0 & 0.2000 \\
0 & 0.2000
\end{tabular}

In particular, note that the sum-to-one absolute budget constraint becomes a sum-to-zero active budget constraint. The general transformation is as follows:
\[
b_{\text {active }}=b_{\text {absolute }}-A \times \text { Index. }
\]

Now construct and plot the tracking error efficient frontier with 21 portfolios.
```

[ActiveRisk, ActiveReturn, ActiveWeights] = ...
portopt(ExpReturn,ExpCovariance, 21, [], ActiveConSet);
ActiveRisk = real(ActiveRisk);
plot(ActiveRisk*100, ActiveReturn*100, 'blue')
grid('on')
xlabel('Active Risk (Standard Deviation in Percent)')
ylabel('Active Return (Percent)')
title('Tracking Error Efficient Frontier')

```


Of particular interest is the lower-left portfolio along the frontier. This zero-risk/zero-return portfolio has a practical economic significance. It represents a full investment in the index portfolio itself. Note that each tracking error efficient portfolio (each row in the array ActiveWeights) satisfies the active budget constraint, and thus represents portfolio investment allocations with respect to the index portfolio. To convert these allocations to absolute investment allocations, add the index to each efficient portfolio.

AbsoluteWeights = ActiveWeights + repmat(Index', 21, 1);

\title{
Mean-Variance Portfolio Optimization Tools
}
- "Portfolio Optimization Theory" on page 4-2
- "Portfolio Object" on page 4-17
- "Constructing the Portfolio Object" on page 4-27
- "Common Operations on the Portfolio Object" on page 4-35
- "Asset Returns and Moments of Asset Returns" on page 4-42
- "Working with Portfolio Constraints" on page 4-59
- "Validate the Portfolio Problem" on page 4-84
- "Estimate Efficient Portfolios" on page 4-89
- "Estimate Efficient Frontiers" on page 4-103
- "Postprocessing Results" on page 4-111
- "Asset Allocation" on page 4-116
- "Portfolio Optimization Examples" on page 4-130

\section*{Portfolio Optimization Theory}

\author{
In this section... \\ "Portfolio Optimization Problems" on page 4-2 \\ "Portfolio Problem Specification" on page 4-3 \\ "Return Proxy" on page 4-4 \\ "Risk Proxy" on page 4-5 \\ "Portfolio Set for Portfolio Optimization" on page 4-8 \\ "Default Portfolio Problem" on page 4-15
}

\section*{Portfolio Optimization Problems}

Portfolio optimization problems involve identifying portfolios that satisfy three criteria:
- Minimize a proxy for risk.
- Match or exceed a proxy for return.
- Satisfy basic feasibility requirements.

Portfolios are points from a feasible set of assets that constitute an asset universe. A portfolio specifies either holdings or weights in each individual asset in the asset universe. The convention is to specify portfolios in terms of weights, although the portfolio optimization tools work with holdings as well.

The set of feasible portfolios is necessarily a nonempty, closed, and bounded set. The proxy for risk is a function that characterizes either the variability or losses associated with portfolio choices. The proxy for return is a function that characterizes either the gross or net benefits associated with portfolio choices. The terms "risk" and "risk proxy" and "return" and "return proxy" are interchangeable. The fundamental insight of Markowitz (see "Portfolio Optimization" on page A-12) is that the goal of the portfolio choice problem is to seek minimum risk for a given level of return and to seek maximum return for a given level of risk. Portfolios satisfying these criteria are efficient
portfolios and the graph of the risks and returns of these portfolios forms a curve called the efficient frontier.

\section*{Portfolio Problem Specification}

To specify a portfolio optimization problem, you need the following:
- Proxy for portfolio return ( \(\mu\) )
- Proxy for portfolio risk ( \(\Sigma\) )
- Set of feasible portfolios ( \(X\) ), called a portfolio set

Financial Toolbox has three objects to solve specific types of portfolio optimization problems:
- The Portfolio object (Portfolio) supports mean-variance portfolio optimization (see Markowitz [46], [47] at ("Portfolio Optimization" on page A-12). This object has either gross or net portfolio returns as the return proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that is any combination of the specified constraints to form a portfolio set.
- The PortfolioCVaR object (PortfolioCVaR) implements what is known as conditional value-at-risk portfolio optimization (see Rockafellar and Uryasev [48], [49] at "Portfolio Optimization" on page A-12), which is generally referred to as CVaR portfolio optimization. CVaR portfolio optimization works with the same return proxies and portfolio sets as mean-variance portfolio optimization but uses conditional value-at-risk of portfolio returns as the risk proxy.
- The PortfolioMAD object (PortfolioMAD) implements what is known as mean-absolute deviation portfolio optimizatio (see Konno and Yamazaki [50] "Portfolio Optimization" on page A-12), which is generally referred to as MAD portfolio optimization. MAD portfolio optimization works with the same return proxies and portfolio sets as mean-variance portfolio optimization but uses mean-absolute deviation portfolio returns as the risk proxy.

\section*{Return Proxy}

The proxy for portfolio return is a function \(\mu: X \rightarrow R\) on a portfolio set \(X \subset R^{n}\) that characterizes the rewards associated with portfolio choices. In most cases, the proxy for portfolio return has two general forms, gross and net portfolio returns. Both portfolio return forms separate the risk-free rate \(r_{0}\) so that the portfolio \(x \in X\) contains only risky assets.

Regardless of the underlying distribution of asset returns, a collection of \(S\) asset returns \(y_{1}, \ldots, y_{S}\) has a mean of asset returns
\[
m=\frac{1}{S} \sum_{s=1}^{S} y_{s}
\]
and (sample) covariance of asset returns
\[
C=\frac{1}{S-1} \sum_{s=1}^{S}\left(y_{s}-m\right)\left(y_{s}-m\right)^{T} .
\]

These moments (or alternative estimators that characterize these moments) are used directly in mean-variance portfolio optimization to form proxies for portfolio risk and return.

\section*{Gross Portfolio Returns}

The gross portfolio return for a portfolio \(x \in X\) is
\[
\mu(x)=r_{0}+\left(m-r_{0} 1\right)^{T} x,
\]
where:
\(r_{0}\) is the risk-free rate (scalar).
\(m\) is the mean of asset returns ( \(n\) vector).
If the portfolio weights sum to 1 , the risk-free rate is irrelevant. The properties in the Portfolio object to specify gross portfolio returns are:
- RiskFreeRate for \(r_{0}\)
- AssetMean for \(m\)

\section*{Net Portfolio Returns}

The net portfolio return for a portfolio \(x \in X\) is
\[
\mu(x)=r_{0}+\left(m-r_{0} 1\right)^{T} x-b^{T} \max \left\{0, x-x_{0}\right\}-s^{T} \max \left\{0, x_{0}-x\right\},
\]
where:
\(r_{0}\) is the risk-free rate (scalar).
\(m\) is the mean of asset returns ( \(n\) vector).
\(b\) is the proportional cost to purchase assets ( \(n\) vector).
\(s\) is the proportional cost to sell assets ( \(n\) vector).
You can incorporate fixed transaction costs in this model also. Though in this case, it is necessary to incorporate prices into such costs. The properties in the Portfolio object to specify net portfolio returns are:
- RiskFreeRate for \(r_{0}\)
- AssetMean for \(m\)
- InitPort for \(x_{0}\)
- BuyCost for \(b\)
- SellCost for \(s\)

\section*{Risk Proxy}

The proxy for portfolio risk is a function \(\Sigma: X \rightarrow R\) on a portfolio set \(X \subset R^{n}\) that characterizes the risks associated with portfolio choices.

\section*{Variance}

The variance of portfolio returns for a portfolio \(x \in X\) is
\[
\Sigma(x)=x^{T} C x
\]
where \(C\) is the covariance of asset returns ( n -by-n positive-semidefinite matrix).

The property in the Portfolio object to specify the variance of portfolio returns is AssetCovar for C.

Although the risk proxy in mean-variance portfolio optimization is the variance of portfolio returns, the square root, which is the standard deviation of portfolio returns, is often reported and displayed. Moreover, this quantity is often called the "risk" of the portfolio. For details, see Markowitz ("Portfolio Optimization" on page A-12).

\section*{Conditional Value-at-Risk}

The conditional value-at-risk for a portfolio \(x \in X\), which is also known as expected shortfall, is defined as
\[
C V a R_{\alpha}(x)=\frac{1}{1-\alpha} \int_{f(x, y) \geq V_{a} R_{\alpha}(x)} f(x, y) p(y) d y
\]
where:
\(a\) is the probability level such that \(0<a<1\).
\(f(x, y)\) is the loss function for a portfolio \(x\) and asset return \(y\).
\(p(y)\) is the probability density function for asset return \(y\).
\(V a R_{\alpha}\) is the value-at-risk of portfolio \(x\) at probability level \(\alpha\).
The value-at-risk is defined as
\[
\operatorname{VaR}_{\alpha}(x)=\min \{\gamma: \operatorname{Pr}[f(x, Y) \leq \gamma] \geq \alpha\}
\]

An alternative formulation for CVaR has the form:
\[
C V a R_{\alpha}(x)=\operatorname{VaR}_{\alpha}(x)+\frac{1}{1-\alpha} \int_{R^{n}} \max \left\{0,\left(f(x, y)-\operatorname{VaR}_{\alpha}(x)\right)\right\} p(y) d y
\]

The choice for the probability level \(a\) is typically 0.9 or 0.95 . Choosing \(a\) implies that the value-at-risk \(\operatorname{Va}_{\alpha}(x)\) for portfolio \(x\) is the portfolio return such that the probability of portfolio returns falling below this level is \((1-\alpha)\). Given \(\operatorname{VaR}_{a}(x)\) for a portfolio \(x\), the conditional value-at-risk of the portfolio is the expected loss of portfolio returns above the value-at-risk return.

Note Value-at-risk is a positive value for losses so that the probability level \(a\) indicates the probability that portfolio returns are below the negative of the value-at-risk.

The risk proxy for CVaR portfolio optimization is \(C V a R_{a}(x)\) for a given portfolio \(x \in X\) and \(\alpha \in(0,1)\). Note that the value-at-risk, or VaR, for a given probability level is estimated whenever CVaR is estimated.

In addition, keep in mind that VaR and CVaR are sample estimators for VaR and CVaR based on the given scenarios. Better scenario samples yield more reliable estimates of VaR and CVaR.

For more information, see Rockafellar and Uryasev [48], [49] at "Portfolio Optimization" on page A-12.

\section*{Mean Absolute-Deviation}

The mean-absolute-deviation (MAD) for a portfolio \(x \in X\) is defined as
\[
\sum(x)=\frac{1}{S} \sum_{s=1}^{S}\left|\left(y_{s}-m\right)^{T} x\right|
\]
where:
\(y_{s}\) are asset returns with scenarios \(s=1, \ldots S\) ( \(S\) collection of \(n\) vectors).
\(f(x, y)\) is the loss function for a portfolio \(x\) and asset return \(y\).
\(m\) is the mean of asset returns ( \(n\) vector).
such that
\[
m=\frac{1}{S} \sum_{s=1}^{S} y_{s}
\]

For more information, see Konno and Yamazaki [50] at "Portfolio Optimization" on page A-12.

\section*{Portfolio Set for Portfolio Optimization}

The final element for a complete specification of a portfolio optimization problem is the set of feasible portfolios, which is called a portfolio set. A portfolio set \(X \subset R^{n}\) is specified by construction as the intersection of sets formed by a collection of constraints on portfolio weights. A portfolio set necessarily and sufficiently must be a nonempty, closed, and bounded set.

When setting up your portfolio set, ensure that the portfolio set satisfies these conditions. The most basic or "default" portfolio set requires portfolio weights to be nonnegative (using the lower-bound constraint) and to sum to 1 (using the budget constraint). The most general portfolio set handled by the portfolio optimization tools can have any of these constraints:
- Linear inequality constraints
- Linear equality constraints
- Bound constraints
- Budget constraints
- Group constraints
- Group ratio constraints
- Average turnover constraints
- One-way turnover constraints

\section*{Linear Inequality Constraints}

Linear inequality constraints are general linear constraints that model relationships among portfolio weights that satisfy a system of inequalities. Linear inequality constraints take the form
\[
A_{I} x \leq b_{I}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
\(A_{I}\) is the linear inequality constraint matrix ( \(n_{I}\)-by- \(n\) matrix).
\(b_{I}\) is the linear inequality constraint vector ( \(n_{I}\) vector).
\(n\) is the number of assets in the universe and \(n_{I}\) is the number of constraints.
Portfolio object properties to specify linear inequality constraints are:
- AInequality for \(A_{I}\)
- bInequality for \(b_{I}\)
- NumAssets for \(n\)

The default is to ignore these constraints.

\section*{Linear Equality Constraints}

Linear equality constraints are general linear constraints that model relationships among portfolio weights that satisfy a system of equalities. Linear equality constraints take the form
\[
A_{E} x=b_{E}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
\(A_{E}\) is the linear equality constraint matrix ( \(n_{E}\)-by- \(n\) matrix).
\(b_{E}\) is the linear equality constraint vector ( \(n_{E}\) vector).
\(n\) is the number of assets in the universe and \(n_{E}\) is the number of constraints.
Portfolio object properties to specify linear equality constraints are:
- AEquality for \(A_{E}\)
- bEquality for \(b_{E}\)
- NumAssets for \(n\)

The default is to ignore these constraints.

\section*{Bound Constraints}

Bound constraints are specialized linear constraints that confine portfolio weights to fall either above or below specific bounds. Since every portfolio set must be bounded, it is often a good practice, albeit not necessary, to set explicit bounds for the portfolio problem. To obtain explicit bounds for a given portfolio set, use the method estimateBounds. Bound constraints take the form
\[
l_{B} \leq x \leq u_{B}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
\(l_{B}\) is the lower-bound constraint ( \(n\) vector).
\(u_{B}\) is the upper-bound constraint ( \(n\) vector).
\(n\) is the number of assets in the universe.
Portfolio object properties to specify bound constraints are:
- LowerBound for \(l_{B}\)
- UpperBound for \(u_{B}\)
- NumAssets for \(n\)

The default is to ignore these constraints.
Note that the default portfolio optimization problem (see "Default Portfolio Problem" on page \(4-15\) ) has \(l_{B}=0\) with \(u_{B}\) set implicitly through a budget constraint.

\section*{Budget Constraints}

Budget constraints are specialized linear constraints that confine the sum of portfolio weights to fall either above or below specific bounds. The constraints take the form
\[
l_{S} \leq 1^{T} x \leq u_{S}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
1 is the vector of ones ( \(n\) vector).
\(l_{S}\) is the lower-bound budget constraint (scalar).
\(u_{S}\) is the upper-bound budget constraint (scalar).
\(n\) is the number of assets in the universe.
Portfolio object properties to specify budget constraints are:
- LowerBudget for \(l_{S}\)
- UpperBudget for \(u_{S}\)
- NumAssets for \(n\)

The default is to ignore this constraint.
The default portfolio optimization problem (see "Default Portfolio Problem" on page 4-15) has \(l_{S}=u_{S}=1\), which means that the portfolio weights sum to 1. If the portfolio optimization problem includes possible movements in and out of cash, the budget constraint specifies how far portfolios can go into cash. For example, if \(l_{S}=0\) and \(u_{S}=1\), then the portfolio can have 0 to \(100 \%\)
invested in cash. If cash is to be a portfolio choice, set RiskFreeRate \(\left(r_{0}\right)\) to a suitable value (see "Return Proxy" on page 4-4 and "Working with a Riskless Asset" on page 4-54).

\section*{Group Constraints}

Group constraints are specialized linear constraints that enforce "membership" among groups of assets. The constraints take the form
\[
l_{G} \leq G x \leq u_{G}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
\(l_{G}\) is the lower-bound group constraint ( \(n_{G}\) vector).
\(u_{G}\) is the upper-bound group constraint ( \(n_{G}\) vector).
\(G\) is the matrix of group membership indexes ( \(n_{G}\)-by- \(n\) matrix).
Each row of \(G\) identifies which assets belong to a group associated with that row. Each row contains either 0s or 1 s with 1 indicating that an asset is part of the group or 0 indicating that the asset is not part of the group.

Portfolio object properties to specify group constraints are:
- GroupMatrix for \(G\)
- LowerGroup for \(l_{G}\)
- UpperGroup for \(u_{G}\)
- NumAssets for \(n\)

The default is to ignore these constraints.

\section*{Group Ratio Constraints}

Group ratio constraints are specialized linear constraints that enforce relationships among groups of assets. The constraints take the form
\[
l_{R i}\left(G_{B} x\right)_{i} \leq\left(G_{A} x\right)_{i} \leq u_{R i}\left(G_{B} x\right)_{i}
\]
for \(i=1, \ldots, n_{R}\) where:
\(x\) is the portfolio ( \(n\) vector).
\(l_{R}\) is the vector of lower-bound group ratio constraints ( \(n_{R}\) vector).
\(u_{R}\) is the vector matrix of upper-bound group ratio constraints ( \(n_{R}\) vector).
\(G_{A}\) is the matrix of base group membership indexes ( \(n_{R}\)-by- \(n\) matrix).
\(G_{B}\) is the matrix of comparison group membership indexes ( \(n_{R}\)-by- \(n\) matrix).
\(n\) is the number of assets in the universe and \(n_{R}\) is the number of constraints.
Each row of \(G_{A}\) and \(G_{B}\) identifies which assets belong to a base and comparison group associated with that row.

Each row contains either 0s or 1 s with 1 indicating that an asset is part of the group or 0 indicating that the asset is not part of the group.

Portfolio object properties to specify group ratio constraints are:
- GroupA for \(G_{A}\)
- GroupB for \(G_{B}\)
- LowerRatio for \(l_{R}\)
- UpperRatio for \(u_{R}\)
- NumAssets for \(n\)

The default is to ignore these constraints.

\section*{Average Turnover Constraints}

Turnover constraint is a linear absolute value constraint that ensures estimated optimal portfolios differ from an initial portfolio by no more than a specified amount. Although portfolio turnover is defined in many ways, the turnover constraints implemented in Financial Toolbox computes portfolio
turnover as the average of purchases and sales. Average turnover constraints take the form
\[
\frac{1}{2} 1^{T}\left|x-x_{0}\right| \leq \tau
\]
where:
\(x\) is the portfolio ( \(n\) vector).
1 is the vector of ones ( \(n\) vector).
\(x_{0}\) is the initial portfolio ( \(n\) vector).
\(\tau\) is the upper bound for turnover (scalar).
\(n\) is the number of assets in the universe.
Portfolio object properties to specify the average turnover constraint are:
- Turnover for \(\tau\)
- InitPort for \(x_{0}\)
- NumAssets for \(n\)

The default is to ignore this constraint.

\section*{One-Way Turnover Constraints}

One-way turnover constraints ensure that estimated optimal portfolios differ from an initial portfolio by no more than specified amounts according to whether the differences are purchases or sales. The constraints take the forms
\[
\begin{aligned}
& 1^{T} \max \left\{0, x-x_{0}\right\} \leq \tau_{B} \\
& 1^{T} \max \left\{0, x_{0}-x\right\} \leq \tau_{S}
\end{aligned}
\]
where:
\(x\) is the portfolio ( \(n\) vector)

1 is the vector of ones ( \(n\) vector).
\(x_{0}\) is the Initial portfolio ( \(n\) vector).
\(\tau_{B}\) is the upper bound for turnover constraint on purchases (scalar).
\(\tau_{S}\) is the upper bound for turnover constraint on sales (scalar).
To specify one-way turnover constraints, use the following properties in the Portfolio or PortfolioCVaR object:
- BuyTurnover for \(\tau_{B}\)
- SellTurnover for \(\tau_{S}\)
- InitPort for \(x_{0}\)

The default is to ignore this constraint.

Note The average turnover constraint (see "Average Turnover Constraints" on page 4-13) with \(\tau\) is not a combination of the one-way turnover constraints with \(\tau=\tau_{B}=\tau_{S}\).

\section*{Default Portfolio Problem}

The default portfolio optimization problem has a risk and return proxy associated with a given problem, and a portfolio set that specifies portfolio weights to be nonnegative and to sum to 1 . The lower bound combined with the budget constraint is sufficient to ensure that the portfolio set is nonempty, closed, and bounded. The default portfolio optimization problem characterizes a long-only investor who is fully invested in a collection of assets.
- For mean-variance portfolio optimization, it is sufficient to set up the default problem. After setting up the problem, data in the form of a mean and covariance of asset returns are then used to solve portfolio optimization problems.
- For conditional value-at-risk portfolio optimization, the default problem requires the additional specification of a probability level that must be set explicitly. Generally, "typical" values for this level are 0.90 or 0.95. After
setting up the problem, data in the form of scenarios of asset returns are then used to solve portfolio optimization problems.
- For MAD portfolio optimization, it is sufficient to set up the default problem. After setting up the problem, data in the form of scenarios of asset returns are then used to solve portfolio optimization problems.

\section*{See Also AbstractPortfolio | Portfolio}

\section*{Related \\ Examples}

\section*{Concepts}

\section*{Portfolio Object}
In this section...
"Portfolio Object Properties and Methods" on page 4-17
"Working with Portfolio Objects" on page 4-22
"Setting and Getting Properties" on page 4-23
"Displaying Portfolio Objects" on page 4-24
"Saving and Loading Portfolio Objects" on page 4-24
"Estimating Efficient Portfolios and Frontiers" on page 4-24
"Arrays of Portfolio Objects" on page 4-25
"Subclassing Portfolio Objects" on page 4-25
"Conventions for Representation of Data" on page 4-26

\section*{Portfolio Object Properties and Methods}

The Portfolio object implements mean-variance portfolio optimization and is derived from the abstract class AbstractPortfolio. Every property and method of the Portfolio object is public, although some properties and methods are hidden. See Portfolio Object Properties on page 4-17 and Portfolio Object Methods on page 4-19 for the properties and methods of the Portfolio object. The Portfolio object is a value object where every instance of the object is a distinct version of the object. Since the Portfolio object is also a MATLAB object, it inherits the default methods associated with MATLAB objects.

\section*{Portfolio Object Properties}
\begin{tabular}{l|l|l}
\hline Property & Description & Characteristics \\
\hline AEquality & \begin{tabular}{l} 
Matrix for equality \\
constraints
\end{tabular} & Matrix \\
\hline AInequality & \begin{tabular}{l} 
Matrix for inequality \\
constraints
\end{tabular} & Matrix \\
\hline
\end{tabular}

\section*{Portfolio Object Properties (Continued)}
\begin{tabular}{l|l|l}
\hline Property & Description & Characteristics \\
\hline AssetCovar & Covariance of asset returns & \begin{tabular}{l} 
Symmetric \\
positive-semidefinite \\
matrix
\end{tabular} \\
\hline AssetList & \begin{tabular}{l} 
List of asset names or \\
identifiers
\end{tabular} & Vector cell array of strings \\
\hline AssetMean & Mean of asset returns & Vector \\
\hline bEquality & \begin{tabular}{l} 
Vector for equality \\
constraints
\end{tabular} & Vector \\
\hline bInequality & \begin{tabular}{l} 
Vector for inequality \\
constraints
\end{tabular} & Vector \\
\hline BuyCost & Cost to purchase assets & Vector \\
\hline BuyTurnover & \begin{tabular}{l} 
Turnover constraint on \\
purchases
\end{tabular} & Scalar \\
\hline GroupA & \begin{tabular}{l} 
Base group ratio constraint \\
matrix
\end{tabular} & Boolean matrix or matrix \\
\hline GroupB & \begin{tabular}{l} 
Comparison group ratio \\
constraint matrix
\end{tabular} & Boolean matrix or matrix \\
\hline GroupMatrix & Group membership matrix & Boolean matrix or matrix \\
\hline InitPort & Initial or current portfolio & Vector \\
\hline LowerBound & Lower-bound constraint & Vector \\
\hline LowerBudget & Lower-budget constraint & Scalar \\
\hline LowerGroup & Lower-group constraint & Vector \\
\hline LowerRatio & \begin{tabular}{l} 
Lower-group ratio constraint \\
ratio
\end{tabular} & Vector \\
\hline Name & \begin{tabular}{l} 
Name for instance of \\
Portfolio object
\end{tabular} & String \\
\hline NumAssets & Number of assets in universe & Scalar positive integer \\
\hline
\end{tabular}

\section*{Portfolio Object Properties (Continued)}
\begin{tabular}{l|l|l}
\hline Property & Description & Characteristics \\
\hline RiskFreeRate & \begin{tabular}{l} 
Period return of riskless \\
asset
\end{tabular} & Scalar \\
\hline SellCost & Cost to sell assets & Vector \\
\hline SellTurnover & Turnover constraint on sales & Scalar \\
\hline Turnover & \begin{tabular}{l} 
Upper-bound portfolio \\
turnover
\end{tabular} & Scalar \\
\hline UpperBound & Upper-bound constraint & Vector \\
\hline UpperBudget & Upper-budget constraint & Scalar \\
\hline UpperGroup & Upper-group constraint & Vector \\
\hline UpperRatio & \begin{tabular}{l} 
Upper-group ratio constraint \\
ratio
\end{tabular} & Vector \\
\hline
\end{tabular}

\section*{Portfolio Object Methods}
\begin{tabular}{l|l}
\hline Method & Description \\
\hline addEquality & \begin{tabular}{l} 
Add equality constraints for portfolio \\
weights to existing constraints.
\end{tabular} \\
\hline addGroupRatio & \begin{tabular}{l} 
Add group ratio constraints for \\
portfolio weights to existing \\
constraints.
\end{tabular} \\
\hline addGroups & \begin{tabular}{l} 
Add group constraints for portfolio \\
weights to existing constraints.
\end{tabular} \\
\hline addInequality & \begin{tabular}{l} 
Add inequality constraints for portfolio \\
weights to existing constraints.
\end{tabular} \\
\hline checkFeasibility & \begin{tabular}{l} 
Determine if portfolios are members of \\
the set of feasible portfolios.
\end{tabular} \\
\hline estimateAssetMoments & \begin{tabular}{l} 
Estimate mean and covariance of asset \\
returns from price or return data.
\end{tabular} \\
\hline
\end{tabular}

\section*{Portfolio Object Methods (Continued)}
\begin{tabular}{l|l}
\hline Method & Description \\
\hline estimateBounds & \begin{tabular}{l} 
Determine if the set of feasible \\
portfolios is nonempty and bounded.
\end{tabular} \\
\hline estimateFrontier & \begin{tabular}{l} 
Estimate portfolios on the entire \\
efficient frontier.
\end{tabular} \\
\hline estimateFrontierByReturn & \begin{tabular}{l} 
Estimate portfolios on the efficient \\
frontier with targeted returns or \\
return proxies.
\end{tabular} \\
\hline estimateFrontierByRisk & \begin{tabular}{l} 
Estimate portfolios on the efficient \\
frontier with targeted risks or risk \\
proxies.
\end{tabular} \\
\hline estimateFrontierLimits & \begin{tabular}{l} 
Estimate portfolios at the extreme \\
ends of the efficient frontier (minimum \\
risk and maximum return).
\end{tabular} \\
\hline estimateMaxSharpeRatio & \begin{tabular}{l} 
Estimate efficient portfolio that \\
maximizes the Sharpe ratio.
\end{tabular} \\
\hline estimatePortMoments & \begin{tabular}{l} 
Estimate mean and standard \\
deviation of portfolio returns for \\
specified portfolios.
\end{tabular} \\
\hline estimatePortReturn & \begin{tabular}{l} 
Estimate the return or return proxy \\
for specified portfolios.
\end{tabular} \\
\hline estimatePortRisk & \begin{tabular}{l} 
Estimate the risk or risk proxy for \\
specified portfolios.
\end{tabular} \\
\hline getAssetMoments & \begin{tabular}{l} 
Get mean and covariance of asset \\
returns from object.
\end{tabular} \\
\hline getBounds & \begin{tabular}{l} 
Get lower and upper bounds from \\
object.
\end{tabular} \\
\hline getBudget & \begin{tabular}{l} 
Get lower and upper budget \\
constraints from object.
\end{tabular} \\
\hline getCosts & \begin{tabular}{l} 
Get purchase and sales proportional \\
transaction costs from object.
\end{tabular} \\
\hline
\end{tabular}

\section*{Portfolio Object Methods (Continued)}
\begin{tabular}{l|l}
\hline Method & Description \\
\hline getEquality & \begin{tabular}{l} 
Get equality constraint matrix and \\
vector from object.
\end{tabular} \\
\hline getGroupRatio & \begin{tabular}{l} 
Get base matrix, comparison matrix, \\
and lower and upper bounds for group \\
ratio constraints from object.
\end{tabular} \\
\hline getGroups & \begin{tabular}{l} 
Get group matrix and lower and upper \\
bounds for group constraints from \\
object.
\end{tabular} \\
\hline getInequality & \begin{tabular}{l} 
Get inequality constraint matrix and \\
vector from object.
\end{tabular} \\
\hline getOneWayTurnover & \begin{tabular}{l} 
Get one-way portfolio turnover \\
constraints.
\end{tabular} \\
\hline plotFrontier & \begin{tabular}{l} 
Plot efficient frontier and optionally \\
obtain risks and returns for portfolios \\
on the efficient frontier.
\end{tabular} \\
\hline setAssetList & \begin{tabular}{l} 
Set up a list of asset names and \\
symbols to be associated with assets \\
in universe.
\end{tabular} \\
\hline setAssetMoments & \begin{tabular}{l} 
Set up mean and covariance of asset \\
returns.
\end{tabular} \\
\hline setBounds & \begin{tabular}{l} 
Set up lower and upper bounds for \\
portfolio weights.
\end{tabular} \\
\hline setBudget & \begin{tabular}{l} 
Set up lower and upper budget \\
constraints for portfolio weights.
\end{tabular} \\
\hline setCosts & \begin{tabular}{l} 
Set up purchase and sale proportional \\
transaction costs for assets in universe.
\end{tabular} \\
\hline setDefaultConstraints & \begin{tabular}{l} 
Set up default constraints for portfolio \\
weights (nonnegative weights that \\
must sum to 1).
\end{tabular} \\
\hline
\end{tabular}

\section*{Portfolio Object Methods (Continued)}
\begin{tabular}{l|l}
\hline Method & Description \\
\hline setEquality & \begin{tabular}{l} 
Set up equality constraints for portfolio \\
weights.
\end{tabular} \\
\hline setGroupRatio & \begin{tabular}{l} 
Set up group ratio constraints for \\
portfolio weights.
\end{tabular} \\
\hline setGroups & \begin{tabular}{l} 
Set up group constraints for portfolio \\
weights.
\end{tabular} \\
\hline setInequality & \begin{tabular}{l} 
Set up inequality constraints for \\
portfolio weights.
\end{tabular} \\
\hline setInitPort & Set up initial portfolio weights. \\
\hline setOneWayTurnover & \begin{tabular}{l} 
Set up one-way portfolio turnover \\
constraints.
\end{tabular} \\
\hline setOptions & \begin{tabular}{l} 
Set up hidden control properties in \\
object (not implemented).
\end{tabular} \\
\hline setSolver & \begin{tabular}{l} 
Set up solver to estimate efficient \\
portfolios.
\end{tabular} \\
\hline setTurnover & \begin{tabular}{l} 
Set up average turnover constraints \\
for portfolio weights.
\end{tabular} \\
\hline
\end{tabular}

\section*{Working with Portfolio Objects}

The Portfolio object and its methods are an interface for mean-variance portfolio optimization. Consequently, almost everything you do with the Portfolio object can be done using the methods. The basic workflow is:

1 Design your portfolio problem.
2 Use the portfolio constructor (Portfolio) to create the Portfolio object or use the various set methods to set up your portfolio problem.

3 Use estimate methods to solve your portfolio problem.

In addition, methods are available to help you view intermediate results and to diagnose your computations. Since MATLAB features are part of a Portfolio object, you can save and load objects from your workspace and create and manipulate arrays of objects. After settling on a problem, which, in the case of mean-variance portfolio optimization, means that you have either data or moments for asset returns and a collection of constraints on your portfolios, use the portfolio constructor to set the properties for the Portfolio object. The portfolio constructor lets you create an object from scratch or update an existing object. Since the Portfolio object is a value object, it is easy to create a basic object, then use methods to build upon the basic object to create new versions of the basic object. This is useful to compare a basic problem with alternatives derived from the basic problem. For details, see "Constructing the Portfolio Object" on page 4-27.

\section*{Setting and Getting Properties}

You can set properties of a Portfolio object using either the constructor (Portfolio) or various set methods.

Note Although you can also set properties directly, it is not recommended since error-checking is not performed when you set a property directly.

The portfolio constructor supports setting properties with name-value pair arguments such that each argument name is a property and each value is the value to assign to that property. For example, to set the AssetMean and AssetCovar properties in an existing Portfolio object \(p\) with the values \(m\) and C, use the syntax:
```

p = Portfolio(p, 'AssetMean', m, 'AssetCovar', C);

```

In addition to the portfolio constructor, which lets you set individual properties one at a time, groups of properties are set in a Portfolio object with various "set" and "add" methods. For example, to set up an average turnover constraint, use the setTurnover method to specify the bound on portfolio average turnover and the initial portfolio. To get individual properties from a Portfolio object, obtain properties directly or use an assortment of "get" methods that obtain groups of properties from a Portfolio object. The Portfolio object constructor and set methods have several useful features:
- The constructor and set methods try to determine the dimensions of your problem with either explicit or implicit inputs.
- The constructor and set methods try to resolve ambiguities with default choices.
- The constructor and set methods perform scalar expansion on arrays when possible.
- The methods try to diagnose and warn about problems.

\section*{Displaying Portfolio Objects}

The Portfolio object uses the default display method provided by MATLAB, where display and disp display a Portfolio object and its properties with or without the object variable name.

\section*{Saving and Loading Portfolio Objects}

Save and load Portfolio objects using the MATLAB save and load commands.

\section*{Estimating Efficient Portfolios and Frontiers}

Estimating efficient portfolios and efficient frontiers is the primary purpose of the portfolio optimization tools. A collection of "estimate" and "plot" methods provide ways to explore the efficient frontier. The "estimate" methods obtain either efficient portfolios or risk and return proxies to form efficient frontiers. At the portfolio level, a collection of methods estimates efficient portfolios on the efficient frontier with methods to obtain efficient portfolios:
- At the endpoints of the efficient frontier
- That attain targeted values for return proxies
- That attain targeted values for risk proxies
- Along the entire efficient frontier

These methods also provide purchases and sales needed to shift from an initial or current portfolio to each efficient portfolio. At the efficient frontier level, a collection of methods plot the efficient frontier and estimate either risk or return proxies for efficient portfolios on the efficient frontier. You can use the resultant efficient portfolios or risk and return proxies in subsequent analyses.

\section*{Arrays of Portfolio Objects}

Although all methods associated with a Portfolio object are designed to work on a scalar Portfolio object, the array capabilities of MATLAB enables you to set up and work with arrays of Portfolio objects. The easiest way to do this is with the repmat function. For example, to create a 3 -by- 2 array of Portfolio objects:
```

p = repmat(Portfolio, 3, 2);
disp(p)

```

After setting up an array of Portfolio objects, you can work on individual Portfolio objects in the array by indexing. For example:
p(i,j) = Portfolio(p(i,j), ... );
This example calls the Portfolio object constructor for the (i,j) element of a matrix of Portfolio objects in the variable \(p\).

If you set up an array of Portfolio objects, you can access properties of a particular Portfolio object in the array by indexing so that you can set the lower and upper bounds lb and ub for the ( \(\mathrm{i}, \mathrm{j}, \mathrm{k}\) ) element of a 3-D array of Portfolio objects with
\(p(i, j, k)=p(i, j, k) . s e t B o u n d s(l b, u b) ;\)
and, once set, you can access these bounds with
[lb, ub] = p(i,j,k).getBounds;
Portfolio object methods work on only one Portfolio object at a time.

\section*{Subclassing Portfolio Objects}

You can subclass the Portfolio object to override existing methods or to add new properties or methods. To do so, create a derived class from the Portfolio class. This gives you all the properties and methods of the Portfolio class along with any new features that you choose to add to your subclassed object. The Portfolio class is derived from an abstract class called AbstractPortfolio. Because of this, you can also create a derived class from AbstractPortfolio that implements an entirely different form of portfolio optimization using properties and methods of the AbstractPortfolio class.

\section*{Conventions for Representation of Data}

The portfolio optimization tools follow these conventions regarding the representation of different quantities associated with portfolio optimization:
- Asset returns or prices are in matrix form with samples for a given asset going down the rows and assets going across the columns. In the case of prices, the earliest dates must be at the top of the matrix, with increasing dates going down.
- The mean and covariance of asset returns are stored in a vector and a matrix and the tools have no requirement that the mean must be either a column or row vector.
- Portfolios are in vector or matrix form with weights for a given portfolio going down the rows and distinct portfolios going across the columns.
- Constraints on portfolios are formed in such a way that a portfolio is a column vector.
- Portfolio risks and returns are either scalars or column vectors (for multiple portfolio risks and returns).
\begin{tabular}{ll} 
See Also & AbstractPortfolio | Portfolio \\
Related & - "Constructing the Portfolio Object" on page 4-27 \\
Examples & - "Working with Portfolio Constraints" on page 4-59 \\
& - "Asset Allocation" on page 4-116 \\
Concepts & - "Portfolio Optimization Examples" on page 4-130 \\
&
\end{tabular}

\section*{Constructing the Portfolio Object}

\author{
In this section... \\ "Syntax" on page 4-27 \\ "Portfolio Problem Sufficiency" on page 4-28 \\ "Constructor Examples" on page 4-28
}

To create a fully specified mean-variance portfolio optimization problem, instantiate the Portfolio object using the portfolio constructor.

\section*{Syntax}

Use the portfolio constructor Portfolio to create an instance of an object of the Portfolio class. You can use this constructor in several ways. To set up a portfolio optimization problem in a Portfolio object, the simplest syntax is:
```

p = Portfolio;

```

This syntax creates a Portfolio object, p, such that all object properties are empty.

The constructor also accepts collections of argument name-value pair arguments for properties and their values. The constructor accepts inputs for public properties (see Portfolio Object Properties on page 4-17) with the general syntax:
```

p = Portfolio('property1', value1, 'property2', value2, ...);

```

If a Portfolio object already exists, the syntax permits the first (and only the first argument) of the portfolio constructor to be an existing object with subsequent argument name-value pair arguments for properties to be added or modified. For example, given an existing Portfolio object in \(p\), the general syntax is:
```

p = Portfolio(p, 'property1', value1, 'property2', value2, ...);

```

Input argument names are not case sensitive, but must be completely specified. In addition, several properties can be specified with alternative argument names (see "Shortcuts for Property Names" on page 4-33). The

Portfolio constructor tries to detect problem dimensions from the inputs and, once set, subsequent inputs can undergo various scalar or matrix expansion operations that simplify the overall process to formulate a problem. In addition, a Portfolio object is a value object so that, given portfolio \(p\), the following code creates two objects, p and q , that are distinct:
q = Portfolio(p, ...)

\section*{Portfolio Problem Sufficiency}

A mean-variance portfolio optimization is completely specified with the Portfolio object if these two conditions are met:
- The moments of asset returns must be specified such that the property AssetMean contains a valid finite mean vector of asset returns and the property AssetCovar contains a valid symmetric positive-semidefinite matrix for the covariance of asset returns.

The first condition is satisfied by setting the properties associated with the moments of asset returns.
- The set of feasible portfolios must be a nonempty compact set, where a compact set is closed and bounded.
The second condition is satisfied by an extensive collection of properties that define different types of constraints to form a set of feasible portfolios. Since such sets must be bounded, either explicit or implicit constraints can be imposed, and several methods, such as estimateBounds, provide ways to ensure that your problem is properly formulated.

Although the general sufficiency conditions for mean-variance portfolio optimization go beyond these two conditions, the Portfolio object implemented in Financial Toolbox implicitly handles all these additional conditions. For more information on the Markowitz model for mean-variance portfolio optimization, see "Portfolio Optimization" on page A-12.

\section*{Constructor Examples}

If you create a Portfolio object, \(p\), with no input arguments, you can display it using disp:
```

p = Portfolio;
disp(p); Portfolio

```
```

Portfolio with properties:
BuyCost: []
SellCost: []
RiskFreeRate: []
AssetMean: []
AssetCovar: []
Turnover: []
BuyTurnover: []
SellTurnover: []
Name: []
NumAssets: []
AssetList: []
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: []
UpperBound: []
LowerBudget: []
UpperBudget: []
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

The approaches listed provide a way to set up a portfolio optimization problem with the portfolio constructor. The custom set methods offer additional ways to set and modify collections of properties in the Portfolio object.

\section*{Using the Constructor for a Single-Step Setup}

You can use the constructor to directly set up a "standard" portfolio optimization problem, given a mean and covariance of asset returns in the variables m and C :
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
p = Portfolio('assetmean', m, 'assetcovar', C, ...
'lowerbudget', 1, 'upperbudget', 1, 'lowerbound', 0);

```

Note that the LowerBound property value undergoes scalar expansion since AssetMean and AssetCovar provide the dimensions of the problem.

You can use dot notation with the method plotFrontier.
p.plotFrontier;


\section*{Using the Constructor with a Sequence of Steps}

An alternative way to accomplish the same task of setting up a "standard" portfolio optimization problem, given a mean and covariance of asset returns in the variables m and C (which also illustrates that argument names are not case sensitive):
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
p = Portfolio;
p = Portfolio(p, 'assetmean', m, 'assetcovar', C);
p = Portfolio(p, 'lowerbudget', 1, 'upperbudget', 1);
p = Portfolio(p, 'lowerbound', 0);
p.plotFrontier;

```


This way works because the calls to the constructor are in this particular order. In this case, the call to initialize AssetMean and AssetCovar provides the dimensions for the problem. If you were to do this step last, you would have to explicitly dimension the LowerBound property as follows:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
p = Portfolio;
p = Portfolio(p, 'LowerBound', zeros(size(m)));
p = Portfolio(p, 'LowerBudget', 1, 'UpperBudget', 1);
p = Portfolio(p, 'AssetMean', m, 'AssetCovar', C);
p.plotFrontier;

```


If you did not specify the size of LowerBound but, instead, input a scalar argument, the constructor assumes that you are defining a single-asset
problem and produces an error at the call to set asset moments with four assets.

\section*{Shortcuts for Property Names}

The portfolio constructor has shorter argument names that replace longer argument names associated with specific properties of the Portfolio object. For example, rather than enter 'assetcovar', the constructor accepts the case-insensitive name 'covar' to set the AssetCovar property in a Portfolio object. Every shorter argument name corresponds with a single property in the Portfolio constructor. The one exception is the alternative argument name ' budget ', which signifies both the LowerBudget and UpperBudget properties. When 'budget' is used, then the LowerBudget and UpperBudget properties are set to the same value to form an equality budget constraint.
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Shortcut Argument \\
Name
\end{tabular} & Equivalent Argument/Property Name \\
\hline ae & AEquality \\
\hline ai & AInequality \\
\hline covar & AssetCovar \\
\hline assetnames or assets & AssetList \\
\hline mean & AssetMean \\
\hline be & bEquality \\
\hline bi & bInequality \\
\hline group & GroupMatrix \\
\hline lb & LowerBound \\
\hline n or num & NumAssets \\
\hline rfr & RiskFreeRate \\
\hline ub & UpperBound \\
\hline budget & UpperBudget and LowerBudget \\
\hline
\end{tabular}

For example, this call to the constructor uses these shortcuts for properties and is equivalent to the previous examples:
```

p = Portfolio('mean', m, 'covar', C, 'budget', 1, 'lb', 0);

```
```

p.plotFrontier;

```

\section*{Direct Setting of Portfolio Object Properties}

Although not recommended, you can set properties directly, however no error-checking is done on your inputs:
```

p = Portfolio;
p.NumAssets = numel(m);
p.AssetMean = m;
p.AssetCovar = C;
p.LowerBudget = 1;
p.UpperBudget = 1;
p.LowerBound = zeros(size(m));
p.plotFrontier;

```
See Also Portfolio | estimateBounds
\begin{tabular}{ll} 
Relafed & - "Common Operations on the Portfolio Object" on page 4-35 \\
Examples & \begin{tabular}{l} 
- "Working with Portfolio Constraints" on page 4-59 \\
- "Asset Allocation" on page 4-116 \\
- "Portfolio Optimization Examples" on page 4-130
\end{tabular} \\
Concepts & \begin{tabular}{l} 
- "Portfolio Object" on page 4-17
\end{tabular} \\
& - "Portfolio Optimization Theory" on page 4-2
\end{tabular}

\section*{Common Operations on the Portfolio Object}

\author{
In this section... \\ "Naming a Portfolio Object" on page 4-35 \\ "Configuring the Assets in the Asset Universe" on page 4-35 \\ "Setting Up a List of Asset Identifiers" on page 4-36 \\ "Truncating and Padding Asset Lists" on page 4-38 \\ "Setting Up an Initial or Current Portfolio" on page 4-39
}

\section*{Naming a Portfolio Object}

To name a Portfolio object, use the Name property. Name is informational and has no effect on any portfolio calculations. If the Name property is nonempty, Name is the title for the efficient frontier plot generated by plotFrontier. For example, if you set up an asset allocation fund, you could name the Portfolio object Asset Allocation Fund:
```

p = Portfolio('Name','Asset Allocation Fund');
disp(p.Name);

```

Asset Allocation Fund

\section*{Configuring the Assets in the Asset Universe}

The fundamental quantity in the Portfolio object is the number of assets in the asset universe. This quantity is maintained in the NumAssets property. Although you can set this property directly, it is usually derived from other properties such as the mean of asset returns and the initial portfolio. In some instances, the number of assets may need to be set directly. This example shows how to set up a Portfolio object that has four assets:
```

p = Portfolio('NumAssets', 4);
disp(p.NumAssets);

```

4

After setting the NumAssets property, you cannot modify it (unless no other properties are set that depend on NumAssets). The only way to change the
number of assets in an existing Portfolio object with a known number of assets is to create a new Portfolio object.

\section*{Setting Up a List of Asset Identifiers}

When working with portfolios, you must specify a universe of assets. Although you can perform a complete analysis without naming the assets in your universe, it is helpful to have an identifier associated with each asset as you create and work with portfolios. You can create a list of asset identifiers as a cell vector of strings in the property AssetList. You can set up the list using the next two methods.

\section*{Setting Up Asset Lists Using the Constructor}

Suppose you have a Portfolio object, p, with assets with symbols 'AA ', ' BA', 'CAT', 'DD', and 'ETR'. You can create a list of these asset symbols in the object using the constructor:
```

p = Portfolio('assetlist', { 'AA', 'BA', 'CAT', 'DD', 'ETR' });
disp(p.AssetList);

```
```

'AA' 'BA' 'CAT' 'DD' 'ETR'

```

Notice that the property AssetList is maintained as a cell array that contains strings, and that it is necessary to pass a cell array into the constructor to set AssetList. In addition, notice that the property NumAssets is set to 5 based on the number of symbols used to create the asset list:
disp(p.NumAssets);
5

\section*{Setting Up Asset Lists Using the setAssetList Method}

You can also specify a list of assets using the method setAssetList. Given the list of asset symbols 'AA', 'BA', 'CAT', 'DD', and'ETR', you can use setAssetList with:
```

p = Portfolio;
p = p.setAssetList({ 'AA', 'BA', 'CAT', 'DD', 'ETR' });
disp(p.AssetList);

```

\section*{'AA' 'BA' 'CAT' 'DD' 'ETR'}
setAssetList also enables you enter symbols directly as a comma-separated list without creating a cell array of strings. For example, given the list of assets symbols 'AA', 'BA', 'CAT', 'DD', and 'ETR', use setAssetList:
```

p = Portfolio;
p = p.setAssetList('AA', 'BA', 'CAT', 'DD', 'ETR');
disp(p.AssetList);

```
'AA' 'BA' 'CAT' 'DD' 'ETR'
setAssetList has many additional features to create lists of asset identifiers. If you use setAssetList with just a Portfolio object, it creates a default asset list according to the name specified in the hidden public property defaultforAssetList (which is 'Asset' by default). The number of asset names created depends on the number of assets in the property NumAssets. If NumAssets is not set, then NumAssets is assumed to be 1.

For example, if a Portfolio object \(p\) is created with NumAssets \(=5\), then this code fragment shows the default naming behavior:
```

p = Portfolio('numassets',5);
p = p.setAssetList;
disp(p.AssetList);
'Asset1' 'Asset2' 'Asset3' 'Asset4' 'Asset5'

```

Suppose that your assets are, for example, ETFs and you change the hidden property defaultforAssetList to 'ETF', you can then create a default list for ETFs:
```

p = Portfolio('numassets',5);
p.defaultforAssetList = 'ETF';
p = p.setAssetList;
disp(p.AssetList);
'ETF1' 'ETF2' 'ETF3' 'ETF4' 'ETF5'

```

\section*{Truncating and Padding Asset Lists}

If the NumAssets property is already set and you pass in too many or too few identifiers, the portfolio constructor, and the setAssetList method truncate or pad the list with numbered default asset names that use the name specified in the hidden public property defaultforAssetList. If the list is truncated or padded, a warning message indicates the discrepancy. For example, assume you have a Portfolio object with five ETFs and you only know the first three CUSIPs '921937835', '922908769', and '922042775'. Use this syntax to create an asset list that pads the remaining asset identifiers with numbered 'UnknownCUSIP' placeholders:
```

p = Portfolio('numassets',5);
p.defaultforAssetList = 'UnknownCUSIP';
p = p.setAssetList('921937835', '922908769', '922042775');
disp(p.AssetList);
Warning: Input list of assets has 2 too few identifiers. Padding with numbered assets.
> In Portfolio.setAssetList at 121
'921937835' '922908769' '922042775' 'UnknownCUSIP4' 'UnknownCUSIP5'

```

Alternatively, suppose you have too many identifiers and need only the first four assets. This example illustrates truncation of the asset list using the portfolio constructor:
```

p = Portfolio('numassets',4);
p = Portfolio(p, 'assetlist', { 'AGG', 'EEM', 'MDY', 'SPY', 'VEU' });
disp(p.AssetList);
Warning: AssetList has 1 too many identifiers. Using first 4 assets.
> In Portfolio.checkarguments at 434
In Portfolio.Portfolio>Portfolio.Portfolio at 171
'AGG' 'EEM' 'MDY' 'SPY'

```

The hidden public property uppercaseAssetList is a Boolean flag to specify whether to convert asset names to uppercase letters. The default value for uppercaseAssetList is false. This example shows how to use the uppercaseAssetList flag to force identifiers to be uppercase letters:
```

p = Portfolio;
p.uppercaseAssetList = true;
p = p.setAssetList({ 'aa', 'ba', 'cat', 'dd', 'etr' });

```
```

disp(p.AssetList);
'AA' 'BA' 'CAT' 'DD' 'ETR'

```

\section*{Setting Up an Initial or Current Portfolio}

In many applications, creating a new optimal portfolio requires comparing the new portfolio with an initial or current portfolio to form lists of purchases and sales. The Portfolio object property InitPort lets you identify an initial or current portfolio. The initial portfolio also plays an essential role if you have either transaction costs or turnover constraints. The initial portfolio need not be feasible within the constraints of the problem. This can happen if the weights in a portfolio have shifted such that some constraints become violated. To check if your initial portfolio is feasible, use the method checkFeasibility described in "Validating Portfolios" on page 4-86. Suppose you have an initial portfolio in x0, then use the Portfolio object constructor to set up an initial portfolio:
```

x0 = [0.3; 0.2; 0.2; 0.0];
p = Portfolio('InitPort', x0);
disp(p.InitPort);

```
0.3000
0.2000
0.2000

0

As with all array properties, you can set InitPort with scalar expansion. This is helpful to set up an equally weighted initial portfolio of, for example, 10 assets:
```

p = Portfolio('NumAssets', 10, 'InitPort', 1/10);
disp(p.InitPort);

```
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
```

0.1000
0.1000
0.1000

```

To clear an initial portfolio from your Portfolio object, use either the constructor or the setInitPort method with an empty input for the InitPort property. If transaction costs or turnover constraints are set, it is not possible to clear the InitPort property in this way. In this case, to clear InitPort, first clear the dependent properties and then clear theInitPort property.

The InitPort property can also be set with setInitPort which lets you specify the number of assets if you want to use scalar expansion. For example, given an initial portfolio in \(\times 0\), use setInitPort to set the InitPort property:
```

p = Portfolio;
x0 = [0.3; 0.2; 0.2; 0.0];
p = p.setInitPort(x0);
disp(p.InitPort);

```
0.3000
0.2000
0.2000

0
To create an equally weighted portfolio of four assets, use setInitPort:
```

p = Portfolio;
p = p.setInitPort(1/4, 4);
disp(p.InitPort);
0.2500
0.2500
0.2500
0.2500

```

Portfolio object methods that work with either transaction costs or turnover constraints also depend on the InitPort property. Consequently, the set methods for transaction costs or turnover constraints permit the assignment of a value for the InitPort property as part of their implementation. For details, see "Working with Average Turnover Constraints" on page 4-77, "Working with One-Way Turnover Constraints" on page 4-79, and "Working
with Transaction Costs" on page 4-54 for details. If either transaction costs or turnover constraints are used, then the InitPort property must have a nonempty value. Absent a specific value assigned through the constructor or various set methods, the Portfolio object sets InitPort to 0 and warns if BuyCost, SellCost, or Turnover properties are set. The following example illustrates what happens if an average turnover constraint is specified with an initial portfolio:
```

p = Portfolio('Turnover', 0.3, 'InitPort', [0.3; 0.2; 0.2; 0.0]);
disp(p.InitPort);

```
0.3000
0.2000
0.2000

0

In contrast, this example shows what happens if an average turnover constraint is specified without an initial portfolio:
```

p = Portfolio('Turnover', 0.3);
disp(p.InitPort);

```

Warning: InitPort and NumAssets are empty and either transaction costs or turnover constraints specified. Will set NumAssets \(=1\) and InitPort \(=0\).
> In Portfolio.checkarguments at 367
In Portfolio.Portfolio>Portfolio.Portfolio at 171
0
See Also Portfolio | setAssetList | setInitPort | estimateBounds |checkFeasibility

Concepts
- "Working with Portfolio Constraints" on page 4-59
- "Asset Returns and Moments of Asset Returns" on page 4-42
- "Validate the Portfolio Problem" on page 4-84
- "Asset Allocation" on page 4-116
- "Portfolio Optimization Examples" on page 4-130
- "Portfolio Object" on page 4-17
- "Portfolio Optimization Theory" on page 4-2

\section*{Asset Returns and Moments of Asset Returns}

\author{
In this section... \\ "Assignment Using the Portfolio Constructor" on page 4-42 \\ "Assignment Using the setAssetMoments Method" on page 4-44 \\ "Scalar Expansion of Arguments" on page 4-45 \\ "Estimating Asset Moments from Prices or Returns" on page 4-46 \\ "Estimating Asset Moments with Missing Data" on page 4-49 \\ "Estimating Asset Moments from Time Series Data" on page 4-52 \\ "Working with a Riskless Asset" on page 4-54 \\ "Working with Transaction Costs" on page 4-54
}

Since mean-variance portfolio optimization problems require estimates for the mean and covariance of asset returns, the Portfolio object has several ways to set and get the properties AssetMean (for the mean) and AssetCovar (for the covariance). In addition, the return for a riskless asset is kept in the property RiskFreeRate so that all assets in AssetMean and AssetCovar are risky assets.

\section*{Assignment Using the Portfolio Constructor}

Suppose you have a mean and covariance of asset returns in variables \(m\) and \(C\). The properties for the moments of asset returns are set using the constructor:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
p = Portfolio('AssetMean', m, 'AssetCovar', C);
disp(p.NumAssets);
disp(p.AssetMean);
disp(p.AssetCovar);

```

4
\begin{tabular}{rrrr}
0.0042 & & & \\
0.0083 & & & \\
0.0100 & & & 0 \\
0.0150 & & 0.0002 & 0.0010 \\
0.0005 & 0.0003 & 0.0017 & 0.0028 \\
0.0003 & 0.0024 & 0.0048 & 0.0102
\end{tabular}

Notice that the Portfolio object determines the number of assets in NumAssets from the moments. The portfolio constructor enables separate initialization of the moments, for example:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
p = Portfolio;
p = Portfolio(p, 'AssetMean', m);
p = Portfolio(p, 'AssetCovar', C);
[assetmean, assetcovar] = p.getAssetMoments
assetmean =
0.0042
0.0083
0.0100
0.0150
assetcovar =

```
```

0.0005 0.0003 0.0002 0

```
0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
```

0.0003 0.0024 0.0017 0.0010

```
\begin{tabular}{rrrr}
0.0002 & 0.0017 & 0.0048 & 0.0028 \\
0 & 0.0010 & 0.0028 & 0.0102
\end{tabular}

The getAssetMoments method lets you get the values for AssetMean and AssetCovar properties at the same time.

\section*{Assignment Using the setAssetMoments Method}

You can also set asset moment properties using the setAssetMoments method. For example, given the mean and covariance of asset returns in the variables \(m\) and \(C\), the asset moment properties can be set:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
p = Portfolio;
p = p.setAssetMoments(m, C);
[assetmean, assetcovar] = p.getAssetMoments
assetmean =

```
    0.0042
    0.0083
    0.0100
    0.0150
assetcovar =
\begin{tabular}{rrrr}
0.0005 & 0.0003 & 0.0002 & 0 \\
0.0003 & 0.0024 & 0.0017 & 0.0010 \\
0.0002 & 0.0017 & 0.0048 & 0.0028 \\
0 & 0.0010 & 0.0028 & 0.0102
\end{tabular}

\section*{Scalar Expansion of Arguments}

Both the constructor Portfolio and the setAssetMoments method perform scalar expansion on arguments for the moments of asset returns. When using the constructor, the number of assets must be already specified in the variable NumAssets. If NumAssets has not already been set, a scalar argument is interpreted as a scalar with NumAssets set to 1. setAssetMoments provides an additional optional argument to specify the number of assets so that scalar expansion works with the correct number of assets. In addition, if either a scalar or vector is input for the covariance of asset returns, a diagonal matrix is formed such that a scalar expands along the diagonal and a vector becomes the diagonal. This example demonstrates scalar expansion for four jointly independent assets with a common mean 0.1 and common variance 0.03 :
```

p = Portfolio;
p = p.setAssetMoments(0.1, 0.03, 4);
[assetmean, assetcovar] = p.getAssetMoments
assetmean =
0.1000
0.1000
0.1000
0.1000
assetcovar =

| 0.0300 | 0 | 0 | 0 |
| ---: | ---: | ---: | ---: |
| 0 | 0.0300 | 0 | 0 |
| 0 | 0 | 0.0300 | 0 |
| 0 | 0 | 0 | 0.0300 |

```

If at least one argument is properly dimensioned, you don't need to include the additional NumAssets argument. This example illustrates a constant-diagonal covariance matrix and a mean of asset returns for four assets:
```

p = Portfolio;
p = p.setAssetMoments([0.05; 0.06; 0.04; 0.03], 0.03);
[assetmean, assetcovar] = p.getAssetMoments
assetmean =

```
```

 0.0500
 0.0600
 0.0400
 0.0300
 assetcovar =

| 0.0300 | 0 | 0 | 0 |
| ---: | ---: | ---: | ---: |
| 0 | 0.0300 | 0 | 0 |
| 0 | 0 | 0.0300 | 0 |
| 0 | 0 | 0 | 0.0300 |

```

In addition, scalar expansion works with the portfolio constructor if NumAssets is known, or is deduced from the inputs.

\section*{Estimating Asset Moments from Prices or Returns}

Another way to set the moments of asset returns is to use the method estimateAssetMoments which accepts either prices or returns and estimates the mean and covariance of asset returns. Either prices or returns are stored as matrices with samples going down the rows and assets going across the columns. In addition, prices or returns can be stored in a financial time series (fints) object (see "Estimating Asset Moments from Time Series Data" on page 4-52). To illustrate using estimateAssetMoments, generate random samples of 120 observations of asset returns for four assets from the mean and covariance of asset returns in the variables \(m\) and \(C\) with portsim. The default behavior of portsim creates simulated data with estimated mean and covariance identical to the input moments \(m\) and \(C\). In addition to a return series created by portsim in the variable \(X\), a price series is created in the variable \(Y\) :
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
X = portsim(m', C, 120);
Y = ret2tick(X);

```

Note Portfolio optimization requires that you use total returns and not just price returns. Consequently, "returns" should be total returns and "prices" should be total return prices.

Given asset returns and prices in variables \(X\) and \(Y\) from above, this sequence of examples demonstrates equivalent ways to estimate asset moments for the Portfolio object. A Portfolio object is created in p with the moments of asset returns set directly in the constructor, and a second Portfolio object is created in \(q\) to obtain the mean and covariance of asset returns from asset return data in X using estimateAssetMoments:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
X = portsim(m', C, 120);
p = Portfolio('mean', m, 'covar', C);
q = Portfolio;
q = q.estimateAssetMoments(X);
[passetmean, passetcovar] = p.getAssetMoments
[qassetmean, qassetcovar] = q.getAssetMoments
passetmean =

```
    0.0042
    0.0083
    0.0100
    0.0150
passetcovar =
\begin{tabular}{rrrr}
0.0005 & 0.0003 & 0.0002 & 0 \\
0.0003 & 0.0024 & 0.0017 & 0.0010
\end{tabular}
```

 0.0002 0.0017 0.0048 0.0028
    ```

```

qassetmean =
0.0042
0.0083
0.0100
0.0150
qassetcovar =

0.0005	0.0003	0.0002	0.0000
0.0003	0.0024	0.0017	0.0010
0.0002	0.0017	0.0048	0.0028
0.0000	0.0010	0.0028	0.0102

```

Notice how either approach has the same moments. The default behavior of estimateAssetMoments is to work with asset returns. If, instead, you have asset prices in the variable Y , estimateAssetMoments accepts an argument name 'DataFormat' with a corresponding value set to 'prices' to indicate that the input to the method is in the form of asset prices and not returns (the default value for the 'DataFormat' argument is 'returns'). This example compares direct assignment of moments in the Portfolio object \(p\) with estimated moments from asset price data in \(Y\) in the Portfolio object q:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
X = portsim(m', C, 120);
Y = ret2tick(X);
p = Portfolio('mean',m,'covar',C);
q = Portfolio;

```
```

q = q.estimateAssetMoments(Y, 'dataformat', 'prices');
[passetmean, passetcovar] = p.getAssetMoments
[qassetmean, qassetcovar] = q.getAssetMoments
passetmean =
0.0042
0.0083
0.0100
0.0150
passetcovar =

0.0005	0.0003	0.0002	0
0.0003	0.0024	0.0017	0.0010
0.0002	0.0017	0.0048	0.0028
0	0.0010	0.0028	0.0102

qassetmean =
0.0042
0.0083
0.0100
0.0150
qassetcovar =

0.0005	0.0003	0.0002	0.0000
0.0003	0.0024	0.0017	0.0010
0.0002	0.0017	0.0048	0.0028
0.0000	0.0010	0.0028	0.0102

```

\section*{Estimating Asset Moments with Missing Data}

Often when working with multiple assets, you have missing data indicated by NaN values in your return or price data. Although "Multivariate Normal Regression" on page 9-2 goes into detail about regression with missing data, the method estimateAssetMoments has an argument name 'MissingData' that indicates with a Boolean value whether to use the missing data capabilities of Financial Toolbox software. The default value
for 'MissingData' is false which removes all samples with NaN values. If, however, 'MissingData' is set to true, estimateAssetMoments uses the ECM algorithm to estimate asset moments. This example illustrates how this works on price data with missing values:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
X = portsim(m', C, 120);
Y = ret2tick(X);
Y(1:20,1) = NaN;
Y(1:12,4) = NaN;
p = Portfolio('mean',m,'covar',C);
q = Portfolio;
q = q.estimateAssetMoments(Y, 'dataformat', 'prices');
r = Portfolio;
r = r.estimateAssetMoments(Y, 'dataformat', 'prices', 'missingdata', true);
[passetmean, passetcovar] = p.getAssetMoments
[qassetmean, qassetcovar] = q.getAssetMoments
[rassetmean, rassetcovar] = r.getAssetMoments
passetmean =
0.0042
0.0083
0.0100
0.0150
passetcovar =
0.0005 0.0003 0.0002 0

```
```

0.0003	0.0024	0.0017	0.0010
0.0002	0.0017	0.0048	0.0028
0	0.0010	0.0028	0.0102

qassetmean =
0.0046
0.0104
0.0157
0.0159
qassetcovar =

0.0005	0.0004	0.0003	0.0001
0.0004	0.0023	0.0015	0.0009
0.0003	0.0015	0.0044	0.0027
0.0001	0.0009	0.0027	0.0106

rassetmean =
0.0043
0.0083
0.0100
0.0125
rassetcovar =

0.0007	0.0005	0.0004	0.0001
0.0005	0.0032	0.0022	0.0012
0.0004	0.0022	0.0063	0.0037
0.0001	0.0012	0.0037	0.0135

```

The Portfolio object p contains raw moments, the object q contains estimated moments in which NaN values are discarded, and the object \(r\) contains raw moments that accommodate missing values. Each time you run this example, you will get different estimates for the moments in \(q\) and \(r\), and these will also differ from the moments in p .

\section*{Estimating Asset Moments from Time Series Data}

The estimateAssetMoments method also accepts asset returns or prices stored in financial time series (fints) objects. estimateAssetMoments implicitly works with matrices of data or data in a fints object using the same rules for whether the data are returns or prices.

To illustrate, use fints to create a fints objects Xfts that contains asset returns generated with portsim (see "Estimating Asset Moments from Prices or Returns" on page 4-46) and add series labels:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
X = portsim(m', C, 120);
d = (datenum('31-jan-2001'):datenum('31-dec-2010'))';
Xfts = fints(d, zeros(numel(d),4), {'Bonds', 'LargeCap', 'SmallCap', 'Emerging'});
Xfts = tomonthly(Xfts);
Xfts.Bonds = X(:,1);
Xfts.LargeCap = X(:,2);
Xfts.SmallCap = X(:,3);
Xfts.Emerging = X(:,4);
p = Portfolio('mean',m,'covar',C);
q = Portfolio;
q = q.estimateAssetMoments(Xfts);
[passetmean, passetcovar] = p.getAssetMoments
[qassetmean, qassetcovar] = q.getAssetMoments
passetmean =

```
    0.0042
```

 0.0083
 0.0100
 0.0150
 passetcovar =
0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028

```

```

qassetmean =
0.0042
0.0083
0.0100
0.0150
qassetcovar =

0.0005	0.0003	0.0002	0.0000
0.0003	0.0024	0.0017	0.0010
0.0002	0.0017	0.0048	0.0028
0.0000	0.0010	0.0028	0.0102

```

As you can see, the moments match. The argument name-value inputs 'DataFormat' to handle return or price data and 'MissingData' to ignore or use samples with missing values also work for fints data. In addition, estimateAssetMoments also extracts asset names or identifiers from a fints object with the argument name 'GetAssetList' set to true (its default value is false). If the 'GetAssetList' value is true, the identifiers are used to set the AssetList property of the object. Thus, repeating the formation of the Portfolio object q from the previous example with the 'GetAssetList' flag set to true extracts the series labels from the fints object:
```

q = q.estimateAssetMoments(Xfts, 'getassetlist', true);
disp(q.AssetList)
'Bonds' 'LargeCap' 'SmallCap' 'Emerging'

```

Note if you set the 'GetAssetList' flag set to true and your input data is in a matrix, estimateAssetMoments uses the default labeling scheme from setAssetList described in "Setting Up a List of Asset Identifiers" on page 4-36.

\section*{Working with a Riskless Asset}

You can specify a riskless asset with the mean and covariance of asset returns in the AssetMean and AssetCovar properties such that the riskless asset has variance of 0 and is completely uncorrelated with all other assets. In this case, the Portfolio object uses a separate RiskFreeRate property that stores the rate of return of a riskless asset. Thus, you can separate your universe into a riskless asset and a collection of risky assets. For example, assume that your riskless asset has a return in the scalar variable r0, then the property for the RiskFreeRate is set using the constructor:
```

r0 = 0.01/12;
m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
p = Portfolio('RiskFreeRate', r0, 'AssetMean', m, 'AssetCovar', C);
disp(p.RiskFreeRate);

```
8.3333e-004

Note If your problem has a budget constraint such that your portfolio weights must sum to 1 , then the riskless asset is irrelevant.

\section*{Working with Transaction Costs}

The difference between net and gross portfolio returns is transaction costs. The net portfolio return proxy has distinct proportional costs to purchase and to sell assets which are maintained in the Portfolio object properties BuyCost and SellCost. Transaction costs are in units of total return and, as such, are proportional to the price of an asset so that they enter the model for net portfolio returns in return form. For example, suppose you have a stock
currently priced \(\$ 40\) and your usual transaction costs are 5 cents per share. Then the transaction cost for the stock is \(0.05 / 40=0.00125\) (as defined in "Net Portfolio Returns" on page 4-5). Costs are entered as positive values and credits are entered as negative values.

\section*{Setting Transaction Costs Using the Constructor}

To set up transaction costs, you must specify an initial or current portfolio in the InitPort property. If the initial portfolio is not set when you set up the transaction cost properties, InitPort is 0 . The properties for transaction costs can be set using the constructor Portfolio. For example, assume that purchase and sale transaction costs are in the variables bc and sc and an initial portfolio is in the variable x 0 , then transaction costs are set:
```

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = Portfolio('BuyCost', bc, 'SellCost', sc, 'InitPort', x0);
disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);

```
5
0.0013
0.0013
0.0013
0.0013
0.0013
0.0013
0.0070
0.0013
0.0013
0.0024
0.4000
0.2000
0.2000
0.1000
0.1000

\section*{Setting Transaction Costs Using the setCosts Method}

You can also set the properties for transaction costs using setCosts. Assume that you have the same costs and initial portfolio as in the previous example. Given a Portfolio object \(p\) with an initial portfolio already set, use setCosts to set up transaction costs:
```

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = Portfolio('InitPort', x0);
p = p.setCosts(bc, sc);
disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);

```
    5
    0.0013
    0.0013
    0.0013
    0.0013
    0.0013
    0.0013
    0.0070
    0.0013
    0.0013
    0.0024
    0.4000
    0.2000
    0.2000
    0.1000
    0.1000

You can also set up the initial portfolio's InitPort value as an optional argument to setCosts so that the following is an equivalent way to set up transaction costs:
```

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = Portfolio;
p = p.setCosts(bc, sc, xO);
disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);
5
0.0013
0.0013
0.0013
0.0013
0.0013
0.0013
0.0070
0.0013
0.0013
0.0024
0.4000
0.2000
0.2000
0.1000
0.1000

```

\section*{Setting Transaction Costs with Scalar Expansion}

Both the constructor Portfolio and setCosts method implement scalar expansion on the arguments for transaction costs and the initial portfolio. If the NumAssets property is already set in the Portfolio object, scalar
arguments for these properties are expanded to have the same value across all dimensions. In addition, setCosts lets you specify NumAssets as an optional final argument. For example, assume that you have an initial portfolio x0 and you want to set common transaction costs on all assets in your universe. You can set these costs in any of these equivalent ways:
```

x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = Portfolio('InitPort', x0, 'BuyCost', 0.002, 'SellCost', 0.002);
or
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = Portfolio('InitPort', x0);
p = p.setCosts(0.002, 0.002);
or
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = Portfolio;
p = p.setCosts(0.002, 0.002, x0);

```

To clear costs from your Portfolio object, use either the constructor or setCosts with empty inputs for the properties to be cleared. For example, you can clear sales costs from the Portfolio object p in the previous example:
```

p = Portfolio(p, 'SellCost', []);

```

See Also Portfolio | setAssetMoments | estimateAssetMoments | getAssetMoments | setCosts

Concepts
- "Constructing the Portfolio Object" on page 4-27
- "Working with Portfolio Constraints" on page 4-59
- "Validate the Portfolio Problem" on page 4-84
- "Estimate Efficient Portfolios" on page 4-89
- "Estimate Efficient Frontiers" on page 4-103
- "Asset Allocation" on page 4-116
- "Portfolio Optimization Examples" on page 4-130
- "Portfolio Object" on page 4-17
- "Portfolio Optimization Theory" on page 4-2

\section*{Working with Portfolio Constraints}

\author{
In this section... \\ "Setting Default Constraints for Portfolio Weights" on page 4-59 \\ "Working with Bound Constraints" on page 4-62 \\ "Working with Budget Constraints" on page 4-64 \\ "Working with Group Constraints" on page 4-66 \\ "Working with Group Ratio Constraints" on page 4-69 \\ "Working with Linear Equality Constraints" on page 4-73 \\ "Working with Linear Inequality Constraints" on page 4-75 \\ "Working with Average Turnover Constraints" on page 4-77 \\ "Working with One-Way Turnover Constraints" on page 4-79
}

\section*{Setting Default Constraints for Portfolio Weights}

The "default" portfolio problem has two constraints on portfolio weights:
- Portfolio weights must be nonnegative.
- Portfolio weights must sum to 1 .

Implicitly, these constraints imply that portfolio weights are no greater than 1 , although this is a superfluous constraint to impose on the problem.

\section*{Setting Default Constraints Using the Constructor}

Given a portfolio optimization problem with NumAssets \(=20\) assets, use the Portfolio constructor to set up a default problem and explicitly set bounds and budget constraints:
```

p = Portfolio('NumAssets', 20, 'LowerBound', 0, 'Budget', 1);
disp(p);

```
Portfolio with properties:

BuyCost: []
```

 SellCost: []
 RiskFreeRate: []
AssetMean: []
AssetCovar: []
Turnover: []
BuyTurnover: []
SellTurnover: []
Name: []
NumAssets: 20
AssetList: []
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: [20x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

\section*{Setting Default Constraints Using the setDefaultConstraints Method}

An alternative approach is to use the setDefaultConstraints method. If the number of assets is already known in a Portfolio object, use setDefaultConstraints with no arguments to set up the necessary bound and budget constraints. Suppose you have 20 assets to set up the portfolio set for a default problem:
```

p = Portfolio('NumAssets', 20);

```
p = p.setDefaultConstraints;
```

disp(p);
Portfolio with properties:
BuyCost: []
SellCost: []
RiskFreeRate: []
AssetMean: []
AssetCovar: []
Turnover: []
BuyTurnover: []
SellTurnover: []
Name: []
NumAssets: 20
AssetList: []
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: [20x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

If the number of assets is unknown, setDefaultConstraints accepts NumAssets as an optional argument to form a portfolio set for a default problem. Suppose you have 20 assets:
```

p = Portfolio;
p = p.setDefaultConstraints(20);
disp(p);

```
Portfolio with properties:
BuyCost: []
SellCost: []
RiskFreeRate: []
AssetMean: []
AssetCovar: []
Turnover: []
BuyTurnover: []
SellTurnover: []Name: []
NumAssets: 20
AssetList: []
InitPort: []
AInequality: []
bInequality: []
AEquality: []bEquality: []
LowerBound: [20x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget:
GroupMatrix: []
LowerGroup: []
UpperGroup: []GroupA: []
GroupB: []
LowerRatio: []UpperRatio: []

\section*{Working with Bound Constraints}

Bound constraints are optional linear constraints that maintain upper and lower bounds on portfolio weights (see "Bound Constraints" on page 4-10). Although every portfolio set must be bounded, it is not necessary to specify a portfolio set with explicit bound constraints. For example, you can create a portfolio set with an implicit upper bound constraint or a portfolio set with just average turnover constraints. The bound constraints have properties LowerBound for the lower-bound constraint and UpperBound for the upper-bound constraint. Set default values for these constraints using the setDefaultConstraints method (see "Setting Default Constraints for Portfolio Weights" on page 4-59).

\section*{Setting Bounds Using the Constructor}

The properties for bound constraints are set through the constructor Portfolio. Suppose you have a balanced fund with stocks that can range from 50 to \(75 \%\) of your portfolio and bonds that can range from 25 to \(50 \%\) of your portfolio. The bound constraints for a balanced fund are set with:
```

lb = [0.5; 0.25];
ub = [0.75; 0.5];
p = Portfolio('LowerBound', lb, 'UpperBound', ub);
disp(p.NumAssets);
disp(p.LowerBound);
disp(p.UpperBound);

```
2
0.5000
0.2500
0.7500
0.5000

To continue with this example, you must set up a budget constraint. For details, see "Working with Budget Constraints" on page 4-64.

\section*{Setting Bounds Using the setBounds Method}

You can also set the properties for bound constraints using setBounds. Suppose you have a balanced fund with stocks that can range from \(50 \%\) to \(75 \%\) of your portfolio and bonds that can range from \(25 \%\) to \(50 \%\) of your portfolio. Given a Portfolio object p, use setBounds to set the bound constraints:
```

lb = [0.5; 0.25];
ub = [0.75; 0.5];
p = Portfolio;
p = p.setBounds(lb, ub);
disp(p.NumAssets);
disp(p.LowerBound);
disp(p.UpperBound);

```
```

0.5000
0.2500
0.7500
0.5000

```

\section*{Setting Bounds Using the Constructor or setBounds Method}

Both the constructor Portfolio and setBounds method implement scalar expansion on either the LowerBound or UpperBound properties. If the NumAssets property is already set in the Portfolio object, scalar arguments for either property expand to have the same value across all dimensions. In addition, setBounds lets you specify NumAssets as an optional argument. Suppose you have a universe of 500 assets and you want to set common bound constraints on all assets in your universe. Specifically, you are a long-only investor and want to hold no more than \(5 \%\) of your portfolio in any single asset. You can set these bound constraints in any of these equivalent ways:
```

p = Portfolio('NumAssets', 500, 'LowerBound', 0, 'UpperBound', 0.05);
or
p = Portfolio('NumAssets', 500);
p = p.setBounds(0, 0.05);
or
p = Portfolio;
p = p.setBounds(0, 0.05, 500);

```

To clear bound constraints from your Portfolio object, use either the Portfolio constructor or setBounds with empty inputs for the properties to be cleared. For example, to clear the upper-bound constraint from the Portfolio object \(p\) in the previous example:
p = Portfolio(p, 'UpperBound', []);

\section*{Working with Budget Constraints}

The budget constraint is an optional linear constraint that maintains upper and lower bounds on the sum of portfolio weights (see "Budget Constraints" on page 4-11). Budget constraints have properties LowerBudget for the lower
budget constraint and UpperBudget for the upper budget constraint. If you set up a portfolio optimization problem that requires portfolios to be fully invested in your universe of assets, you can set LowerBudget to be equal to UpperBudget. These budget constraints can be set with default values equal to 1 using setDefaultConstraints (see "Setting Default Constraints for Portfolio Weights" on page 4-59).

\section*{Setting Budget Constraints Using the Constructor}

The properties for the budget constraint can also be set using the constructor Portfolio. Suppose you have an asset universe with many risky assets and a riskless asset and you want to ensure that your portfolio never holds more than \(1 \%\) cash, that is, you want to ensure that you are 99 to \(100 \%\) invested in risky assets. The budget constraint for this portfolio can be set with:
```

p = Portfolio('LowerBudget', 0.99, 'UpperBudget', 1);
disp(p.LowerBudget);
disp(p.UpperBudget);

```
0.9900

1

\section*{Setting Budget Constraints Using the setBudget Method}

You can also set the properties for a budget constraint using setBudget. Suppose you have a fund that permits up to \(10 \%\) leverage which means that your portfolio can be from 100 to \(110 \%\) invested in risky assets. Given a Portfolio object \(p\), use setBudget to set the budget constraints:
```

p = Portfolio;
p = p.setBudget(1, 1.1);
disp(p.LowerBudget);
disp(p.UpperBudget);

```
1
1.1000

If you were to continue with this example, then set the RiskFreeRate property to the borrowing rate to finance possible leveraged positions. For details on
the RiskFreeRate property, see "Working with a Riskless Asset" on page 4-54. To clear either bound for the budget constraint from your Portfolio object, use either the constructor Portfolio. or setBudget with empty inputs for the properties to be cleared. For example, clear the upper-budget constraint from the Portfolio object \(p\) in the previous example with:
p = Portfolio(p, 'UpperBudget', []);

\section*{Working with Group Constraints}

Group constraints are optional linear constraints that group assets together and enforce bounds on the group weights (see "Group Constraints" on page \(4-12\) ). Although the constraints are implemented as general constraints, the usual convention is to form a group matrix that identifies membership of each asset within a specific group with Boolean indicators (either true or false or with 1 or 0) for each element in the group matrix. Group constraints have properties GroupMatrix for the group membership matrix, LowerGroup for the lower-bound constraint on groups, and UpperGroup for the upper-bound constraint on groups.

\section*{Setting Group Constraints Using the Constructor}

The properties for group constraints are set through the constructor Portfolio. Suppose you have a portfolio of five assets and want to ensure that the first three assets constitute no more than \(30 \%\) of your portfolio, then you can set group constraints:
```

G = [1 1 1 1 0 O];
p = Portfolio('GroupMatrix', G, 'UpperGroup', 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

```
5
\(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
0.3000

The group matrix \(G\) can also be a logical matrix so that the following code achieves the same result.
```

G = [true true true false false];
p = Portfolio('GroupMatrix', G, 'UpperGroup', 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

```

5
\(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
0.3000

\section*{Setting Group Constraints Using the setGroups and addGroups Methods}

You can also set the properties for group constraints using setGroups. Suppose you have a portfolio of five assets and want to ensure that the first three assets constitute no more than \(30 \%\) of your portfolio. Given a Portfolio object p, use setGroups to set the group constraints:
```

G = [true true true false false];
p = Portfolio;
p = p.setGroups(G, [], 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

```
5
\(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
0.3000

In this example, you would set the LowerGroup property to be empty ([ ]).
Suppose you want to add another group constraint to make odd-numbered assets constitute at least \(20 \%\) of your portfolio. Set up an augmented group matrix and introduce infinite bounds for unconstrained group bounds or use the addGroups method to build up group constraints. For this example, create another group matrix for the second group constraint:
```

p = Portfolio;
G = [true true true false false]; % group matrix for first group constraint
p = p.setGroups(G, [], 0.3);
G = [true false true false true]; % group matrix for second group constraint
p = p.addGroups(G, 0.2);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.LowerGroup);
disp(p.UpperGroup);
5

1	1	1	0	0
1	0	1	0	1

 - Inf
 0.2000
0.3000
Inf

```
addGroups determines which bounds are unbounded so you only need to focus on the constraints that you want to set.

The constructor Portfolio and setGroups and addGroups implement scalar expansion on either the LowerGroup or UpperGroup properties based on the dimension of the group matrix in the property GroupMatrix. Suppose you have a universe of 30 assets with 6 asset classes such that assets \(1-5\), assets \(6-12\), assets \(13-18\), assets \(19-22\), assets \(23-27\), and assets \(28-30\) constitute each of your asset classes and you want each asset class to fall from 0 to \(25 \%\) of your portfolio. Let the following group matrix define your groups and scalar expansion define the common bounds on each group:
```

p = Portfolio;
G = blkdiag(true(1,5), true(1,7), true(1,6), true(1,4), true(1,5), true(1,3));
p = p.setGroups(G, 0, 0.25);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.LowerGroup);
disp(p.UpperGroup);

```

Columns 1 through 16
\begin{tabular}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

Columns 17 through 30
\begin{tabular}{llllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{tabular}
0.2500
0.2500
0.2500
0.2500
0.2500
0.2500

\section*{Working with Group Ratio Constraints}

Group ratio constraints are optional linear constraints that maintain bounds on proportional relationships among groups of assets (see "Group Ratio Constraints" on page 4-12). Although the constraints are implemented as general constraints, the usual convention is to specify a pair of group matrices that identify membership of each asset within specific groups with Boolean
indicators (either true or false or with 1 or 0 ) for each element in each of the group matrices. The goal is to ensure that the ratio of a base group to a comparison group fall within specified bounds. Group ratio constraints have properties:
- GroupA for the base membership matrix
- GroupB for the comparison membership matrix
- LowerRatio for the lower-bound constraint on the ratio of groups
- UpperRatio for the upper-bound constraint on the ratio of groups

\section*{Setting Group Ratio Constraints Using the Constructor}

The properties for group ratio constraints are set using constructor Portfolio. For example, assume you want the ratio of financial to nonfinancial companies in your portfolios to never go above \(50 \%\). Suppose you have six assets with three financial companies (assets 1-3) and three nonfinanical companies (assets 4-6). To set group ratio constraints:
```

GA = [11 1 1 1 0 0 0]; % financial companies
GB = [0 0 0 1 1 1 1] % % nonfinancial companies
p = Portfolio('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.UpperRatio);

```
6
\(\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 0\end{array}\)
\(\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 1\end{array}\)
0.5000

Group matrices GA and GB in this example can be logical matrices with true and false elements that yield the same result:
```

GA = [true true true false false false]; % financial companies
GB = [false false false true true true]; % nonfinancial companies
p = Portfolio('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.UpperRatio);

```
6
\(\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 0\end{array}\)
\(\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 1\end{array}\)
0.5000

\section*{Setting Group Ratio Constraints Using the setGroupRatio and addGroupRatio Methods}

You can also set the properties for group ratio constraints using setGroupRatio. For example, assume that you want the ratio of financial to nonfinancial companies in your portfolios to never go above \(50 \%\). Suppose you have six assets with three financial companies (assets 1-3) and three nonfinanical companies (assets 4-6). Given a Portfolio object p, use setGroupRatio to set the group constraints:
```

GA = [true true true false false false]; % financial companies
GB = [false false false true true true]; % nonfinancial companies
p = Portfolio;
p = p.setGroupRatio(GA, GB, [], 0.5);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.UpperRatio);
6
1 1 1 1 1 0
0

```

\subsection*{0.5000}

In this example, you would set the LowerRatio property to be empty ([ ]).
Suppose you want to add another group ratio constraint to ensure that the weights in odd-numbered assets constitute at least \(20 \%\) of the weights in nonfinancial assets your portfolio. You can set up augmented group ratio matrices and introduce infinite bounds for unconstrained group ratio bounds, or you can use the addGroupRatio method to build up group ratio constraints. For this example, create another group matrix for the second group constraint:
```

p = Portfolio;
GA = [true true true false false false]; % financial companies
GB = [false false false true true true]; % nonfinancial companies
p = p.setGroupRatio(GA, GB, [], 0.5);
GA = [true false true false true false]; % odd-numbered companies
GB = [false false false true true true]; % nonfinancial companies
p = p.addGroupRatio(GA, GB, 0.2);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.LowerRatio);
disp(p.UpperRatio);
6

1	1	1	0	0	0
1	0	1	0	1	0
0	0	0	1	1	1
0	0	0	1	1	1

 - Inf
 0.2000
0.5000
Inf

```

Notice that addGroupRatio determines which bounds are unbounded so you only need to focus on the constraints you want to set.

The constructor Portfolio., setGroupRatio, and addGroupRatio implement scalar expansion on either the LowerRatio or UpperRatio properties based on the dimension of the group matrices in GroupA and GroupB properties.

\section*{Working with Linear Equality Constraints}

Linear equality constraints are optional linear constraints that impose systems of equalities on portfolio weights (see "Linear Equality Constraints" on page 4-9). Linear equality constraints have properties AEquality, for the equality constraint matrix, and bEquality, for the equality constraint vector.

\section*{Setting Linear Equality Constraints Using the Constructor}

The properties for linear equality constraints are set using the constructor Portfolio. Suppose you have a portfolio of five assets and want to ensure that the first three assets are \(50 \%\) of your portfolio. To set this constraint:
```

A = [1 1 1 1 0 0];
b = 0.5;
p = Portfolio('AEquality', A, 'bEquality', b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);

```

5
\begin{tabular}{lllll}
1 & 1 & 1 & 0 & 0
\end{tabular}
0.5000

\section*{Setting Linear Equality Constraints Using the setEquality and addEquality Methods}

You can also set the properties for linear equality constraints using setEquality. Suppose you have a portfolio of five assets and want to ensure that the first three assets are \(50 \%\) of your portfolio. Given a Portfolio object p, use setEquality to set the linear equality constraints:
```

A = [[14cllll
b = 0.5;
p = Portfolio;
p = p.setEquality(A, b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);
5
1 1}1
0.5000

```

Suppose you want to add another linear equality constraint to ensure that the last three assets also constitute \(50 \%\) of your portfolio. You can set up an augmented system of linear equalities or use addEquality to build up linear equality constraints. For this example, create another system of equalities:
```

p = Portfolio;
A = [1 1 1 1 0 0]; % first equality constraint
b = 0.5;
p = p.setEquality(A, b);
A = [0 0 1 1 1 1]; % second equality constraint
b = 0.5;
p = p.addEquality(A, b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);
5
1
0.5000
0.5000

```

The constructor Portfolio and setEquality and addEquality implement scalar expansion on the bEquality property based on the dimension of the matrix in the AEquality property.

\section*{Working with Linear Inequality Constraints}

Linear inequality constraints are optional linear constraints that impose systems of inequalities on portfolio weights (see "Linear Inequality Constraints" on page 4-9). Linear inequality constraints have properties AInequality for the inequality constraint matrix, and bInequality for the inequality constraint vector.

\section*{Setting Linear Inequality Constraints Using the Constructor}

The properties for linear inequality constraints are set using the constructor Portfolio. Suppose you have a portfolio of five assets and you want to ensure that the first three assets are no more than \(50 \%\) of your portfolio. To set up these constraints:
```

A = [1 1 1 1 0 0];
b = 0.5;
p = Portfolio('AInequality', A, 'bInequality', b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

```

5
\begin{tabular}{lllll}
1 & 1 & 1 & 0 & 0
\end{tabular}
0.5000

\section*{Setting Linear Inequality Constraints Using the setInequality and addInequality Methods}

You can also set the properties for linear inequality constraints using setInequality. Suppose you have a portfolio of five assets and you want to ensure that the first three assets constitute no more than \(50 \%\) of your portfolio. Given a Portfolio object \(p\), use setInequality to set the linear inequality constraints:
```

A = [[14cllll
b = 0.5;
p = Portfolio;
p = p.setInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);
5
1 1 1 1 1 0
0.5000

```

Suppose you want to add another linear inequality constraint to ensure that the last three assets constitute at least \(50 \%\) of your portfolio. You can set up an augmented system of linear inequalities or use the addInequality method to build up linear inequality constraints. For this example, create another system of inequalities:
```

p = Portfolio;
A = [1 1 1 0 0]; % first inequality constraint
b = 0.5;
p = p.setInequality(A, b);
A = [0 0 -1 -1 -1]; % second inequality constraint
b = -0.5;
p = p.addInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);
5
1
0
0.5000
-0.5000

```

The constructor Portfolio. and setInequality and addInequality implement scalar expansion on the bInequality property based on the dimension of the matrix in the AInequality property.

\section*{Working with Average Turnover Constraints}

The turnover constraint is an optional linear absolute value constraint (see "Average Turnover Constraints" on page 4-13) that enforces an upper bound on the average of purchases and sales. The turnover constraint can be set using the portfolio constructor Portfolio. or the setTurnover method. The turnover constraint depends on an initial or current portfolio, which is assumed to be zero if not set when the turnover constraint is set. The turnover constraint has properties Turnover, for the upper bound on average turnover, and InitPort, for the portfolio against which turnover is computed.

\section*{Setting Average Turnover Constraints Using the Constructor}

The properties for the turnover constraints are set using the constructor Portfolio. Suppose you have an initial portfolio of 10 assets in a variable \(\mathrm{x0}\) and you want to ensure that average turnover is no more than \(30 \%\). To set this turnover constraint:
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = Portfolio('Turnover', 0.3, 'InitPort', x0);
disp(p.NumAssets);
disp(p.Turnover);
disp(p.InitPort);
1 0
0.3000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800

```

\subsection*{0.1000}

Note if the NumAssets or InitPort properties are not set before or when the turnover constraint is set, various rules are applied to assign default values to these properties (see "Setting Up an Initial or Current Portfolio" on page 4-39).

\section*{Setting Average Turnover Constraints Using the setTurnover Method}

You can also set properties for portfolio turnover using setTurnover to specify both the upper bound for average turnover and an initial portfolio. Suppose you have an initial portfolio of 10 assets in a variable x 0 and want to ensure that average turnover is no more than \(30 \%\). Given a Portfolio object p, use setTurnover to set the turnover constraint with and without the initial portfolio being set previously:
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = Portfolio('InitPort', x0);
p = p.setTurnover(0.3);
disp(p.NumAssets);
disp(p.Turnover);
disp(p.InitPort);

```
10
0.3000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000
or
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = Portfolio;
p = p.setTurnover(0.3, x0);
disp(p.NumAssets);
disp(p.Turnover);
disp(p.InitPort);

```
10
0.3000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000
setTurnover implements scalar expansion on the argument for the initial portfolio. If the NumAssets property is already set in the Portfolio object, a scalar argument for InitPort expands to have the same value across all dimensions. In addition, setTurnover lets you specify NumAssets as an optional argument. To clear turnover from your Portfolio object, use the constructor Portfolio or setTurnover with empty inputs for the properties to be cleared.

\section*{Working with One-Way Turnover Constraints}

One-way turnover constraints are optional constraints (see "One-Way Turnover Constraints" on page 4-14) that enforce upper bounds on net purchases or net sales. One-way turnover constraints can be set using the portfolio constructor Portfolio or the setOneWayTurnover method. One-way turnover constraints depend upon an initial or current portfolio, which is assumed to be zero if not set when the turnover constraints are set. One-way turnover constraints have properties BuyTurnover, for the upper bound on net
purchases, SellTurnover, for the upper bound on net sales, and InitPort, for the portfolio against which turnover is computed.

\section*{Setting One-Way Turnover Constraints Using the Constructor}

The Properties for the one-way turnover constraints are set using the constructor Portfolio. Suppose you have an initial portfolio with 10 assets in a variable x 0 and you want to ensure that turnover on purchases is no more than \(30 \%\) and turnover on sales is no more than \(20 \%\) of the initial portfolio. To set these turnover constraints:
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = Portfolio('BuyTurnover', 0.3, 'SellTurnover', 0.2, 'InitPort', x0);
disp(p.NumAssets);
disp(p.BuyTurnover);
disp(p.SellTurnover);
disp(p.InitPort);
1 0
0.3000
0.2000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

```

If the NumAssets or InitPort properties are not set before or when the turnover constraint is set, various rules are applied to assign default values to these properties (see "Setting Up an Initial or Current Portfolio" on page 4-39).

\section*{Setting Turnover Constraints Using the setOneWayTurnover Method}

You can also set properties for portfolio turnover using setOneWayTurnover to specify the upper bounds for turnover on purchases (BuyTurnover) and sales (SellTurnover) and an initial portfolio. Suppose you have an initial portfolio of 10 assets in a variable \(\times 0\) and want to ensure that turnover on purchases is no more than \(30 \%\) and that turnover on sales is no more than \(20 \%\) of the initial portfolio. Given a Portfolio object p, use setOneWayTurnover to set the turnover constraints with and without the initial portfolio being set previously:
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = Portfolio('InitPort', x0);
p = p.setOneWayTurnover(0.3, 0.2);
disp(p.NumAssets);
disp(p.BuyTurnover);
disp(p.SellTurnover);
disp(p.InitPort);

```
10
0.3000
0.2000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000
or
\(x 0=[0.12 ; 0.09 ; 0.08 ; 0.07 ; 0.1 ; 0.1 ; 0.15 ; 0.11 ; 0.08 ; 0.1\) ];
```

p = Portfolio;
p = p.setOneWayTurnover(0.3, 0.2, x0);
disp(p.NumAssets);
disp(p.BuyTurnover);
disp(p.SellTurnover);
disp(p.InitPort);

```
10
0.3000
0.2000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000
setOneWayTurnover implements scalar expansion on the argument for the initial portfolio. If the NumAssets property is already set in the Portfolio object, a scalar argument for InitPort expands to have the same value across all dimensions. In addition, setOneWayTurnover lets you specify NumAssets as an optional argument. To remove one-way turnover from your Portfolio object, use the constructor Portfolio or setOneWayTurnover with empty inputs for the properties to be cleared.
See Also \(\quad\)\begin{tabular}{l} 
Portfolio | setDefaultConstraints | setBounds | setBudget | setGroups \\
| setGroupRatio | setEquality | setInequality | setTurnover | \\
setOneWayTurnover
\end{tabular}

\section*{Related \\ Examples}
- "Constructing the Portfolio Object" on page 4-27
- "Validate the Portfolio Problem" on page 4-84
- "Estimate Efficient Portfolios" on page 4-89
- "Estimate Efficient Frontiers" on page 4-103
- "Asset Allocation" on page 4-116
- "Portfolio Optimization Examples" on page 4-130

\section*{Concepts}
- "Portfolio Object" on page 4-17
- "Portfolio Optimization Theory" on page 4-2

\section*{Validate the Portfolio Problem}

\author{
In this section... \\ "Validating a Portfolio Set" on page 4-84 \\ "Validating Portfolios" on page 4-86
}

In some cases, you may want to validate either your inputs to, or outputs from, a portfolio optimization problem. Although most error checking that occurs during the problem setup phase catches most difficulties with a portfolio optimization problem, the processes to validate portfolio sets and portfolios are time consuming and are best done offline. Consequently, the portfolio optimization tools have specialized methods to validate portfolio sets and portfolios.

\section*{Validating a Portfolio Set}

Since it is necessary and sufficient that your portfolio set must be a nonempty, closed, and bounded set to have a valid portfolio optimization problem, the method estimateBounds lets you examine your portfolio set to determine if it is nonempty and, if nonempty, whether it is bounded. Suppose you have the following portfolio set which is an empty set because the initial portfolio at 0 is too far from a portfolio that satisfies the budget and turnover constraint:
```

p = Portfolio('NumAssets', 3, 'Budget', 1);
p = p.setTurnover(0.3, 0);

```

If a portfolio set is empty, estimateBounds returns NaN bounds and sets the isbounded flag to []:
[lb, ub, isbounded] = p.estimateBounds
lb \(=\)
NaN
NaN
NaN
ub \(=\)
```

 NaN
 NaN
 NaN
 isbounded =
[]

```

Suppose you create an unbounded portfolio set as follows:
```

p = Portfolio('AInequality', [1 -1; 1 1], 'bInequality', 0);
[lb, ub, isbounded] = p.estimateBounds
lb =
-Inf
-Inf
ub =
1.0e-008 *
-0.3712
Inf
isbounded =

```
    0

In this case, estimateBounds returns (possibly infinite) bounds and sets the isbounded flag to false. The result shows which assets are unbounded so that you can apply bound constraints as necessary.

Finally, suppose you created a portfolio set that is both nonempty and bounded. estimateBounds not only validates the set, but also obtains tighter bounds which is useful if you are concerned with the actual range of portfolio choices for individual assets in your portfolio set:
```

p = Portfolio;
p = p.setBudget(1,1);
p = p.setBounds([-0.1; 0.2; 0.3; 0.2], [0.5; 0.3; 0.9; 0.8]);

```
```

[lb, ub, isbounded] = p.estimateBounds
lb =
-0.1000
0.2000
0.3000
0.2000
ub =
0.3000
0.3000
0.7000
0.6000
isbounded =
1

```

In this example, all but the second asset have tighter upper bounds than the input upper bound implies.

\section*{Validating Portfolios}

Given a portfolio set specified in a Portfolio object, you often want to check if specific portfolios are feasible with respect to the portfolio set. This can occur with, for example, initial portfolios and with portfolios obtained from other procedures. The checkFeasibility method determines whether a collection of portfolios is feasible. Suppose you perform the following portfolio optimization and want to determine if the resultant efficient portfolios are feasible relative to a modified problem.

First, set up a problem in the Portfolio object p, estimate efficient portfolios in pwgt, and then confirm that these portfolios are feasible relative to the initial problem:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

```
```

 0.00408 0.0289 0.0204 0.0119;
 0.00192 0.0204 0.0576 0.0336;
 0 0.0119 0.0336 0.1225];
 p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier;
p.checkFeasibility(pwgt)
ans =
1

```

Next, set up a different portfolio problem that starts with the initial problem with an additional a turnover constraint and an equally weighted initial portfolio:
```

q = p.setTurnover(0.3, 0.25);

```
q.checkFeasibility(pwgt)
ans =
\begin{tabular}{llllllllll}
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0
\end{tabular}

In this case, only two of the ten efficient portfolios from the initial problem are feasible relative to the new problem in Portfolio object q. Solving the second problem using checkFeasibility demonstrates that the efficient portfolio for Portfolio object \(q\) is feasible relative to the initial problem:
```

qwgt = q.estimateFrontier;
p.checkFeasibility(qwgt)
ans =
Portfolio | estimateBounds | checkFeasibility

```
Related Examples
- "Constructing the Portfolio Object" on page 4-27
- "Working with Portfolio Constraints" on page 4-59
- "Estimate Efficient Portfolios" on page 4-89
- "Estimate Efficient Frontiers" on page 4-103
- "Asset Allocation" on page 4-116
- "Portfolio Optimization Examples" on page 4-130
Concepts
- "Portfolio Object" on page 4-17
- "Portfolio Optimization Theory" on page 4-2

\section*{Estimate Efficient Portfolios}

\author{
In this section... \\ "Obtaining Portfolios Along the Entire Efficient Frontier" on page 4-89 \\ "Obtaining Endpoints of the Efficient Frontier" on page 4-91 \\ "Obtaining Efficient Portfolios for Target Returns" on page 4-93 \\ "Obtaining Efficient Portfolios for Target Risks" on page 4-96 \\ "Efficient Portfolio that Maximizes Sharpe Ratio" on page 4-98 \\ "Choosing and Controlling the Solver" on page 4-101
}

There are two ways to look at a portfolio optimization problem that depends on what you are trying to do. One goal is to estimate efficient portfolios and the other is to estimate efficient frontiers. This section focuses on the former goal and "Estimate Efficient Frontiers" on page 4-103 focuses on the latter goal.

\section*{Obtaining Portfolios Along the Entire Efficient Frontier}

The most basic way to obtain optimal portfolios is to obtain points over the entire range of the efficient frontier. Given a portfolio optimization problem in a Portfolio object, the estimateFrontier method computes efficient portfolios spaced evenly according to the return proxy from the minimum to maximum return efficient portfolios. The number of portfolios estimated is controlled by the hidden property defaultNumPorts which is set to 10. A different value for the number of portfolios estimated is specified as input to estimateFrontier. This example shows the default number of efficient portfolios over the entire range of the efficient frontier:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier;

```
\begin{tabular}{llllllrrrr} 
disp (pwgt); \\
& 0.7215 & 0.5540 & 0.3865 & 0.2190 & 0.0515 & 0 & 0 & 0 & 0 \\
0.8891 & 0.7289 & 0.2209 & 0.3129 & 0.4049 & 0.4969 & 0.4049 & 0.2314 & 0.0579 & 0 \\
0.0369 & 0.1289 & 0.0730 & 0.0893 & 0.1056 & 0.1219 & 0.1320 & 0.1394 & 0.1468 & 0 \\
0.0404 & 0.0567 & 0.09 & 0.2113 & 0.2705 & 0.3297 & 0.4630 & 0.6292 & 0.7953 & 1.0000
\end{tabular}

If you want only four portfolios in the previous example:
```

pwgt = p.estimateFrontier(4);
disp(pwgt);

0.8891	0.3865	0	0
0.0369	0.3129	0.4049	0
0.0404	0.0893	0.1320	0
0.0336	0.2113	0.4630	1.0000

```

Starting from the initial portfolio, estimateFrontier also returns purchases and sales to get from your initial portfolio to each efficient portfolio on the efficient frontier. For example, given an initial portfolio in pwgt0, you can obtain purchases and sales:
```

pwgtO = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateFrontier;
display(pwgt);
display(pbuy);
display(psell);
pwgt =

0.8891	0.7215	0.5540	0.3865	0.2190	0.0515	0	0	0	0
0.0369	0.1289	0.2209	0.3129	0.4049	0.4969	0.4049	0.2314	0.0579	0
0.0404	0.0567	0.0730	0.0893	0.1056	0.1219	0.1320	0.1394	0.1468	0
0.0336	0.0929	0.1521	0.2113	0.2705	0.3297	0.4630	0.6292	0.7953	1.0000

```


If you do not specify an initial portfolio, the purchase and sale weights assume that your initial portfolio is 0 .

\section*{Obtaining Endpoints of the Efficient Frontier}

In many cases, you might be interested in the endpoint portfolios for the efficient frontier. Suppose you want to determine the range of returns from minimum to maximum to refine a search for a portfolio with a specific target return. Use the estimateFrontierLimits method to obtain the endpoint portfolios:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierLimits;
disp(pwgt);

```
\begin{tabular}{ll}
0.8891 & 0 \\
0.0369 & 0 \\
0.0404 & 0
\end{tabular}

\subsection*{0.0336}

The estimatePortMoments method shows the range of risks and returns for efficient portfolios:
```

[prsk, pret] = p.estimatePortMoments(pwgt);
disp([prsk, pret]);
0.0769 0.0590
0.3500 0.1800

```

Starting from an initial portfolio, estimateFrontierLimits also returns purchases and sales to get from the initial portfolio to the endpoint portfolios on the efficient frontier. For example, given an initial portfolio in pwgt0, you can obtain purchases and sales:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateFrontierLimits;
display(pwgt);
display(pbuy);
display(psell);
pwgt =

0.8891	0
0.0369	0
0.0404	0
0.0336	1.0000

```
```

pbuy =
0.5891 0
0 0
0 0
0.9000
psell =

0	0.3000
0.2631	0.3000
0.1596	0.2000
0.0664	0

```

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial portfolio is 0 .

\section*{Obtaining Efficient Portfolios for Target Returns}

To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn method accepts one or more target portfolio returns and obtains efficient portfolios with the specified returns. For example, assume that you have a universe of four assets where you want to obtain efficient portfolios with target portfolio returns of \(6 \%, 9 \%\), and \(12 \%\) :
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierByReturn([0.06, 0.09, 0.12]);
display(pwgt);

```
pwgt =
\begin{tabular}{lll}
0.8772 & 0.5032 & 0.1293 \\
0.0434 & 0.2488 & 0.4541 \\
0.0416 & 0.0780 & 0.1143 \\
0.0378 & 0.1700 & 0.3022
\end{tabular}

In some cases, you can request a return for which no efficient portfolio exists. Based on the previous example, suppose you want a portfolio with a \(5 \%\) return (which is the return of the first asset). A portfolio that is fully invested in the first asset, however, is inefficient. estimateFrontierByReturn warns if your target returns are outside the range of efficient portfolio returns and replaces it with the endpoint portfolio of the efficient frontier closest to your target return:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

```
\(p=\) Portfolio;
\(\mathrm{p}=\mathrm{p} . \operatorname{set}\) AssetMoments(m, C);
\(\mathrm{p}=\mathrm{p}\).setDefaultConstraints;
pwgt = p.estimateFrontierByReturn([0.05, 0.09, 0.12]);
display(pwgt);
Warning: One or more target return values are outside the feasible range [ \(0.0590468,0.18\) ].
Will return portfolios associated with endpoints of the range for these values.
> In Portfolio.estimateFrontierByReturn at 71
pwgt =
\begin{tabular}{lll}
0.8891 & 0.5032 & 0.1293 \\
0.0369 & 0.2488 & 0.4541 \\
0.0404 & 0.0780 & 0.1143 \\
0.0336 & 0.1700 & 0.3022
\end{tabular}

The best way to avoid this situation is to bracket your target portfolio returns with estimateFrontierLimits and estimatePortReturn (see "Obtaining Endpoints of the Efficient Frontier" on page 4-91 and "Obtaining Portfolio Risks and Returns" on page 4-103).
```

pret = p.estimatePortReturn(p.estimateFrontierLimits);
display(pret);
pret =
0.0590
0.1800

```

This result indicates that efficient portfolios have returns that range between \(5.9 \%\) and \(18 \%\).

If you have an initial portfolio, estimateFrontierByReturn also returns purchases and sales to get from your initial portfolio to the target portfolios on the efficient frontier. For example, given an initial portfolio in pwgt0, to obtain purchases and sales with target returns of \(6 \%, 9 \%\), and \(12 \%\) :
```

pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateFrontierByReturn([0.06, 0.09, 0.12]);
display(pwgt);
display(pbuy);
display(psell);
pwgt =

0.8772	0.5032	0.1293
0.0434	0.2488	0.4541
0.0416	0.0780	0.1143
0.0378	0.1700	0.3022

pbuy =
0.5772 0.2032 0
0 0 0.1541
0 0 0
0 0.0700 0.2022
psell =

```
\begin{tabular}{rrr}
0 & 0 & 0.1707 \\
0.2566 & 0.0512 & 0 \\
0.1584 & 0.1220 & 0.0857 \\
0.0622 & 0 & 0
\end{tabular}

If you do not have an initial portfolio, the purchase and sale weights assume that your initial portfolio is 0 .

\section*{Obtaining Efficient Portfolios for Target Risks}

To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk method accepts one or more target portfolio risks and obtains efficient portfolios with the specified risks. Suppose you have a universe of four assets where you want to obtain efficient portfolios with target portfolio risks of \(12 \%, 14 \%\), and \(16 \%\).
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierByRisk([0.12, 0.14, 0.16]);
display(pwgt);

```
pwgt =
\begin{tabular}{lll}
0.3984 & 0.2659 & 0.1416 \\
0.3064 & 0.3791 & 0.4474 \\
0.0882 & 0.1010 & 0.1131 \\
0.2071 & 0.2540 & 0.2979
\end{tabular}

In some cases, you can request a risk for which no efficient portfolio exists. Based on the previous example, suppose you want a portfolio with \(7 \%\) risk (individual assets in this universe have risks ranging from 8 to \(35 \%\) ). It turns out that a portfolio with \(7 \%\) risk cannot be formed with these four assets. estimateFrontierByRisk warns if your target risks are outside the range
of efficient portfolio risks and replaces it with the endpoint of the efficient frontier closest to your target risk:
```

pwgt = p.estimateFrontierByRisk(0.07)
Warning: One or more target risk values are outside the feasible range [0.0769288, 0.35].
Will return portfolios associated with endpoints of the range for these values.
> In Portfolio.estimateFrontierByRisk at 83
pwgt =
0.8891
0.0369
0.0404
0.0336

```

The best way to avoid this situation is to bracket your target portfolio risks with estimateFrontierLimits and estimatePortRisk (see "Obtaining Endpoints of the Efficient Frontier" on page 4-91 and "Obtaining Portfolio Risks and Returns" on page 4-103).
```

prsk = p.estimatePortRisk(p.estimateFrontierLimits);
display(prsk);
prsk =
0.0769
0.3500

```

This result indicates that efficient portfolios have risks that range from 7.7 to \(35 \%\).

Starting with an initial portfolio, estimateFrontierByRisk also returns purchases and sales to get from your initial portfolio to the target portfolios on the efficient frontier. For example, given an initial portfolio in pwgt0, you can obtain purchases and sales from the example with target risks of \(12 \%, 14 \%\), and \(16 \%\) :
```

pwgt0 = [0.3; 0.3; 0.2; 0.1];

```
\(\mathrm{p}=\mathrm{p} . \operatorname{setInitPort(pwgt0);~}\)
```

[pwgt, pbuy, psell] = p.estimateFrontierByRisk([0.12, 0.14, 0.16]);
display(pwgt);
display(pbuy);
display(psell);
pwgt =

0.3984	0.2659	0.1416
0.3064	0.3791	0.4474
0.0882	0.1010	0.1131
0.2071	0.2540	0.2979

pbuy =

0.0984	0	0
0.0064	0.0791	0.1474
0	0	0
0.1071	0.1540	0.1979

psell =

0	0.0341	0.1584
0	0	0
0.1118	0.0990	0.0869
0	0	0

```

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial portfolio is 0 .

\section*{Efficient Portfolio that Maximizes Sharpe Ratio}

The Sharpe ratio is defined as the ratio
\[
\frac{\mu(x)-r_{0}}{\sqrt{\sum(x)}}
\]
where \(x \in R^{n}\) and \(r_{0}\) is the risk-free rate ( \(\mu\) and \(\Sigma\) proxies for portfolio return and risk). For more information, see "Portfolio Optimization Theory" on page 4-2.

Portfolios that maximize the Sharpe ratio are portfolios on the efficient frontier that satisfy a number of theoretical conditions in finance. For example, such portfolios are called tangency portfolios since the tangent line from the risk-free rate to the efficient frontier touches the efficient frontier at portfolios that maximize the Sharpe ratio.

To obtain efficient portfolios that maximizes the Sharpe ratio, the estimateMaxSharpeRatio method accepts a Portfolio object and obtains efficient portfolios that maximize the Sharpe Ratio.

Suppose you have a universe with four risky assets and a riskless asset and you want to obtain a portfolio that maximizes the Sharpe ratio, where, in this example, \(r_{0}\) is the return for the riskless asset.
```

r0 = 0.03;
m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
p = Portfolio('RiskFreeRate', r0);
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateMaxSharpeRatio;
display(pwgt);

```
pwgt =
    0.4251
    0.2917
    0.0856
    0.1977

If you start with an initial portfolio, estimateMaxSharpeRatio also returns purchases and sales to get from your initial portfolio to the portfolio that maximizes the Sharpe ratio. For example, given an initial portfolio in pwgt0, you can obtain purchases and sales from the previous example:
```

pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateMaxSharpeRatio;
display(pwgt);
display(pbuy);
display(psell);
pwgt =
0.4251
0.2917
0.0856
0.1977
pbuy =
0.1251
0
0
0.0977
psell =
0
0.0083
0.1144
0

```

If you do not specify an initial portfolio, the purchase and sale weights assume that you initial portfolio is 0 .

\section*{Choosing and Controlling the Solver}

The default solver for mean-variance portfolio optimization is lcprog, which implements a linear complementarity programming (LCP) algorithm. Although lcprog works for most problems, you can adjust arguments to control the algorithm. Alternatively, the mean-variance portfolio optimization tools let you use any of the variations of quadprog from Optimization Toolbox \({ }^{\mathrm{TM}}\) software. Unlike Optimization Toolbox which uses the trust-region-reflective algorithm as the default algorithm for quadprog, the portfolio optimization tools use the interior-point-convex algorithm. For details about quadprog and quadratic programming algorithms and options, see "Quadratic Programming Algorithms".

To modify either lcprog or to specify quadprog as your solver, use the setSolver method to set the hidden properties solverType and solverOptions that specify and control the solver. Since the solver properties are hidden, you cannot set these using the portfolio constructor Portfolio. The default solver is lcprog so you do not need to use setSolver to specify this solver. To use quadprog, you must set up the interior-point-convex version of quadprog using:
```

p = p.setSolver('quadprog');
display(p.solverType);
quadprog

```
and you can switch back tolcprog with:
```

p = p.setSolver('lcprog');
display(p.solverType);

```

\section*{lcprog}

In both cases, setSolver sets up default options associated with either solver. If you want to specify additional options associated with a given solver, setSolver accepts these options with argument name-value pair arguments in the function call. For example, if you intend to use quadprog and want to use the active-set algorithm, call setSolver with:
```

p = p.setSolver('quadprog', 'Algorithm', 'active-set');
display(p.solverOptions.Algorithm);

```

In addition, if you want to specify any of the options for quadprog that are normally set through optimoptions, setSolver accepts an optimoptions object as the second argument. For example, you can start with the default options for quadprog set by setSolver and then change the algorithm to 'trust-region-reflective' with no displayed output:
```

p = Portfolio;
options = optimoptions('quadprog', 'Algorithm', 'trust-region-reflective', 'Display', 'off');
p = p.setSolver('quadprog', options);
display(p.solverOptions.Algorithm);
display(p.solverOptions.Display);

```
trust-region-reflective
off
See Also \begin{tabular}{ll} 
Portfolio | estimateFrontier | estimateFrontierLimits | \\
estimatePortMoments | estimateFrontierByReturn | estimatePortReturn \\
& | estimateFrontierByRisk | estimatePortRisk | estimateFrontierByRisk \\
& | estimateMaxSharpeRatio | setSolver
\end{tabular}

Related
Exomples

\section*{Concepts}
- "Constructing the Portfolio Object" on page 4-27
- "Working with Portfolio Constraints" on page 4-59
- "Estimate Efficient Frontiers" on page 4-103
- "Asset Allocation" on page 4-116
- "Portfolio Optimization Examples" on page 4-130
- "Portfolio Object" on page 4-17
- "Portfolio Optimization Theory" on page 4-2

\section*{Estimate Efficient Frontiers}
```

In this section...
"Obtaining Portfolio Risks and Returns" on page 4-103
"Plotting the Efficient Frontier" on page 4-105

```

Whereas "Estimate Efficient Portfolios" on page 4-89 focused on estimation of efficient portfolios, this section focuses on the estimation of efficient frontiers.

\section*{Obtaining Portfolio Risks and Returns}

Given any portfolio and, in particular, efficient portfolios, the methods estimatePortReturn, estimatePortRisk, and estimatePortMoments provide estimates for the return (or return proxy), risk (or the risk proxy), and, in the case of mean-variance portfolio optimization, the moments of expected portfolio returns. Each method has the same input syntax but with different combinations of outputs. Suppose you have this following portfolio optimization problem that gave you a collection of portfolios along the efficient frontier in pwgt:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = Portfolio('AssetMean', m, 'AssetCovar', C, 'InitPort', pwgt0);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier;

```

Given pwgt0 and pwgt, use the portfolio risk and return estimation methods to obtain risks and returns for your initial portfolio and the portfolios on the efficient frontier:
```

[prskO, pret0] = p.estimatePortMoments(pwgt0);
[prsk, pret] = p.estimatePortMoments(pwgt);

```
or
```

prsk0 = p.estimatePortRisk(pwgt0);
pret0 = p.estimatePortReturn(pwgt0);
prsk = p.estimatePortRisk(pwgt);
pret = p.estimatePortReturn(pwgt);

```

In either case, you obtain these risks and returns:
```

display(prsk0);

```
display(pret0);
display(prsk);
display(pret);
prsko =
    0.1103
pret0 \(=\)
    0.0870
prsk =
    0.0769
    0.0831
    0.0994
    0.1217
    0.1474
    0.1750
    0.2068
    0.2487
    0.2968
    0.3500
pret =
    0.0590
    0.0725
    0.0859
    0.0994
    0.1128
0.1262
0.1397
0.1531
0.1666
0.1800

Note the returns and risks are at the periodicity of the moments of asset returns so that, if you have values for AssetMean and AssetCovar in terms of monthly returns, the estimates for portfolio risk and return are in terms of monthly returns as well. In addition, the estimate for portfolio risk in the mean-variance case is the standard deviation of portfolio returns, not the variance of portfolio returns.

\section*{Plotting the Efficient Frontier}

The plotFrontier method creates a plot of the efficient frontier for a given portfolio optimization problem. This method accepts several types of inputs and generates a plot with an optional possibility to output the estimates for portfolio risks and returns along the efficient frontier. plotFrontier has four different ways that it can be used. In addition to a plot of the efficient frontier, if you have an initial portfolio in the InitPort property, plotFrontier also displays the return versus risk of the initial portfolio on the same plot. If you have a well-posed portfolio optimization problem set up in a Portfolio object and you use plotFrontier, you will get a plot of the efficient frontier with the default number of portfolios on the frontier (the default number is currently 10 and is maintained in the hidden property defaultNumPorts). This example illustrates a typical use of plotFrontier to create a new plot:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
p.plotFrontier;

```


The Name property appears as the title of the efficient frontier plot if you set it in the Portfolio object. Without an explicit name, the title on the plot would be "Efficient Frontier." If you want to obtain a specific number of portfolios along the efficient frontier, use plotFrontier with the number of portfolios that you want. Suppose you have the Portfolio object from the previous example and you want to plot 20 portfolios along the efficient frontier and to obtain 20 risk and return values for each portfolio:
```

[prsk, pret] = p.plotFrontier(20);
display([pret, prsk]);

```
ans =
\begin{tabular}{ll}
0.0590 & 0.0769 \\
0.0654 & 0.0784 \\
0.0718 & 0.0825 \\
0.0781 & 0.0890 \\
0.0845 & 0.0973 \\
0.0909 & 0.1071
\end{tabular}
\begin{tabular}{ll}
0.0972 & 0.1179 \\
0.1036 & 0.1296 \\
0.1100 & 0.1418 \\
0.1163 & 0.1545 \\
0.1227 & 0.1676 \\
0.1291 & 0.1810 \\
0.1354 & 0.1955 \\
0.1418 & 0.2128 \\
0.1482 & 0.2323 \\
0.1545 & 0.2535 \\
0.1609 & 0.2760 \\
0.1673 & 0.2995 \\
0.1736 & 0.3239 \\
0.1800 & 0.3500
\end{tabular}


\section*{Plotting Existing Efficient Portfolios}

If you already have efficient portfolios from any of the "estimateFrontier" methods (see "Estimate Efficient Portfolios" on page 4-89), pass them into plotFrontier directly to plot the efficient frontier:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgtO);
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier(20);
p.plotFrontier(pwgt);

```


\section*{Plotting Existing Efficient Portfolio Risks and Returns}

If you already have efficient portfolio risks and returns, you can use the interface to plotFrontier to pass them into plotFrontier to obtain a plot of the efficient frontier:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
[prsk, pret] = p.estimatePortMoments(p.estimateFrontier(20));
p.plotFrontier(prsk, pret);

```

See Also Portfolio | estimatePortReturn | estimatePortMoments | plotFrontier
Related
Examples
- "Constructing the Portfolio Object" on page 4-27- "Working with Portfolio Constraints" on page 4-59- "Estimate Efficient Portfolios" on page 4-89- "Postprocessing Results" on page 4-111
- "Asset Allocation" on page 4-116
- "Portfolio Optimization Examples" on page 4-130
Concepts - "Portfolio Object" on page 4-17- "Portfolio Optimization Theory" on page 4-2

\section*{Postprocessing Results}

\section*{In this section...}
"Setting Up Tradable Portfolios" on page 4-111
"Troubleshooting Portfolio Optimization Results" on page 4-113

After obtaining efficient portfolios or estimates for expected portfolio risks and returns, use your results to set up trades to move toward an efficient portfolio.

\section*{Setting Up Tradable Portfolios}

Suppose you set up a portfolio optimization problem and obtained portfolios on the efficient frontier. Use the dataset object from Statistics Toolbox \({ }^{\text {TM }}\) to form a blotter that lists your portfolios with the names for each asset. For example, suppose you want to obtain five portfolios along the efficient frontier. You can set up a blotter with weights multiplied by 100 to view the allocations for each portfolio:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = Portfolio('InitPort', pwgt0);
p = p.setAssetList('Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier(5);
pnames = cell(1,5);
for i = 1:5
pnames{i} = sprintf('Port%d',i);
end

```
Blotter \(=\) dataset ([\{100*pwgt \(\},\) pnames], 'obsnames', p.AssetList);
display(Blotter);

Blotter =
\begin{tabular}{lrllrr} 
& Port1 & Port2 & Port3 & Port4 & Port5 \\
Bonds & 88.906 & 51.216 & 13.525 & 0 & 0 \\
Large-Cap Equities & 3.6875 & 24.387 & 45.086 & 27.479 & 0 \\
Small-Cap Equities & 4.0425 & 7.7088 & 11.375 & 13.759 & 0 \\
Emerging Equities & 3.364 & 16.689 & 30.014 & 58.762 & 100
\end{tabular}

This result indicates that you would invest primarily in bonds at the minimum-risk/minimum-return end of the efficient frontier (Port1), and that you would invest completely in emerging equity at the maximum-risk/maximum-return end of the efficient frontier (Port5). You can also select a particular efficient portfolio, for example, suppose you want a portfolio with \(15 \%\) risk and you add purchase and sale weights outputs obtained from the "estimateFrontier" methods to set up a trade blotter:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
pwgtO = [0.3; 0.3; 0.2; 0.1];
p = Portfolio('InitPort', pwgtO);
p = p.setAssetList('Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');
p = p.setAssetMoments(m,C);
p = p.setDefaultConstraints;
[pwgt, pbuy, psell] = p.estimateFrontierByRisk(0.15);
Blotter = dataset([{100*[pwgt0, pwgt, pbuy, psell]}, ...
{'Initial','Weight', 'Purchases','Sales'}],'obsnames',p.AssetList);
display(Blotter);
Blotter =

	Initial	Weight	Purchases	Sales
Bonds	30	20.299	0	9.7007
Large-Cap Equities	30	41.366	11.366	0
Small-Cap Equities	20	10.716	0	9.2838

```

If you have prices for each asset (in this example, they can be ETFs), add them to your blotter and then use the tools of the dataset object to obtain shares and shares to be traded. For an example, see "Asset Allocation" on page 4-116.

\section*{Troubleshooting Portfolio Optimization Results}

\section*{Portfolio Object Destroyed When Modifying}

If a Portfolio object is destroyed when modifying, remember to pass an existing object into the constructor if you want to modify it, otherwise it creates a new object. See "Constructing the Portfolio Object" on page 4-27 for details.

\section*{Optimization Fails with "Bad Pivot" Message}

If the optimization fails with a "bad pivot" message from lcprog, try a larger value for tolpiv which is a tolerance for pivot selection in the lcprog algorithm (try 1.0e-7, for example) or try the interior-point-convex version of quadprog. For details, see "Choosing and Controlling the Solver" on page 4-101, the help header for lcprog, and the quadprog documentation.

\section*{Matrix Incompatibility and "Non-Conformable" Errors}

If you get matrix incompatibility or "non-conformable" errors, the representation of data in the tools follows a specific set of basic rules described in "Conventions for Representation of Data" on page 4-26.

\section*{Missing Data Estimation Fails}

If asset return data has missing or NaN values, the method estimateAssetMoments with the 'missingdata' flag set to true may fail with either too many iterations or a singular covariance. To correct this problem, consider this:
- If you have asset return data with no missing or NaN values, you can compute a covariance matrix that may be singular without difficulties. If you have missing or NaN values in your data, the supported missing data feature requires that your covariance matrix must be positive-definite, i.e., nonsingular.
- estimateAssetMoments uses default settings for the missing data estimation procedure that might not be appropriate for all problems.

In either case, you might want to estimate the moments of asset returns separately with either the ECM estimation functions such as ecmnmle or with your own methods.

\section*{mv_optim_transform Errors}

If you obtain optimization errors such as:
```

Error using mv_optim_transform (line 233)
Portfolio set appears to be either empty or unbounded. Check constraints.
Error in Portfolio/estimateFrontier (line 63)
[A, b, fo, f, H, g, lb] = mv_optim_transform(obj);
or
Error using mv_optim_transform (line 238)
Cannot obtain finite lower bounds for specified portfolio set.
Error in Portfolio/estimateFrontier (line 63)
[A, b, fO, f, H, g, lb] = mv_optim_transform(obj);

```

Since the portfolio optimization tools require a bounded portfolio set, these errors (and similar errors) can occur if your portfolio set is either empty and, if nonempty, unbounded. Specifically, the portfolio optimization algorithm requires that your portfolio set have at least a finite lower bound. The best way to deal with these problems is to use the validation methods in "Validate the Portfolio Problem" on page 4-84. Specifically, use estimateBounds to examine your portfolio set, and use checkFeasibility to ensure that your initial portfolio is either feasible and, if infeasible, that you have sufficient turnover to get from your initial portfolio to the portfolio set.

Tip To correct this problem, try solving your problem with larger values for turnover and gradually reduce to the value that you want.

\section*{Efficient Portfolios Do Not Make Sense}

If you obtain efficient portfolios that do not seem to make sense, this can happen if you forget to set specific constraints or you set incorrect constraints. For example, if you allow portfolio weights to fall between 0 and 1 and do not set a budget constraint, you can get portfolios that are \(100 \%\) invested in every asset. Although it may be hard to detect, the best thing to do is to review the constraints you have set with display of the object. If you get portfolios with \(100 \%\) invested in each asset, you can review the display of your object and quickly see that no budget constraint is set. Also, you can use estimateBounds and checkFeasibility to determine if the bounds for your portfolio set make sense and to determine if the portfolios you obtained are feasible relative to an independent formulation of your portfolio set.

\footnotetext{
See Also
Portfolio | estimateAssetMoments | checkFeasibility
Related

- "Constructing the Portfolio Object" on page 4-27Examples
- "Working with Portfolio Constraints" on page 4-59
- "Estimate Efficient Portfolios" on page 4-89
- "Estimate Efficient Frontiers" on page 4-103
- "Asset Allocation" on page 4-116
- "Portfolio Optimization Examples" on page 4-130

Concepts - "Portfolio Object" on page 4-17
- "Portfolio Optimization Theory" on page 4-2
}

\section*{Asset Allocation}

\author{
In this section... \\ "Defining the Portfolio Problem" on page 4-116 \\ "Simulating Asset Prices" on page 4-117 \\ "Setting Up the Portfolio Object" on page 4-119 \\ "Validating the Portfolio Problem" on page 4-121 \\ "Plotting the Efficient Frontier" on page 4-121 \\ "Evaluating Gross vs. Net Portfolio Returns" on page 4-122 \\ "Analyzing Descriptive Properties of the Portfolio Structures" on page 4-123 \\ "Obtaining a Portfolio at the Specified Return Level on the Efficient Frontier" on page 4-124 \\ "Obtaining a Portfolio at the Specified Risk Levels on the Efficient Frontier" on page 4-125 \\ "Displaying the Final Results" on page 4-128
}

The following example sets up a basic asset allocation problem to use mean-variance portfolio optimization to estimate efficient portfolios. Suppose you want to manage an asset allocation fund with four asset classes: bonds, large-cap equities, small-cap equities, and emerging equities. The fund is long-only with no borrowing or leverage, should have no more than \(85 \%\) of the portfolio in equities, and no more than \(35 \%\) of the portfolio in emerging equities.

The cost to trade the first three assets is 10 basis points annualized and the cost to trade emerging equities is four times higher. Finally, you want to ensure that average turnover is no more than \(15 \%\). To solve this problem, you will set up a basic mean-variance portfolio optimization problem and then slowly introduce the various constraints on the problem to get to a solution.

\section*{Defining the Portfolio Problem}

To set up the portfolio optimization problem, start with basic definitions of known quantities associated with the structure of this problem. Each asset class is assumed to have a tradeable asset with a real-time price. Such assets
can be, for example, exchange-traded funds (ETFs). The initial portfolio with holdings in each asset that has a total of \(\$ 7.5\) million along with an additional cash position of \(\$ 60,000\). These basic quantities and the costs to trade are set up in the following variables with asset names in the cell array Asset, current prices in the vector Price, current portfolio holdings in the vector Holding, and transaction costs in the vector UnitCost.
```

Asset = { 'Bonds', 'Large-Cap Equities', 'Small-Cap Equities', 'Emerging Equities' };
Price = [52.4; 122.7; 35.2; 46.9];
Holding = [42938; 24449; 42612; 15991];
UnitCost = [0.001; 0.001; 0.001; 0.004];

```

To analyze this portfolio, you can set up a blotter in a dataset object to help track prices, holdings, weights, and so forth. In particular, you can compute the initial portfolio weights and maintain them in a new blotter field called InitPort.
```

Blotter = dataset({Price, 'Price'}, {Holding, 'InitHolding'},'obsnames',Asset);
Wealth = sum(Blotter.Price .* Blotter.InitHolding);
Blotter.InitPort = (1/Wealth)*(Blotter.Price .* Blotter.InitHolding);
Blotter.UnitCost = UnitCost;
disp(Blotter);

```
\begin{tabular}{lrccr} 
& Price & InitHolding & InitPort & UnitCost \\
Bonds & 52.4 & 42938 & 0.3 & 0.001 \\
Large-Cap Equities & 122.7 & 24449 & 0.4 & 0.001 \\
Small-Cap Equities & 35.2 & 42612 & 0.2 & 0.001 \\
Emerging Equities & 46.9 & 15991 & 0.1 & 0.004
\end{tabular}

\section*{Simulating Asset Prices}

Since this is a hypothetical example, to simulate asset prices from a given mean and covariance of annual asset total returns for the asset classes, portsim is used to create asset returns with the desired mean and covariance. Specifically, portsim is used to simulate 5 years of monthly total returns. The mean and covariance of annual asset total returns are maintained in the variables AssetMean and AssetCovar. The simulated asset total return prices (which are compounded total returns) are maintained in the variable Y. All initial asset total return prices are normalized to 1 in this example.
```

AssetMean = [0.05; 0.1; 0.12; 0.18];
AssetCovar = [0.0064 0.00408 0.00192 0;

```
```

 0.00408 0.0289 0.0204 0.0119;
 0.00192 0.0204 0.0576 0.0336;
 0 0.0119 0.0336 0.1225];
 X = portsim(AssetMean'/12, AssetCovar/12, 60); % monthly total returns for 5 years (60 months)
[Y, T] = ret2tick(X, [], 1/12); % form total return prices

```

This plot shows the log of the simulated total return prices:
```

plot(T, log(Y));
title('\bfSimulated Asset Class Total Return Prices');
xlabel('Year');
ylabel('Log Total Return Price');
legend(Asset,'Location','best');

```


If working with actual historical asset prices, income, and corporate actions data, you would compute total returns for your assets by other means.

\section*{Setting Up the Portfolio Object}

To explore portfolios on the efficient frontier, set up a Portfolio object using these specifications:
- Portfolio weights are nonnegative and sum to 1 .
- Equity allocation is no more than \(85 \%\) of the portfolio.
- Emerging equity is no more than \(35 \%\) of the portfolio.

These specifications are incorporated into the Portfolio object \(p\) in the following sequence of methods that starts with the portfolio constructor:
```

p = Portfolio('Name', 'Asset Allocation Portfolio', ...
'AssetList', Asset, 'InitPort', Blotter.InitPort);

```

The specification of the initial portfolio from Blotter gives the number of assets in your universe so you do not need to specify the NumAssets property directly. Next, set up default constraints (long-only with a budget constraint). In addition, set up the group constraint that imposes an upper bound on equities in the portfolio (equities are identified in the group matrix with 1s) and the upper bound constraint on emerging equities.
\(\mathrm{p}=\mathrm{p}\). setDefaultConstraints;
\(\mathrm{p}=\mathrm{p}\).setGroups([ 0, 1, 1, 1 ], [], 0.85);
\(\mathrm{p}=\mathrm{p} . \operatorname{addGroups}([\mathrm{0}, 0,0,1 \mathrm{]},[], 0.35)\);
Although you could have set the upper bound on emerging equities using the setBounds method, notice how you used the addGroups method to set up this constraint.

Finally, to have a fully specified mean-variance portfolio optimization problem, you must specify the mean and covariance of asset returns. Since starting with these moments in the variables AssetMean and AssetCovar, you could use the method setAssetMoments to enter these variables into your Portfolio object in the following way (remember that you are assuming that
your raw data are monthly returns which is why you divide your annual input moments by 12 to get monthly returns).
```

p = p.setAssetMoments(AssetMean/12, AssetCovar/12);

```

To make things more interesting, however, you can use the total return prices and use the method estimateAssetMoments with a specification that your data in \(Y\) are prices, and not returns, to estimate asset return moments for your Portfolio object.
```

p = p.estimateAssetMoments(Y, 'DataFormat', 'Prices');

```

Although the returns in your Portfolio object are in units of monthly returns, and since subsequent costs are annualized, it is convenient to specify them as annualized total returns with this direct transformation of the AssetMean and AssetCovar properties of your object:
```

p.AssetMean = 12*p.AssetMean;
p.AssetCovar = 12*p.AssetCovar;

```

Now, the Portfolio object is ready:
```

display(p);
p =
Portfolio
Properties:
BuyCost: []
SellCost: []
RiskFreeRate: []
AssetMean: [4x1 double]
AssetCovar: [4\times4 double]
Turnover: []
Name: 'Asset Allocation Portfolio
NumAssets: 4
AssetList: {'Bonds' 'Large-Cap Equities' 'Small-Cap Equities' 'Emerging Equities'}
InitPort: [4x1 double]
AInequality: []
bInequality: []
AEquality: []

```
```

 bEquality: []
 LowerBound: [4\times1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: [2x4 double]
LowerGroup: []
UpperGroup: [2x1 double]
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

\section*{Validating the Portfolio Problem}

An important step in portfolio optimization is to validate that the portfolio problem is feasible and the main test is to ensure that the set of portfolios is nonempty and bounded. Use the estimateBounds method to determine the bounds for the portfolio set:
[lb, ub] = p.estimateBounds;
display([lb, ub]);
ans =
\begin{tabular}{ll}
0.1500 & 1.0000 \\
0.0000 & 0.8500 \\
0.0000 & 0.8500 \\
0.0000 & 0.3500
\end{tabular}

Since both lb and ub are finite, the set is bounded.

\section*{Plotting the Efficient Frontier}

Given the constructed Portfolio object, use the method plotFrontier to view the efficient frontier. Instead of using the default of 10 portfolios along the frontier, you can display the frontier with 40 portfolios:
p.plotFrontier(40);


Notice gross efficient portfolio returns fall between approximately \(6 \%\) and \(16 \%\) per years.

\section*{Evaluating Gross vs. Net Portfolio Returns}

The Portfolio object \(p\) does not include transaction costs so that the portfolio optimization problem specified in \(p\) uses gross portfolio return as the return proxy. To handle net returns, create a second Portfolio object q that includes transaction costs:
```

q = p.setCosts(UnitCost, UnitCost);
display(q);

```
\(q=\)

Portfolio

Properties:
```

 BuyCost: [4x1 double]
 SellCost: [4\times1 double]
 RiskFreeRate: []
AssetMean: [4x1 double]
AssetCovar: [4\times4 double]
Turnover: []
Name: 'Asset Allocation Portfolio
NumAssets: 4
AssetList: {'Bonds' 'Large-Cap Equities' 'Small-Cap Equities' 'Emerging Equities'}
InitPort: [4\times1 double]
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: [4\times1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: [2x4 double]
LowerGroup: []
UpperGroup: [2x1 double]
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

\section*{Analyzing Descriptive Properties of the Portfolio Structures}

To be more concrete about the ranges of efficient portfolio returns and risks, use the method estimateFrontierLimits to obtain portfolios at the endpoints of the efficient frontier. Given these portfolios, compute their moments using estimatePortMoments. The following code generates a table that lists the risk and return of the initial portfolio as well as the gross and net moments of portfolio returns for the portfolios at the endpoints of the efficient frontier:
```

[prsk0, pret0] = p.estimatePortMoments(p.InitPort);
pret = p.estimatePortReturn(p.estimateFrontierLimits);
qret = q.estimatePortReturn(q.estimateFrontierLimits);

```
```

fprintf('Annualized Portfolio Returns ...\n');
fprintf(' %6s %6s\n','Gross','Net');
fprintf('Initial Portfolio Return %6.2f %% %6.2f %%\n',100*pret0,100*pret0);
fprintf('Minimum Efficient Portfolio Return %6.2f %% %6.2f %%\n',100*pret(1),100*qret(1));
fprintf('Maximum Efficient Portfolio Return %6.2f %% %6.2f %%\n',100*pret(2),100*qret(2));

```

Annualized Portfolio Returns ...
\begin{tabular}{lrr} 
& Gross & Net \\
Initial Portfolio Return & \(9.70 \%\) & \(9.70 \%\) \\
Minimum Efficient Portfolio Return & \(5.90 \%\) & \(5.77 \%\) \\
Maximum Efficient Portfolio Return & \(13.05 \%\) & \(12.86 \%\)
\end{tabular}

This result shows that the cost to trade ranges from 14 to 19 basis points to get from the current portfolio to the efficient portfolios at the endpoints of the efficient frontier (these costs are the difference between gross and net portfolio returns.) In addition, notice that the maximum efficient portfolio return ( \(13 \%\) ) is less than the maximum asset return (18\%) due to the constraints on equity allocations.

\section*{Obtaining a Portfolio at the Specified Return Level on the Efficient Frontier}

A common approach to select efficient portfolios is to pick a portfolio that has a desired fraction of the range of expected portfolio returns. To obtain the portfolio that is \(30 \%\) of the range from the minimum to maximum return on the efficient frontier, obtain the range of net returns in qret using the Portfolio object q and interpolate to obtain a \(30 \%\) level with interp1 to obtain a portfolio qwgt:
```

Level = 0.3;
qret = q.estimatePortReturn(q.estimateFrontierLimits);
qwgt = q.estimateFrontierByReturn(interp1([0, 1], qret, Level));
[qrsk, qret] = q.estimatePortMoments(qwgt);
fprintf('Portfolio at %g%% return level on efficient frontier ...\n',100*Level);
fprintf('%10s %10s\n','Return','Risk');
fprintf('%10.2f %10.2f\n', 100*qret,100*qrsk);

```
```

display(qwgt);
Portfolio at 30% return level on efficient frontier ...
Return Risk
7.90 9.09
qwgt =
0.6252
0.1856
0.0695
0.1198

```

The target portfolio that is \(30 \%\) of the range from minimum to maximum net returns has a return of \(7.9 \%\) and a risk of \(9.1 \%\).

\section*{Obtaining a Portfolio at the Specified Risk Levels on the Efficient Frontier}

Although you could accept this result, suppose you want to target values for portfolio risk. Specifically, suppose you have a conservative target risk of \(10 \%\), a moderate target risk of \(15 \%\), and an aggressive target risk of \(20 \%\) and you want to obtain portfolios that satisfy each risk target. Use the estimateFrontierByRisk method to obtain targeted risks specified in the variable TargetRisk. The resultant three efficient portfolios are obtained in qwgt:

TargetRisk = [ 0.10; 0.15; 0.20 ];
qwgt = q.estimateFrontierByRisk(TargetRisk);
display(qwgt);
qwgt =
\begin{tabular}{lll}
0.5407 & 0.2020 & 0.1500 \\
0.2332 & 0.4000 & 0.0318 \\
0.0788 & 0.1280 & 0.4682 \\
0.1474 & 0.2700 & 0.3500
\end{tabular}

Use estimatePortRisk to compute the portfolio risks for the three portfolios to confirm that the target risks have been attained:
```

display(q.estimatePortRisk(qwgt));
ans =
0.1000
0.1500
0.2000

```

Suppose you want to shift from the current portfolio to the moderate portfolio. You can estimate the purchases and sales to get to this portfolio:
```

[qwgt, qbuy, qsell] = q.estimateFrontierByRisk(0.15);

```

If you average the purchases and sales for this portfolio, you can see that the average turnover is \(17 \%\), which is greater than the target of \(15 \%\) :
```

disp(sum(qbuy + qsell)/2)

```
0.1700

Since you also want to ensure that average turnover is no more than \(15 \%\), you can add the average turnover constraint to the Portfolio object:
```

q = q.setTurnover(0.15);
[qwgt, qbuy, qsell] = q.estimateFrontierByRisk(0.15);

```

You can enter the estimated efficient portfolio with purchases and sales into the Blotter:
```

qbuy(abs(qbuy) < 1.0e-5) = 0;
qsell(abs(qsell) < 1.0e-5) = 0; % zero out near 0 trade weights
Blotter.Port = qwgt;
Blotter.Buy = qbuy;
Blotter.Sell = qsell;
display(Blotter);
Blotter =

	Price	InitHolding	InitPort	UnitCost	Port	Buy	Sell
Bonds	52.4	42938	0.3	0.001	0.18787	0	0.11213

```
\begin{tabular}{lrrrrrrr} 
Large-Cap Equities & 122.7 & 24449 & 0.4 & 0.001 & 0.4 & 0 & 0 \\
Small-Cap Equities & 35.2 & 42612 & 0.2 & 0.001 & 0.16213 & 0 & 0.037871 \\
Emerging Equities & 46.9 & 15991 & 0.1 & 0.004 & 0.25 & 0.15 & 0
\end{tabular}

The Buy and Sell elements of the Blotter are changes in portfolio weights that must be converted into changes in portfolio holdings to determine the trades. Since you are working with net portfolio returns, you must first compute the cost to trade from your initial portfolio to the new portfolio. This can be accomplished as follows:
```

TotalCost = Wealth * sum(Blotter.UnitCost .* (Blotter.Buy + Blotter.Sell))
TotalCost =

```
    \(5.6248 \mathrm{e}+003\)

The cost to trade is \(\$ 5,625\), so that, in general, you would have to adjust your initial wealth accordingly before setting up your new portfolio weights. However, to keep the analysis simple, note that you have sufficient cash \((\$ 60,0000)\) set aside to pay the trading costs and that you will not touch the cash position to build up any positions in your portfolio. Thus, you can populate your blotter with the new portfolio holdings and the trades to get to the new portfolio without making any changes in your total invested wealth.

First, compute portfolio holding:
Blotter.Holding = Wealth * (Blotter.Port ./ Blotter.Price);
Next, compute number of shares to Buy and Sell in your Blotter:
Blotter.BuyShare = Wealth * (Blotter.Buy ./ Blotter.Price);
Blotter.SellShare = Wealth * (Blotter.Sell ./ Blotter.Price);
Notice how you used an add-hoc truncation rule to obtain unit numbers of shares to buy and sell.

Finally, clean up the blotter by removing the unit costs and the buy and sell portfolio weights:

Blotter.Buy = [];
Blotter.Sell = [];
```

Blotter.UnitCost = [];

```

\section*{Displaying the Final Results}

The final result is a blotter that contains proposed trades to get from your current portfolio to a moderate-risk portfolio. To make the trade, you would need to sell 16,049 shares of your bond asset and 8,069 shares of your small-cap equity asset and would need to purchase 23,986 shares of your emerging equities asset.
```

display(Blotter);

```

Blotter =
\begin{tabular}{lrllllrr} 
& Price & InitHolding & InitPort & Port & Holding & BuyShare & SellShare \\
Bonds & 52.4 & 42938 & 0.3 & 0.18787 & 26889 & 0 & 16049 \\
Large-Cap Equities & 122.7 & 24449 & 0.4 & 0.4 & 24449 & 0 & 0 \\
Small-Cap Equities & 35.2 & 42612 & 0.2 & 0.16213 & 34543 & 0 & 8068.8 \\
Emerging Equities & 46.9 & 15991 & 0.1 & 0.25 & 39977 & 23986 & 0
\end{tabular}

The final plot uses plotFrontier to display the efficient frontier and the initial portfolio for the fully specified portfolio optimization problem. It also adds the location of the moderate-risk or final portfolio on the efficient frontier.
```

q.plotFrontier(40);
hold on
scatter(q.estimatePortRisk(qwgt), q.estimatePortReturn(qwgt), 'filled', 'r');
h = legend('Initial Portfolio', 'Efficient Frontier', 'Final Portfolio', 'location', 'best');
set(h, 'Fontsize', 8);
hold off

```


\author{
See Also \\ Related Examples
}

Concepts
```

Portfolio | setBounds | addGroups | setAssetMoments | estimateAssetMoments | estimateBounds | plotFrontier | estimateFrontierLimits | estimateFrontierByRisk | estimatePortRisk

```
- "Constructing the Portfolio Object" on page 4-27
- "Working with Portfolio Constraints" on page 4-59
- "Validate the Portfolio Problem" on page 4-84
- "Estimate Efficient Portfolios" on page 4-89
- "Estimate Efficient Frontiers" on page 4-103
- "Postprocessing Results" on page 4-111
- "Portfolio Optimization Examples" on page 4-130
- "Portfolio Object" on page 4-17
- "Portfolio Optimization Theory" on page 4-2

\section*{Portfolio Optimization Examples}

The following sequence of examples highlights features of the Portfolio object in the Financial Toolbox \({ }^{\text {TM }}\). Specifically, the examples show how to set up mean-variance portfolio optimization problems that focus on the two-fund theorem, the impact of transaction costs and turnover constraints, how to obtain portfolios that maximize the Sharpe ratio, and how to set up two popular hedge-fund strategies - dollar-neutral and 130-30 portfolios.

\section*{Set up the Data}

Every example works with moments for monthly total returns of a universe of 30 "blue-chip" stocks. Although derived from real data, these data are for illustrative purposes and are not meant to be representative of specific assets or of market performance. The data are contained in the file BlueChipStockMoments.mat with a list of asset identifiers in the variable AssetList, a mean and covariance of asset returns in the variables AssetMean and AssetCovar, and the mean and variance of cash and market returns in the variables CashMean, CashVar, MarketMean, and MarketVar. Since most of the analysis requires the use of the standard deviation of asset returns as the proxy for risk, cash and market variances are converted into standard deviations.
load BlueChipStockMoments
```

mret = MarketMean;
mrsk = sqrt(MarketVar);
cret = CashMean;
crsk = sqrt(CashVar);

```

\section*{Create a Portfolio Object}

The first step is to create a "standard" Portfolio object with the Portfolio constructor and to incorporate the list of assets, the risk-free rate, and the moments of asset returns into the object.
```

p = Portfolio('AssetList', AssetList, 'RiskFreeRate', CashMean);
p = p.setAssetMoments(AssetMean, AssetCovar);

```

To provide a basis for comparison, set up an equal-weight portfolio and make it the initial portfolio in the Portfolio object. Keep in mind that the hedged portfolios to be constructed later will require a different initial portfolio. Once the initial portfolio is created, the estimatePortMoments method estimates the mean and standard deviation of equal-weight portfolio returns.
```

p = p.setInitPort(1/p.NumAssets);
[ersk, eret] = p.estimatePortMoments(p.InitPort);

```

A specialized "helper" function portfolioexamples_plot makes it possible to plot all results to be developed here. This first plot shows the distribution of individual assets according to their means and standard deviations of returns. In addition, the equal-weight, market, and cash portfolios are plotted on the same plot. Note that the plot function converts monthly total returns into annualized total returns.
```

clf;
portfolioexamples_plot('Asset Risks and Returns', ...
{'scatter', mrsk, mret, {'Market'}}, ...
{'scatter', crsk, cret, {'Cash'}}, ...
{'scatter', ersk, eret, {'Equal'}}, ...
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

```

\section*{Set up a Portfolio Optimization Problem}

Set up a "standard" or default mean-variance portfolio optimization problem with the setDefaultConstraints method that requires fully-invested long-only portfolios (non-negative weights that must sum to 1 ). Given this initial problem, estimate the efficient frontier with the methods estimateFrontier and estimatePortMoments, where estimateFrontier estimates efficient portfolios and estimatePortMoments estimates risks and returns for portfolios. The next figure overlays the efficient frontier on the previous plot.
```

p = p.setDefaultConstraints;

```
pwgt = p.estimateFrontier(20);
[prsk, pret] = p.estimatePortMoments(pwgt);
```

% Plot efficient frontier
clf;
portfolioexamples_plot('Efficient Frontier', ...
{'line', prsk, pret}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Eq
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

```

\section*{Illustrate the Tangent Line to the Efficient Frontier}

Tobin's mutual fund theorem (Tobin 1958) says that the portfolio allocation problem can be viewed as a decision to allocate between a riskless asset and a risky portfolio. In the mean-variance framework, cash can serve as a proxy for a riskless asset and an efficient portfolio on the efficient frontier serves as the risky portfolio such that any allocation between cash and this portfolio dominates all other portfolios on the efficient frontier. This portfolio is called a tangency portfolio because it is located at the point on the efficient frontier where a tangent line that originates at the riskless asset touches the efficient frontier.

Given that the Portfolio object already has the risk-free rate, obtain the tangent line by creating a copy of the Portfolio object with a budget constraint that permits allocation between \(0 \%\) and \(100 \%\) in cash. Since the Portfolio object is a value object, it is easy to create a copy by assigning the output of either the constructor or set methods to a new instance of the object. The plot shows the efficient frontier with Tobin's allocations that form the tangent line to the efficient frontier.
```

q = p.setBudget(0, 1);
qwgt = q.estimateFrontier(20);
[qrsk, qret] = q.estimatePortMoments(qwgt);
% Plot efficient frontier with tangent line (0 to 1 cash)
clf;
portfolioexamples_plot('Efficient Frontier with Tangent Line', ...
{'line', prsk, pret}, ...

```
```

{'line', qrsk, qret, [], [], 1}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Eq
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

```

Note that cash actually has a small risk so that the tangent line does not pass through the cash asset.

\section*{Obtain Range of Risks and Returns}

To obtain efficient portfolios with target values of either risk or return, it is necessary to obtain the range of risks and returns among all portfolios on the efficient frontier. This can be accomplished with the estimateFrontierLimits method.
[rsk, ret] = p.estimatePortMoments(p.estimateFrontierLimits);
display(rsk);
display(ret);
rsk =
0.0348
0.0903
ret =
0.0094
0.0179

The range of monthly portfolio returns is between \(0.9 \%\) and \(1.8 \%\) and the range for portfolio risks is between \(3.5 \%\) and \(9.0 \%\). In annualized terms, the range of portfolio returns is \(11.2 \%\) to \(21.5 \%\) and the range of portfolio risks is \(12.1 \%\) to \(31.3 \%\).

\section*{Find a Portfolio with a Targeted Return and Targeted Risk}

Given the range of risks and returns, it is possible to locate specific portfolios on the efficient frontier that have target values for return and risk using the methods estimateFrontierByReturn and estimateFrontierByRisk.
```

TargetReturn = 0.20; % input target annualized return and risk
TargetRisk = 0.15;
% Obtain portfolios with targeted return and risk
awgt = p.estimateFrontierByReturn(TargetReturn/12);
[arsk, aret] = p.estimatePortMoments(awgt);
bwgt = p.estimateFrontierByRisk(TargetRisk/sqrt(12));
[brsk, bret] = p.estimatePortMoments(bwgt);
% Plot efficient frontier with targeted portfolios
clf;
portfolioexamples_plot('Efficient Frontier with Targeted Portfolios', ...
{'line', prsk, pret}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Eq
{'scatter', arsk, aret, {sprintf('%g%% Return',100*TargetReturn)}}, ...
{'scatter', brsk, bret, {sprintf('%g%% Risk',100*TargetRisk)}}, ...
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

```

To see what these targeted portfolios look like, use the dataset object to set up "blotters" that contain the portfolio weights and asset names (which are obtained from the Portfolio object).
```

aBlotter = dataset({100*awgt(awgt > 0),'Weight'}, 'obsnames', p.AssetList(a
fprintf('Portfolio with %g%% Target Return\n', 100*TargetReturn);
disp(aBlotter);
bBlotter = dataset({100*bwgt(bwgt > 0),'Weight'}, 'obsnames', p.AssetList(b
fprintf('Portfolio with %g%% Target Risk\n', 100*TargetRisk);
disp(bBlotter);

```
```

Portfolio with 20% Target Return
Weight
CAT 1.1445
INTC 0.17452
MO 9.6521
MSFT 0.85862
UTX 56.918
WMT 31.253
Portfolio with 15% Target Risk
Weight
INTC 2.2585
JNJ 9.2162
MMM 16.603
MO 15.388
MSFT 4.4467
PG 4.086
UTX 10.281
WMT 25.031
XOM 12.69

```

\section*{Transactions Costs}

The Portfolio object makes it possible to account for transaction costs as part of the optimization problem. Although individual costs can be set for each asset, use the scalar expansion features of the Portfolio object's methods to set up uniform transaction costs across all assets and compare efficient frontiers with gross versus net portfolio returns.
```

BuyCost = 0.0020;
SellCost = 0.0020;

```
q = p.setCosts(BuyCost, SellCost);
qwgt = q.estimateFrontier(20);
[qrsk, qret] = q.estimatePortMoments(qwgt);
\% Plot efficient frontiers with gross and net returns
```

clf;
portfolioexamples_plot('Efficient Frontier with and without Transaction Cos
{'line', prsk, pret, {'Gross'}, ':b'}, ...
{'line', qrsk, qret, {'Net'}}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Eq
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

```

\section*{Turnover Constraint}

In addition to transaction costs, the Portfolio object can handle turnover constraints. The following example demonstrates that a turnover constraint produces an efficient frontier in the neighborhood of an initial portfolio that may restrict trading. Moreover, the introduction of a turnover constraint often implies that multiple trades may be necessary to shift from an initial portfolio to an unconstrained efficient frontier. Consequently, the turnover constraint introduces a form of time diversification that can spread trades out over multiple time periods. In this example, note that the sum of purchases and sales from the estimateFrontier method confirms that the turnover constraint has been satisfied.
```

BuyCost = 0.0020;
SellCost = 0.0020;
Turnover = 0.2;
q = p.setCosts(BuyCost, SellCost);
q = q.setTurnover(Turnover);
[qwgt, qbuy, qsell] = q.estimateFrontier(20);
[qrsk, qret] = q.estimatePortMoments(qwgt);
% Plot efficient frontier with turnover constraint
clf;
portfolioexamples_plot('Efficient Frontier with Turnover Constraint', ...
{'line', prsk, pret, {'Unconstrained'}, ':b'}, ...
{'line', qrsk, qret, {sprintf('%g%% Turnover', 100*Turnover)}}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Eq

```
```

 {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});
 fprintf('Sum of Purchases by Portfolio along Efficient Frontier (Max. Turno
100*Turnover);
disp(100*sum(qbuy));
fprintf('Sum of Sales by Portfolio along Efficient Frontier (Max. Turnover
100*Turnover);
disp(100*sum(qsell));
Sum of Purchases by Portfolio along Efficient Frontier (Max. Turnover 20%)
Columns 1 through 7
20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000
Columns 8 through 14
20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000
Columns 15 through 20
20.0000 20.0000 20.0000 20.0000 20.0000 20.0000
Sum of Sales by Portfolio along Efficient Frontier (Max. Turnover 20%)
Columns 1 through 7
20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000
Columns 8 through 14
20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000
Columns 15 through 20
20.0000 20.0000 20.0000 20.0000 20.0000 20.0000

```

\section*{Maximize the Sharpe Ratio}

The Sharpe ratio (Sharpe 1966) is a measure of return-to-risk that plays an important role in portfolio analysis. Specifically, a portfolio that maximizes the Sharpe ratio is also the tangency portfolio on the efficient frontier from the mutual fund theorem. The maximum Sharpe ratio portfolio is located on the efficient frontier with the method estimateMaxSharpeRatio and the dataset object is used to list the assets in this portfolio.
```

p = p.setInitPort(0);
swgt = p.estimateMaxSharpeRatio;
[srsk, sret] = p.estimatePortMoments(swgt);
% Plot efficient frontier with portfolio that attains maximum Sharpe ratio
clf;
portfolioexamples_plot('Efficient Frontier with Maximum Sharpe Ratio Portfo
{'line', prsk, pret}, ...
{'scatter', srsk, sret, {'Sharpe'}}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Eq
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});
% Set up a dataset object that contains the portfolio that maximizes the Sh
Blotter = dataset({100*swgt(swgt > 0),'Weight'}, 'obsnames', AssetList(swgt
fprintf('Portfolio with Maximum Sharpe Ratio\n');
disp(Blotter);
Portfolio with Maximum Sharpe Ratio
Weight
INTC 2.6638
JNJ 9.0044
MMM 15.502
M0 13.996
MSFT 4.4777
PG 7.4588
UTX 6.0056
WMT 22.051

```

\section*{Confirm that Maximum Sharpe Ratio is a Maximum}

The following plot demonstrates that this portfolio (which is located at the dot on the plots) indeed maximizes the Sharpe ratio among all portfolios on the efficient frontier.
```

psratio = (pret - p.RiskFreeRate) ./ prsk;
ssratio = (sret - p.RiskFreeRate) / srsk;
clf;
subplot(2,1,1);
plot(prsk, pret, 'LineWidth', 2);
hold on
scatter(srsk, sret, 'g', 'filled');
title('\bfEfficient Frontier');
xlabel('Portfolio Risk');
ylabel('Portfolio Return');
hold off
subplot(2,1,2);
plot(prsk, psratio, 'LineWidth', 2);
hold on
scatter(srsk, ssratio, 'g', 'filled');
title('\bfSharpe Ratio');
xlabel('Portfolio Risk');
ylabel('Sharpe Ratio');
hold off

```

\section*{Illustrate that Sharpe is the Tangent Portfolio}

The next plot demonstrates that the portfolio that maximizes the Sharpe ratio is also a tangency portfolio (in this case, the budget constraint is opened up to permit between \(0 \%\) and \(100 \%\) in cash).
```

q = p.setBudget(0, 1);
qwgt = q.estimateFrontier(20);
[qrsk, qret] = q.estimatePortMoments(qwgt);
% Plot that shows Sharpe ratio portfolio is the tangency portfolio
clf;
portfolioexamples_plot('Efficient Frontier with Maximum Sharpe Ratio Portfo
{'line', prsk, pret}, ...
{'line', qrsk, qret, [], [], 1}, ...
{'scatter', srsk, sret, {'Sharpe'}}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Eq
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

```

\section*{Dollar-Neutral Hedge-Fund Structure}

To illustrate how to use the portfolio optimization tools in hedge fund management, two popular strategies with dollar-neutral and 130-30 portfolios are examined. The dollar-neutral strategy invests equally in long and short positions such that the net portfolio position is 0 . Such a portfolio is said to be dollar-neutral.

To set up a dollar-neutral portfolio, start with the "standard" portfolio problem and set the maximum exposure in long and short positions in the variable Exposure. The bounds for individual asset weights are plus or minus Exposure. Since the net position must be dollar-neutral, the budget constraint is 0 and the initial portfolio must be 0 . Finally, the one-way turnover constraints provide the necessary long and short restrictions to prevent "double-counting" of long and short positions. The blotter shows the portfolio weights for the dollar-neutral portfolio that maximizes the Sharpe ratio. The long and short positions are obtained from the buy and sell trades relative to the initial portfolio.
```

Exposure = 1;
q = p.setBounds(-Exposure, Exposure);
q = q.setBudget(0, 0);

```
```

q = q.setOneWayTurnover(Exposure, Exposure, 0);
[qwgt, qlong, qshort] = q.estimateFrontier(20);
[qrsk, qret] = q.estimatePortMoments(qwgt);
[qswgt, qslong, qsshort] = q.estimateMaxSharpeRatio;
[qsrsk, qsret] = q.estimatePortMoments(qswgt);
% Plot efficient frontier for a dollar-neutral fund structure with tangency
clf;
portfolioexamples_plot('Efficient Frontier with Dollar-Neutral Portfolio',
{'line', prsk, pret, {'Standard'}, 'b:'}, ...
{'line', qrsk, qret, {'Dollar-Neutral'}, 'b'}, ...
{'scatter', qsrsk, qsret, {'Sharpe'}}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Eq
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});
% Set up a dataset object that contains the portfolio that maximizes the Sh
Blotter = dataset({100*qswgt(abs(qswgt) > 1.0e-4), 'Weight'}, ...
{100*qslong(abs(qswgt) > 1.0e-4), 'Long'}, ...
{100*qsshort(abs(qswgt) > 1.0e-4), 'Short'}, ...
'obsnames', AssetList(abs(qswgt) > 1.0e-4));
fprintf('Dollar-Neutral Portfolio with Maximum Sharpe Ratio\n');
disp(Blotter);
fprintf('Confirm Dollar-Neutral Portfolio\n');
fprintf(' (Net, Long, Short)\n');
disp([sum(Blotter.Weight), sum(Blotter.Long), sum(Blotter.Short)]);
Dollar-Neutral Portfolio with Maximum Sharpe Ratio
Weight Long Short

AA	0.53992	0.53992	0
AIG	3.2253	3.2253	0
AXP	0.98473	0.98473	0
BA	-3.709	0	3.709
C	14.859	14.859	0
CAT	3.954	3.954	0

```
\begin{tabular}{lrrr} 
DD & -19.168 & 0 & 19.168 \\
DIS & -5.1186 & 0 & 5.1186 \\
GE & -3.8391 & 0 & 3.8391 \\
GM & -3.9487 & 0 & 3.9487 \\
HD & 1.1683 & 1.1683 & 0 \\
HON & -1.5227 & 0 & 1.5227 \\
HPQ & 0.10515 & 0.10515 & 0 \\
IBM & -8.5514 & 0 & 8.5514 \\
INTC & 1.8775 & 1.8775 & 0 \\
JNJ & 1.4534 & 1.4534 & 0 \\
JPM & -2.6816 & 0 & 2.6816 \\
KO & -15.074 & 0 & 15.074 \\
MCD & 4.1492 & 4.1492 & 0 \\
MMM & 8.0644 & 8.0644 & 0 \\
MO & 4.3354 & 4.3354 & 0 \\
MRK & 3.9762 & 3.9762 & 0 \\
MSFT & 4.3262 & 4.3262 & 0 \\
PFE & -9.6523 & 0 & 9.6523 \\
PG & 1.7502 & 1.7502 & 0 \\
SBC & -5.5761 & 0 & 5.5761 \\
UTX & 6.0968 & 6.0968 & 0 \\
VZ & -2.5871 & 0 & 2.5871 \\
WMT & 0.90033 & 0.90033 & 0 \\
XOM & 19.662 & 19.662 & 0 \\
Confirm Dollar-Neutral & Portfolio & \\
(Net, Long, Short) & 81.4284 & \\
O.O000 & 81.4284 & 81 & \\
\hline & & 0 & 0
\end{tabular}

\section*{130/30 Fund Structure}

Finally, the turnover constraints can be used to set up a 130-30 portfolio structure, which is a structure with a net long position but permits leverage with long and short positions up to a maximum amount of leverage. In the case of a 130-30 portfolio, the leverage is \(30 \%\).

To set up a 130-30 portfolio, start with the "standard" portfolio problem and set the maximum value for leverage in the variable Leverage. The bounds for individual asset weights range between -Leverage and \(1+\) Leverage. Since the net position must be long, the budget constraint is 1 and, once again, the initial portfolio is 0 . Finally, the one-way turnover constraints provide the necessary long and short restrictions to prevent "double-counting" of long and short positions. The blotter shows the portfolio weights for the 130-30 portfolio that maximizes the Sharpe ratio. The long and short positions are obtained from the buy and sell trades relative to the initial portfolio.
```

Leverage = 0.3;
q = p.setBounds(-Leverage, 1 + Leverage);
q = q.setBudget(1, 1);
q = q.setOneWayTurnover(1 + Leverage, Leverage);
[qwgt, qbuy, qsell] = q.estimateFrontier(20);
[qrsk, qret] = q.estimatePortMoments(qwgt);
[qswgt, qslong, qsshort] = q.estimateMaxSharpeRatio;
[qsrsk, qsret] = q.estimatePortMoments(qswgt);
% Plot efficient frontier for a 130-30 fund structure with tangency portfol
clf;
portfolioexamples_plot(sprintf('Efficient Frontier with %g-%g Portfolio',
100*(1 + Leverage),100*Leverage), ...
{'line', prsk, pret, {'Standard'}, 'b:'}, ...
{'line', qrsk, qret, {'130-30'}, 'b'}, ...
{'scatter', qsrsk, qsret, {'Sharpe'}}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Eq
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});
% Set up a dataset object that contains the portfolio that maximizes the Sh
Blotter = dataset({100*qswgt(abs(qswgt) > 1.0e-4), 'Weight'}, ...
{100*qslong(abs(qswgt) > 1.0e-4), 'Long'}, ...
{100*qsshort(abs(qswgt) > 1.0e-4), 'Short'}, ...
'obsnames', AssetList(abs(qswgt) > 1.0e-4));

```
```

fprintf('%g-%g Portfolio with Maximum Sharpe Ratio\n',100*(1 + Leverage),10
disp(Blotter);
fprintf('Confirm %g-%g Portfolio\n',100*(1 + Leverage),100*Leverage);
fprintf(' (Net, Long, Short)\n');
disp([sum(Blotter.Weight), sum(Blotter.Long), sum(Blotter.Short)]);
130-30 Portfolio with Maximum Sharpe Ratio
Weight Long Short
DD -9.5565 0 9.5565
HON -6.0245 0 6.0245
INTC 4.0335 4.0335 0
JNJ 7.1234 7.1234 0
JPM -0.44583 0 0.44583
K0 -13.646 0 13.646
MMM 20.908 20.908 0
MO 14.433 14.433 0
MSFT 4.5592 4.5592 0
PG 17.243 17.243 0
SBC -0.32712 0}00.3271
UTX 5.3584 5.3584 0
WMT 21.018 21.018 0
XOM 35.323 35.323 0
Confirm 130-30 Portfolio
(Net, Long, Short)
100.0000 130.0000 30.0000

```

\section*{References}

1 R. C. Grinold and R. N. Kahn (2000), Active Portfolio Management, 2nd ed.
2 H. M. Markowitz (1952), "Portfolio Selection," Journal of Finance, Vol. 1, No. 1, pp. 77-91.

3 J. Lintner (1965), "The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets," Review of Economics and Statistics, Vol. 47, No. 1, pp. 13-37.

4 H. M. Markowitz (1959), Portfolio Selection: Efficient Diversification of Investments, John Wiley \& Sons, Inc.

5 W. F. Sharpe (1966), "Mutual Fund Performance," Journal of Business, Vol. 39, No. 1, Part 2, pp. 119-138.

6 J. Tobin (1958), "Liquidity Preference as Behavior Towards Risk," Review of Economic Studies, Vol. 25, No.1, pp. 65-86.

7 J. L. Treynor and F. Black (1973), "How to Use Security Analysis to Improve Portfolio Selection," Journal of Business, Vol. 46, No. 1, pp. 68-86.

\section*{CVaR Portfolio Optimization Tools}
- "Portfolio Optimization Theory" on page 5-2
- "PortfolioCVaR Object" on page 5-17
- "Constructing the PortfolioCVaR Object" on page 5-28
- "Common Operations on the PortfolioCVaR Object" on page 5-37
- "Asset Returns and Scenarios" on page 5-44
- "Working with CVaR Portfolio Constraints" on page 5-61
- "Validate the CVaR Portfolio Problem" on page 5-86
- "Estimate Efficient Portfolios" on page 5-91
- "Estimate Efficient Frontiers" on page 5-104
- "Postprocessing Results" on page 5-114

\section*{Portfolio Optimization Theory}

\author{
In this section... \\ "Portfolio Optimization Problems" on page 5-2 \\ "Portfolio Problem Specification" on page 5-3 \\ "Return Proxy" on page 5-3 \\ "Risk Proxy" on page 5-5 \\ "Portfolio Set for Portfolio Optimization" on page 5-8 \\ "Default Portfolio Problem" on page 5-15
}

\section*{Portfolio Optimization Problems}

Portfolio optimization problems involve identifying portfolios that satisfy three criteria:
- Minimize a proxy for risk.
- Match or exceed a proxy for return.
- Satisfy basic feasibility requirements.

Portfolios are points from a feasible set of assets that constitute an asset universe. A portfolio specifies either holdings or weights in each individual asset in the asset universe. The convention is to specify portfolios in terms of weights, although the portfolio optimization tools work with holdings as well.

The set of feasible portfolios is necessarily a nonempty, closed, and bounded set. The proxy for risk is a function that characterizes either the variability or losses associated with portfolio choices. The proxy for return is a function that characterizes either the gross or net benefits associated with portfolio choices. The terms "risk" and "risk proxy" and "return" and "return proxy" are interchangeable. The fundamental insight of Markowitz (see "Portfolio Optimization" on page A-12) is that the goal of the portfolio choice problem is to seek minimum risk for a given level of return and to seek maximum return for a given level of risk. Portfolios satisfying these criteria are efficient portfolios and the graph of the risks and returns of these portfolios forms a curve called the efficient frontier.

\section*{Portfolio Problem Specification}

To specify a portfolio optimization problem, you need the following:
- Proxy for portfolio return ( \(\mu\) )
- Proxy for portfolio risk ( \(\Sigma\) )
- Set of feasible portfolios ( \(X\) ), called a portfolio set

Financial Toolbox has three objects to solve specific types of portfolio optimization problems:
- The Portfolio object (Portfolio) supports mean-variance portfolio optimization (see Markowitz [46], [47] at ("Portfolio Optimization" on page A-12). This object has either gross or net portfolio returns as the return proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that is any combination of the specified constraints to form a portfolio set.
- The PortfolioCVaR object (PortfolioCVaR) implements what is known as conditional value-at-risk portfolio optimization (see Rockafellar and Uryasev [48], [49] at "Portfolio Optimization" on page A-12), which is generally referred to as CVaR portfolio optimization. CVaR portfolio optimization works with the same return proxies and portfolio sets as mean-variance portfolio optimization but uses conditional value-at-risk of portfolio returns as the risk proxy.
- The PortfolioMAD object (PortfolioMAD) implements what is known as mean-absolute deviation portfolio optimization (see Konno and Yamazaki [50] at "Portfolio Optimization" on page A-12), which is generally referred to as MAD portfolio optimization. MAD portfolio optimization works with the same return proxies and portfolio sets as mean-variance portfolio optimization but uses mean-absolute deviation portfolio returns as the risk proxy.

\section*{Return Proxy}

The proxy for portfolio return is a function \(\mu: X \rightarrow R\) on a portfolio set
\(X \subset R^{n}\) that characterizes the rewards associated with portfolio choices. In most cases, the proxy for portfolio return has two general forms, gross and net portfolio returns. Both portfolio return forms separate the risk-free rate \(r_{0}\) so that the portfolio \(x \in X\) contains only risky assets.

Regardless of the underlying distribution of asset returns, a collection of \(S\) asset returns \(y_{1}, \ldots, y_{S}\) has a mean of asset returns
\[
m=\frac{1}{S} \sum_{s=1}^{S} y_{s}
\]
and (sample) covariance of asset returns
\[
C=\frac{1}{S-1} \sum_{s=1}^{S}\left(y_{s}-m\right)\left(y_{s}-m\right)^{T}
\]

These moments (or alternative estimators that characterize these moments) are used directly in mean-variance portfolio optimization to form proxies for portfolio risk and return.

\section*{Gross Portfolio Returns}

The gross portfolio return for a portfolio \(x \in X\) is
\[
\mu(x)=r_{0}+\left(m-r_{0} 1\right)^{T} x,
\]
where:
\(r_{0}\) is the risk-free rate (scalar).
\(m\) is the mean of asset returns ( \(n\) vector).
If the portfolio weights sum to 1 , the risk-free rate is irrelevant. The properties in the Portfolio object to specify gross portfolio returns are:
- RiskFreeRate for \(r_{0}\)
- AssetMean for \(m\)

\section*{Net Portfolio Returns}

The net portfolio return for a portfolio \(x \in X\) is
\[
\mu(x)=r_{0}+\left(m-r_{0} 1\right)^{T} x-b^{T} \max \left\{0, x-x_{0}\right\}-s^{T} \max \left\{0, x_{0}-x\right\},
\]
where:
\(r_{0}\) is the risk-free rate (scalar).
\(m\) is the mean of asset returns ( \(n\) vector).
\(b\) is the proportional cost to purchase assets ( \(n\) vector).
\(s\) is the proportional cost to sell assets ( \(n\) vector).
You can incorporate fixed transaction costs in this model also. Though in this case, it is necessary to incorporate prices into such costs. The properties in the Portfolio object to specify net portfolio returns are:
- RiskFreeRate for \(r_{0}\)
- AssetMean for \(m\)
- InitPort for \(x_{0}\)
- BuyCost for \(b\)
- SellCost for \(s\)

\section*{Risk Proxy}

The proxy for portfolio risk is a function \(\Sigma: X \rightarrow R\) on a portfolio set \(X \subset R^{n}\) that characterizes the risks associated with portfolio choices.

\section*{Variance}

The variance of portfolio returns for a portfolio \(x \in X\) is
\[
\Sigma(x)=x^{T} C x
\]
where \(C\) is the covariance of asset returns (n-by-n positive-semidefinite matrix).

The property in the Portfolio object to specify the variance of portfolio returns is AssetCovar for C.

Although the risk proxy in mean-variance portfolio optimization is the variance of portfolio returns, the square root, which is the standard deviation of portfolio returns, is often reported and displayed. Moreover, this quantity is often called the "risk" of the portfolio. For details, see Markowitz ("Portfolio Optimization" on page A-12).

\section*{Conditional Value-at-Risk}

The conditional value-at-risk for a portfolio \(x \in X\), which is also known as expected shortfall, is defined as
\[
\operatorname{CVaR}_{\alpha}(x)=\frac{1}{1-\alpha} \int_{f(x, y) \geq V_{a R_{\alpha}}(x)} f(x, y) p(y) d y
\]
where:
\(a\) is the probability level such that \(0<\alpha<1\).
\(f(x, y)\) is the loss function for a portfolio \(x\) and asset return \(y\).
\(p(y)\) is the probability density function for asset return \(y\).
\(V a R_{a}\) is the value-at-risk of portfolio \(x\) at probability level \(\alpha\).
The value-at-risk is defined as
\[
\operatorname{VaR}_{\alpha}(x)=\min \{\gamma: \operatorname{Pr}[f(x, Y) \leq \gamma] \geq \alpha\} .
\]

An alternative formulation for CVaR has the form:
\[
C V a R_{\alpha}(x)=\operatorname{Va}_{\alpha}(x)+\frac{1}{1-\alpha} \int_{R^{n}} \max \left\{0,\left(f(x, y)-\operatorname{Va}_{\alpha}(x)\right)\right\} p(y) d y
\]

The choice for the probability level \(a\) is typically 0.9 or 0.95 . Choosing \(a\) implies that the value-at-risk \(\operatorname{Va}_{\alpha}(x)\) for portfolio \(x\) is the portfolio return such that the probability of portfolio returns falling below this level is \((1-\alpha)\). Given \(V a R_{a}(x)\) for a portfolio \(x\), the conditional value-at-risk of the portfolio is the expected loss of portfolio returns above the value-at-risk return.

Note Value-at-risk is a positive value for losses so that the probability level \(a\) indicates the probability that portfolio returns are below the negative of the value-at-risk.

The risk proxy for CVaR portfolio optimization is \(C V a R_{a}(x)\) for a given portfolio \(x \in X\) and \(\alpha \in(0,1)\). Note that the value-at-risk, or VaR, for a given probability level is estimated whenever CVaR is estimated.

In addition, keep in mind that VaR and CVaR are sample estimators for VaR and CVaR based on the given scenarios. Better scenario samples yield more reliable estimates of VaR and CVaR.

For more information, see Rockafellar and Uryasev [48], [49] at "Portfolio Optimization" on page A-12.

\section*{Mean Absolute-Deviation}

The mean-absolute deviation (MAD) for a portfolio \(x \in X\) is defined as
\[
\sum(x)=\frac{1}{S} \sum_{s=1}^{S}\left|\left(y_{s}-m\right)^{T} x\right|
\]
where:
\(y_{s}\) are asset returns with scenarios \(s=1, \ldots S\) ( \(S\) collection of \(n\) vectors).
\(f(x, y)\) is the loss function for a portfolio \(x\) and asset return \(y\).
\(m\) is the mean of asset returns ( \(n\) vector).
such that
\[
m=\frac{1}{S} \sum_{s=1}^{S} y_{s}
\]

For more information, see Konno and Yamazaki [50] at "Portfolio Optimization" on page A-12.

\section*{Portfolio Set for Portfolio Optimization}

The final element for a complete specification of a portfolio optimization problem is the set of feasible portfolios, which is called a portfolio set. A portfolio set \(X \subset R^{n}\) is specified by construction as the intersection of sets formed by a collection of constraints on portfolio weights. A portfolio set necessarily and sufficiently must be a nonempty, closed, and bounded set.

When setting up your portfolio set, ensure that the portfolio set satisfies these conditions. The most basic or "default" portfolio set requires portfolio weights to be nonnegative (using the lower-bound constraint) and to sum to 1 (using the budget constraint). The most general portfolio set handled by the portfolio optimization tools can have any of these constraints:
- Linear inequality constraints
- Linear equality constraints
- Bound constraints
- Budget constraints
- Group constraints
- Group ratio constraints
- Average turnover constraints
- One-way turnover constraints

\section*{Linear Inequality Constraints}

Linear inequality constraints are general linear constraints that model relationships among portfolio weights that satisfy a system of inequalities. Linear inequality constraints take the form
\[
A_{I} x \leq b_{I}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
\(A_{I}\) is the linear inequality constraint matrix ( \(n_{I}\)-by- \(n\) matrix).
\(b_{I}\) is the linear inequality constraint vector ( \(n_{I}\) vector).
\(n\) is the number of assets in the universe and \(n_{I}\) is the number of constraints.
Portfolio object properties to specify linear inequality constraints are:
- AInequality for \(A_{I}\)
- bInequality for \(b_{I}\)
- NumAssets for \(n\)

The default is to ignore these constraints.

\section*{Linear Equality Constraints}

Linear equality constraints are general linear constraints that model relationships among portfolio weights that satisfy a system of equalities.
Linear equality constraints take the form
\[
A_{E} x=b_{E}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
\(A_{E}\) is the linear equality constraint matrix ( \(n_{E}\)-by- \(n\) matrix).
\(b_{E}\) is the linear equality constraint vector ( \(n_{E}\) vector).
\(n\) is the number of assets in the universe and \(n_{E}\) is the number of constraints.

Portfolio object properties to specify linear equality constraints are:
- AEquality for \(A_{E}\)
- bEquality for \(b_{E}\)
- NumAssets for \(n\)

The default is to ignore these constraints.

\section*{Bound Constraints}

Bound constraints are specialized linear constraints that confine portfolio weights to fall either above or below specific bounds. Since every portfolio set must be bounded, it is often a good practice, albeit not necessary, to set explicit bounds for the portfolio problem. To obtain explicit bounds for a given portfolio set, use the method estimateBounds. Bound constraints take the form
\[
l_{B} \leq x \leq u_{B}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
\(l_{B}\) is the lower-bound constraint ( \(n\) vector).
\(u_{B}\) is the upper-bound constraint ( \(n\) vector).
\(n\) is the number of assets in the universe.
Portfolio object properties to specify bound constraints are:
- LowerBound for \(l_{B}\)
- UpperBound for \(u_{B}\)
- NumAssets for \(n\)

The default is to ignore these constraints.

Note that the default portfolio optimization problem (see "Default Portfolio Problem" on page \(5-15\) ) has \(l_{B}=0\) with \(u_{B}\) set implicitly through a budget constraint.

\section*{Budget Constraints}

Budget constraints are specialized linear constraints that confine the sum of portfolio weights to fall either above or below specific bounds. The constraints take the form
\[
l_{S} \leq 1^{T} x \leq u_{S}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
1 is the vector of ones ( \(n\) vector).
\(l_{S}\) is the lower-bound budget constraint (scalar).
\(u_{S}\) is the upper-bound budget constraint (scalar).
\(n\) is the number of assets in the universe.
Portfolio object properties to specify budget constraints are:
- LowerBudget for \(l_{S}\)
- UpperBudget for \(u_{S}\)
- NumAssets for \(n\)

The default is to ignore this constraint.
The default portfolio optimization problem (see "Default Portfolio Problem" on page \(5-15\) ) has \(l_{S}=u_{S}=1\), which means that the portfolio weights sum to 1 . If the portfolio optimization problem includes possible movements in and out of cash, the budget constraint specifies how far portfolios can go into cash. For example, if \(l_{S}=0\) and \(u_{S}=1\), then the portfolio can have 0 to \(100 \%\) invested in cash. If cash is to be a portfolio choice, set RiskFreeRate \(\left(r_{0}\right)\) to a suitable
value (see "Portfolio Problem Specification" on page 5-3 and "Working with a Riskless Asset" on page 5-55).

\section*{Group Constraints}

Group constraints are specialized linear constraints that enforce "membership" among groups of assets. The constraints take the form
\[
l_{G} \leq G x \leq u_{G}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
\(l_{G}\) is the lower-bound group constraint ( \(n_{G}\) vector).
\(u_{G}\) is the upper-bound group constraint ( \(n_{G}\) vector).
\(G\) is the matrix of group membership indexes ( \(n_{G}\)-by- \(n\) matrix).
Each row of \(G\) identifies which assets belong to a group associated with that row. Each row contains either 0 s or 1 s with 1 indicating that an asset is part of the group or 0 indicating that the asset is not part of the group.

Portfolio object properties to specify group constraints are:
- GroupMatrix for \(G\)
- LowerGroup for \(l_{G}\)
- UpperGroup for \(u_{G}\)
- NumAssets for \(n\)

The default is to ignore these constraints.

\section*{Group Ratio Constraints}

Group ratio constraints are specialized linear constraints that enforce relationships among groups of assets. The constraints take the form
\[
l_{R i}\left(G_{B} x\right)_{i} \leq\left(G_{A} x\right)_{i} \leq u_{R i}\left(G_{B} x\right)_{i}
\]
for \(i=1, \ldots, n_{R}\) where:
\(x\) is the portfolio ( \(n\) vector).
\(l_{R}\) is the vector of lower-bound group ratio constraints ( \(n_{R}\) vector).
\(u_{R}\) is the vector matrix of upper-bound group ratio constraints ( \(n_{R}\) vector).
\(G_{A}\) is the matrix of base group membership indexes ( \(n_{R}\)-by- \(n\) matrix).
\(G_{B}\) is the matrix of comparison group membership indexes ( \(n_{R}\)-by- \(n\) matrix).
\(n\) is the number of assets in the universe and \(n_{R}\) is the number of constraints.
Each row of \(G_{A}\) and \(G_{B}\) identifies which assets belong to a base and comparison group associated with that row.

Each row contains either 0 s or 1 s with 1 indicating that an asset is part of the group or 0 indicating that the asset is not part of the group.

Portfolio object properties to specify group ratio constraints are:
- GroupA for \(G_{A}\)
- GroupB for \(G_{B}\)
- LowerRatio for \(l_{R}\)
- UpperRatio for \(u_{R}\)
- NumAssets for \(n\)

The default is to ignore these constraints.

\section*{Average Turnover Constraints}

Turnover constraint is a linear absolute value constraint that ensures estimated optimal portfolios differ from an initial portfolio by no more than a specified amount. Although portfolio turnover is defined in many ways, the turnover constraints implemented in Financial Toolbox computes portfolio
turnover as the average of purchases and sales. Average turnover constraints take the form
\[
\frac{1}{2} 1^{T}\left|x-x_{0}\right| \leq \tau
\]
where:
\(x\) is the portfolio ( \(n\) vector).
1 is the vector of ones ( \(n\) vector).
\(x_{0}\) is the initial portfolio ( \(n\) vector).
\(\tau\) is the upper bound for turnover (scalar).
\(n\) is the number of assets in the universe.
Portfolio object properties to specify the average turnover constraint are:
- Turnover for \(\tau\)
- InitPort for \(x_{0}\)
- NumAssets for \(n\)

The default is to ignore this constraint.

\section*{One-Way Turnover Constraints}

One-way turnover constraints ensure that estimated optimal portfolios differ from an initial portfolio by no more than specified amounts according to whether the differences are purchases or sales. The constraints take the forms
\[
\begin{aligned}
& 1^{T} \times \max \left\{0, x-x_{0}\right\} \leq \tau_{B} \\
& 1^{T} \times \max \left\{0, x_{0}-x\right\} \leq \tau_{S}
\end{aligned}
\]
where:
\(x\) is the portfolio ( \(n\) vector)

1 is the vector of ones ( \(n\) vector).
\(x_{0}\) is the Initial portfolio ( \(n\) vector).
\(\tau_{B}\) is the upper bound for turnover constraint on purchases (scalar).
\(\tau_{S}\) is the upper bound for turnover constraint on sales (scalar).
To specify one-way turnover constraints, use the following properties in the Portfolio or PortfolioCVaR object:
- BuyTurnover for \(\tau_{B}\)
- SellTurnover for \(\tau_{S}\)
- InitPort for \(x_{0}\)

The default is to ignore this constraint.

Note The average turnover constraint (see "Average Turnover Constraints" on page \(5-13\) ) with \(\tau\) is not a combination of the one-way turnover constraints with \(\tau=\tau_{B}=\tau_{S}\).

\section*{Default Portfolio Problem}

The default portfolio optimization problem has a risk and return proxy associated with a given problem, and a portfolio set that specifies portfolio weights to be nonnegative and to sum to 1 . The lower bound combined with the budget constraint is sufficient to ensure that the portfolio set is nonempty, closed, and bounded. The default portfolio optimization problem characterizes a long-only investor who is fully invested in a collection of assets.
- For mean-variance portfolio optimization, it is sufficient to set up the default problem. After setting up the problem, data in the form of a mean and covariance of asset returns are then used to solve portfolio optimization problems.
- For conditional value-at-risk portfolio optimization, the default problem requires the additional specification of a probability level that must be set explicitly. Generally, "typical" values for this level are 0.90 or 0.95. After
setting up the problem, data in the form of scenarios of asset returns are then used to solve portfolio optimization problems.
- For MAD portfolio optimization, it is sufficient to set up the default problem. After setting up the problem, data in the form of scenarios of asset returns are then used to solve portfolio optimization problems.

\section*{See Also}

AbstractPortfolio | PortfolioCVaR

\section*{Related \\ Examples}
- "Constructing the PortfolioCVaR Object" on page 5-28
- "Working with CVaR Portfolio Constraints" on page 5-61

\section*{Concepts}
- "PortfolioCVaR Object" on page 5-17

\section*{PortfolioCVaR Object}
In this section...
"PortfolioCVaR Object Properties and Methods" on page 5-17
"Working with PortfolioCVaR Objects" on page 5-23
"Setting and Getting Properties" on page 5-23
"Displaying PortfolioCVaR Objects" on page 5-24
"Saving and Loading PortfolioCVaR Objects" on page 5-24
"Estimating Efficient Portfolios and Frontiers" on page 5-25
"Arrays of PortfolioCVaR Objects" on page 5-25
"Subclassing PortfolioCVaR Objects" on page 5-26
"Conventions for Representation of Data" on page 5-26

\section*{PortfolioCVaR Object Properties and Methods}

The PortfolioCVaR object implements conditional value-at-risk (CVaR) portfolio optimization and is derived from the abstract class AbstractPortfolio. Every property and method of the PortfolioCVaR object is public, although some properties and methods are hidden. See PortfolioCVaR Object Properties on page 5-17 and PortfolioCVaR Object Methods on page 5-19 for the properties and methods of a PortfolioCVaR object. The PortfolioCVaR object is a value object where every instance of the object is a distinct version of the object. Since the PortfolioCVaR object is also a MATLAB object, it inherits the default methods associated with MATLAB objects.

\section*{PortfolioCVaR Object Properties}
\begin{tabular}{l|l|l}
\hline Property & Description & Characteristics \\
\hline AEquality & \begin{tabular}{l} 
Matrix for equality \\
constraints
\end{tabular} & Matrix \\
\hline AInequality & \begin{tabular}{l} 
Matrix for inequality \\
constraints
\end{tabular} & Matrix \\
\hline
\end{tabular}

\section*{PortfolioCVaR Object Properties (Continued)}
\begin{tabular}{l|l|l}
\hline Property & Description & Characteristics \\
\hline AssetList & \begin{tabular}{l} 
List of asset names or \\
identifiers
\end{tabular} & Vector cell array of strings \\
\hline bEquality & \begin{tabular}{l} 
Vector for equality \\
constraints
\end{tabular} & Vector \\
\hline bInequality & \begin{tabular}{l} 
Vector for inequality \\
constraints
\end{tabular} & Vector \\
\hline BuyCost & Cost to purchase assets & Vector \\
\hline BuyTurnover & \begin{tabular}{l} 
Turnover constraint on \\
purchases
\end{tabular} & Scalar \\
\hline GroupA & \begin{tabular}{l} 
Base group ratio constraint \\
matrix
\end{tabular} & Boolean matrix or matrix \\
\hline GroupB & \begin{tabular}{l} 
Comparison group ratio \\
constraint matrix
\end{tabular} & Boolean matrix or matrix \\
\hline GroupMatrix & Group membership matrix & Boolean matrix or matrix \\
\hline InitPort & Initial or current portfolio & Vector \\
\hline LowerBound & Lower-bound constraint & Vector \\
\hline LowerBudget & Lower-budget constraint & Scalar \\
\hline LowerGroup & Lower-group constraint & Vector \\
\hline LowerRatio & \begin{tabular}{l} 
Lower-group ratio constraint \\
ratio
\end{tabular} & Vector \\
\hline Name & \begin{tabular}{l} 
Name for instance of \\
PortfolioCVaR object
\end{tabular} & String \\
\hline NumAssets & Number of assets in universe & Scalar positive integer \\
\hline NumScenarios & \begin{tabular}{l} 
Number of scenarios (read \\
only)
\end{tabular} & Scalar integer \\
\hline & & \\
\hline
\end{tabular}

\section*{PortfolioCVaR Object Properties (Continued)}
\begin{tabular}{l|l|l}
\hline Property & Description & Characteristics \\
\hline ProbabilityLeve & \begin{tabular}{l} 
lProbability level which is \\
1 minus the probability \\
of losses greater than the \\
value-at-risk
\end{tabular} & Scalar \\
\hline RiskFreeRate & \begin{tabular}{l} 
Period return of riskless \\
asset
\end{tabular} & Scalar \\
\hline SellCost & Cost to sell assets & Vector \\
\hline SellTurnover & Turnover constraint on sales & Scalar \\
\hline Turnover & \begin{tabular}{l} 
Upper-bound portfolio \\
turnover
\end{tabular} & Scalar \\
\hline UpperBound & Upper-bound constraint & Vector \\
\hline UpperBudget & Upper-budget constraint & Scalar \\
\hline UpperGroup & Upper-group constraint & Vector \\
\hline UpperRatio & \begin{tabular}{l} 
Upper-group ratio constraint \\
ratio
\end{tabular} & Vector \\
\hline
\end{tabular}

\section*{PortfolioCVaR Object Methods}
\begin{tabular}{l|l}
\hline Method & Description \\
\hline addEquality & \begin{tabular}{l} 
Add equality constraints for portfolio \\
weights to existing constraints.
\end{tabular} \\
\hline addGroupRatio & \begin{tabular}{l} 
Add group ratio constraints for \\
portfolio weights to existing \\
constraints.
\end{tabular} \\
\hline addGroups & \begin{tabular}{l} 
Add group constraints for portfolio \\
weights to existing constraints.
\end{tabular} \\
\hline addInequality & \begin{tabular}{l} 
Add inequality constraints for portfolio \\
weights to existing constraints.
\end{tabular} \\
\hline
\end{tabular}

\section*{PortfolioCVaR Object Methods (Continued)}
\begin{tabular}{l|l}
\hline Method & Description \\
\hline checkFeasibility & \begin{tabular}{l} 
Determine if portfolios are members of \\
the set of feasible portfolios.
\end{tabular} \\
\hline estimateBounds & \begin{tabular}{l} 
Determine if the set of feasible \\
portfolios is nonempty and bounded.
\end{tabular} \\
\hline estimateFrontier & \begin{tabular}{l} 
Estimate portfolios on the entire \\
efficient frontier.
\end{tabular} \\
\hline estimateFrontierByReturn & \begin{tabular}{l} 
Estimate portfolios on the efficient \\
frontier with targeted returns or \\
return proxies.
\end{tabular} \\
\hline estimateFrontierByRisk & \begin{tabular}{l} 
Estimate portfolios on the efficient \\
frontier with targeted risks or risk \\
proxies.
\end{tabular} \\
\hline estimateFrontierLimits & \begin{tabular}{l} 
Estimate portfolios at the extreme \\
ends of the efficient frontier (minimum \\
risk and maximum return).
\end{tabular} \\
\hline estimatePortReturn & \begin{tabular}{l} 
Estimate the return or return proxy \\
for specified portfolios.
\end{tabular} \\
\hline estimatePortRisk & \begin{tabular}{l} 
Estimate the risk or risk proxy for \\
specified portfolios.
\end{tabular} \\
\hline estimatePortStd & \begin{tabular}{l} 
Estimate standard deviation of \\
portfolio returns.
\end{tabular} \\
\hline estimatePortVaR & Estimate value-at-risk for portfolio. \\
\hline estimateScenarioMoments & \begin{tabular}{l} 
Estimate mean and covariance of \\
scenarios.
\end{tabular} \\
\hline getBounds & \begin{tabular}{l} 
Get lower and upper bounds from \\
object.
\end{tabular} \\
\hline simulateNormalScenariosByData & \begin{tabular}{l} 
Simulate multivariate normal asset \\
return scenarios from data.
\end{tabular} \\
\hline & \\
\hline
\end{tabular}

\section*{PortfolioCVaR Object Methods (Continued)}
\begin{tabular}{l|l}
\hline Method & Description \\
\hline simulateNormalScenariosByMoment & \begin{tabular}{l} 
Simulate multivariate normal asset \\
return scenarios from a mean and \\
covariance of asset returns.
\end{tabular} \\
\hline getBudget & \begin{tabular}{l} 
Get lower and upper budget \\
constraints from object.
\end{tabular} \\
\hline getCosts & \begin{tabular}{l} 
Get purchase and sales proportional \\
transaction costs from object.
\end{tabular} \\
\hline getEquality & \begin{tabular}{l} 
Get equality constraint matrix and \\
vector from object.
\end{tabular} \\
\hline getGroupRatio & \begin{tabular}{l} 
Get base matrix, comparison matrix, \\
and lower and upper bounds for group \\
ratio constraints from object.
\end{tabular} \\
\hline getGroups & \begin{tabular}{l} 
Get group matrix and lower and upper \\
bounds for group constraints from \\
object.
\end{tabular} \\
\hline getInequality & \begin{tabular}{l} 
Get inequality constraint matrix and \\
vector from object.
\end{tabular} \\
\hline getOneWayTurnover & \begin{tabular}{l} 
Get one-way portfolio turnover \\
constraints.
\end{tabular} \\
\hline getScenarios & \begin{tabular}{l} 
Obtain scenarios from PortfolioCVaR \\
object.
\end{tabular} \\
\hline plotFrontier & \begin{tabular}{l} 
Plot efficient frontier and optionally \\
obtain risks and returns for portfolios \\
on the efficient frontier.
\end{tabular} \\
\hline setBounds & \begin{tabular}{l} 
Set up a list of asset names and \\
symbols to be associated with assets \\
in universe.
\end{tabular} \\
\hline setAssetList & \begin{tabular}{l} 
Set up lower and upper bounds for \\
portfolio weights.
\end{tabular} \\
\hline
\end{tabular}

\section*{PortfolioCVaR Object Methods (Continued)}
\begin{tabular}{l|l}
\hline Method & Description \\
\hline setBudget & \begin{tabular}{l} 
Set up lower and upper budget \\
constraints for portfolio weights.
\end{tabular} \\
\hline setCosts & \begin{tabular}{l} 
Set up purchase and sale proportional \\
transaction costs for assets in universe.
\end{tabular} \\
\hline setDefaultConstraints & \begin{tabular}{l} 
Set up default constraints for portfolio \\
weights (nonnegative weights that \\
must sum to 1).
\end{tabular} \\
\hline setEquality & \begin{tabular}{l} 
Set up equality constraints for portfolio \\
weights.
\end{tabular} \\
\hline setGroupRatio & \begin{tabular}{l} 
Set up group ratio constraints for \\
portfolio weights.
\end{tabular} \\
\hline setGroups & \begin{tabular}{l} 
Set up group constraints for portfolio \\
weights.
\end{tabular} \\
\hline setInequality & \begin{tabular}{l} 
Set up inequality constraints for \\
portfolio weights.
\end{tabular} \\
\hline setInitPort & Set up initial portfolio weights. \\
\hline setOneWayTurnover & \begin{tabular}{l} 
Set up one-way portfolio turnover \\
constraints.
\end{tabular} \\
\hline setOptions & \begin{tabular}{l} 
Set up hidden control properties in \\
object (not implemented).
\end{tabular} \\
\hline setProbabilityLevel & \begin{tabular}{l} 
Set probability level for VaR and CVaR \\
calculations.
\end{tabular} \\
\hline setScenarios & \begin{tabular}{l} 
Set asset returns scenarios by direct \\
matrix.
\end{tabular} \\
\hline setSolver & \begin{tabular}{l} 
Set up solver to estimate efficient \\
portfolios.
\end{tabular} \\
\hline setTurnover & \begin{tabular}{l} 
Set up average turnover constraints \\
for portfolio weights.
\end{tabular} \\
\hline &
\end{tabular}

\section*{Working with PortfolioCVaR Objects}

The PortfolioCVaR object and its methods are an interface for conditional value-at-risk portfolio optimization. Consequently, almost everything you do with the PortfolioCVaR object can be done using the methods. The basic workflow is:

1 Design your portfolio problem.
2 Use the portfolio constructor (PortfolioCVaR) to create the PortfolioCVaR object or use the various set methods to set up your portfolio problem.

3 Use estimate methods to solve your portfolio problem.
In addition, methods are available to help you view intermediate results and to diagnose your computations. Since MATLAB features are part of a PortfolioCVaR object, you can save and load objects from your workspace and create and manipulate arrays of objects. After settling on a problem, which, in the case of CVaR portfolio optimization, means that you have either scenarios, data, or moments for asset returns, a probability level, and a collection of constraints on your portfolios, use the portfolio constructor to set the properties for the PortfolioCVaR object.

The PortfolioCVaR constructor lets you create an object from scratch or update an existing object. Since the PortfolioCVaR object is a value object, it is easy to create a basic object, then use methods to build upon the basic object to create new versions of the basic object. This is useful to compare a basic problem with alternatives derived from the basic problem. For details, see "Constructing the PortfolioCVaR Object" on page 5-28.

\section*{Setting and Getting Properties}

You can set properties of a PortfolioCVaR object using either the constructor (PortfolioCVaR) or various set methods.

Note Although you can also set properties directly, it is not recommended since error-checking is not performed when you set a property directly.

The PortfolioCVaR constructor supports setting properties with name-value pair arguments such that each argument name is a property and each value is the value to assign to that property. For example, to set the LowerBound, Budget, and ProbabilityLevel properties in an existing PortfolioCVaR object \(p\), use the syntax:
p = PortfolioCVaR(p,'LowerBound', 0, 'Budget', 'ProbabilityLevel', 0.95);
In addition to the PortfolioCVaR constructor, which lets you set individual properties one at a time, groups of properties are set in a PortfolioCVaR object with various "set" and "add" methods. For example, to set up an average turnover constraint, use the setTurnover method to specify the bound on portfolio turnover and the initial portfolio. To get individual properties from a PortfolioCVaR object, obtain properties directly or use an assortment of "get" methods that obtain groups of properties from a PortfolioCVaR object. The PortfolioCVaR object constructor and set methods have several useful features:
- The constructor and set methods try to determine the dimensions of your problem with either explicit or implicit inputs.
- The constructor and set methods try to resolve ambiguities with default choices.
- The constructor and set methods perform scalar expansion on arrays when possible.
- The methods try to diagnose and warn about problems.

\section*{Displaying PortfolioCVaR Objects}

The PortfolioCVaR object uses the default display method provided by MATLAB, where display and disp display a PortfolioCVaR object and its properties with or without the object variable name.

\section*{Saving and Loading PortfolioCVaR Objects}

Save and load PortfolioCVaR objects using the MATLAB save and load commands.

\section*{Estimating Efficient Portfolios and Frontiers}

Estimating efficient portfolios and efficient frontiers is the primary purpose of the CVaR portfolio optimization tools. A collection of "estimate" and "plot" methods provide ways to explore the efficient frontier. The "estimate" methods obtain either efficient portfolios or risk and return proxies to form efficient frontiers. At the portfolio level, a collection of methods estimates efficient portfolios on the efficient frontier with methods to obtain efficient portfolios:
- At the endpoints of the efficient frontier
- That attain targeted values for return proxies
- That attain targeted values for risk proxies
- Along the entire efficient frontier

These methods also provide purchases and sales needed to shift from an initial or current portfolio to each efficient portfolio. At the efficient frontier level, a collection of methods plot the efficient frontier and estimate either risk or return proxies for efficient portfolios on the efficient frontier. You can use the resultant efficient portfolios or risk and return proxies in subsequent analyses.

\section*{Arrays of PortfolioCVaR Objects}

Although all methods associated with a PortfolioCVaR object are designed to work on a scalar PortfolioCVaR object, the array capabilities of MATLAB enables you to set up and work with arrays of PortfolioCVaR objects. The easiest way to do this is with the repmat function. For example, to create a 3 -by- 2 array of PortfolioCVaR objects:
```

p = repmat(PortfolioCVaR, 3, 2);

```
disp(p)

After setting up an array of PortfolioCVaR objects, you can work on individual PortfolioCVaR objects in the array by indexing. For example:
\(p(i, j)=\operatorname{PortfolioCVaR(p(i,j),~...~);~}\)

This example calls the PortfolioCVaR object constructor for the (i,j) element of a matrix of PortfolioCVaR objects in the variable \(p\).

If you set up an array of PortfolioCVaR objects, you can access properties of a particular PortfolioCVaR object in the array by indexing so that you can set the lower and upper bounds lb and ub for the (i,j,k) element of a 3-D array of PortfolioCVaR objects with
\(p(i, j, k)=p(i, j, k) . s e t B o u n d s(l b, u b) ;\)
and, once set, you can access these bounds with
[lb, ub] = p(i,j,k).getBounds;
PortfolioCVaR object methods work on only one PortfolioCVaR object at a time.

\section*{Subclassing PortfolioCVaR Objects}

You can subclass the PortfolioCVaR object to override existing methods or to add new properties or methods. To do so, create a derived class from the PortfolioCVaR class. This gives you all the properties and methods of the PortfolioCVaR class along with any new features that you choose to add to your subclassed object. The PortfolioCVaR class is derived from an abstract class called AbstractPortfolio. Because of this, you can also create a derived class from AbstractPortfolio that implements an entirely different form of portfolio optimization using properties and methods of the AbstractPortfolio class.

\section*{Conventions for Representation of Data}

The CVaR portfolio optimization tools follow these conventions regarding the representation of different quantities associated with portfolio optimization:
- Asset returns or prices for scenarios are in matrix form with samples for a given asset going down the rows and assets going across the columns. In the case of prices, the earliest dates must be at the top of the matrix, with increasing dates going down.
- Portfolios are in vector or matrix form with weights for a given portfolio going down the rows and distinct portfolios going across the columns.
- Constraints on portfolios are formed in such a way that a portfolio is a column vector.
- Portfolio risks and returns are either scalars or column vectors (for multiple portfolio risks and returns).

\section*{See Also}

Related
Examples
Concepts

AbstractPortfolio | PortfolioCVaR
- "Constructing the PortfolioCVaR Object" on page 5-28
- "Working with CVaR Portfolio Constraints" on page 5-61
- "Portfolio Optimization Theory" on page 5-2

\section*{Constructing the PortfolioCVaR Object}

\author{
In this section... \\ "Syntax" on page 5-28 \\ "PortfolioCVaR Problem Sufficiency" on page 5-29 \\ "Constructor Examples" on page 5-29
}

To create a fully specified CVaR portfolio optimization problem, instantiate the PortfolioCVaR object using the CVaR portfolio constructor.

\section*{Syntax}

Use the CVaR portfolio constructor PortfolioCVaR to create an instance of an object of the PortfolioCVaR class. You can use this constructor in several ways. To set up a portfolio optimization problem in a PortfolioCVaR object, the simplest syntax is:
```

p = PortfolioCVaR;

```

This syntax creates a PortfolioCVaR object, p, such that all object properties are empty.

The constructor also accepts collections of argument name-value pair arguments for properties and their values. The constructor accepts inputs for public properties (see PortfolioCVaR Object Properties on page 5-17) with the general syntax:
```

p = PortfolioCVaR('property1', value1, 'property2', value2, ...);

```

If a PortfolioCVaR object already exists, the syntax permits the first (and only the first argument) of the CVaR portfolio constructor to be an existing object with subsequent argument name-value pair arguments for properties to be added or modified. For example, given an existing PortfolioCVaR object in \(p\), the general syntax is:
```

p = PortfolioCVaR(p, 'property1', value1, 'property2', value2, ...);

```

Input argument names are not case sensitive, but must be completely specified. In addition, several properties can be specified with alternative
argument names (see "Shortcuts for Property Names" on page 5-34). ThePortfolioCVaR constructor tries to detect problem dimensions from the inputs and, once set, subsequent inputs can undergo various scalar or matrix expansion operations that simplify the overall process to formulate a problem. In addition, a PortfolioCVaR object is a value object so that, given portfolio p, the following code creates two objects, p and q , that are distinct:
\(q=\operatorname{PortfolioCVaR(p,~...)~}\)

\section*{PortfolioCVaR Problem Sufficiency}

A CVaR portfolio optimization problem is completely specified with the PortfolioCVaR object if the following three conditions are met:
- You must specify a collection of asset returns or prices known as scenarios such that all scenarios are finite asset returns or prices. These scenarios are meant to be samples from the underlying probability distribution of asset returns. This condition can be satisfied by the setScenarios method or with several canned scenario simulation methods.
- The set of feasible portfolios must be a nonempty compact set, where a compact set is closed and bounded. You can satisfy this condition using an extensive collection of properties that define different types of constraints to form a set of feasible portfolios. Since such sets must be bounded, either explicit or implicit constraints can be imposed and several tools, such as the estimateBounds method, provide ways to ensure that your problem is properly formulated.
- You must specify a probability level to locate the level of tail loss above which the conditional value-at-risk is to be minimized. This condition can be satisfied by the setProbabilityLevel method.

Although the general sufficient conditions for CVaR portfolio optimization go beyond the first three conditions, the PortfolioCVaR object handles all these additional conditions.

\section*{Constructor Examples}

If you create a PortfolioCVaR object, p , with no input arguments, you can display it using disp:
p = PortfolioCVaR;
disp(p);
PortfolioCVaR with properties:
            BuyCost: []
            SellCost: []
        RiskFreeRate: []
        ProbabilityLevel: []
            Turnover: []
        BuyTurnover: []
        SellTurnover: []
        NumScenarios: []
            Name: []
        NumAssets: []
        AssetList: []
            InitPort: []
        AInequality: []
        bInequality: []
            AEquality: []
            bEquality: []
            LowerBound: []
            UpperBound: []
            LowerBudget: []
            UpperBudget: []
            GroupMatrix: []
            LowerGroup: []
            UpperGroup: []
            GroupA: []
            GroupB: []
            LowerRatio: []
            UpperRatio: []

The approaches listed provide a way to set up a portfolio optimization problem with the CVaR portfolio constructor. The custom set methods offer additional ways to set and modify collections of properties in the PortfolioCVaR object.

\section*{Using the Constructor for a Single-Step Setup}

You can use the PortfolioCVaR constructor to directly set up a "standard" portfolio optimization problem. Given scenarios of asset returns in the variable AssetScenarios, this problem is completely specified as follows:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR('Scenarios', AssetScenarios, ...
'LowerBound', 0, 'LowerBudget', 1, 'UpperBudget', 1, ...
'ProbabilityLevel', 0.95);

```

Note that the LowerBound property value undergoes scalar expansion since AssetScenarios provides the dimensions of the problem.

You can use dot notation with the method plotFrontier.
```

p.plotFrontier;

```


\section*{Using the Constructor with a Sequence of Steps}

An alternative way to accomplish the same task of setting up a "standard" CVaR portfolio optimization problem, given AssetScenarios variable is:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = PortfolioCVaR(p, 'LowerBound', 0);

```
```

p = PortfolioCVaR(p, 'LowerBudget', 1, 'UpperBudget', 1);
p = p.setProbabilityLevel(0.95);

```
p.plotFrontier;


This way works because the calls to the constructor are in this particular order. In this case, the call to initialize AssetScenarios provides the dimensions for the problem. If you were to do this step last, you would have to explicitly dimension the LowerBound property as follows:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);

```
```

p = PortfolioCVaR;
p = PortfolioCVaR(p, 'LowerBound', zeros(size(m)));
p = PortfolioCVaR(p, 'LowerBudget', 1, 'UpperBudget', 1);
p = p.setProbabilityLevel(0.95);
p = p.setScenarios(AssetScenarios);

```

Note If you did not specify the size of LowerBound but, instead, input a scalar argument, the constructor assumes that you are defining a single-asset problem and produces an error at the call to set asset scenarios with four assets.

\section*{Shortcuts for Property Names}

The CVaR portfolio constructor has shorter argument names that replace longer argument names associated with specific properties of the PortfolioCVaR object. For example, rather than enter 'ProbabilityLevel', the constructor accepts the case-insensitive name 'plevel' to set the ProbabilityLevel property in a PortfolioCVaR object. Every shorter argument name corresponds with a single property in the CVaR portfolio constructor. The one exception is the alternative argument name 'budget', which signifies both the LowerBudget and UpperBudget properties. When ' budget ' is used, then the LowerBudget and UpperBudget properties are set to the same value to form an equality budget constraint.
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Shortcut Argument \\
Name
\end{tabular} & Equivalent Argument/Property Name \\
\hline ae & AEquality \\
\hline ai & AInequality \\
\hline assetnames or assets & AssetList \\
\hline be & bEquality \\
\hline bi & bInequality \\
\hline budget & UpperBudget and LowerBudget \\
\hline group & GroupMatrix \\
\hline
\end{tabular}

\section*{(Continued)}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Shortcut Argument \\
Name
\end{tabular} & Equivalent Argument / Property Name \\
\hline lb & LowerBound \\
\hline n or num & NumAssets \\
\hline \begin{tabular}{l} 
level, problevel, or \\
plevel
\end{tabular} & ProbabilityLevel \\
\hline rfr & RiskFreeRate \\
\hline \begin{tabular}{l} 
scenario or \\
assetscenarios
\end{tabular} & Scenarios \\
\hline ub & UpperBound \\
\hline
\end{tabular}

For example, this call to the constructor uses these shortcuts for properties:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR('scenario', AssetScenarios, 'lb', 0, 'budget', 1, 'plevel', 0.95);
p.plotFrontier;

```

\section*{Direct Setting of Portfolio Object Properties}

Although not recommended, you can set properties directly using dot notation, however no error-checking is done on your inputs:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;

```
```

 0.00192 0.0204 0.0576 0.0336;
 0 0.0119 0.0336 0.1225];
 m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p.ProbabilityLevel = 0.95;
p.LowerBudget = 1;
p.UpperBudget = 1;
p.LowerBound = zeros(size(m));
p.plotFrontier;

```

Note Scenarios cannot be assigned directly to a PortfolioCVaR object. Scenarios must always be set through either the PortfolioCVaR constructor, the setScenarios method, or any of the scenario simulation methods.

\section*{See Also PortfolioCVaR I estimateBounds}

\section*{Related \\ Examples}
- "Common Operations on the PortfolioCVaR Object" on page 5-37
- "Working with CVaR Portfolio Constraints" on page 5-61

Concepts
- "PortfolioCVaR Object" on page 5-17
- "Portfolio Optimization Theory" on page 5-2

\section*{Common Operations on the PortfolioCVaR Object}

\author{
In this section... \\ "Naming a PortfolioCVaR Object" on page 5-37 \\ "Configuring the Assets in the Asset Universe" on page 5-37 \\ "Setting Up a List of Asset Identifiers" on page 5-38 \\ "Truncating and Padding Asset Lists" on page 5-40 \\ "Setting Up an Initial or Current Portfolio" on page 5-41
}

\section*{Naming a PortfolioCVaR Object}

To name a PortfolioCVaR object, use the Name property. Name is informational and has no effect on any portfolio calculations. If the Name property is nonempty, Name is the title for the efficient frontier plot generated by plotFrontier. For example, if you set up an asset allocation fund, you could name the PortfolioCVaR object Asset Allocation Fund:
```

p = PortfolioCVaR('Name','Asset Allocation Fund');
disp(p.Name);
Asset Allocation Fund

```

\section*{Configuring the Assets in the Asset Universe}

The fundamental quantity in the PortfolioCVaR object is the number of assets in the asset universe. This quantity is maintained in the NumAssets property. Although you can set this property directly, it is usually derived from other properties such as the number of assets in the scenarios or the initial portfolio. In some instances, the number of assets may need to be set directly. This example shows how to set up a PortfolioCVaR object that has four assets:
```

p = PortfolioCVaR('NumAssets', 4);
disp(p.NumAssets);

```

4

After setting the NumAssets property, you cannot modify it (unless no other properties are set that depend on NumAssets). The only way to change the
number of assets in an existing PortfolioCVaR object with a known number of assets is to create a new PortfolioCVaR object.

\section*{Setting Up a List of Asset Identifiers}

When working with portfolios, you must specify a universe of assets. Although you can perform a complete analysis without naming the assets in your universe, it is helpful to have an identifier associated with each asset as you create and work with portfolios. You can create a list of asset identifiers as a cell vector of strings in the property AssetList. You can set up the list using the next two methods.

\section*{Setting Up Asset Lists Using the Constructor}

Suppose you have a PortfolioCVaR object, \(p\), with assets with symbols 'AA ', 'BA', 'CAT', 'DD', and 'ETR'. You can create a list of these asset symbols in the object using the constructor:
```

p = PortfolioCVaR('assetlist', { 'AA', 'BA', 'CAT', 'DD', 'ETR' });
disp(p.AssetList);

```
```

'AA' 'BA' 'CAT' 'DD' 'ETR'

```

Notice that the property AssetList is maintained as a cell array that contains strings, and that it is necessary to pass a cell array into the constructor to set AssetList. In addition, notice that the property NumAssets is set to 5 based on the number of symbols used to create the asset list:
disp(p.NumAssets);

5

\section*{Setting Up Asset Lists Using the setAssetList Method}

You can also specify a list of assets using the method setAssetList. Given the list of asset symbols 'AA', 'BA', 'CAT', 'DD', and'ETR', you can use setAssetList with:
p = PortfolioCVaR;
p = p.setAssetList(\{ 'AA', 'BA', 'CAT', 'DD', 'ETR' \}); disp(p.AssetList);

\section*{'AA' 'BA' 'CAT' 'DD' 'ETR'}
setAssetList also enables you enter symbols directly as a comma-separated list without creating a cell array of strings. For example, given the list of assets symbols 'AA', 'BA', 'CAT', 'DD', and 'ETR', use setAssetList:
```

p = PortfolioCVaR;
p = p.setAssetList('AA', 'BA', 'CAT', 'DD', 'ETR');
disp(p.AssetList);

```
'AA' 'BA' 'CAT' 'DD' 'ETR'
setAssetList has many additional features to create lists of asset identifiers. If you use setAssetList with just a PortfolioCVaR object, it creates a default asset list according to the name specified in the hidden public property defaultforAssetList (which is 'Asset' by default). The number of asset names created depends on the number of assets in the property NumAssets. If NumAssets is not set, then NumAssets is assumed to be 1 .

For example, if a PortfolioCVaR object \(p\) is created with NumAssets \(=5\), then this code fragment shows the default naming behavior:
```

p = PortfolioCVaR('numassets',5);
p = p.setAssetList;
disp(p.AssetList);
'Asset1' 'Asset2' 'Asset3' 'Asset4' 'Asset5'

```

Suppose that your assets are, for example, ETFs and you change the hidden property defaultforAssetList to 'ETF', you can then create a default list for ETFs:
```

p = PortfolioCVaR('numassets',5);
p.defaultforAssetList = 'ETF';
p = p.setAssetList;
disp(p.AssetList);
'ETF1' 'ETF2' 'ETF3' 'ETF4' 'ETF5'

```

\section*{Truncating and Padding Asset Lists}

If the NumAssets property is already set and you pass in too many or too few identifiers, the CVaR portfolio constructor, and the setAssetList method truncate or pad the list with numbered default asset names that use the name specified in the hidden public property defaultforAssetList. If the list is truncated or padded, a warning message indicates the discrepancy. For example, assume you have a PortfolioCVaR object with five ETFs and you only know the first three CUSIPs '921937835', '922908769', and ' 922042775 '. Use this syntax to create an asset list that pads the remaining asset identifiers with numbered 'UnknownCUSIP' placeholders:
```

p = PortfolioCVaR('numassets',5);
p.defaultforAssetList = 'UnknownCUSIP';
p = p.setAssetList('921937835', '922908769', '922042775');
disp(p.AssetList);

```
Warning: Input list of assets has 2 too few identifiers. Padding with numbe
> In PortfolioCVaR.setAssetList at 119
    '921937835' '922908769' '922042775' 'UnknownCUSIP4' 'Unknow

Alternatively, suppose you have too many identifiers and need only the first four assets. This example illustrates truncation of the asset list using the PortfolioCVaR constructor:
```

p = PortfolioCVaR('numassets',4);
p = PortfolioCVaR(p, 'assetlist', { 'AGG', 'EEM', 'MDY', 'SPY', 'VEU' });
disp(p.AssetList);
Warning: AssetList has 1 too many identifiers. Using first 4 assets.
> In PortfolioCVaR.checkarguments at 399
In PortfolioCVaR.PortfolioCVaR>PortfolioCVaR.PortfolioCVaR at 196
'AGG' 'EEM' 'MDY' 'SPY'

```

The hidden public property uppercaseAssetList is a Boolean flag to specify whether to convert asset names to uppercase letters. The default value for uppercaseAssetList is false. This example shows how to use the uppercaseAssetList flag to force identifiers to be uppercase letters:
```

p = PortfolioCVaR;
p.uppercaseAssetList = true;
p = p.setAssetList({ 'aa', 'ba', 'cat', 'dd', 'etr' });

```
```

disp(p.AssetList);
'AA' 'BA' 'CAT' 'DD' 'ETR'

```

\section*{Setting Up an Initial or Current Portfolio}

In many applications, creating a new optimal portfolio requires comparing the new portfolio with an initial or current portfolio to form lists of purchases and sales. The PortfolioCVaR object property InitPort lets you identify an initial or current portfolio. The initial portfolio also plays an essential role if you have either transaction costs or turnover constraints. The initial portfolio need not be feasible within the constraints of the problem. This can happen if the weights in a portfolio have shifted such that some constraints become violated. To check if your initial portfolio is feasible, use the method checkFeasibility described in "Validating CVaR Portfolios" on page 5-88. Suppose you have an initial portfolio in \(\times 0\), then use the PortfolioCVaR object constructor to set up an initial portfolio:
```

x0 = [0.3; 0.2; 0.2; 0.0];
p = PortfolioCVaR('InitPort', x0);
disp(p.InitPort);

```
0.3000
0.2000
0.2000

0

As with all array properties, you can set InitPort with scalar expansion. This is helpful to set up an equally weighted initial portfolio of, for example, 10 assets:
```

p = PortfolioCVaR('NumAssets', 10, 'InitPort', 1/10);
disp(p.InitPort);

```
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
\[
\begin{aligned}
& 0.1000 \\
& 0.1000 \\
& 0.1000
\end{aligned}
\]

To clear an initial portfolio from your PortfolioCVaR object, use either the constructor or the setInitPort method with an empty input for the InitPort property. If transaction costs or turnover constraints are set, it is not possible to clear the InitPort property in this way. In this case, to clear InitPort, first clear the dependent properties and then clear theInitPort property.

The InitPort property can also be set with setInitPort which lets you specify the number of assets if you want to use scalar expansion. For example, given an initial portfolio in \(\times 0\), use setInitPort to set the InitPort property:
```

p = PortfolioCVaR;
x0 = [0.3; 0.2; 0.2; 0.0];
p = p.setInitPort(x0);
disp(p.InitPort);

```
0.3000
0.2000
0.2000

To create an equally weighted portfolio of four assets, use setInitPort:
```

p = PortfolioCVaR;
p = p.setInitPort(1/4, 4);
disp(p.InitPort);
0.2500
0.2500
0.2500
0.2500

```

PortfolioCVaR object methods that work with either transaction costs or turnover constraints also depend on the InitPort property. Consequently, the set methods for transaction costs or turnover constraints permit the assignment of a value for the InitPort property as part of their implementation. For details, see "Working with Average Turnover Constraints" on page 5-79, "Working with One-Way Turnover Constraints"
on page 5-82, and "Working with Transaction Costs" on page 5-56. If either transaction costs or turnover constraints are used, then the InitPort property must have a nonempty value. Absent a specific value assigned through the constructor or various set methods, the PortfolioCVaR object sets InitPort to 0 and warns if BuyCost, SellCost, or Turnover properties are set. This example shows what happens if you specify an average turnover constraint with an initial portfolio:
```

p = PortfolioCVaR('Turnover', 0.3, 'InitPort', [0.3; 0.2; 0.2; 0.0]);
disp(p.InitPort);

```
0.3000
0.2000
0.2000

0

In contrast, this example shows what happens if an average turnover constraint is specified without an initial portfolio:
```

p = PortfolioCVaR('Turnover', 0.3);
disp(p.InitPort);

```
```

Warning: InitPort and NumAssets are empty and either transaction costs or turnover constraints specified.
Will set NumAssets = 1 and InitPort = 0.
> In PortfolioCVaR.checkarguments at 323
In PortfolioCVaR.PortfolioCVaR>PortfolioCVaR.PortfolioCVaR at }19

```
    0
See Also \(\begin{aligned} & \text { PortfolioCVaR | setAssetList | setInitPort | estimateBounds | } \\ & \text { checkFeasibility }\end{aligned}\)

Related
Examples
Concepts
- "Working with CVaR Portfolio Constraints" on page 5-61
- "Asset Returns and Scenarios" on page 5-44
- "PortfolioCVaR Object" on page 5-17
- "Portfolio Optimization Theory" on page 5-2

\section*{Asset Returns and Scenarios}

\author{
In this section... \\ "How Stochastic Optimization Works" on page 5-44 \\ "What Are Scenarios?" on page 5-45 \\ "Setting Scenarios Using the PortfolioCVaR Constructor" on page 5-46 \\ "Setting Scenarios Using the setScenarios Method" on page 5-47 \\ "Estimating the Mean and Covariance of Scenarios" on page 5-47 \\ "Simulating Normal Scenarios" on page 5-48 \\ "Simulating Normal Scenarios from Returns or Prices" on page 5-48 \\ "Simulating Normal Scenarios with Missing Data" on page 5-51 \\ "Simulating Normal Scenarios from Time Series Data" on page 5-52 \\ "Simulating Normal Scenarios with Mean and Covariance" on page 5-54 \\ "Working with a Riskless Asset" on page 5-55 \\ "Working with Transaction Costs" on page 5-56
}

\section*{How Stochastic Optimization Works}

The CVaR of a portfolio is a conditional expectation. (For the definition of the CVaR function, see "Risk Proxy" on page 5-5.) Therefore, the CVaR portfolio optimization problem is a stochastic optimization problem. Given a sample of scenarios, the conditional expectation that defines the sample CVaR of the portfolio can be expressed as a finite sum, a weighted average of losses. The weights of the losses depend on their relative magnitude; for a confidence level \(\alpha\), only the worst \((1-\alpha) \times 100 \%\) losses get a positive weight. As a function of the portfolio weights, the CVaR of the portfolio is a convex function (see [48], [49] Rockafellar \& Uryasev at "Portfolio Optimization" on page A-12). It is also a nonsmooth function, but its edges are less sharp as the sample size increases.

There are reformulations of the CVaR portfolio optimization problem (see [48], [49] at Rockafellar \& Uryasev) that result in a linear programming problem, which can be solved either with standard linear programming techniques or with stochastic programming solvers. The PortfolioCVaR object, however,
does not reformulate the problem in such a manner. The PortfolioCVaR object computes the CVaR as a nonlinear function. The convexity of the CVaR, as a function of the portfolio weights and the somewhat dull edges when the number of scenarios is large, make the CVaR portfolio optimization problem tractable, in practice, for certain nonlinear programming solvers, such as fmincon from Optimization Toolbox. The problem can also be solved using a cutting-plane method (see Kelley [45] at "Portfolio Optimization" on page A-12). For more information, see Algorithms section of setSolver.

\section*{What Are Scenarios?}

Since conditional value-at-risk portfolio optimization works with scenarios of asset returns to perform the optimization, several ways exist to specify and simulate scenarios. In many applications with CVaR portfolio optimization, asset returns may have distinctly nonnormal probability distributions with either multiple modes, binning of returns, truncation of distributions, and so forth. In other applications, asset returns are modeled as the result of various simulation methods that might include Monte-Carlo simulation, quasi-random simulation, and so forth. In many cases, the underlying probability distribution for risk factors may be multivariate normal but the resultant transformations are sufficiently nonlinear to result in distinctively nonnormal asset returns.

For example, this occurs with bonds and derivatives. In the case of bonds with a nonzero probability of default, such scenarios would likely include asset returns that are \(-100 \%\) to indicate default and some values slightly greater than \(-100 \%\) to indicate recovery rates.

Although the PortfolioCVaR object has methods to simulate multivariate normal scenarios from either data or moments (simulateNormalScenariosByData and simulateNormalScenariosByMoments), the usual approach is to specify scenarios directly from your own simulation methods. These scenarios are entered directly as a matrix with a sample for all assets across each row of the matrix and with samples for an asset down each column of the matrix. The architecture of the CVaR portfolio optimization tools references the scenarios through a function handle so scenarios that have been set cannot be accessed directly as a property of the PortfolioCVaR object.

\section*{Setting Scenarios Using the PortfolioCVaR Constructor}

Suppose you have a matrix of scenarios in the AssetScenarios variable. The scenarios are set through the PortfolioCVaR constructor with:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR('Scenarios', AssetScenarios);
disp(p.NumAssets);
disp(p.NumScenarios);

```
4
20000

Notice that the PortfolioCVaR object determines and fixes the number of assets in NumAssets and the number of scenarios in NumScenarios based on the scenario's matrix. You can change the number of scenarios by calling the PortfolioCVaR constructor with a different scenario matrix. However, once the NumAssets property has been set in the object, you cannot enter a scenario matrix with a different number of assets. The getScenarios method lets you recover scenarios from a PortfolioCVaR object. You can also obtain the mean and covariance of your scenarios using estimateScenarioMoments.

Although not recommended for the casual user, an alternative way exists to recover scenarios by working with the function handle that points to scenarios in the PortfolioCVaR object. To access some or all of the scenarios from a PortfolioCVaR object, the hidden property localScenarioHandle is a function handle that points to a function to obtain scenarios that have already been set. To get scenarios directly from a PortfolioCVaR object p, use
```

scenarios = p.localScenarioHandle([], []);

```
and to obtain a subset of scenarios from rows startrow to endrow, use
```

scenarios = p.localScenarioHandle(startrow, endrow);

```
where \(1 \leq\) startrow \(\leq\) endrow \(\leq\) numScenarios.

\section*{Setting Scenarios Using the setScenarios Method}

You can also set scenarios using setScenarios. For example, given the mean and covariance of asset returns in the variables \(m\) and \(C\), the asset moment properties can be set:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;

```
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
disp(p.NumAssets);
disp(p.NumScenarios);
4
20000

\section*{Estimating the Mean and Covariance of Scenarios}

The estimateScenarioMoments method obtains estimates for the mean and covariance of scenarios in a PortfolioCVaR object.
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

```
```

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
[mean, covar] = p.estimateScenarioMoments
mean =
0.0042
0.0082
0.0101
0.0155
covar =

0.0005	0.0003	0.0002	0.0000
0.0003	0.0024	0.0017	0.0010
0.0002	0.0017	0.0049	0.0028
0.0000	0.0010	0.0028	0.0101

```

\section*{Simulating Normal Scenarios}

As a convenience, the two methods (simulateNormalScenariosByData and simulateNormalScenariosByMoments) exist to simulate scenarios from data or moments under an assumption that they are distributed as multivariate normal random asset returns.

\section*{Simulating Normal Scenarios from Returns or Prices}

Given either return or price data, use the method simulateNormalScenariosByData to simulate multivariate normal scenarios. Either returns or prices are stored as matrices with samples going down the rows and assets going across the columns. In addition, returns or
prices can be stored in a financial time series fints object (see "Simulating Normal Scenarios from Time Series Data" on page 5-52). To illustrate using simulateNormalScenariosByData, generate random samples of 120 observations of asset returns for four assets from the mean and covariance of asset returns in the variables m and C with portsim. The default behavior of portsim creates simulated data with estimated mean and covariance identical to the input moments m and C . In addition to a return series created by portsim in the variable \(X\), a price series is created in the variable \(Y\) :
```

m = [0.0042; 0.0083; 0.01; 0.15];
C = [0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208];
X = portsim(m', C, 120);
Y = ret2tick(X);

```

Note Portfolio optimization requires that you use total returns and not just price returns. Consequently, "returns" should be total returns and "prices" should be total return prices.

Given asset returns and prices in variables \(X\) and \(Y\) from above, this sequence of examples demonstrates equivalent ways to simulate multivariate normal scenarios for the PortfolioCVaR object. Assume a PortfolioCVaR object created in \(p\) that uses the asset returns in \(X\) uses simulateNormalScenariosByData:
```

p = PortfolioCVaR;
p = p.simulateNormalScenariosByData(X, 20000);
[passetmean, passetcovar] = p.estimateScenarioMoments
passetmean =
0.0045
0.0079
0 . 0 1 0 0
0.1509

```
```

passetcovar =

```
\begin{tabular}{llll}
0.0053 & 0.0003 & 0.0002 & 0.0001 \\
0.0003 & 0.0024 & 0.0017 & 0.0010 \\
0.0002 & 0.0017 & 0.0049 & 0.0028 \\
0.0001 & 0.0010 & 0.0028 & 0.0102
\end{tabular}

The moments that you obtain from this simulation will likely differ from the moments listed here because the scenarios are random samples from the estimated multivariate normal probability distribution of the input returns \(X\).

The default behavior of simulateNormalScenariosByData is to work with asset returns. If, instead, you have asset prices as in the variable \(Y\), simulateNormalScenariosByData accepts an argument name 'DataFormat' with a corresponding value set to 'prices' to indicate that the input to the method is in the form of asset prices and not returns (the default value for the 'DataFormat' argument is 'returns'). This example simulates scenarios with the asset price data in \(Y\) for the PortfolioCVaR object q:
```

p = PortfolioCVaR;
p = p.simulateNormalScenariosByData(Y, 20000, 'dataformat', 'prices');
[passetmean, passetcovar] = p.estimateScenarioMoments
passetmean =
0.0043
0.0080
0.0101
0.1508
passetcovar =

0.0053	0.0003	0.0002	0.0001
0.0003	0.0024	0.0017	0.0010
0.0002	0.0017	0.0048	0.0028
0.0001	0.0010	0.0028	0.0101

```

\section*{Simulating Normal Scenarios with Missing Data}

Often when working with multiple assets, you have missing data indicated by NaN values in your return or price data. Although "Multivariate Normal Regression" on page 9-2 goes into detail about regression with missing data, the simulateNormalScenariosByData method has an argument name 'MissingData' that indicates with a Boolean value whether to use the missing data capabilities of Financial Toolbox. The default value for 'MissingData' is false which removes all samples with NaN values. If, however, 'MissingData' is set to true, simulateNormalScenariosByData uses the ECM algorithm to estimate asset moments. This example shows how this works on price data with missing values:
```

m = [0.0042; 0.0083; 0.01; 0.15];
C = [0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208];
X = portsim(m', C, 120);
Y = ret2tick(X);
Y(1:20,1) = NaN;
Y(1:12,4) = NaN;

```

Notice that the prices above in \(Y\) have missing values in the first and fourth series.
```

p = PortfolioCVaR;
p = p.simulateNormalScenariosByData(Y, 20000, 'dataformat', 'prices');
q = PortfolioCVaR;
q = q.simulateNormalScenariosByData(Y, 20000, 'dataformat', 'prices', 'missingdata', true);

```
[passetmean, passetcovar] = p.estimateScenarioMoments
[qassetmean, qassetcovar] = q.estimateScenarioMoments
passetmean \(=\)
    0.0074
    0.0066
```

0.0089
0.1499

```
\begin{tabular}{rrrr} 
passetcovar \(=\) & & & \\
& & & \\
0.0054 & 0.0001 & 0.0001 & -0.0002 \\
0.0001 & 0.0022 & 0.0015 & 0.0012 \\
0.0001 & 0.0015 & 0.0049 & 0.0030 \\
-0.0002 & 0.0012 & 0.0030 & 0.0111
\end{tabular}
qassetmean =
0.0079
0.0072
0.0095
0.1484
qassetcovar =
\begin{tabular}{rrrr}
0.0071 & 0.0002 & 0.0002 & -0.0002 \\
0.0002 & 0.0031 & 0.0022 & 0.0015 \\
0.0002 & 0.0022 & 0.0064 & 0.0037 \\
-0.0002 & 0.0015 & 0.0037 & 0.0140
\end{tabular}

The first PortfolioCVaR object, p , contains scenarios obtained from price data in \(Y\) where NaN values are discarded and the second PortfolioCVaR object, \(q\), contains scenarios obtained from price data in \(Y\) that accommodate missing values. Each time you run this example, you will get different estimates for the moments in \(p\) and \(q\).

\section*{Simulating Normal Scenarios from Time Series Data}

The simulateNormalScenariosByData method also accepts asset returns or prices stored in financial time series (fints) objects. The method implicitly works with matrices of data or data in a fints object using the same rules for whether the data are returns or prices. To illustrate, use fints to create the fints object Xfts that contains asset returns generated with fints (see
"Estimating Asset Moments from Prices or Returns" on page 4-46) and add series labels:
```

m = [0.0042; 0.0083; 0.01; 0.15];
C = [0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208];
X = portsim(m', C, 120);
d = (datenum('31-jan-2001'):datenum('31-dec-2010'))';
Xfts = fints(d, zeros(numel(d),4), {'Bonds', 'LargeCap', 'SmallCap', 'Emerging'});
Xfts = tomonthly(Xfts);
Xfts.Bonds = X(:,1);
Xfts.LargeCap = X(:,2);
Xfts.SmallCap = X(:,3);
Xfts.Emerging = X(:,4);
p = PortfolioCVaR
p = p.simulateNormalScenariosByData(Xfts, 20000);
[passetmean, passetcovar] = p.estimateScenarioMoments
passetmean =
0.0032
0.0088
0.0103
0.1503
passetcovar =
0.0055 0.0003 0.0001 -0.0000
0.0003 0.0024 0.0017 0.0010
0.0001 0.0017 0.0048 0.0028
-0.0000 0.0010 0.0028 0.0102

```

The name-value inputs 'DataFormat' to handle return or price data and 'MissingData' to ignore or use samples with missing values also work for fints data. In addition, simulateNormalScenariosByData extracts asset names or identifiers from a fints object if the argument name 'GetAssetList' is set to true (the default value is false). If the 'GetAssetList' value is true, the identifiers are used to set the AssetList property of the PortfolioCVaR object. Thus, repeating the formation of the PortfolioCVaR object q from the previous example with the 'GetAssetList' flag set to true extracts the series labels from the fints object:
```

p = p.simulateNormalScenariosByData(Xfts, 20000, 'getassetlist', true);
disp(p.AssetList)
'Bonds' 'LargeCap' 'SmallCap' 'Emerging'

```

If you set the 'GetAssetList' flag set to true and your input data is in a matrix, simulateNormalScenariosByData uses the default labeling scheme from setAssetList as described in "Setting Up a List of Asset Identifiers" on page 5-38.

\section*{Simulating Normal Scenarios with Mean and Covariance}

Given the mean and covariance of asset returns, use the simulateNormalScenariosByMoments method to simulate multivariate normal scenarios. The mean can be either a row or column vector and the covariance matrix must be a symmetric positive-semidefinite matrix. Various rules for scalar expansion apply. To illustrate using simulateNormalScenariosByMoments, start with moments in \(m\) and \(C\) and generate 20,000 scenarios:
```

m = [0.0042; 0.0083; 0.01; 0.15];
C = [0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208];
p = PortfolioCVaR;
p = p.simulateNormalScenariosByMoments(m, C, 20000);
[passetmean, passetcovar] = p.estimateScenarioMoments

```
0.0033
0.0079
0.0099
0.1498
passetcovar =
\begin{tabular}{llll}
0.0054 & 0.0003 & 0.0002 & 0.0001 \\
0.0003 & 0.0024 & 0.0017 & 0.0010 \\
0.0002 & 0.0017 & 0.0048 & 0.0028 \\
0.0001 & 0.0010 & 0.0028 & 0.0102
\end{tabular}
simulateNormalScenariosByMoments performs scalar expansion on arguments for the moments of asset returns. If NumAssets has not already been set, a scalar argument is interpreted as a scalar with NumAssets set to 1. simulateNormalScenariosByMoments provides an additional optional argument to specify the number of assets so that scalar expansion works with the correct number of assets. In addition, if either a scalar or vector is input for the covariance of asset returns, a diagonal matrix is formed such that a scalar expands along the diagonal and a vector becomes the diagonal.

\section*{Working with a Riskless Asset}

The PortfolioCVaR object has a separate RiskFreeRate property that stores the rate of return of a riskless asset. Thus, you can separate your universe into a riskless asset and a collection of risky assets. For example, assume that your riskless asset has a return in the scalar variable ro, then the property for the RiskFreeRate is set using the constructor:
```

rO = 0.01/12;
p = PortfolioCVaR;
p = PortfolioCVaR('RiskFreeRate', rO);
disp(p.RiskFreeRate);

```

Note If your portfolio problem has a budget constraint such that your portfolio weights must sum to 1 , then the riskless asset is irrelevant.

\section*{Working with Transaction Costs}

The difference between net and gross portfolio returns is transaction costs. The net portfolio return proxy has distinct proportional costs to purchase and to sell assets which are maintained in the PortfolioCVaR object properties BuyCost and SellCost. Transaction costs are in units of total return and, as such, are proportional to the price of an asset so that they enter the model for net portfolio returns in return form. For example, suppose you have a stock currently priced \(\$ 40\) and your usual transaction costs are 5 cents per share. Then the transaction cost for the stock is \(0.05 / 40=0.00125\) (as defined in "Net Portfolio Returns" on page 5-5). Costs are entered as positive values and credits are entered as negative values.

\section*{Setting Transaction Costs Using the Constructor}

To set up transaction costs, you must specify an initial or current portfolio in the InitPort property. If the initial portfolio is not set when you set up the transaction cost properties, InitPort is 0 . The properties for transaction costs can be set using the constructor PortfolioCVaR. For example, assume that purchase and sale transaction costs are in the variables bc and sc and an initial portfolio is in the variable \(\times 0\), then transaction costs are set:
```

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = PortfolioCVaR('BuyCost', bc, 'SellCost', sc, 'InitPort', x0);
disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);

```
```

0.0013
0.0013
0.0013
0.0070
0.0013
0.0013
0.0024
0.4000
0.2000
0.2000
0.1000
0.1000

```

\section*{Setting Transaction Costs Using the setCosts Method}

You can also set the properties for transaction costs using setCosts. Assume that you have the same costs and initial portfolio as in the previous example. Given a PortfolioCVaR object \(p\) with an initial portfolio already set, use setCosts to set up transaction costs:
```

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = PortfolioCVaR('InitPort', x0);
p = p.setCosts(bc, sc);
disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);

```
    5
    0.0013
    0.0013
    0.0013
    0.0013
    0.0013
```

0.0013
0.0070
0.0013
0.0013
0.0024
0.4000
0.2000
0.2000
0.1000
0.1000

```

You can also set up the initial portfolio's InitPort value as an optional argument to setCosts so that the following is an equivalent way to set up transaction costs:
```

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = PortfolioCVaR;
p = p.setCosts(bc, sc, xO);
disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);
5
0.0013
0.0013
0.0013
0.0013
0.0013
0.0013
0.0070
0.0013

```
```

0.0013
0.0024
0.4000
0.2000
0.2000
0.1000
0.1000

```

\section*{Setting Transaction Costs with Scalar Expansion}

Both the constructor PortfolioCVaR and setCosts method implement scalar expansion on the arguments for transaction costs and the initial portfolio. If the NumAssets property is already set in the PortfolioCVaR object, scalar arguments for these properties are expanded to have the same value across all dimensions. In addition, setCosts lets you specify NumAssets as an optional final argument. For example, assume that you have an initial portfolio x0 and you want to set common transaction costs on all assets in your universe. You can set these costs in any of these equivalent ways:
```

x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = PortfolioCVaR('InitPort', x0, 'BuyCost', 0.002, 'SellCost', 0.002);
or
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = PortfolioCVaR('InitPort', x0);
p = p.setCosts(0.002, 0.002);
or
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = PortfolioCVaR;
p = p.setCosts(0.002, 0.002, x0);

```

To clear costs from your PortfolioCVaR object, use either the constructor or setCosts with empty inputs for the properties to be cleared. For example, you can clear sales costs from the PortfolioCVaR object \(p\) in the previous example:
```

p = PortfolioCVaR(p, 'SellCost', []);

```
See Also PortfolioCVaR | setCosts | setProbabilityLevel | setScenarios | estimatePortVaR | simulateNormalScenariosByMoments | simulateNormalScenariosByData
Related ..... Examples- "Constructing the PortfolioCVaR Object" on page 5-28- "Working with CVaR Portfolio Constraints" on page 5-61- "Validate the CVaR Portfolio Problem" on page 5-86- "Estimate Efficient Portfolios" on page 5-91- "Estimate Efficient Frontiers" on page 5-104
- "Asset Returns and Scenarios" on page 5-44
Concepts - "PortfolioCVaR Object" on page 5-17- "Portfolio Optimization Theory" on page 5-2

\section*{Working with CVaR Portfolio Constraints}

\author{
In this section... \\ "Setting Default Constraints for Portfolio Weights" on page 5-61 \\ "Working with Bound Constraints" on page 5-64 \\ "Working with Budget Constraints" on page 5-66 \\ "Working with Group Constraints" on page 5-68 \\ "Working with Group Ratio Constraints" on page 5-71 \\ "Working with Linear Equality Constraints" on page 5-75 \\ "Working with Linear Inequality Constraints" on page 5-77 \\ "Working with Average Turnover Constraints" on page 5-79 \\ "Working with One-Way Turnover Constraints" on page 5-82
}

\section*{Setting Default Constraints for Portfolio Weights}

The "default" CVaR portfolio problem has two constraints on portfolio weights:
- Portfolio weights must be nonnegative.
- Portfolio weights must sum to 1 .

Implicitly, these constraints imply that portfolio weights are no greater than 1 , although this is a superfluous constraint to impose on the problem.

\section*{Setting Default Constraints Using the Constructor}

Given a portfolio optimization problem with NumAssets \(=20\) assets, use the PortfolioCVaR constructor to set up a default problem and explicitly set bounds and budget constraints:
```

p = PortfolioCVaR('NumAssets', 20, 'LowerBound', 0, 'Budget', 1);
disp(p);

```

PortfolioCVaR with properties:
BuyCost: []
```

 SellCost: []
 RiskFreeRate: []
 ProbabilityLevel: []
Turnover: []
BuyTurnover: []
SellTurnover: []
NumScenarios: []
Name: []
NumAssets: 20
AssetList: []
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: [20x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

\section*{Setting Default Constraints Using the setDefaultConstraints Method}

An alternative approach is to use the setDefaultConstraints method. If the number of assets is already known in a PortfolioCVaR object, use setDefaultConstraints with no arguments to set up the necessary bound and budget constraints. Suppose you have 20 assets to set up the portfolio set for a default problem:
p = PortfolioCVaR('NumAssets', 20);
p = p.setDefaultConstraints;
```

disp(p);
PortfolioCVaR with properties:
BuyCost: []
SellCost: []
RiskFreeRate: []
ProbabilityLevel: []
Turnover: []
BuyTurnover: []
SellTurnover: []
NumScenarios: []
Name: []
NumAssets: 20
AssetList: []
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: [20x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

If the number of assets is unknown, setDefaultConstraints accepts NumAssets as an optional argument to form a portfolio set for a default problem. Suppose you have 20 assets:
```

p = PortfolioCVaR;
p = p.setDefaultConstraints(20);
disp(p);

```
PortfolioCVaR with properties:
```

 BuyCost: []
 SellCost: []
 RiskFreeRate: []
 ProbabilityLevel: []
Turnover: []
BuyTurnover: []
SellTurnover: []
NumScenarios: []
Name: []
NumAssets: 20
AssetList: []
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: [20x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

\section*{Working with Bound Constraints}

Bound constraints are optional linear constraints that maintain upper and lower bounds on portfolio weights (see "Bound Constraints" on page 5-10). Although every CVaR portfolio set must be bounded, it is not necessary to specify a CVaR portfolio set with explicit bound constraints. For example, you can create a CVaR portfolio set with an implicit upper bound constraint or a CVaR portfolio set with just average turnover constraints. The bound constraints have properties LowerBound for the lower-bound constraint and UpperBound for the upper-bound constraint. Set default values for these constraints using the setDefaultConstraints method (see "Setting Default Constraints for Portfolio Weights" on page 5-61).

\section*{Setting Bounds Using the Constructor}

The properties for bound constraints are set through the constructor PortfolioCVaR. Suppose you have a balanced fund with stocks that can range from 50 to \(75 \%\) of your portfolio and bonds that can range from 25 to \(50 \%\) of your portfolio. The bound constraints for a balanced fund are set with:
```

lb = [0.5; 0.25];
ub = [0.75; 0.5];
p = PortfolioCVaR('LowerBound', lb, 'UpperBound', ub);
disp(p.NumAssets);
disp(p.LowerBound);
disp(p.UpperBound);

```

2
0.5000
0.2500
0.7500
0.5000

To continue with this example, you must set up a budget constraint. For details, see "Working with Budget Constraints" on page 5-66.

\section*{Setting Bounds Using the setBounds Method}

You can also set the properties for bound constraints using setBounds. Suppose you have a balanced fund with stocks that can range from \(50 \%\) to \(75 \%\) of your portfolio and bonds that can range from \(25 \%\) to \(50 \%\) of your portfolio. Given a PortfolioCVaR object p, use setBounds to set the bound constraints:
```

lb = [0.5; 0.25];
ub = [0.75; 0.5];
p = PortfolioCVaR;
p = p.setBounds(lb, ub);
disp(p.NumAssets);
disp(p.LowerBound);
disp(p.UpperBound);

```
0.5000
0.2500
0.7500
0.5000

\section*{Setting Bounds Using the Constructor or setBounds Method}

Both the constructor PortfolioCVaR and setBounds method implement scalar expansion on either the LowerBound or UpperBound properties. If the NumAssets property is already set in the PortfolioCVaR object, scalar arguments for either property expand to have the same value across all dimensions. In addition, setBounds lets you specify NumAssets as an optional argument. Suppose you have a universe of 500 assets and you want to set common bound constraints on all assets in your universe. Specifically, you are a long-only investor and want to hold no more than \(5 \%\) of your portfolio in any single asset. You can set these bound constraints in any of these equivalent ways:
```

p = PortfolioCVaR('NumAssets', 500, 'LowerBound', 0, 'UpperBound', 0.05);
or
p = PortfolioCVaR('NumAssets', 500);
p = p.setBounds(0, 0.05);
or
p = PortfolioCVaR;
p = p.setBounds(0, 0.05, 500);

```

To clear bound constraints from your PortfolioCVaR object, use either the PortfolioCVaR constructor or setBounds with empty inputs for the properties to be cleared. For example, to clear the upper-bound constraint from the PortfolioCVaR object \(p\) in the previous example:
p = PortfolioCVaR(p, 'UpperBound', []);

\section*{Working with Budget Constraints}

The budget constraint is an optional linear constraint that maintains upper and lower bounds on the sum of portfolio weights (see "Budget Constraints"
on page \(5-11\) ). Budget constraints have properties LowerBudget for the lower budget constraint and UpperBudget for the upper budget constraint. If you set up a CVaR portfolio optimization problem that requires portfolios to be fully invested in your universe of assets, you can set LowerBudget to be equal to UpperBudget. These budget constraints can be set with default values equal to 1 using setDefaultConstraints (see "Setting Default Constraints Using the Constructor" on page 5-61).

\section*{Setting Budget Constraints Using the Constructor}

The properties for the budget constraint can also be set using the constructor PortfolioCVaR. Suppose you have an asset universe with many risky assets and a riskless asset and you want to ensure that your portfolio never holds more than \(1 \%\) cash, that is, you want to ensure that you are 99 to \(100 \%\) invested in risky assets. The budget constraint for this portfolio can be set with:
```

p = PortfolioCVaR('LowerBudget', 0.99, 'UpperBudget', 1);
disp(p.LowerBudget);
disp(p.UpperBudget);

```
0.9900

1

\section*{Setting Budget Constraints Using the setBudget Method}

You can also set the properties for a budget constraint using setBudget. Suppose you have a fund that permits up to \(10 \%\) leverage which means that your portfolio can be from 100 to \(110 \%\) invested in risky assets. Given a PortfolioCVaR object \(p\), use setBudget to set the budget constraints:
p = PortfolioCVaR;
\(\mathrm{p}=\mathrm{p}\). setBudget(1, 1.1);
disp(p.LowerBudget);
disp(p.UpperBudget);

1
1.1000

If you were to continue with this example, then set the RiskFreeRate property to the borrowing rate to finance possible leveraged positions. For details on the RiskFreeRate property, see "Working with a Riskless Asset" on page 5-55. To clear either bound for the budget constraint from your PortfolioCVaR object, use either the constructor PortfolioCVaR or setBudget with empty inputs for the properties to be cleared. For example, clear the upper-budget constraint from the PortfolioCVaR object \(p\) in the previous example with:
```

p = PortfolioCVaR(p, 'UpperBudget', []);

```

\section*{Working with Group Constraints}

Group constraints are optional linear constraints that group assets together and enforce bounds on the group weights (see "Group Constraints" on page \(5-12\) ). Although the constraints are implemented as general constraints, the usual convention is to form a group matrix that identifies membership of each asset within a specific group with Boolean indicators (either true or false or with 1 or 0 ) for each element in the group matrix. Group constraints have properties GroupMatrix for the group membership matrix, LowerGroup for the lower-bound constraint on groups, and UpperGroup for the upper-bound constraint on groups.

\section*{Setting Group Constraints Using the Constructor}

The properties for group constraints are set through the constructor PortfolioCVaR. Suppose you have a portfolio of five assets and want to ensure that the first three assets constitute no more than \(30 \%\) of your portfolio, then you can set group constraints:
```

G = [1 1 1 1 0 0];
p = PortfolioCVaR('GroupMatrix', G, 'UpperGroup', 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

```
5
\(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)

The group matrix \(G\) can also be a logical matrix so that the following code achieves the same result.
```

G = [true true true false false];
p = PortfolioCVaR('GroupMatrix', G, 'UpperGroup', 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

```

5
0.3000

\section*{Setting Group Constraints Using the setGroups and addGroups Methods}

You can also set the properties for group constraints using setGroups. Suppose you have a portfolio of five assets and want to ensure that the first three assets constitute no more than \(30 \%\) of your portfolio. Given a PortfolioCVaR object p, use setGroups to set the group constraints:
```

G = [true true true false false];
p = PortfolioCVaR;
p = p.setGroups(G, [], 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

```
5
\(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
0.3000

In this example, you would set the LowerGroup property to be empty ([ ]).
Suppose you want to add another group constraint to make odd-numbered assets constitute at least \(20 \%\) of your portfolio. Set up an augmented group matrix and introduce infinite bounds for unconstrained group bounds or use
the addGroups method to build up group constraints. For this example, create another group matrix for the second group constraint:
```

p = PortfolioCVaR;
G = [true true true false false]; % group matrix for first group constraint
p = p.setGroups(G, [], 0.3);
G = [true false true false true]; % group matrix for second group constraint
p = p.addGroups(G, 0.2);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.LowerGroup);
disp(p.UpperGroup);

```
    5
\begin{tabular}{lllll}
1 & 1 & 1 & 0 & 0
\end{tabular}
\begin{tabular}{lllll}
1 & 0 & 1 & 0 & 1
\end{tabular}
    - Inf
0.2000
0.3000
    Inf
addGroups determines which bounds are unbounded so you only need to focus on the constraints that you want to set.

The constructor PortfolioCVaR and setGroups and addGroups implement scalar expansion on either the LowerGroup or UpperGroup properties based on the dimension of the group matrix in the property GroupMatrix. Suppose you have a universe of 30 assets with 6 asset classes such that assets \(1-5\), assets \(6-12\), assets \(13-18\), assets \(19-22\), assets \(23-27\), and assets \(28-30\) constitute each of your asset classes and you want each asset class to fall from 0 to \(25 \%\) of your portfolio. Let the following group matrix define your groups and scalar expansion define the common bounds on each group:
```

p = PortfolioCVaR;
G = blkdiag(true(1,5), true(1,7), true(1,6), true(1,4), true(1,5), true(1, 3));
p = p.setGroups(G, 0, 0.25);
disp(p.NumAssets);
disp(p.GroupMatrix);

```

\section*{disp(p.LowerGroup); \\ disp(p.UpperGroup);}

30

Columns 1 through 16
\begin{tabular}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

Columns 17 through 30
\begin{tabular}{llllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{tabular}
0.2500
0.2500
0.2500
0.2500
0.2500
0. 2500

\section*{Working with Group Ratio Constraints}

Group ratio constraints are optional linear constraints that maintain bounds on proportional relationships among groups of assets (see "Group Ratio

Constraints" on page 5-12). Although the constraints are implemented as general constraints, the usual convention is to specify a pair of group matrices that identify membership of each asset within specific groups with Boolean indicators (either true or false or with 1 or 0 ) for each element in each of the group matrices. The goal is to ensure that the ratio of a base group to a comparison group fall within specified bounds. Group ratio constraints have properties:
- GroupA for the base membership matrix
- GroupB for the comparison membership matrix
- LowerRatio for the lower-bound constraint on the ratio of groups
- UpperRatio for the upper-bound constraint on the ratio of groups

\section*{Setting Group Ratio Constraints Using the Constructor}

The properties for group ratio constraints are set using constructor PortfolioCVaR. For example, assume you want the ratio of financial to nonfinancial companies in your portfolios to never go above \(50 \%\). Suppose you have six assets with three financial companies (assets 1-3) and three nonfinanical companies (assets 4-6). To set group ratio constraints:
```

GA = [1 1 1 1 0 0 0]; % financial companies
GB = [llllllll
p = PortfolioCVaR('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.UpperRatio);

```
6
\begin{tabular}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{tabular}

Group matrices GA and GB in this example can be logical matrices with true and false elements that yield the same result:
```

GA = [true true true false false false]; % financial companies
GB = [false false false true true true]; % nonfinancial companies
p = PortfolioCVaR('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.UpperRatio);

```
6
\(\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 0\end{array}\)
\(\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 1\end{array}\)
0.5000

\section*{Setting Group Ratio Constraints Using the setGroupRatio and addGroupRatio Methods}

You can also set the properties for group ratio constraints using setGroupRatio. For example, assume that you want the ratio of financial to nonfinancial companies in your portfolios to never go above 50\%. Suppose you have six assets with three financial companies (assets 1-3) and three nonfinanical companies (assets 4-6). Given a PortfolioCVaR object p, use setGroupRatio to set the group constraints:
```

GA = [true true true false false false]; % financial companies
GB = [false false false true true true]; % nonfinancial companies
p = PortfolioCVaR;
p = p.setGroupRatio(GA, GB, [], 0.5);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.UpperRatio);

```
6
\(\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 0\end{array}\)

In this example, you would set the LowerRatio property to be empty ([ ]).
Suppose you want to add another group ratio constraint to ensure that the weights in odd-numbered assets constitute at least \(20 \%\) of the weights in nonfinancial assets your portfolio. You can set up augmented group ratio matrices and introduce infinite bounds for unconstrained group ratio bounds, or you can use the addGroupRatio method to build up group ratio constraints. For this example, create another group matrix for the second group constraint:
```

p = PortfolioCVaR;
GA = [true true true false false false]; % financial companies
GB = [false false false true true true]; % nonfinancial companies
p = p.setGroupRatio(GA, GB, [], 0.5);
GA = [true false true false true false]; % odd-numbered companies
GB = [false false false true true true]; % nonfinancial companies
p = p.addGroupRatio(GA, GB, 0.2);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.LowerRatio);
disp(p.UpperRatio);
6

1	1	1	0	0	0
1	0	1	0	1	0
0	0	0	1	1	1
0	0	0	1	1	1

 - Inf
 0.2000

```

\subsection*{0.5000 \\ Inf}

Notice that addGroupRatio determines which bounds are unbounded so you only need to focus on the constraints you want to set.

The constructor PortfolioCVaR, setGroupRatio, and addGroupRatio implement scalar expansion on either the LowerRatio or UpperRatio properties based on the dimension of the group matrices in GroupA and GroupB properties.

\section*{Working with Linear Equality Constraints}

Linear equality constraints are optional linear constraints that impose systems of equalities on portfolio weights (see "Linear Equality Constraints" on page 5-9). Linear equality constraints have properties AEquality, for the equality constraint matrix, and bEquality, for the equality constraint vector.

\section*{Setting Linear Equality Constraints Using the Constructor}

The properties for linear equality constraints are set using the constructor PortfolioCVaR. Suppose you have a portfolio of five assets and want to ensure that the first three assets are \(50 \%\) of your portfolio. To set this constraint:
```

A = [1 1 1 1 0 0];
b = 0.5;
p = PortfolioCVaR('AEquality', A, 'bEquality', b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);

```
5
\(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
0.5000

\section*{Setting Linear Equality Constraints Using the setEquality and addEquality Methods}

You can also set the properties for linear equality constraints using setEquality. Suppose you have a portfolio of five assets and want to ensure that the first three assets are \(50 \%\) of your portfolio. Given a PortfolioCVaR object \(p\), use setEquality to set the linear equality constraints:
```

A = [1 1 1 1 0 0];
b = 0.5;
p = PortfolioCVaR;
p = p.setEquality(A, b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);
5
1
0.5000

```

Suppose you want to add another linear equality constraint to ensure that the last three assets also constitute \(50 \%\) of your portfolio. You can set up an augmented system of linear equalities or use addEquality to build up linear equality constraints. For this example, create another system of equalities:
```

p = PortfolioCVaR;
A = [1 1 1 0 O]; % first equality constraint
b = 0.5;
p = p.setEquality(A, b);
A = [0 0 1 1 1]; % second equality constraint
b = 0.5;
p = p.addEquality(A, b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);

```
5
```

1
0
0.5000
0.5000

```

The constructor PortfolioCVaR and setEquality and addEquality implement scalar expansion on the bEquality property based on the dimension of the matrix in the AEquality property.

\section*{Working with Linear Inequality Constraints}

Linear inequality constraints are optional linear constraints that impose systems of inequalities on portfolio weights (see "Linear Inequality Constraints" on page \(5-8\) ). Linear inequality constraints have properties AInequality for the inequality constraint matrix, and bInequality for the inequality constraint vector.

\section*{Setting Linear Inequality Constraints Using the Constructor}

The properties for linear inequality constraints are set using the constructor PortfolioCVaR. Suppose you have a portfolio of five assets and you want to ensure that the first three assets are no more than \(50 \%\) of your portfolio. To set up these constraints:
```

A = [1 1 1 1 0 0];
b = 0.5;
p = PortfolioCVaR('AInequality', A, 'bInequality', b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);
5
1
0.5000

```

\section*{Setting Linear Inequality Constraints Using the setInequality and addInequality Methods}

You can also set the properties for linear inequality constraints using setInequality. Suppose you have a portfolio of five assets and you want to ensure that the first three assets constitute no more than \(50 \%\) of your portfolio. Given a PortfolioCVaR object p , use setInequality to set the linear inequality constraints:
```

A = [1 1 1 1 0 0];
b = 0.5;
p = PortfolioCVaR;
p = p.setInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);
5
1 1 1 1 1 0
0.5000

```

Suppose you want to add another linear inequality constraint to ensure that the last three assets constitute at least \(50 \%\) of your portfolio. You can set up an augmented system of linear inequalities or use the addInequality method to build up linear inequality constraints. For this example, create another system of inequalities:
```

p = PortfolioCVaR;
A = [1 1 1 0 0]; % first inequality constraint
b = 0.5;
p = p.setInequality(A, b);
A = [0 0 -1 -1 -1]; % second inequality constraint
b = -0.5;
p = p.addInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

```
```

5
1
0
0.5000
-0.5000

```

The PortfolioCVaR constructor and setInequality and addInequality implement scalar expansion on the bInequality property based on the dimension of the matrix in the AInequality property.

\section*{Working with Average Turnover Constraints}

The turnover constraint is an optional linear absolute value constraint (see "Average Turnover Constraints" on page 5-13) that enforces an upper bound on the average of purchases and sales. The turnover constraint can be set using the PortfolioCVaR constructor or the setTurnover method. The turnover constraint depends on an initial or current portfolio, which is assumed to be zero if not set when the turnover constraint is set. The turnover constraint has properties Turnover, for the upper bound on average turnover, and InitPort, for the portfolio against which turnover is computed.

\section*{Setting Average Turnover Constraints Using the Constructor}

The properties for the turnover constraints are set using the PortfolioCVaR constructor. Suppose you have an initial portfolio of 10 assets in a variable \(x 0\) and you want to ensure that average turnover is no more than \(30 \%\). To set this turnover constraint:
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = PortfolioCVaR('Turnover', 0.3, 'InitPort', x0);
disp(p.NumAssets);
disp(p.Turnover);
disp(p.InitPort);

```

10
0.3000
0.1200
```

0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

```

Note if the NumAssets or InitPort properties are not set before or when the turnover constraint is set, various rules are applied to assign default values to these properties (see "Setting Up an Initial or Current Portfolio" on page 5-41).

\section*{Setting Average Turnover Constraints Using the setTurnover Method}

You can also set properties for portfolio turnover using setTurnover to specify both the upper bound for average turnover and an initial portfolio. Suppose you have an initial portfolio of 10 assets in a variable \(\mathrm{x0}\) and want to ensure that average turnover is no more than \(30 \%\). Given a PortfolioCVaR object p, use setTurnover to set the turnover constraint with and without the initial portfolio being set previously:
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = PortfolioCVaR('InitPort', x0);
p = p.setTurnover(0.3);
disp(p.NumAssets);
disp(p.Turnover);
disp(p.InitPort);
1 0
0.3000
0.1200
0.0900
0.0800
0.0700
0.1000

```
```

0.1000
0.1500
0.1100
0.0800
0.1000
or
x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = PortfolioCVaR;
p = p.setTurnover(0.3, x0);
disp(p.NumAssets);
disp(p.Turnover);
disp(p.InitPort);
1 0
0.3000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000
setTurnover implements scalar expansion on the argument for the initial portfolio. If the NumAssets property is already set in the PortfolioCVaR object, a scalar argument for InitPort expands to have the same value across all dimensions. In addition, setTurnover lets you specify NumAssets as an optional argument. To clear turnover from your PortfolioCVaR object, use the constructor PortfolioCVaR or setTurnover with empty inputs for the properties to be cleared.

```

\section*{Working with One-Way Turnover Constraints}

One-way turnover constraints are optional constraints (see "One-Way Turnover Constraints" on page 5-14) that enforce upper bounds on net purchases or net sales. One-way turnover constraints can be set using the PortfolioCVaR constructor or the setOneWayTurnover method. One-way turnover constraints depend upon an initial or current portfolio, which is assumed to be zero if not set when the turnover constraints are set. One-way turnover constraints have properties BuyTurnover, for the upper bound on net purchases, SellTurnover, for the upper bound on net sales, and InitPort, for the portfolio against which turnover is computed.

\section*{Setting One-Way Turnover Constraints Using the Constructor}

The Properties for the one-way turnover constraints are set using the PortfolioCVaR constructor. Suppose you have an initial portfolio with 10 assets in a variable \(\mathrm{x0}\) and you want to ensure that turnover on purchases is no more than \(30 \%\) and turnover on sales is no more than \(20 \%\) of the initial portfolio. To set these turnover constraints:
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = PortfolioCVaR('BuyTurnover', 0.3, 'SellTurnover', 0.2, 'InitPort', x0);
disp(p.NumAssets);
disp(p.BuyTurnover);
disp(p.SellTurnover);
disp(p.InitPort);

```
0.0800
0.1000

If the NumAssets or InitPort properties are not set before or when the turnover constraint is set, various rules are applied to assign default values to these properties (see "Setting Up an Initial or Current Portfolio" on page 5-41).

\section*{Setting Turnover Constraints Using the setOneWayTurnover Method}

You can also set properties for portfolio turnover using setOneWayTurnover to specify to the upper bounds for turnover on purchases (BuyTurnover) and sales (SellTurnover) and an initial portfolio. Suppose you have an initial portfolio of 10 assets in a variable \(x 0\) and want to ensure that turnover on purchases is no more than \(30 \%\) and that turnover on sales is no more than \(20 \%\) of the initial portfolio. Given a PortfolioCVaR object p, use setOneWayTurnover to set the turnover constraints with and without the initial portfolio being set previously:
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = PortfolioCVaR('InitPort', x0);
p = p.setOneWayTurnover(0.3, 0.2);
disp(p.NumAssets);
disp(p.BuyTurnover);
disp(p.SellTurnover);
disp(p.InitPort);

```

10
0.3000
0.2000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
```

 0.1500
 0.1100
 0.0800
 0.1000
 or
x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = PortfolioCVaR;
p = p.setOneWayTurnover(0.3, 0.2, x0);
disp(p.NumAssets);
disp(p.BuyTurnover);
disp(p.SellTurnover);
disp(p.InitPort);
1 0
0.3000
0.2000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

```
setOneWayTurnover implements scalar expansion on the argument for the initial portfolio. If the NumAssets property is already set in the PortfolioCVaR object, a scalar argument for InitPort expands to have the same value across all dimensions. In addition, setOneWayTurnover lets you specify NumAssets as an optional argument. To remove one-way turnover from your PortfolioCVaR object, use the constructor PortfolioCVaR or setOneWayTurnover with empty inputs for the properties to be cleared.
See Also PortfolioCVaR | setDefaultConstraints | setBounds | setBudget | setGroups | setGroupRatio | setEquality | setInequality \| setTurnover | setOneWayTurnover
Related
Examples
- "Constructing the PortfolioCVaR Object" on page 5-28
- "Validate the CVaR Portfolio Problem" on page 5- ..... 5-86
- "Estimate Efficient Portfolios" on page 5-91- "Estimate Efficient Frontiers" on page 5-104- "Asset Returns and Scenarios" on page 5-44
Concepts - "PortfolioCVaR Object" on page 5-17- "Portfolio Optimization Theory" on page 5-2

\section*{Validate the CVaR Portfolio Problem}

\author{
In this section... \\ "Validating a CVaR Portfolio Set" on page 5-86 \\ "Validating CVaR Portfolios" on page 5-88
}

In some cases, you may want to validate either your inputs to, or outputs from, a portfolio optimization problem. Although most error checking that occurs during the problem setup phase catches most difficulties with a portfolio optimization problem, the processes to validate CVaR portfolio sets and portfolios are time consuming and are best done offline. Consequently, the portfolio optimization tools have specialized methods to validate CVaR portfolio sets and portfolios.

\section*{Validating a CVaR Portfolio Set}

Since it is necessary and sufficient that your CVaR portfolio set must be a nonempty, closed, and bounded set to have a valid portfolio optimization problem, the method estimateBounds lets you examine your portfolio set to determine if it is nonempty and, if nonempty, whether it is bounded. Suppose you have the following CVaR portfolio set which is an empty set because the initial portfolio at 0 is too far from a portfolio that satisfies the budget and turnover constraint:
```

p = PortfolioCVaR('NumAssets', 3, 'Budget', 1);
p = p.setTurnover(0.3, 0);

```

If a CVaR portfolio set is empty, estimateBounds returns NaN bounds and sets the isbounded flag to []:
[lb, ub, isbounded] = p.estimateBounds
lb \(=\)
```

 NaN
 NaN
 NaN
 isbounded =
[]

```

Suppose you create an unbounded CVaR portfolio set as follows:
```

p = PortfolioCVaR('AInequality', [1 -1; 1 1], 'bInequality', 0);
[lb, ub, isbounded] = p.estimateBounds
lb =
-Inf
-Inf
ub =
1.0e-008 *
-0.3712
Inf
isbounded =

```
    0

In this case, estimateBounds returns (possibly infinite) bounds and sets the isbounded flag to false. The result shows which assets are unbounded so that you can apply bound constraints as necessary.

Finally, suppose you created a CVaR portfolio set that is both nonempty and bounded. estimateBounds not only validates the set, but also obtains tighter bounds which is useful if you are concerned with the actual range of portfolio choices for individual assets in your portfolio set:
```

p = PortfolioCVaR;
p = p.setBudget(1,1);

```
```

p = p.setBounds([-0.1; 0.2; 0.3; 0.2], [0.5; 0.3; 0.9; 0.8]);
[lb, ub, isbounded] = p.estimateBounds
lb =
-0.1000
0.2000
0.3000
0.2000
ub =
0.3000
0.3000
0.7000
0.6000
isbounded =

```
    1

In this example, all but the second asset have tighter upper bounds than the input upper bound implies.

\section*{Validating CVaR Portfolios}

Given a CVaR portfolio set specified in a PortfolioCVaR object, you often want to check if specific portfolios are feasible with respect to the portfolio set. This can occur with, for example, initial portfolios and with portfolios obtained from other procedures. The checkFeasibility method determines whether a collection of portfolios is feasible. Suppose you perform the following portfolio optimization and want to determine if the resultant efficient portfolios are feasible relative to a modified problem.

First, set up a problem in the PortfolioCVaR object p, estimate efficient portfolios in pwgt, and then confirm that these portfolios are feasible relative to the initial problem:
m = [ 0.05; 0.1; 0.12; 0.18 ];
```

C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontier;
p.checkFeasibility(pwgt)
ans =
1

```

Next, set up a different portfolio problem that starts with the initial problem with an additional a turnover constraint and an equally weighted initial portfolio:
```

q = p.setTurnover(0.3, 0.25);
q.checkFeasibility(pwgt)
ans =

```

In this case, only two of the ten efficient portfolios from the initial problem are feasible relative to the new problem in PortfolioCVaR object q. Solving the second problem using checkFeasibility demonstrates that the efficient portfolio for PortfolioCVaR object \(q\) is feasible relative to the initial problem:
```

qwgt = q.estimateFrontier;
p.checkFeasibility(qwgt)

```

See Also
PortfolioCVaR | estimateBounds | checkFeasibility

\section*{Related \\ Examples}
- "Constructing the PortfolioCVaR Object" on page 5-28
- "Working with CVaR Portfolio Constraints" on page 5-61
- "Estimate Efficient Portfolios" on page 5-91
- "Estimate Efficient Frontiers" on page 5-104
- "Asset Returns and Scenarios" on page 5-44

Concepts - "PortfolioCVaR Object" on page 5-17
- "Portfolio Optimization Theory" on page 5-2

\section*{Estimate Efficient Portfolios}

\author{
In this section... \\ "Obtaining Portfolios Along the Entire Efficient Frontier" on page 5-91 \\ "Obtaining Endpoints of the Efficient Frontier" on page 5-93 \\ "Obtaining Efficient Portfolios for Target Returns" on page 5-95 \\ "Obtaining Efficient Portfolios for Target Risks" on page 5-98 \\ "Choosing and Controlling the Solver" on page 5-101
}

There are two ways to look at a portfolio optimization problem that depends on what you are trying to do. One goal is to estimate efficient portfolios and the other is to estimate efficient frontiers. This section focuses on the former goal and "Estimate Efficient Frontiers" on page 5-104 focuses on the latter goal.

\section*{Obtaining Portfolios Along the Entire Efficient Frontier}

The most basic way to obtain optimal portfolios is to obtain points over the entire range of the efficient frontier. Given a portfolio optimization problem in a PortfolioCVaR object, the estimateFrontier method computes efficient portfolios spaced evenly according to the return proxy from the minimum to maximum return efficient portfolios. The number of portfolios estimated is controlled by the hidden property defaultNumPorts which is set to 10. A different value for the number of portfolios estimated is specified as input to estimateFrontier. This example shows the default number of efficient portfolios over the entire range of the efficient frontier:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;

```
```

p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontier;
disp(pwgt);

0.8711	0.7066	0.5451	0.3709	0.2091	0.0494	0	0	0.0000	0.0000
0.0375	0.1427	0.2409	0.3550	0.4538	0.5549	0.4771	0.3255	0.1651	0.0000
0.0456	0.0508	0.0581	0.0731	0.0804	0.0803	0.0644	0.0338	0.0140	0.0000
0.0458	0.0999	0.1559	0.2010	0.2567	0.3154	0.4585	0.6407	0.8209	1.0000

```

If you want only four portfolios in the previous example:
```

pwgt = p.estimateFrontier(4);
disp(pwgt);

0.8711	0.3709	0	0.0000
0.0375	0.3550	0.4771	0.0000
0.0456	0.0731	0.0644	0.0000
0.0458	0.2010	0.4585	1.0000

```

Starting from the initial portfolio, estimateFrontier also returns purchases and sales to get from your initial portfolio to each efficient portfolio on the efficient frontier. For example, given an initial portfolio in pwgt0, you can obtain purchases and sales:
```

pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateFrontier;
display(pwgt);
display(pbuy);
display(psell);
pwgt =

0.8711	0.7066	0.5451	0.3709	0.2091	0.0494	0	0	0.0000	0.0000
0.0375	0.1427	0.2409	0.3550	0.4538	0.5549	0.4771	0.3255	0.1651	0.0000
0.0456	0.0508	0.0581	0.0731	0.0804	0.0803	0.0644	0.0338	0.0140	0.0000

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 0.0458 & 0.0999 & 0.1559 & 0.2010 & 0.2567 & 0.3154 & 0.4585 & 0.6407 & 0.8209 & 1.0000 \\
\hline \multicolumn{10}{|l|}{pbuy =} \\
\hline 0.5711 & 0.4066 & 0.2451 & 0.0709 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0.0550 & 0.1538 & 0.2549 & 0.1771 & 0.0255 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0.0559 & 0.1010 & 0.1567 & 0.2154 & 0.3585 & 0.5407 & 0.7209 & 0.9000 \\
\hline \multicolumn{10}{|l|}{psell =} \\
\hline 0 & 0 & 0 & 0 & 0.0909 & 0.2506 & 0.3000 & 0.3000 & 0.3000 & 0.3000 \\
\hline 0.2625 & 0.1573 & 0.0591 & 0 & 0 & 0 & 0 & 0 & 0.1349 & 0.3000 \\
\hline 0.1544 & 0.1492 & 0.1419 & 0.1269 & 0.1196 & 0.1197 & 0.1356 & 0.1662 & 0.1860 & 0.2000 \\
\hline 0.0542 & 0.0001 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial portfolio is 0 .

\section*{Obtaining Endpoints of the Efficient Frontier}

In many cases, you might be interested in the endpoint portfolios for the efficient frontier. Suppose you want to determine the range of returns from minimum to maximum to refine a search for a portfolio with a specific target return. Use the estimateFrontierLimits method to obtain the endpoint portfolios:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;

```
```

p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontierLimits;
disp(pwgt);
0.8587 0.0000
0.0536 0.0000
0.0445 0.0000
0.0432 1.0000

```

Note The endpoints of the efficient frontier depend upon the Scenarios in the PortfolioCVaR object. If you change the Scenarios, you are likely to obtain different endpoints.

Starting from an initial portfolio, estimateFrontierLimits also returns purchases and sales to get from the initial portfolio to the endpoint portfolios on the efficient frontier. For example, given an initial portfolio in pwgt0, you can obtain purchases and sales:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);

```
```

[pwgt, pbuy, psell] = p.estimateFrontierLimits;
display(pwgt);
display(pbuy);
display(psell);
pwgt =

0.8647	0.0000
0.0458	0.0000
0.0458	0.0000
0.0436	1.0000

pbuy =
0.5647 0
0 0
0 0
0.9000
psell =

0	0.3000
0.2542	0.3000
0.1542	0.2000
0.0564	0

```

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial portfolio is 0 .

\section*{Obtaining Efficient Portfolios for Target Returns}

To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn method accepts one or more target portfolio returns and obtains efficient portfolios with the specified returns. For example, assume that you have a universe of four assets where you want to obtain efficient portfolios with target portfolio returns of \(7 \%, 10 \%\), and \(12 \%\) :
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontierByReturn([0.07, 0.10, .12]);
display(pwgt);
pwgt =

0.7595	0.3860	0.1421
0.1026	0.3074	0.4288
0.0549	0.0967	0.1336
0.0829	0.2099	0.2955

```

In some cases, you can request a return for which no efficient portfolio exists. Based on the previous example, suppose you want a portfolio with a \(4 \%\) return (which is the return of the first asset). A portfolio that is fully invested in the first asset, however, is inefficient. estimateFrontierByReturn warns if your target returns are outside the range of efficient portfolio returns and replaces it with the endpoint portfolio of the efficient frontier closest to your target return:
```

pwgt = p.estimateFrontierByReturn([0.04]);

```
Warning: One or more target return values are outside the feasible range [ \(0.0667349,0.18272\) ].
Will return portfolios associated with endpoints of the range for these values.
> In PortfolioCVaR.estimateFrontierByReturn at 94

The best way to avoid this situation is to bracket your target portfolio returns with estimateFrontierLimits and estimatePortReturn (see "Obtaining Endpoints of the Efficient Frontier" on page 5-93 and "Obtaining CVaR Portfolio Risks and Returns" on page 5-104).
```

pret = p.estimatePortReturn(p.estimateFrontierLimits);
display(pret);
pret =
0.0655
0.1784

```

This result indicates that efficient portfolios have returns that range from 6.5 to \(17.8 \%\). Note, your results for these examples may be different due to the random generation of scenarios.

If you have an initial portfolio, estimateFrontierByReturn also returns purchases and sales to get from your initial portfolio to the target portfolios on the efficient frontier. For example, given an initial portfolio in pwgt0, to obtain purchases and sales with target returns of \(7 \%, 10 \%\), and \(12 \%\) :
```

pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgtO);
[pwgt, pbuy, psell] = p.estimateFrontierByReturn([0.07, 0.10, .12]);
display(pwgt);
display(pbuy);
display(psell);
pwgt =

0.7407	0.3596	0.1186
0.1204	0.3265	0.4332
0.0550	0.0991	0.1415
0.0839	0.2149	0.3067

pbuy =

0.4407	0.0596	0
0	0.0265	0.1332
0	0	0

```
psell =
\begin{tabular}{rrr}
0 & 0 & 0.1814 \\
0.1796 & 0 & 0 \\
0.1450 & 0.1009 & 0.0585 \\
0.0161 & 0 & 0
\end{tabular}

If you do not have an initial portfolio, the purchase and sale weights assume that your initial portfolio is 0 .

\section*{Obtaining Efficient Portfolios for Target Risks}

To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk method accepts one or more target portfolio risks and obtains efficient portfolios with the specified risks. Suppose you have a universe of four assets where you want to obtain efficient portfolios with target portfolio risks of \(12 \%, 14 \%\), and \(16 \%\).
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.9);
pwgt = p.estimateFrontierByRisk([0.12, 0.14, 0.16]);
display(pwgt);
pwgt =

```
\begin{tabular}{lll}
0.3649 & 0.2626 & 0.1705 \\
0.3072 & 0.3603 & 0.3996 \\
0.0810 & 0.0927 & 0.1092 \\
0.2469 & 0.2845 & 0.3207
\end{tabular}

In some cases, you can request a risk for which no efficient portfolio exists. Based on the previous example, suppose you want a portfolio with \(6 \%\) risk (individual assets in this universe have risks ranging from 7 to \(42.5 \%\) ). It turns out that a portfolio with \(6 \%\) risk cannot be formed with these four assets. estimateFrontierByRisk warns if your target risks are outside the range of efficient portfolio risks and replaces it with the endpoint of the efficient frontier closest to your target risk:
```

pwgt = p.estimateFrontierByRisk(0.06)

```
```

Warning: One or more target risk values are outside the feasible range [0.0702597, 0.42564].
Will return portfolios associated with endpoints of the range for these values.
> In PortfolioCVaR.estimateFrontierByRisk at 81

```
pwgt =
    0.7826
    0.0960
    0.0434
    0.0779

The best way to avoid this situation is to bracket your target portfolio risks with estimateFrontierLimits and estimatePortRisk (see "Obtaining Endpoints of the Efficient Frontier" on page 5-93 and "Obtaining CVaR Portfolio Risks and Returns" on page 5-104).
```

prsk = p.estimatePortRisk(p.estimateFrontierLimits);
display(prsk);
prsk =
0.0703
0.4256

```

This result indicates that efficient portfolios have risks that range from 7 to \(42.5 \%\). Note, your results for these examples may be different due to the random generation of scenarios.

Starting with an initial portfolio, estimateFrontierByRisk also returns purchases and sales to get from your initial portfolio to the target portfolios on the efficient frontier. For example, given an initial portfolio in pwgt0, you can obtain purchases and sales from the example with target risks of \(12 \%, 14 \%\), and \(16 \%\) :
```

pwgtO = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateFrontierByRisk([0.12, 0.14, 0.16]);

```
display(pwgt);
display(pbuy);
display(psell);
pwgt =
\begin{tabular}{lll}
0.3649 & 0.2626 & 0.1705 \\
0.3072 & 0.3603 & 0.3996 \\
0.0810 & 0.0927 & 0.1092 \\
0.2469 & 0.2845 & 0.3207
\end{tabular}
pbuy =
\begin{tabular}{rrr}
0.0649 & 0 & 0 \\
0.0072 & 0.0603 & 0.0996 \\
0 & 0 & 0 \\
0.1469 & 0.1845 & 0.2207
\end{tabular}
psell =
\begin{tabular}{rrr}
0 & 0.0374 & 0.1295 \\
0 & 0 & 0 \\
0.1190 & 0.1073 & 0.0908 \\
0 & 0 & 0
\end{tabular}

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial portfolio is 0 .

\section*{Choosing and Controlling the Solver}

When solving portfolio optimizations for a PortfolioCVaR object, all variations of fmincon from Optimization Toolbox are supported. Alternatively, you can use 'cuttingplane ', a solver that implements Kelley's cutting plane method (see Kelley [45] at "Portfolio Optimization" on page A-12).

Unlike Optimization Toolbox which uses the trust-region-reflective algorithm as the default algorithm for fmincon, the portfolio optimization for a PortfolioCVaR object uses the sqp algorithm. For details about fmincon and constrained nonlinear optimization algorithms and options, see "Constrained Nonlinear Optimization Algorithms".

To modify fmincon options for CVaR portfolio optimizations, use setSolver to set the hidden properties solverType and solverOptions to specify and control the solver. Since these solver properties are hidden, you cannot set them using the PortfolioCVaR constructor. The default solver is fmincon with the sqp algorithm and no displayed output, so you do not need to use setSolver to specify this.

If you want to specify additional options associated with the fmincon solver, setSolver accepts these options as name-value pair arguments. For example, if you want to use fmincon with the trust-region-reflective algorithm and with no displayed output, use setSolver with:
```

p = PortfolioCVaR;
p = p.setSolver('fmincon', 'Algorithm', 'trust-region-reflective', 'Display', 'off');
display(p.solverOptions.Algorithm);
display(p.solverOptions.Display);
trust-region-reflective
off

```

Alternatively, setSolver accepts an optimoptions object as the second argument. For example, you can change the algorithm to trust-region-reflective with no displayed output as follows:
```

p = PortfolioCVaR
options = optimoptions('fmincon','Algorithm', 'trust-region-reflective', 'Display', 'off');
p = p.setSolver('fmincon', options);
display(p.solverOptions.Algorithm);
display(p.solverOptions.Display);
trust-region-reflective
off

```

The 'cuttingplane' solver has options to control the number iterations and stopping tolerances. Moreover, this solver uses linprog as the master solver, and all linprog options are supported using optimoptions structures. All of these options are set using setSolver.

For example, you can use setSolver to increase the number of iterations for 'cuttingplane':
p = PortfolioCVaR;
p = p.setSolver('cuttingplane', 'MaxIter', 2000);
display(p.solverType);
display(p.solverOptions);

\section*{cuttingplane}

MaxIter: 2000
AbsTol: 1.0000e-06
RelTol: 1.0000e-05
MasterSolverOptions: [1x1 optim.options.Linprog]
To change the master solver algorithm to'interior-point', with no display, use setSolver to modify 'MasterSolverOptions':
```

p = PortfolioCVaR;
options = optimoptions('linprog','Algorithm','interior-point','Display','off');
p = setSolver(p,'cuttingplane','MasterSolverOptions',options);
display(p.solverType)
display(p.solverOptions)
display(p.solverOptions.MasterSolverOptions.Algorithm)
display(p.solverOptions.MasterSolverOptions.Display)

```
cuttingplane
AbsTol: 1.0000e-06
RelTol: 1.0000e-05MasterSolverOptions: [1x1 optim.options.Linprog]
```

interior-point

```
off
See Also PortfolioCVaR | estimateFrontier | estimateFrontierLimits | estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk | estimatePortRisk | estimateFrontierByRisk

| setSolver
Related Examples
Concepts
- "Constructing the PortfolioCVaR Object" on page 5-28
- "Working with CVaR Portfolio Constraints" on page 5-61
- "Estimate Efficient Frontiers" on page 5-104
- "Asset Returns and Scenarios" on page 5-44
- "Troubleshooting CVaR Portfolio Optimization Results" on page 5-119
- "PortfolioCVaR Object" on page 5-17
- "Portfolio Optimization Theory" on page 5-2

\section*{Estimate Efficient Frontiers}
```

In this section...
"Obtaining CVaR Portfolio Risks and Returns" on page 5-104
"Obtaining Portfolio Standard Deviation and VaR" on page 5-106
"Plotting the Efficient Frontier" on page 5-107

```

Whereas "Estimate Efficient Portfolios" on page 5-91 focused on estimation of efficient portfolios, this section focuses on the estimation of efficient frontiers.

\section*{Obtaining CVaR Portfolio Risks and Returns}

Given any portfolio and, in particular, efficient portfolios, the methods estimatePortReturn and estimatePortRisk provide estimates for the return (or return proxy), risk (or the risk proxy). Each method has the same input syntax but with different combinations of outputs. Suppose you have this following portfolio optimization problem that gave you a collection of portfolios along the efficient frontier in pwgt:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);
pwgt = p.estimateFrontier;

```

Note Remember that the risk proxy for CVaR portfolio optimization is CVaR.

Given pwgt0 and pwgt, use the portfolio risk and return estimation methods to obtain risks and returns for your initial portfolio and the portfolios on the efficient frontier:
```

prsk0 = p.estimatePortRisk(pwgt0);
pret0 = p.estimatePortReturn(pwgt0);
prsk = p.estimatePortRisk(pwgt);
pret = p.estimatePortReturn(pwgt);

```

You obtain these risks and returns:
display(prsk0);
display(pret0);
display(prsk);
display(pret);
prsk0 =
0.0582
pret0 =
0.0073
```

prsk =
0.0411
0.0441
0.0520
0.0629
0.0754
0.0891

```
0.1046
0.1263
0.1535
0.1920
```

pret =
0.0051
0.0061
0.0071
0.0081
0.0092
0.0102
0.0112
0.0122
0.0132
0.0142

```

\section*{Obtaining Portfolio Standard Deviation and VaR}

The PortfolioCVaR object has methods to compute standard deviations of portfolio returns and the value-at-risk of portfolios with the methods estimatePortStd and estimatePortVaR. The methods work with any portfolios, not necessarily efficient portfolios. For example, the following example obtains five portfolios (pwgt) on the efficient frontier and also has an initial portfolio in pwgt0. Various portfolio statistics are computed that include the return, risk, standard deviation, and value-at-risk. The listed estimates are for the initial portfolio in the first row followed by estimates for each of the five efficient portfolios in subsequent rows.
```

m = [0.0042; 0.0083; 0.01; 0.15];
C = [0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208];
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = PortfolioCVaR('initport', pwgtO);
p = p.simulateNormalScenariosByMoments(m, C, 20000);

```
```

p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.9);
pwgt = p.estimateFrontier(5);
pret = p.estimatePortReturn([pwgt0, pwgt]);
prsk = p.estimatePortRisk([pwgt0, pwgt]);
pstd = p.estimatePortStd([pwgt0, pwgt]);
pvar = p.estimatePortVaR([pwgt0, pwgt]);
[pret, prsk, pstd, pvar]
ans =

0.0206	0.0465	0.0378	0.0282
0.0996	0.0208	0.0686	-0.0120
0.1119	0.0211	0.0759	-0.0153
0.1243	0.0220	0.0835	-0.0178
0.1367	0.0233	0.0914	-0.0205
0.1490	0.0255	0.0997	-0.0223

```

\section*{Plotting the Efficient Frontier}

The plotFrontier method creates a plot of the efficient frontier for a given portfolio optimization problem. This method accepts several types of inputs and generates a plot with an optional possibility to output the estimates for portfolio risks and returns along the efficient frontier. plotFrontier has four different ways that it can be used. In addition to a plot of the efficient frontier, if you have an initial portfolio in the InitPort property, plotFrontier also displays the return versus risk of the initial portfolio on the same plot. If you have a well-posed portfolio optimization problem set up in a PortfolioCVaR object and you use plotFrontier, you will get a plot of the efficient frontier with the default number of portfolios on the frontier (the default number is currently 10 and is maintained in the hidden property defaultNumPorts). This example illustrates a typical use of plotFrontier to create a new plot:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

```
```

m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
p.plotFrontier;

```



The Name property appears as the title of the efficient frontier plot if you set it in the PortfolioCVaR object. Without an explicit name, the title on the plot would be "Efficient Frontier." If you want to obtain a specific number of portfolios along the efficient frontier, use plotFrontier with the number of portfolios that you want. Suppose you have the PortfolioCVaR object from
the previous example and you want to plot 20 portfolios along the efficient frontier and to obtain 20 risk and return values for each portfolio:
```

[prsk, pret] = p.plotFrontier(20);
display([pret, prsk]);
ans =
0.0051 0.0413
0.0055 0.0422
0.0060 0.0447
0.0064 0.0487
0.0069 0.0537
0.0073 0.0596
0.0078 0.0661
0.0082 0.0730
0.0087 0.0802
0.0091 0.0877
0.0096 0.0954
0.0100 0.1032
0.0105 0.1119
0.0109 0.1219
0.0114 0.1329
0.0118 0.1448
0.0123 0.1574
0.0127 0.1705
0.0132 0.1841
0.0136 0.1979

```


\section*{Plotting Existing Efficient Portfolios}

If you already have efficient portfolios from any of the "estimateFrontier" methods (see "Estimate Efficient Portfolios" on page 5-91), pass them into plotFrontier directly to plot the efficient frontier:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
O 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
pwgt0 = [0.3; 0.3; 0.2; 0.1];

```
```

p = PortfolioCVaR('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontier(20);
p.plotFrontier(pwgt);

```


\section*{Plotting Existing Efficient Portfolio Risks and Returns}

If you already have efficient portfolio risks and returns, you can use the interface to plotFrontier to pass them into plotFrontier to obtain a plot of the efficient frontier:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;

```
```

 0.00192 0.0204 0.0576 0.0336;
 0 0.0119 0.0336 0.1225];
 AssetScenarios = mvnrnd(m, C, 20000);
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = PortfolioCVaR('Name', 'Asset Allocation Portfolio', 'InitPort', pwgtO);
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontier;
pret= p.estimatePortReturn(pwgt)
prsk = p.estimatePortRisk(pwgt)
p.plotFrontier(prsk, pret);

```


\section*{See Also}

Related
Examples

Concepts

PortfolioCVaR | estimatePortReturn | plotFrontier | estimatePortStd | estimatePortVaR
- "Constructing the PortfolioCVaR Object" on page 5-28
- "Working with CVaR Portfolio Constraints" on page 5-61
- "Asset Returns and Scenarios" on page 5-44
- "Estimate Efficient Portfolios" on page 5-91
- "Postprocessing Results" on page 5-114
- "PortfolioCVaR Object" on page 5-17
- "Portfolio Optimization Theory" on page 5-2

\section*{Postprocessing Results}

\section*{In this section...}
"Setting Up Tradable Portfolios" on page 5-114
"Working with Other Portfolio Objects" on page 5-116
"Troubleshooting CVaR Portfolio Optimization Results" on page 5-119

After obtaining efficient portfolios or estimates for expected portfolio risks and returns, use your results to set up trades to move toward an efficient portfolio.

\section*{Setting Up Tradable Portfolios}

Suppose you set up a portfolio optimization problem and obtained portfolios on the efficient frontier. Use the dataset object from Statistics Toolbox to form a blotter that lists your portfolios with the names for each asset. For example, suppose you want to obtain five portfolios along the efficient frontier. You can set up a blotter with weights multiplied by 100 to view the allocations for each portfolio:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = PortfolioCVaR;
p = p.setAssetList('Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');
p = p.setInitPort(pwgt0);
p = p.simulateNormalScenariosByMoments(m, C, 20000);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.9);
pwgt = p.estimateFrontier(5);
pnames = cell(1,5);
for i = 1:5

```
```

pnames{i} = sprintf('Port%d',i);
end
Blotter = dataset([{100*pwgt},pnames],'obsnames',p.AssetList);
display(Blotter);
Blotter =

	Port1	Port2	Port3	Port4	Port5
Bonds	79.287	44.896	9.6374	$3.8019 \mathrm{e}-30$	$1.0891 \mathrm{e}-12$
Large-Cap Equities	8.3518	26.945	46.445	25.769	$7.7125 \mathrm{e}-13$
Small-Cap Equities	5.9597	8.438	11.578	12.743	$6.5326 \mathrm{e}-14$
Emerging Equities	6.4018	19.722	32.34	61.489	100

```

Note Your results may differ from this result due to the simulation of scenarios.

This result indicates that you would invest primarily in bonds at the minimum-risk/minimum-return end of the efficient frontier (Port1), and that you would invest completely in emerging equity at the maximum-risk/maximum-return end of the efficient frontier (Port5). You can also select a particular efficient portfolio, for example, suppose you want a portfolio with \(15 \%\) risk and you add purchase and sale weights outputs obtained from the "estimateFrontier" methods to set up a trade blotter:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = PortfolioCVaR;
p = p.setAssetList('Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');
p = p.setInitPort(pwgt0);
p = p.simulateNormalScenariosByMoments(m, C, 20000);

```
```

p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.9);
[pwgt, pbuy, psell] = p.estimateFrontierByRisk(0.15);
Blotter = dataset([{100*[pwgt0, pwgt, pbuy, psell]}, ...
{'Initial','Weight', 'Purchases','Sales'}],'obsnames',p.AssetList);
display(Blotter);
Blotter =

	Initial	Weight	Purchases	Sales
Bonds	30	19.362	0	10.638
Large-Cap Equities	30	41.979	11.979	0
Small-Cap Equities	20	10.999	0	9.0012
Emerging Equities	10	27.66	17.66	0

```

If you have prices for each asset (in this example, they can be ETFs), add them to your blotter and then use the tools of the dataset object to obtain shares and shares to be traded.

\section*{Working with Other Portfolio Objects}

The PortfolioCVaR object is for CVaR portfolio optimization. The Portfolio object is for mean-variance portfolio optimization. In some cases, you might want to examine portfolio optimization problems according to different combinations of return and risk proxies. A common example is that you want to do a CVaR portfolio optimization and then want to work primarily with moments of portfolio returns. Suppose you set up a CVaR portfolio optimization problem with:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = PortfolioCVaR;

```
```

p = p.setAssetList('Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');
p = p.setInitPort(pwgt0);
p = p.simulateNormalScenariosByMoments(m, C, 20000);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.9);

```

To work with the same problem in a mean-variance framework, you can use the scenarios from the PortfolioCVaR object to set up a Portfolio object so that p contains a CVaR optimization problem and q contains a mean-variance optimization problem based on the same data.
```

q = Portfolio('AssetList', p.AssetList);
q = q.estimateAssetMoments(p.getScenarios);
q = q.setDefaultConstraints;
pwgt = p.estimateFrontier;
qwgt = q.estimateFrontier;

```

Note that since each object has a different risk proxy, it is not possible to compare results side by side. To obtain means and standard deviations of portfolio returns, you can use the methods associated with each object to obtain:
```

pret = p.estimatePortReturn(pwgt);
pstd = p.estimatePortStd(pwgt);
qret = q.estimatePortReturn(qwgt);
qstd = q.estimatePortStd(qwgt);
[pret, qret]
[pstd, qstd]
ans =
0.0675 0.0595
0.0801 0.0730
0.0928 0.0865
0.1054 0.1000
0.1180 0.1136

```
\begin{tabular}{ll}
0.1307 & 0.1271 \\
0.1433 & 0.1406 \\
0.1559 & 0.1541 \\
0.1685 & 0.1676 \\
0.1812 & 0.1812
\end{tabular}
ans =
\begin{tabular}{ll}
0.0794 & 0.0771 \\
0.0911 & 0.0834 \\
0.1097 & 0.0999 \\
0.1325 & 0.1225 \\
0.1575 & 0.1485 \\
0.1839 & 0.1763 \\
0.2159 & 0.2083 \\
0.2563 & 0.2502 \\
0.3017 & 0.2984 \\
0.3506 & 0.3506
\end{tabular}

To produce comparable results, you can use the returns or risks from one portfolio optimization as target returns or risks for the other portfolio optimization.
```

qwgt = q.estimateFrontierByReturn(pret);
qret = q.estimatePortReturn(qwgt);
qstd = q.estimatePortStd(qwgt);
[pret, qret]
[pstd, qstd]
ans =
0.0675 0.0675
0.0801 0.0801
0.0928 0.0928
0.1054 0.1054
0.1180 0.1180
0.1307 0.1307
0.1433 0.1433

```
\begin{tabular}{ll}
0.1559 & 0.1559 \\
0.1685 & 0.1685 \\
0.1812 & 0.1812 \\
& \\
ans \(=\) & \\
& \\
0.0794 & 0.0794 \\
0.0911 & 0.0911 \\
0.1097 & 0.1097 \\
0.1325 & 0.1325 \\
0.1575 & 0.1575 \\
0.1839 & 0.1839 \\
0.2159 & 0.2159 \\
0.2563 & 0.2563 \\
0.3017 & 0.3017 \\
0.3506 & 0.3506
\end{tabular}

Now it is possible to compare standard deviations of portfolio returns from either type of portfolio optimization.

\section*{Troubleshooting CVaR Portfolio Optimization Results}

\section*{PortfolioCVaR Object Destroyed When Modifying}

If a PortfolioCVaR object is destroyed when modifying, remember to pass an existing object into the constructor if you want to modify it, otherwise it creates a new object. See "Constructing the PortfolioCVaR Object" on page 5-28 for details.

\section*{Matrix Incompatibility and "Non-Conformable" Errors}

If you get matrix incompatibility or "non-conformable" errors, the representation of data in the tools follows a specific set of basic rules described in "Conventions for Representation of Data" on page 5-26.

\section*{CVaR Portfolio Optimization Warns About "Max Iterations"}

If the 'cuttingplane' solver displays the following warning:
```

Warning: Max iterations reached. Consider modifying the solver options, or using fmincon.
> In @PortfolioCVaR\private\cvar_cuttingplane_solver at 255
In @PortfolioCVaR\private\cvar_optim_min_risk at 85
In PortfolioCVaR.estimateFrontier at 69

```
this warning indicates that some of the reported efficient portfolios may not be accurate enough.

This warning is usually related to portfolios in the lower-left end of the efficient frontier. The cutting plane solver may have gotten very close to the solution, but there may be too many portfolios with very similar risks and returns in that neighborhood, and the solver runs out of iterations before reaching the desired accuracy.

To correct this problem, you can use setSolver to make any of these changes:
- Increase the maximum number of iterations ('MaxIter').
- Relax the stopping tolerances ('AbsTol' and/or 'RelTol').
- Use a different master solver algorithm ('MasterSolverOptions').
- Alternatively, you can try the 'fmincon' solver.

When the default maximum number of iterations of the 'cuttingplane' solver is reached, the solver usually needs many more iterations to reach the accuracy required by the default stopping tolerances. You may want to combine increasing the number of iterations (e.g., multiply by 5 ) with relaxing the stopping tolerances (e.g., multiply by 10 or 100). Since the CVaR is a stochastic optimization problem, the accuracy of the solution is relative to the scenario sample, so a looser stopping tolerance may be acceptable. Keep in mind that the solution time may increase significantly when you increase the number of iterations. For example, doubling the number of iterations more than doubles the solution time. Sometimes using a different master solver (e.g., switching to 'interior-point' if you are using the default 'simplex') can get the 'cuttingplane' solver to converge without changing the maximum number of iterations.

Alternatively, the 'fmincon' solver may be faster than the 'cuttingplane' solver for problems where cutting plane reaches the maximum number of iterations.

\section*{CVaR Portfolio Optimization Errors with "Could Not Solve" Message}

If the 'cuttingplane' solver generates the following error:
```

Error using cvar_cuttingplane_solver (line 251)
Could not solve the problem. Consider modifying the solver options, or using fmincon.
Error in cvar_optim_by_return (line 100)
[x,~,~,exitflag] = cvar_cuttingplane_solver(...
Error in PortfolioCVaR/estimateFrontier (line 80)
pwgt = cvar_optim_by_return(obj, r(2:end-1), obj.NumAssets, ...

```
this error means the master solver failed to solve one of the master problems. The error may be due to numerical instability or other problem-specific situation.

To correct this problem, you can use setSolver to make any of these changes:
- Modify the master solver options ('MasterSolverOptions'), for example, change the algorithm ('Algorithm') or the termination tolerance ('TolFun').
- Alternatively, you can try the 'fmincon' solver.

\section*{Missing Data Estimation Fails}

If asset return data has missing or NaN values, the method simulateNormalScenariosByData with the 'missingdata' flag set to true may fail with either too many iterations or a singular covariance. To correct this problem, consider this:
- If you have asset return data with no missing or NaN values, you can compute a covariance matrix that may be singular without difficulties. If you have missing or NaN values in your data, the supported missing data feature requires that your covariance matrix must be positive-definite, i.e., nonsingular.
- simulateNormalScenariosByData uses default settings for the missing data estimation procedure that might not be appropriate for all problems.

In either case, you might want to estimate the moments of asset returns separately with either the ECM estimation functions such as ecmnmle or with your own methods.

\section*{cvar_optim_transform Errors}

If you obtain optimization errors such as:
```

Error using cvar_optim_transform (line 276)
Portfolio set appears to be either empty or unbounded. Check constraints.
Error in PortfolioCVaR/estimateFrontier (line 64)
[AI, bI, AE, bE, lB, uB, f0, f, x0] = cvar_optim_transform(obj);
or
Error using cvar_optim_transform (line 281)
Cannot obtain finite lower bounds for specified portfolio set.
Error in PortfolioCVaR/estimateFrontier (line 64)
[AI, bI, AE, bE, lB, uB, fO, f, xO] = cvar_optim_transform(obj);

```

Since the portfolio optimization tools require a bounded portfolio set, these errors (and similar errors) can occur if your portfolio set is either empty and, if nonempty, unbounded. Specifically, the portfolio optimization algorithm requires that your portfolio set have at least a finite lower bound. The best way to deal with these problems is to use the validation methods in "Validate the CVaR Portfolio Problem" on page 5-86. Specifically, use estimateBounds to examine your portfolio set, and use checkFeasibility to ensure that your initial portfolio is either feasible and, if infeasible, that you have sufficient turnover to get from your initial portfolio to the portfolio set.

Tip To correct this problem, try solving your problem with larger values for turnover and gradually reduce to the value that you want.

\section*{Efficient Portfolios Do Not Make Sense}

If you obtain efficient portfolios that do not seem to make sense, this can happen if you forget to set specific constraints or you set incorrect constraints.

For example, if you allow portfolio weights to fall between 0 and 1 and do not set a budget constraint, you can get portfolios that are \(100 \%\) invested in every asset. Although it may be hard to detect, the best thing to do is to review the constraints you have set with display of the PortfolioCVaR object. If you get portfolios with \(100 \%\) invested in each asset, you can review the display of your object and quickly see that no budget constraint is set. Also, you can use estimateBounds and checkFeasibility to determine if the bounds for your portfolio set make sense and to determine if the portfolios you obtained are feasible relative to an independent formulation of your portfolio set.

\section*{See Also PortfolioCVaR \| estimateScenarioMoments \| checkFeasibility}

\section*{Related - "Constructing the PortfolioCVaR Object" on page 5-28}
- "Working with CVaR Portfolio Constraints" on page 5-61
- "Asset Returns and Scenarios" on page 5-44
- "Estimate Efficient Portfolios" on page 5-91
- "Estimate Efficient Frontiers" on page 5-104

Concepts - "PortfolioCVaR Object" on page 5-17
- "Portfolio Optimization Theory" on page 5-2

\section*{MAD Portfolio Optimization Tools}
- "Portfolio Optimization Theory" on page 6-2
- "PortfolioMAD Object" on page 6-17
- "Constructing the PortfolioMAD Object" on page 6-27
- "Common Operations on the PortfolioMAD Object" on page 6-36
- "Asset Returns and Scenarios" on page 6-44
- "Working with MAD Portfolio Constraints" on page 6-61
- "Validate the MAD Portfolio Problem" on page 6-85
- "Estimate Efficient Portfolios" on page 6-90
- "Estimate Efficient Frontiers" on page 6-103
- "Postprocessing Results" on page 6-113

\section*{Portfolio Optimization Theory}

\author{
In this section... \\ "Portfolio Optimization Problems" on page 6-2 \\ "Portfolio Problem Specification" on page 6-3 \\ "Return Proxy" on page 6-3 \\ "Risk Proxy" on page 6-5 \\ "Portfolio Set for Portfolio Optimization" on page 6-8 \\ "Default Portfolio Problem" on page 6-15
}

\section*{Portfolio Optimization Problems}

Portfolio optimization problems involve identifying portfolios that satisfy three criteria:
- Minimize a proxy for risk.
- Match or exceed a proxy for return.
- Satisfy basic feasibility requirements.

Portfolios are points from a feasible set of assets that constitute an asset universe. A portfolio specifies either holdings or weights in each individual asset in the asset universe. The convention is to specify portfolios in terms of weights, although the portfolio optimization tools work with holdings as well.

The set of feasible portfolios is necessarily a nonempty, closed, and bounded set. The proxy for risk is a function that characterizes either the variability or losses associated with portfolio choices. The proxy for return is a function that characterizes either the gross or net benefits associated with portfolio choices. The terms "risk" and "risk proxy" and "return" and "return proxy" are interchangeable. The fundamental insight of Markowitz (see "Portfolio Optimization" on page A-12) is that the goal of the portfolio choice problem is to seek minimum risk for a given level of return and to seek maximum return for a given level of risk. Portfolios satisfying these criteria are efficient portfolios and the graph of the risks and returns of these portfolios forms a curve called the efficient frontier.

\section*{Portfolio Problem Specification}

To specify a portfolio optimization problem, you need the following:
- Proxy for portfolio return ( \(\mu\) )
- Proxy for portfolio risk ( \(\Sigma\) )
- Set of feasible portfolios ( \(X\) ), called a portfolio set

Financial Toolbox has three objects to solve specific types of portfolio optimization problems:
- The Portfolio object (Portfolio) supports mean-variance portfolio optimization (see Markowitz [46], [47] at ("Portfolio Optimization" on page A-12). This object has either gross or net portfolio returns as the return proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that is any combination of the specified constraints to form a portfolio set.
- The PortfolioCVaR object (PortfolioCVaR) implements what is known as conditional value-at-risk portfolio optimization (see Rockafellar and Uryasev [48], [49] at "Portfolio Optimization" on page A-12), which is generally referred to as CVaR portfolio optimization. CVaR portfolio optimization works with the same return proxies and portfolio sets as mean-variance portfolio optimization but uses conditional value-at-risk of portfolio returns as the risk proxy.
- The PortfolioMAD object (PortfolioMAD) implements what is known as mean-absolute deviation portfolio optimization (see Konno and Yamazaki [50] at "Portfolio Optimization" on page A-12), which is generally referred to as MAD portfolio optimization. MAD portfolio optimization works with the same return proxies and portfolio sets as mean-variance portfolio optimization but uses mean-absolute deviation portfolio returns as the risk proxy.

\section*{Return Proxy}

The proxy for portfolio return is a function \(\mu: X \rightarrow R\) on a portfolio set
\(X \subset R^{n}\) that characterizes the rewards associated with portfolio choices. In most cases, the proxy for portfolio return has two general forms, gross and net portfolio returns. Both portfolio return forms separate the risk-free rate \(r_{0}\) so that the portfolio \(x \in X\) contains only risky assets.

Regardless of the underlying distribution of asset returns, a collection of \(S\) asset returns \(y_{1}, \ldots, y_{S}\) has a mean of asset returns
\[
m=\frac{1}{S} \sum_{s=1}^{S} y_{s}
\]
and (sample) covariance of asset returns
\[
C=\frac{1}{S-1} \sum_{s=1}^{S}\left(y_{s}-m\right)\left(y_{s}-m\right)^{T}
\]

These moments (or alternative estimators that characterize these moments) are used directly in mean-variance portfolio optimization to form proxies for portfolio risk and return.

\section*{Gross Portfolio Returns}

The gross portfolio return for a portfolio \(x \in X\) is
\[
\mu(x)=r_{0}+\left(m-r_{0} 1\right)^{T} x,
\]
where:
\(r_{0}\) is the risk-free rate (scalar).
\(m\) is the mean of asset returns ( \(n\) vector).
If the portfolio weights sum to 1 , the risk-free rate is irrelevant. The properties in the Portfolio object to specify gross portfolio returns are:
- RiskFreeRate for \(r_{0}\)
- AssetMean for \(m\)

\section*{Net Portfolio Returns}

The net portfolio return for a portfolio \(x \in X\) is
\[
\mu(x)=r_{0}+\left(m-r_{0} 1\right)^{T} x-b^{T} \max \left\{0, x-x_{0}\right\}-s^{T} \max \left\{0, x_{0}-x\right\},
\]
where:
\(r_{0}\) is the risk-free rate (scalar).
\(m\) is the mean of asset returns ( \(n\) vector).
\(b\) is the proportional cost to purchase assets ( \(n\) vector).
\(s\) is the proportional cost to sell assets ( \(n\) vector).
You can incorporate fixed transaction costs in this model also. Though in this case, it is necessary to incorporate prices into such costs. The properties in the Portfolio object to specify net portfolio returns are:
- RiskFreeRate for \(r_{0}\)
- AssetMean for \(m\)
- InitPort for \(x_{0}\)
- BuyCost for \(b\)
- SellCost for \(s\)

\section*{Risk Proxy}

The proxy for portfolio risk is a function \(\Sigma: X \rightarrow R\) on a portfolio set \(X \subset R^{n}\) that characterizes the risks associated with portfolio choices.

\section*{Variance}

The variance of portfolio returns for a portfolio \(x \in X\) is
\[
\Sigma(x)=x^{T} C x
\]
where \(C\) is the covariance of asset returns ( \(n\)-by-n positive-semidefinite matrix).

The property in the Portfolio object to specify the variance of portfolio returns is AssetCovar for C.

Although the risk proxy in mean-variance portfolio optimization is the variance of portfolio returns, the square root, which is the standard deviation of portfolio returns, is often reported and displayed. Moreover, this quantity is often called the "risk" of the portfolio. For details, see Markowitz [46], [47] at ("Portfolio Optimization" on page A-12).

\section*{Conditional Value-at-Risk}

The conditional value-at-risk for a portfolio \(x \in X\), which is also known as expected shortfall, is defined as
\[
\operatorname{CVaR}_{\alpha}(x)=\frac{1}{1-\alpha} \int_{f(x, y) \geq V a R_{\alpha}(x)} f(x, y) p(y) d y
\]
where:
\(\alpha\) is the probability level such that \(0<\alpha<1\).
\(f(x, y)\) is the loss function for a portfolio \(x\) and asset return \(y\).
\(p(y)\) is the probability density function for asset return \(y\).
\(V a R_{a}\) is the value-at-risk of portfolio \(x\) at probability level \(a\).
The value-at-risk is defined as
\[
\operatorname{Va}_{\alpha}(x)=\min \{\gamma: \operatorname{Pr}[f(x, Y) \leq \gamma] \geq \alpha\} .
\]

An alternative formulation for CVaR has the form:
\[
C V a R_{\alpha}(x)=\operatorname{VaR}_{\alpha}(x)+\frac{1}{1-\alpha} \int_{R^{n}} \max \left\{0,\left(f(x, y)-\operatorname{Va}_{\alpha}(x)\right)\right\} p(y) d y
\]

The choice for the probability level \(a\) is typically 0.9 or 0.95 . Choosing \(a\) implies that the value-at-risk \(\operatorname{Va}_{\alpha}(x)\) for portfolio \(x\) is the portfolio return such that the probability of portfolio returns falling below this level is \((1-\alpha)\). Given \(V a R_{a}(x)\) for a portfolio \(x\), the conditional value-at-risk of the portfolio is the expected loss of portfolio returns above the value-at-risk return.

Note Value-at-risk is a positive value for losses so that the probability level \(a\) indicates the probability that portfolio returns are below the negative of the value-at-risk.

The risk proxy for CVaR portfolio optimization is \(C V a R_{a}(x)\) for a given portfolio \(x \in X\) and \(\alpha \in(0,1)\). Note that the value-at-risk, or VaR, for a given probability level is estimated whenever CVaR is estimated.

In addition, keep in mind that VaR and CVaR are sample estimators for VaR and CVaR based on the given scenarios. Better scenario samples yield more reliable estimates of VaR and CVaR.

For more information, see Rockafellar and Uryasev [48], [49] at "Portfolio Optimization" on page A-12.

\section*{Mean Absolute-Deviation}

The mean-absolute deviation (MAD) for a portfolio \(x \in X\) is defined as
\[
\sum(x)=\frac{1}{S} \sum_{s=1}^{S}\left|\left(y_{s}-m\right)^{T} x\right|
\]
where:
\(y_{s}\) are asset returns with scenarios \(s=1, \ldots S\) ( \(S\) collection of \(n\) vectors).
\(f(x, y)\) is the loss function for a portfolio \(x\) and asset return \(y\).
\(m\) is the mean of asset returns ( \(n\) vector).
such that
\[
m=\frac{1}{S} \sum_{s=1}^{S} y_{s}
\]

For more information, see Konno and Yamazaki [50] at "Portfolio Optimization" on page A-12.

\section*{Portfolio Set for Portfolio Optimization}

The final element for a complete specification of a portfolio optimization problem is the set of feasible portfolios, which is called a portfolio set. A portfolio set \(X \subset R^{n}\) is specified by construction as the intersection of sets formed by a collection of constraints on portfolio weights. A portfolio set necessarily and sufficiently must be a nonempty, closed, and bounded set.

When setting up your portfolio set, ensure that the portfolio set satisfies these conditions. The most basic or "default" portfolio set requires portfolio weights to be nonnegative (using the lower-bound constraint) and to sum to 1 (using the budget constraint). The most general portfolio set handled by the portfolio optimization tools can have any of these constraints:
- Linear inequality constraints
- Linear equality constraints
- Bound constraints
- Budget constraints
- Group constraints
- Group ratio constraints
- Average turnover constraints
- One-way turnover constraints

\section*{Linear Inequality Constraints}

Linear inequality constraints are general linear constraints that model relationships among portfolio weights that satisfy a system of inequalities. Linear inequality constraints take the form
\[
A_{I} x \leq b_{I}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
\(A_{I}\) is the linear inequality constraint matrix ( \(n_{I}\)-by- \(n\) matrix).
\(b_{I}\) is the linear inequality constraint vector ( \(n_{I}\) vector).
\(n\) is the number of assets in the universe and \(n_{I}\) is the number of constraints.
Portfolio object properties to specify linear inequality constraints are:
- AInequality for \(A_{I}\)
- bInequality for \(b_{I}\)
- NumAssets for \(n\)

The default is to ignore these constraints.

\section*{Linear Equality Constraints}

Linear equality constraints are general linear constraints that model relationships among portfolio weights that satisfy a system of equalities.
Linear equality constraints take the form
\[
A_{E} x=b_{E}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
\(A_{E}\) is the linear equality constraint matrix ( \(n_{E}\)-by- \(n\) matrix).
\(b_{E}\) is the linear equality constraint vector ( \(n_{E}\) vector).
\(n\) is the number of assets in the universe and \(n_{E}\) is the number of constraints.

Portfolio object properties to specify linear equality constraints are:
- AEquality for \(A_{E}\)
- bEquality for \(b_{E}\)
- NumAssets for \(n\)

The default is to ignore these constraints.

\section*{Bound Constraints}

Bound constraints are specialized linear constraints that confine portfolio weights to fall either above or below specific bounds. Since every portfolio set must be bounded, it is often a good practice, albeit not necessary, to set explicit bounds for the portfolio problem. To obtain explicit bounds for a given portfolio set, use the method estimateBounds. Bound constraints take the form
\[
l_{B} \leq x \leq u_{B}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
\(l_{B}\) is the lower-bound constraint ( \(n\) vector).
\(u_{B}\) is the upper-bound constraint ( \(n\) vector).
\(n\) is the number of assets in the universe.
Portfolio object properties to specify bound constraints are:
- LowerBound for \(l_{B}\)
- UpperBound for \(u_{B}\)
- NumAssets for \(n\)

The default is to ignore these constraints.

Note that the default portfolio optimization problem (see "Default Portfolio Problem" on page \(6-15\) ) has \(l_{B}=0\) with \(u_{B}\) set implicitly through a budget constraint.

\section*{Budget Constraints}

Budget constraints are specialized linear constraints that confine the sum of portfolio weights to fall either above or below specific bounds. The constraints take the form
\[
l_{S} \leq 1^{T} x \leq u_{S}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
1 is the vector of ones ( \(n\) vector).
\(l_{S}\) is the lower-bound budget constraint (scalar).
\(u_{S}\) is the upper-bound budget constraint (scalar).
\(n\) is the number of assets in the universe.
Portfolio object properties to specify budget constraints are:
- LowerBudget for \(l_{S}\)
- UpperBudget for \(u_{S}\)
- NumAssets for \(n\)

The default is to ignore this constraint.
The default portfolio optimization problem (see "Default Portfolio Problem" on page 6-15) has \(l_{S}=u_{S}=1\), which means that the portfolio weights sum to 1. If the portfolio optimization problem includes possible movements in and out of cash, the budget constraint specifies how far portfolios can go into cash. For example, if \(l_{S}=0\) and \(u_{S}=1\), then the portfolio can have 0 to \(100 \%\) invested in cash. If cash is to be a portfolio choice, set RiskFreeRate ( \(r_{0}\) ) to a
suitable value (see "Return Proxy" on page 6-3 and "Working with a Riskless Asset" on page 6-55).

\section*{Group Constraints}

Group constraints are specialized linear constraints that enforce "membership" among groups of assets. The constraints take the form
\[
l_{G} \leq G x \leq u_{G}
\]
where:
\(x\) is the portfolio ( \(n\) vector).
\(l_{G}\) is the lower-bound group constraint ( \(n_{G}\) vector).
\(u_{G}\) is the upper-bound group constraint ( \(n_{G}\) vector).
\(G\) is the matrix of group membership indexes ( \(n_{G}\)-by- \(n\) matrix).
Each row of \(G\) identifies which assets belong to a group associated with that row. Each row contains either 0s or 1 s with 1 indicating that an asset is part of the group or 0 indicating that the asset is not part of the group.

Portfolio object properties to specify group constraints are:
- GroupMatrix for \(G\)
- LowerGroup for \(l_{G}\)
- UpperGroup for \(u_{G}\)
- NumAssets for \(n\)

The default is to ignore these constraints.

\section*{Group Ratio Constraints}

Group ratio constraints are specialized linear constraints that enforce relationships among groups of assets. The constraints take the form
\[
l_{R i}\left(G_{B} x\right)_{i} \leq\left(G_{A} x\right)_{i} \leq u_{R i}\left(G_{B} x\right)_{i}
\]
for \(i=1, \ldots, n_{R}\) where:
\(x\) is the portfolio ( \(n\) vector).
\(l_{R}\) is the vector of lower-bound group ratio constraints ( \(n_{R}\) vector).
\(u_{R}\) is the vector matrix of upper-bound group ratio constraints ( \(n_{R}\) vector).
\(G_{A}\) is the matrix of base group membership indexes ( \(n_{R}\)-by- \(n\) matrix).
\(G_{B}\) is the matrix of comparison group membership indexes ( \(n_{R}\)-by- \(n\) matrix).
\(n\) is the number of assets in the universe and \(n_{R}\) is the number of constraints.
Each row of \(G_{A}\) and \(G_{B}\) identifies which assets belong to a base and comparison group associated with that row.

Each row contains either 0s or 1 s with 1 indicating that an asset is part of the group or 0 indicating that the asset is not part of the group.

Portfolio object properties to specify group ratio constraints are:
- GroupA for \(G_{A}\)
- GroupB for \(G_{B}\)
- LowerRatio for \(l_{R}\)
- UpperRatio for \(u_{R}\)
- NumAssets for \(n\)

The default is to ignore these constraints.

\section*{Average Turnover Constraints}

Turnover constraint is a linear absolute value constraint that ensures estimated optimal portfolios differ from an initial portfolio by no more than a specified amount. Although portfolio turnover is defined in many ways, the turnover constraints implemented in Financial Toolbox computes portfolio
turnover as the average of purchases and sales. Average turnover constraints take the form
\[
\frac{1}{2} 1^{T}\left|x-x_{0}\right| \leq \tau
\]
where:
\(x\) is the portfolio ( \(n\) vector).
1 is the vector of ones ( \(n\) vector).
\(x_{0}\) is the initial portfolio ( \(n\) vector).
\(\tau\) is the upper bound for turnover (scalar).
\(n\) is the number of assets in the universe.
Portfolio object properties to specify the average turnover constraint are:
- Turnover for \(\tau\)
- InitPort for \(x_{0}\)
- NumAssets for \(n\)

The default is to ignore this constraint.

\section*{One-Way Turnover Constraints}

One-way turnover constraints ensure that estimated optimal portfolios differ from an initial portfolio by no more than specified amounts according to whether the differences are purchases or sales. The constraints take the forms
\[
\begin{aligned}
& 1^{T} \times \max \left\{0, x-x_{0}\right\} \leq \tau_{B} \\
& 1^{T} \times \max \left\{0, x_{0}-x\right\} \leq \tau_{S}
\end{aligned}
\]
where:
\(x\) is the portfolio ( \(n\) vector)

1 is the vector of ones ( \(n\) vector).
\(x_{0}\) is the Initial portfolio ( \(n\) vector).
\(\tau_{B}\) is the upper bound for turnover constraint on purchases (scalar).
\(\tau_{S}\) is the upper bound for turnover constraint on sales (scalar).
To specify one-way turnover constraints, use the following properties in the Portfolio, PortfolioCVaR, or PotfolioMAD object:
- BuyTurnover for \(\tau_{B}\)
- SellTurnover for \(\tau_{S}\)
- InitPort for \(x_{0}\)

The default is to ignore this constraint.

Note The average turnover constraint (see "Working with Average Turnover Constraints" on page 6-79) with \(\tau\) is not a combination of the one-way turnover constraints with \(\tau=\tau_{B}=\tau_{S}\).

\section*{Default Portfolio Problem}

The default portfolio optimization problem has a risk and return proxy associated with a given problem, and a portfolio set that specifies portfolio weights to be nonnegative and to sum to 1 . The lower bound combined with the budget constraint is sufficient to ensure that the portfolio set is nonempty, closed, and bounded. The default portfolio optimization problem characterizes a long-only investor who is fully invested in a collection of assets.
- For mean-variance portfolio optimization, it is sufficient to set up the default problem. After setting up the problem, data in the form of a mean and covariance of asset returns are then used to solve portfolio optimization problems.
- For conditional value-at-risk portfolio optimization, the default problem requires the additional specification of a probability level that must be set explicitly. Generally, "typical" values for this level are 0.90 or 0.95. After
setting up the problem, data in the form of scenarios of asset returns are then used to solve portfolio optimization problems.
- For MAD portfolio optimization, it is sufficient to set up the default problem. After setting up the problem, data in the form of scenarios of asset returns are then used to solve portfolio optimization problems.

\section*{See Also}

AbstractPortfolio | Portfolio | PortfolioCVaR | PortfolioMAD

\section*{Related \\ Examples}
- "Constructing the PortfolioMAD Object" on page 6-27
- "Working with MAD Portfolio Constraints" on page 6-61

\section*{Concepts}
- "PortfolioMAD Object" on page 6-17

\section*{PortfolioMAD Object}
In this section...
"PortfolioMAD Object Properties and Methods" on page 6-17
"Working with PortfolioMAD Objects" on page 6-22
"Setting and Getting Properties" on page 6-23
"Displaying PortfolioMAD Objects" on page 6-24
"Saving and Loading PortfolioMAD Objects" on page 6-24
"Estimating Efficient Portfolios and Frontiers" on page 6-24
"Arrays of PortfolioMAD Objects" on page 6-25
"Subclassing PortfolioMAD Objects" on page 6-25
"Conventions for Representation of Data" on page 6-26

\section*{PortfolioMAD Object Properties and Methods}

The PortfolioMAD object implements mean absolute-deviation (MAD) portfolio optimization and is derived from the abstract class AbstractPortfolio. Every property and method of the PortfolioMAD object is public, although some properties and methods are hidden. See PortfolioMAD Object Properties on page 6-17 and PortfolioMAD Object Methods on page 6-19 for the properties and methods of a PortfolioMAD object. The PortfolioMAD object is a value object where every instance of the object is a distinct version of the object. Since the PortfolioMAD object is also a MATLAB object, it inherits the default methods associated with MATLAB objects.

\section*{PortfolioMAD Object Properties}
\begin{tabular}{|l|l|l|}
\hline Property & Description & Characteristics \\
\hline AEquality & \begin{tabular}{l} 
Matrix for equality \\
constraints
\end{tabular} & Matrix \\
\hline AInequality & \begin{tabular}{l} 
Matrix for inequality \\
constraints
\end{tabular} & Matrix \\
\hline
\end{tabular}

\section*{PortfolioMAD Object Properties (Continued)}
\begin{tabular}{l|l|l}
\hline Property & Description & Characteristics \\
\hline AssetList & \begin{tabular}{l} 
List of asset names or \\
identifiers
\end{tabular} & Vector cell array of strings \\
\hline bEquality & \begin{tabular}{l} 
Vector for equality \\
constraints
\end{tabular} & Vector \\
\hline bInequality & \begin{tabular}{l} 
Vector for inequality \\
constraints
\end{tabular} & Vector \\
\hline BuyCost & Cost to purchase assets & Vector \\
\hline BuyTurnover & \begin{tabular}{l} 
Turnover constraint on \\
purchases
\end{tabular} & Scalar \\
\hline GroupA & \begin{tabular}{l} 
Base group ratio constraint \\
matrix
\end{tabular} & Boolean matrix or matrix \\
\hline GroupB & \begin{tabular}{l} 
Comparison group ratio \\
constraint matrix
\end{tabular} & Boolean matrix or matrix \\
\hline GroupMatrix & Group membership matrix & Boolean matrix or matrix \\
\hline InitPort & Initial or current portfolio & Vector \\
\hline LowerBound & Lower-bound constraint & Vector \\
\hline LowerBudget & Lower-budget constraint & Scalar \\
\hline LowerGroup & Lower-group constraint & Vector \\
\hline LowerRatio & \begin{tabular}{l} 
Lower-group ratio constraint \\
ratio
\end{tabular} & Vector \\
\hline Name & \begin{tabular}{l} 
Name for instance of \\
PortfolioMAD object
\end{tabular} & String \\
\hline NumAssets & Number of assets in universe & Scalar positive integer \\
\hline NumScenarios & \begin{tabular}{l} 
Number of scenarios (read \\
only)
\end{tabular} & Scalar integer \\
\hline RiskFreeRate & \begin{tabular}{l} 
Period return of riskless \\
asset
\end{tabular} & Scalar \\
\hline
\end{tabular}

\section*{PortfolioMAD Object Properties (Continued)}
\begin{tabular}{l|l|l}
\hline Property & Description & Characteristics \\
\hline SellCost & Cost to sell assets & Vector \\
\hline SellTurnover & Turnover constraint on sales & Scalar \\
\hline Turnover & \begin{tabular}{l} 
Upper-bound portfolio \\
turnover
\end{tabular} & Scalar \\
\hline UpperBound & Upper-bound constraint & Vector \\
\hline UpperBudget & Upper-budget constraint & Scalar \\
\hline UpperGroup & Upper-group constraint & Vector \\
\hline UpperRatio & \begin{tabular}{l} 
Upper-group ratio constraint \\
ratio
\end{tabular} & Vector \\
\hline
\end{tabular}

PortfolioMAD Object Methods
\begin{tabular}{l|l}
\hline Method & Description \\
\hline addEquality & \begin{tabular}{l} 
Add equality constraints for portfolio \\
weights to existing constraints.
\end{tabular} \\
\hline addGroupRatio & \begin{tabular}{l} 
Add group ratio constraints for \\
portfolio weights to existing \\
constraints.
\end{tabular} \\
\hline addGroups & \begin{tabular}{l} 
Add group constraints for portfolio \\
weights to existing constraints.
\end{tabular} \\
\hline addInequality & \begin{tabular}{l} 
Add inequality constraints for portfolio \\
weights to existing constraints.
\end{tabular} \\
\hline checkFeasibility & \begin{tabular}{l} 
Determine if portfolios are members of \\
the set of feasible portfolios.
\end{tabular} \\
\hline estimateBounds & \begin{tabular}{l} 
Determine if the set of feasible \\
portfolios is nonempty and bounded.
\end{tabular} \\
\hline
\end{tabular}

\section*{PortfolioMAD Object Methods (Continued)}
\begin{tabular}{l|l}
\hline Method & Description \\
\hline estimateFrontier & \begin{tabular}{l} 
Estimate portfolios on the entire \\
efficient frontier.
\end{tabular} \\
\hline estimateFrontierByReturn & \begin{tabular}{l} 
Estimate portfolios on the efficient \\
frontier with targeted returns or \\
return proxies.
\end{tabular} \\
\hline estimateFrontierByRisk & \begin{tabular}{l} 
Estimate portfolios on the efficient \\
frontier with targeted risks or risk \\
proxies.
\end{tabular} \\
\hline estimateFrontierLimits & \begin{tabular}{l} 
Estimate portfolios at the extreme \\
ends of the efficient frontier (minimum \\
risk and maximum return).
\end{tabular} \\
\hline estimatePortReturn & \begin{tabular}{l} 
Estimate the return or return proxy \\
for specified portfolios.
\end{tabular} \\
\hline estimatePortRisk & \begin{tabular}{l} 
Estimate the risk or risk proxy for \\
specified portfolios.
\end{tabular} \\
\hline estimatePortStd & \begin{tabular}{l} 
Estimate standard deviation of \\
portfolio returns.
\end{tabular} \\
\hline estimateScenarioMoments & \begin{tabular}{l} 
Estimate mean and covariance of \\
scenarios.
\end{tabular} \\
\hline getBounds & \begin{tabular}{l} 
Get lower and upper bounds from \\
object.
\end{tabular} \\
\hline simulateNormalScenariosByData & \begin{tabular}{l} 
Simulate multivariate normal asset \\
return scenarios from data.
\end{tabular} \\
\hline simulateNormalScenariosByMomen & \begin{tabular}{l} 
tsimulate multivariate normal asset \\
return scenarios from a mean and \\
covariance of asset returns.
\end{tabular} \\
\hline getBudget & \begin{tabular}{l} 
Get lower and upper budget \\
constraints from object.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Get purchase and sales proportional \\
transaction costs from object.
\end{tabular} \\
\hline & \\
\hline
\end{tabular}

\section*{PortfolioMAD Object Methods (Continued)}
\begin{tabular}{l|l}
\hline Method & Description \\
\hline getEquality & \begin{tabular}{l} 
Get equality constraint matrix and \\
vector from object.
\end{tabular} \\
\hline getGroupRatio & \begin{tabular}{l} 
Get base matrix, comparison matrix, \\
and lower and upper bounds for group \\
ratio constraints from object.
\end{tabular} \\
\hline getGroups & \begin{tabular}{l} 
Get group matrix and lower and upper \\
bounds for group constraints from \\
object.
\end{tabular} \\
\hline getInequality & \begin{tabular}{l} 
Get inequality constraint matrix and \\
vector from object.
\end{tabular} \\
\hline getOneWayTurnover & \begin{tabular}{l} 
Get one-way portfolio turnover \\
constraints.
\end{tabular} \\
\hline getScenarios & \begin{tabular}{l} 
Obtain scenarios from PortfolioMAD \\
object.
\end{tabular} \\
\hline plotFrontier & \begin{tabular}{l} 
Plot efficient frontier and optionally \\
obtain risks and returns for portfolios \\
on the efficient frontier.
\end{tabular} \\
\hline setAssetList & \begin{tabular}{l} 
Set up a list of asset names and \\
symbols to be associated with assets \\
in universe.
\end{tabular} \\
\hline setBounds & \begin{tabular}{l} 
Set up lower and upper bounds for \\
portfolio weights.
\end{tabular} \\
\hline setBudget & \begin{tabular}{l} 
Set up lower and upper budget \\
constraints for portfolio weights.
\end{tabular} \\
\hline setCosts & \begin{tabular}{l} 
Set up purchase and sale proportional \\
transaction costs for assets in universe.
\end{tabular} \\
\hline setDefaultConstraints & \begin{tabular}{l} 
Set up default constraints for portfolio \\
weights (nonnegative weights that \\
must sum to 1).
\end{tabular} \\
\hline & \\
\hline
\end{tabular}

\section*{PortfolioMAD Object Methods (Continued)}
\begin{tabular}{l|l}
\hline Method & Description \\
\hline setEquality & \begin{tabular}{l} 
Set up equality constraints for portfolio \\
weights.
\end{tabular} \\
\hline setGroupRatio & \begin{tabular}{l} 
Set up group ratio constraints for \\
portfolio weights.
\end{tabular} \\
\hline setGroups & \begin{tabular}{l} 
Set up group constraints for portfolio \\
weights.
\end{tabular} \\
\hline setInequality & \begin{tabular}{l} 
Set up inequality constraints for \\
portfolio weights.
\end{tabular} \\
\hline setInitPort & Set up initial portfolio weights. \\
\hline setOneWayTurnover & \begin{tabular}{l} 
Set up one-way portfolio turnover \\
constraints.
\end{tabular} \\
\hline setOptions & \begin{tabular}{l} 
Set up hidden control properties in \\
object (not implemented).
\end{tabular} \\
\hline setScenarios & \begin{tabular}{l} 
Set asset returns scenarios by direct \\
matrix.
\end{tabular} \\
\hline setSolver & \begin{tabular}{l} 
Set up solver to estimate efficient \\
portfolios.
\end{tabular} \\
\hline setTurnover & \begin{tabular}{l} 
Set up average turnover constraints \\
for portfolio weights.
\end{tabular} \\
\hline
\end{tabular}

\section*{Working with PortfolioMAD Objects}

The PortfolioMAD object and its methods are an interface for mean absolute-deviation portfolio optimization. Consequently, almost everything you do with the PortfolioMAD object can be done using the methods. The basic workflow is:

1 Design your portfolio problem.
2 Use the portfolio constructor (PortfoliomAD) to create the PortfolioMAD object or use the various set methods to set up your portfolio problem.

3 Use estimate methods to solve your portfolio problem.
In addition, methods are available to help you view intermediate results and to diagnose your computations. Since MATLAB features are part of a PortfolioMAD object, you can save and load objects from your workspace and create and manipulate arrays of objects. After settling on a problem, which, in the case of MAD portfolio optimization, means that you have either scenarios, data, or moments for asset returns, and a collection of constraints on your portfolios, use the portfolio constructor to set the properties for the PortfolioMAD object.

The PortfolioMAD constructor lets you create an object from scratch or update an existing object. Since the PortfolioMAD object is a value object, it is easy to create a basic object, then use methods to build upon the basic object to create new versions of the basic object. This is useful to compare a basic problem with alternatives derived from the basic problem. For details, see "Constructing the PortfolioMAD Object" on page 6-27.

\section*{Setting and Getting Properties}

You can set properties of a PortfolioMAD object using either the constructor (PortfolioMAD) or various set methods.

Note Although you can also set properties directly, it is not recommended since error-checking is not performed when you set a property directly.

The PortfolioMAD constructor supports setting properties with name-value pair arguments such that each argument name is a property and each value is the value to assign to that property. For example, to set the LowerBound and Budget properties in an existing PortfolioMAD object \(p\), use the syntax:
p = PortfolioMAD(p,'LowerBound', 0,'Budget',1);

In addition to the PortfolioMAD constructor, which lets you set individual properties one at a time, groups of properties are set in a PortfolioMAD object with various "set" and "add" methods. For example, to set up an average turnover constraint, use the setTurnover method to specify the bound on portfolio turnover and the initial portfolio. To get individual properties from a

PortfolioMAD object, obtain properties directly or use an assortment of "get" methods that obtain groups of properties from a PortfolioMAD object. The PortfolioMAD object constructor and set methods have several useful features:
- The constructor and set methods try to determine the dimensions of your problem with either explicit or implicit inputs.
- The constructor and set methods try to resolve ambiguities with default choices.
- The constructor and set methods perform scalar expansion on arrays when possible.
- The methods try to diagnose and warn about problems.

\section*{Displaying PortfolioMAD Objects}

The PortfolioMAD object uses the default display method provided by MATLAB, where display and disp display a PortfolioMAD object and its properties with or without the object variable name.

\section*{Saving and Loading PortfolioMAD Objects}

Save and load PortfolioMAD objects using the MATLAB save and load commands.

\section*{Estimating Efficient Portfolios and Frontiers}

Estimating efficient portfolios and efficient frontiers is the primary purpose of the MAD portfolio optimization tools. A collection of "estimate" and "plot" methods provide ways to explore the efficient frontier. The "estimate" methods obtain either efficient portfolios or risk and return proxies to form efficient frontiers. At the portfolio level, a collection of methods estimates efficient portfolios on the efficient frontier with methods to obtain efficient portfolios:
- At the endpoints of the efficient frontier
- That attain targeted values for return proxies
- That attain targeted values for risk proxies
- Along the entire efficient frontier

These methods also provide purchases and sales needed to shift from an initial or current portfolio to each efficient portfolio. At the efficient frontier level, a collection of methods plot the efficient frontier and estimate either risk or return proxies for efficient portfolios on the efficient frontier. You can use the resultant efficient portfolios or risk and return proxies in subsequent analyses.

\section*{Arrays of PortfolioMAD Objects}

Although all methods associated with a PortfolioMAD object are designed to work on a scalar PortfolioMAD object, the array capabilities of MATLAB enables you to set up and work with arrays of PortfolioMAD objects. The easiest way to do this is with the repmat function. For example, to create a 3 -by- 2 array of PortfolioMAD objects:
```

p = repmat(PortfolioMAD, 3, 2);
disp(p)

```

After setting up an array of PortfolioMAD objects, you can work on individual PortfolioMAD objects in the array by indexing. For example:
```

p(i,j) = PortfolioMAD(p(i,j), ...);

```

This example calls the PortfolioMAD object constructor for the (i,j) element of a matrix of PortfolioMAD objects in the variable \(p\).

If you set up an array of PortfolioMAD objects, you can access properties of a particular PortfolioMAD object in the array by indexing so that you can set the lower and upper bounds 1 b and ub for the ( \(\mathrm{i}, \mathrm{j}, \mathrm{k}\) ) element of a 3-D array of PortfolioMAD objects with
\(p(i, j, k)=p(i, j, k) . \operatorname{setBounds(lb,~ub);~}\)
and, once set, you can access these bounds with
[lb, ub] = p(i,j,k).getBounds;
PortfolioMAD object methods work on only one PortfolioMAD object at a time.

\section*{Subclassing PortfolioMAD Objects}

You can subclass the PortfolioMAD object to override existing methods or to add new properties or methods. To do so, create a derived class from
the PortfolioMAD class. This gives you all the properties and methods of the PortfolioMAD class along with any new features that you choose to add to your subclassed object. The PortfolioMAD class is derived from an abstract class called AbstractPortfolio. Because of this, you can also create a derived class from AbstractPortfolio that implements an entirely different form of portfolio optimization using properties and methods of the AbstractPortfolio class.

\section*{Conventions for Representation of Data}

The MAD portfolio optimization tools follow these conventions regarding the representation of different quantities associated with portfolio optimization:
- Asset returns or prices for scenarios are in matrix form with samples for a given asset going down the rows and assets going across the columns. In the case of prices, the earliest dates must be at the top of the matrix, with increasing dates going down.
- Portfolios are in vector or matrix form with weights for a given portfolio going down the rows and distinct portfolios going across the columns.
- Constraints on portfolios are formed in such a way that a portfolio is a column vector.
- Portfolio risks and returns are either scalars or column vectors (for multiple portfolio risks and returns).
\begin{tabular}{ll} 
See Also & AbstractPortfolio | PortfolioMAD \\
Related & - "Constructing the PortfolioMAD Object" on page 6-27 \\
Examples & - "Working with MAD Portfolio Constraints" on page 6-61 \\
Concepts & - "Portfolio Optimization Theory" on page 6-2
\end{tabular}

\section*{Constructing the PortfolioMAD Object}

\author{
In this section... \\ "Syntax" on page 6-27 \\ "PortfolioMAD Problem Sufficiency" on page 6-28 \\ "Constructor Examples" on page 6-28
}

To create a fully specified MAD portfolio optimization problem, instantiate the PortfolioMAD object using the MAD portfolio constructor.

\section*{Syntax}

Use the MAD portfolio constructor PortfolioMAD to create an instance of an object of the PortfolioMAD class. You can use this constructor in several ways. To set up a portfolio optimization problem in a PortfolioMAD object, the simplest syntax is:
p = PortfolioMAD;
This syntax creates a PortfolioMAD object, p, such that all object properties are empty.

The constructor also accepts collections of argument name-value pair arguments for properties and their values. The constructor accepts inputs for public properties (see PortfolioMAD Object Properties on page 6-17) with the general syntax:
```

p = PortfolioMAD('property1', value1, 'property2', value2, ...);

```

If a PortfolioMAD object already exists, the syntax permits the first (and only the first argument) of the MAD portfolio constructor to be an existing object with subsequent argument name-value pair arguments for properties to be added or modified. For example, given an existing PortfolioMAD object in \(p\), the general syntax is:
```

p = PortfolioMAD(p, 'property1', value1, 'property2', value2, ...);

```

Input argument names are not case sensitive, but must be completely specified. In addition, several properties can be specified with alternative
argument names (see "Shortcuts for Property Names" on page 6-33). The PortfolioMAD constructor tries to detect problem dimensions from the inputs and, once set, subsequent inputs can undergo various scalar or matrix expansion operations that simplify the overall process to formulate a problem. In addition, a PortfolioMAD object is a value object so that, given portfolio \(p\), the following code creates two objects, p and q , that are distinct:
\(q=\operatorname{PortfolioMAD(p,~...)~}\)

\section*{PortfolioMAD Problem Sufficiency}

A MAD portfolio optimization problem is completely specified with the PortfolioMAD object if the following three conditions are met:
- You must specify a collection of asset returns or prices known as scenarios such that all scenarios are finite asset returns or prices. These scenarios are meant to be samples from the underlying probability distribution of asset returns. This condition can be satisfied by the setScenarios method or with several canned scenario simulation methods.
- The set of feasible portfolios must be a nonempty compact set, where a compact set is closed and bounded. You can satisfy this condition using an extensive collection of properties that define different types of constraints to form a set of feasible portfolios. Since such sets must be bounded, either explicit or implicit constraints can be imposed and several tools, such as the estimateBounds method, provide ways to ensure that your problem is properly formulated.

Although the general sufficient conditions for MAD portfolio optimization go beyond the these conditions, the PortfolioMAD object handles all these additional conditions.

\section*{Constructor Examples}

If you create a PortfolioMAD object, p , with no input arguments, you can display it using disp:
```

p = PortfolioMAD;
disp(p);

```
```

PortfolioMAD with properties:
BuyCost: []
SellCost: []
RiskFreeRate: []
Turnover: []
BuyTurnover: []
SellTurnover: []
NumScenarios: []
Name: []
NumAssets: []
AssetList: []
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: []
UpperBound: []
LowerBudget: []
UpperBudget: []
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

The approaches listed provide a way to set up a portfolio optimization problem with the MAD portfolio constructor. The custom set methods offer additional ways to set and modify collections of properties in the PortfolioMAD object.

\section*{Using the Constructor for a Single-Step Setup}

You can use the PortfolioMAD constructor to directly set up a "standard" portfolio optimization problem. Given scenarios of asset returns in the variable AssetScenarios, this problem is completely specified as follows:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

```
```

 0.00408 0.0289 0.0204 0.0119;
 0.00192 0.0204 0.0576 0.0336;
 0 0.0119 0.0336 0.1225];
 m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD('Scenarios', AssetScenarios, ...
'LowerBound', 0, 'LowerBudget', 1, 'UpperBudget', 1);

```

Note that the LowerBound property value undergoes scalar expansion since AssetScenarios provides the dimensions of the problem.

You can use dot notation with the method plotFrontier.

\section*{p.plotFrontier;}


\section*{Using the Constructor with a Sequence of Steps}

An alternative way to accomplish the same task of setting up a "standard" MAD portfolio optimization problem, given AssetScenarios variable is:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = PortfolioMAD(p, 'LowerBound', O);
p = PortfolioMAD(p, 'LowerBudget', 1, 'UpperBudget', 1);
p.plotFrontier;

```


This way works because the calls to the constructor are in this particular order. In this case, the call to initialize AssetScenarios provides the dimensions for the problem. If you were to do this step last, you would have to explicitly dimension the LowerBound property as follows:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = PortfolioMAD(p, 'LowerBound', zeros(size(m)));
p = PortfolioMAD(p, 'LowerBudget', 1, 'UpperBudget', 1);

```
```

p = p.setScenarios(AssetScenarios);

```

Note If you did not specify the size of LowerBound but, instead, input a scalar argument, the constructor assumes that you are defining a single-asset problem and produces an error at the call to set asset scenarios with four assets.

\section*{Shortcuts for Property Names}

The MAD portfolio constructor has shorter argument names that replace longer argument names associated with specific properties of the PortfolioMAD object. For example, rather than enter 'AInequality', the constructor accepts the case-insensitive name 'ai' to set the AInequality property in a PortfolioMAD object. Every shorter argument name corresponds with a single property in the MAD portfolio constructor. The one exception is the alternative argument name 'budget', which signifies both the LowerBudget and UpperBudget properties. When 'budget' is used, then the LowerBudget and UpperBudget properties are set to the same value to form an equality budget constraint.
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Shortcut Argument \\
Name
\end{tabular} & Equivalent Argument / Property Name \\
\hline ae & AEquality \\
\hline ai & AInequality \\
\hline assetnames or assets & AssetList \\
\hline be & bEquality \\
\hline bi & bInequality \\
\hline budget & UpperBudget and LowerBudget \\
\hline group & GroupMatrix \\
\hline lb & LowerBound \\
\hline n or num & NumAssets \\
\hline rfr & RiskFreeRate \\
\hline
\end{tabular}

\section*{(Continued)}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Shortcut Argument \\
Name
\end{tabular} & Equivalent Argument / Property Name \\
\hline \begin{tabular}{l} 
scenario or \\
assetscenarios
\end{tabular} & Scenarios \\
\hline ub & UpperBound \\
\hline
\end{tabular}

For example, this call to the constructor uses these shortcuts for properties:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD('scenario', AssetScenarios, 'lb', 0, 'budget', 1);
p.plotFrontier;

```

\section*{Direct Setting of Portfolio Object Properties}

Although not recommended, you can set properties directly using dot notation, however no error-checking is done on your inputs:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);

```
```

p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p.LowerBudget = 1;
p.UpperBudget = 1;
p.LowerBound = zeros(size(m));
p.plotFrontier;

```

Note Scenarios cannot be assigned directly to a PortfolioMAD object. Scenarios must always be set through either the PortfolioMAD constructor, the setScenarios method, or any of the scenario simulation methods.

\author{
See Also PortfoliomAD | estimateBounds \\ Related Examples \\ - "Common Operations on the PortfolioMAD Object" on page 6-36 \\ - "Working with MAD Portfolio Constraints" on page 6-61 \\ \section*{Concepts} \\ - "PortfolioMAD Object" on page 6-17 \\ - "Portfolio Optimization Theory" on page 6-2
}

\title{
Common Operations on the PortfolioMAD Object
}

\author{
In this section... \\ "Naming a PortfolioMAD Object" on page 6-36 \\ "Configuring the Assets in the Asset Universe" on page 6-36 \\ "Setting Up a List of Asset Identifiers" on page 6-37 \\ "Truncating and Padding Asset Lists" on page 6-39 \\ "Setting Up an Initial or Current Portfolio" on page 6-40
}

\section*{Naming a PortfolioMAD Object}

To name a PortfolioMAD object, use the Name property. Name is informational and has no effect on any portfolio calculations. If the Name property is nonempty, Name is the title for the efficient frontier plot generated by plotFrontier. For example, if you set up an asset allocation fund, you could name the PortfolioMAD object Asset Allocation Fund:
```

p = PortfolioMAD('Name','Asset Allocation Fund');
disp(p.Name);
Asset Allocation Fund

```

\section*{Configuring the Assets in the Asset Universe}

The fundamental quantity in the PortfolioMAD object is the number of assets in the asset universe. This quantity is maintained in the NumAssets property. Although you can set this property directly, it is usually derived from other properties such as the number of assets in the scenarios or the initial portfolio. In some instances, the number of assets may need to be set directly. This example shows how to set up a PortfolioMAD object that has four assets:
```

p = PortfolioMAD('NumAssets', 4);
disp(p.NumAssets);
4

```

After setting the NumAssets property, you cannot modify it (unless no other properties are set that depend on NumAssets). The only way to change the number of assets in an existing PortfolioMAD object with a known number of assets is to create a new PortfolioMAD object.

\section*{Setting Up a List of Asset Identifiers}

When working with portfolios, you must specify a universe of assets. Although you can perform a complete analysis without naming the assets in your universe, it is helpful to have an identifier associated with each asset as you create and work with portfolios. You can create a list of asset identifiers as a cell vector of strings in the property AssetList. You can set up the list using the next two methods.

\section*{Setting Up Asset Lists Using the Constructor}

Suppose you have a PortfolioMAD object, p, with assets with symbols 'AA', 'BA', 'CAT', 'DD', and 'ETR'. You can create a list of these asset symbols in the object using the constructor:
```

p = PortfolioMAD('assetlist', { 'AA', 'BA', 'CAT', 'DD', 'ETR' });
disp(p.AssetList);

```

Notice that the property AssetList is maintained as a cell array that contains strings, and that it is necessary to pass a cell array into the constructor to set AssetList. In addition, notice that the property NumAssets is set to 5 based on the number of symbols used to create the asset list:
```

disp(p.NumAssets);

```

5

\section*{Setting Up Asset Lists Using the setAssetList Method}

You can also specify a list of assets using the method setAssetList. Given the list of asset symbols 'AA', 'BA', 'CAT', 'DD', and'ETR', you can use setAssetList with:
\(p=\) PortfolioMAD;
\(\mathrm{p}=\mathrm{p}\).setAssetList(\{ 'AA', 'BA', 'CAT', 'DD', 'ETR' \}); disp(p.AssetList);
'AA' 'BA' 'CAT' 'DD' 'ETR'
setAssetList also enables you enter symbols directly as a comma-separated list without creating a cell array of strings. For example, given the list of assets symbols 'AA', 'BA', 'CAT', 'DD', and 'ETR', use setAssetList:
p = PortfolioMAD;
p = p.setAssetList('AA', 'BA', 'CAT', 'DD', 'ETR'); disp(p.AssetList);

\section*{'AA' 'BA' 'CAT' 'DD' 'ETR'}
setAssetList has many additional features to create lists of asset identifiers. If you use setAssetList with just a PortfolioMAD object, it creates a default asset list according to the name specified in the hidden public property defaultforAssetList (which is 'Asset' by default). The number of asset names created depends on the number of assets in the property NumAssets. If NumAssets is not set, then NumAssets is assumed to be 1 .

For example, if a PortfolioMAD object \(p\) is created with NumAssets \(=5\), then this code fragment shows the default naming behavior:
```

p = PortfolioMAD('numassets',5);
p = p.setAssetList;
disp(p.AssetList);

```
'Asset1' 'Asset2' 'Asset3' 'Asset4' 'Asset5'

Suppose that your assets are, for example, ETFs and you change the hidden property defaultforAssetList to 'ETF', you can then create a default list for ETFs:
```

p = PortfolioMAD('numassets',5);
p.defaultforAssetList = 'ETF';
p = p.setAssetList;
disp(p.AssetList);
'ETF1' 'ETF2' 'ETF3' 'ETF4' 'ETF5'

```

\section*{Truncating and Padding Asset Lists}

If the NumAssets property is already set and you pass in too many or too few identifiers, the MAD portfolio constructor, and the setAssetList method truncate or pad the list with numbered default asset names that use the name specified in the hidden public property defaultforAssetList. If the list is truncated or padded, a warning message indicates the discrepancy. For example, assume you have a PortfolioMAD object with five ETFs and you only know the first three CUSIPs '921937835', '922908769', and ' 922042775 '. Use this syntax to create an asset list that pads the remaining asset identifiers with numbered 'UnknownCUSIP' placeholders:
```

p = PortfolioMAD('numassets',5);
p.defaultforAssetList = 'UnknownCUSIP';
p = p.setAssetList('921937835', '922908769', '922042775');
disp(p.AssetList);
Warning: Input list of assets has 2 too few identifiers. Padding with numbe
assets.
> In PortfolioMAD.setAssetList at 148
Columns 1 through 4
'921937835' '922908769' '922042775' 'UnknownCUSIP4'

```
    Column 5
        'UnknownCUSIP5'

Alternatively, suppose you have too many identifiers and need only the first four assets. This example illustrates truncation of the asset list using the PortfolioMAD constructor:
```

p = PortfolioMAD('numassets',4);
p = PortfolioMAD(p, 'assetlist', { 'AGG', 'EEM', 'MDY', 'SPY', 'VEU' });
disp(p.AssetList);
Warning: AssetList has 1 too many identifiers. Using first 4 assets.
> In PortfolioMAD.checkarguments at 541
In PortfolioMAD.PortfolioMAD>PortfolioMAD.PortfolioMAD at 190
'AGG' 'EEM' 'MDY' 'SPY'

```

The hidden public property uppercaseAssetList is a Boolean flag to specify whether to convert asset names to uppercase letters. The default value for uppercaseAssetList is false. This example shows how to use the uppercaseAssetList flag to force identifiers to be uppercase letters:
```

p = PortfolioMAD;
p.uppercaseAssetList = true;
p = p.setAssetList({ 'aa', 'ba', 'cat', 'dd', 'etr' });
disp(p.AssetList);

```
```

'AA' 'BA' 'CAT' 'DD' 'ETR'

```
```

'AA' 'BA' 'CAT' 'DD' 'ETR'

```

\section*{Setting Up an Initial or Current Portfolio}

In many applications, creating a new optimal portfolio requires comparing the new portfolio with an initial or current portfolio to form lists of purchases and sales. The PortfolioMAD object property InitPort lets you identify an initial or current portfolio. The initial portfolio also plays an essential role if you have either transaction costs or turnover constraints. The initial portfolio need not be feasible within the constraints of the problem. This can happen if the weights in a portfolio have shifted such that some constraints become violated. To check if your initial portfolio is feasible, use the method checkFeasibility described in "Validating MAD Portfolios" on page 6-87. Suppose you have an initial portfolio in x0, then use the PortfolioMAD object constructor to set up an initial portfolio:
```

x0 = [0.3; 0.2; 0.2; 0.0];
p = PortfolioMAD('InitPort', x0);
disp(p.InitPort);

```
0.3000
0.2000
0.2000

0

As with all array properties, you can set InitPort with scalar expansion. This is helpful to set up an equally weighted initial portfolio of, for example, 10 assets:
```

p = PortfolioMAD('NumAssets', 10, 'InitPort', 1/10);
disp(p.InitPort);

```
```

0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000

```

To clear an initial portfolio from your PortfolioMAD object, use either the constructor or the setInitPort method with an empty input for the InitPort property. If transaction costs or turnover constraints are set, it is not possible to clear the InitPort property in this way. In this case, to clear InitPort, first clear the dependent properties and then clear theInitPort property.

The InitPort property can also be set with setInitPort which lets you specify the number of assets if you want to use scalar expansion. For example, given an initial portfolio in \(\times 0\), use setInitPort to set the InitPort property:
```

p = PortfolioMAD;
x0 = [0.3; 0.2; 0.2; 0.0];
p = p.setInitPort(x0);
disp(p.InitPort);
0.3000
0.2000
0.2000
0

```

To create an equally weighted portfolio of four assets, use setInitPort:
```

p = PortfolioMAD;
p = p.setInitPort(1/4, 4);
disp(p.InitPort);

```
0.2500
0.2500
0.2500
0.2500

PortfolioMAD object methods that work with either transaction costs or turnover constraints also depend on the InitPort property. Consequently, the set methods for transaction costs or turnover constraints permit the assignment of a value for the InitPort property as part of their implementation. For details, see "Working with Average Turnover Constraints" on page 6-79, "Working with One-Way Turnover Constraints" on page 6-82, and "Working with Transaction Costs" on page 6-56. If either transaction costs or turnover constraints are used, then the InitPort property must have a nonempty value. Absent a specific value assigned through the constructor or various set methods, the PortfolioMAD object sets InitPort to 0 and warns if BuyCost, SellCost, or Turnover properties are set. This example shows what happens if you specify an average turnover constraint with an initial portfolio:
```

p = PortfolioMAD('Turnover', 0.3, 'InitPort', [0.3; 0.2; 0.2; 0.0]);
disp(p.InitPort);

```
0.3000
0.2000
0.2000

0
In contrast, this example shows what happens if an average turnover constraint is specified without an initial portfolio:
```

p = PortfolioMAD('Turnover', 0.3);
disp(p.InitPort);

```
```

Warning: InitPort and NumAssets are empty and either transaction costs or
turnover constraints specified. Will set NumAssets = 1 and InitPort = 0.
> In PortfolioMAD.checkarguments at 446
In PortfolioMAD.PortfolioMAD>PortfolioMAD.PortfolioMAD at 190
O

```
PortfolioMAD | setAssetList | setInitPort | estimateBounds |
checkFeasibility

Related - "Working with MAD Portfolio Constraints" on page 6-61
Examples
- "Asset Returns and Scenarios" on page 6-44

Concepts
- "PortfolioMAD Object" on page 6-17
- "Portfolio Optimization Theory" on page 6-2

\section*{Asset Returns and Scenarios}

\author{
In this section... \\ "How Stochastic Optimization Works" on page 6-44 \\ "What Are Scenarios?" on page 6-45 \\ "Setting Scenarios Using the PortfolioMAD Constructor" on page 6-46 \\ "Setting Scenarios Using the setScenarios Method" on page 6-47 \\ "Estimating the Mean and Covariance of Scenarios" on page 6-47 \\ "Simulating Normal Scenarios" on page 6-48 \\ "Simulating Normal Scenarios from Returns or Prices" on page 6-49 \\ "Simulating Normal Scenarios with Missing Data" on page 6-51 \\ "Simulating Normal Scenarios from Time Series Data" on page 6-53 \\ "Simulating Normal Scenarios for Mean and Covariance" on page 6-54 \\ "Working with a Riskless Asset" on page 6-55 \\ "Working with Transaction Costs" on page 6-56
}

\section*{How Stochastic Optimization Works}

The MAD of a portfolio is mean-absolute deviation. For the definition of the MAD function, see "Risk Proxy" on page 6-5. Although analytic solutions for MAD exist for a few probability distributions, an alternative is to compute the expectation for MAD with samples from the probability distribution of asset returns. These samples are called scenarios and, given a collection of scenarios, the portfolio optimization problem becomes a stochastic optimization problem.

As a function of the portfolio weights, the MAD of the portfolio is a convex non-smooth function (see Konno and Yamazaki [50] at "Portfolio Optimization" on page A-12). The PortfolioMAD object computes MAD as this nonlinear function which can be handled by the solver fmincon Optimization Toolbox. The nonlinear programming solver fmincon has several algorithms that can be selected with the setSolver method, the two algorithms that work best in practice are 'sqp' and 'active-set'.

There are reformulations of the MAD portfolio optimization problem (see Konno and Yamazaki [50] at "Portfolio Optimization" on page A-12) that result in a linear programming problem, which can be solved either with standard linear programming techniques or with stochastic programming solvers. The PortfolioMAD object, however, does not reformulate the problem in such a manner. The PortfolioMAD object computes the MAD as a nonlinear function. The convexity of the MAD, as a function of the portfolio weights and the somewhat dull edges when the number of scenarios is large, make the MAD portfolio optimization problem tractable, in practice, for certain nonlinear programming solvers, such as fmincon from Optimization Toolbox.

\section*{What Are Scenarios?}

Since mean absolute deviation portfolio optimization works with scenarios of asset returns to perform the optimization, several ways exist to specify and simulate scenarios. In many applications with MAD portfolio optimization, asset returns may have distinctly nonnormal probability distributions with either multiple modes, binning of returns, truncation of distributions, and so forth. In other applications, asset returns are modeled as the result of various simulation methods that might include Monte-Carlo simulation, quasi-random simulation, and so forth. In many cases, the underlying probability distribution for risk factors may be multivariate normal but the resultant transformations are sufficiently nonlinear to result in distinctively nonnormal asset returns.

For example, this occurs with bonds and derivatives. In the case of bonds with a nonzero probability of default, such scenarios would likely include asset returns that are \(-100 \%\) to indicate default and some values slightly greater than \(-100 \%\) to indicate recovery rates.

Although the PortfolioMAD object has methods to simulate multivariate normal scenarios from either data or moments (simulateNormalScenariosByData and simulateNormalScenariosByMoments), the usual approach is to specify scenarios directly from your own simulation methods. These scenarios are entered directly as a matrix with a sample for all assets across each row of the matrix and with samples for an asset down each column of the matrix. The architecture of the MAD portfolio optimization tools references the scenarios through a function handle so scenarios that have been set cannot be accessed directly as a property of the PortfolioMAD object.

\section*{Setting Scenarios Using the PortfolioMAD Constructor}

Suppose you have a matrix of scenarios in the AssetScenarios variable. The scenarios are set through the PortfolioMAD constructor with:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD('Scenarios', AssetScenarios);
disp(p.NumAssets);
disp(p.NumScenarios);

```
4
20000

Notice that the PortfolioMAD object determines and fixes the number of assets in NumAssets and the number of scenarios in NumScenarios based on the scenario's matrix. You can change the number of scenarios by calling the PortfolioMAD constructor with a different scenario matrix. However, once the NumAssets property has been set in the object, you cannot enter a scenario matrix with a different number of assets. The getScenarios method lets you recover scenarios from a PortfolioMAD object. You can also obtain the mean and covariance of your scenarios using estimateScenarioMoments.

Although not recommended for the casual user, an alternative way exists to recover scenarios by working with the function handle that points to scenarios in the PortfolioMAD object. To access some or all of the scenarios from a PortfolioMAD object, the hidden property localScenarioHandle is a function handle that points to a function to obtain scenarios that have already been set. To get scenarios directly from a PortfolioMAD object \(p\), use
```

scenarios = p.localScenarioHandle([], []);

```
and to obtain a subset of scenarios from rows startrow to endrow, use
```

scenarios = p.localScenarioHandle(startrow, endrow);

```
where \(1 \leq\) startrow \(\leq\) endrow \(\leq\) numScenarios.

\section*{Setting Scenarios Using the setScenarios Method}

You can also set scenarios using setScenarios. For example, given the mean and covariance of asset returns in the variables \(m\) and \(C\), the asset moment properties can be set:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;

```
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
disp(p.NumAssets);
disp(p.NumScenarios);
4
20000

\section*{Estimating the Mean and Covariance of Scenarios}

The estimateScenarioMoments method obtains estimates for the mean and covariance of scenarios in a PortfolioMAD object.
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

```
```

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD
p = p.setScenarios(AssetScenarios);
[mean, covar] = p.estimateScenarioMoments
mean =
0.0041
0.0084
0.0108
0.0142
covar =

0.0005	0.0003	0.0002	-0.0000
0.0003	0.0024	0.0017	0.0010
0.0002	0.0017	0.0048	0.0028
-0.0000	0.0010	0.0028	0.0102

```

\section*{Simulating Normal Scenarios}

As a convenience, the two methods (simulateNormalScenariosByData and simulateNormalScenariosByMoments) exist to simulate scenarios from data or moments under an assumption that they are distributed as multivariate normal random asset returns.

\section*{Simulating Normal Scenarios from Returns or Prices}

Given either return or price data, use the method simulateNormalScenariosByData to simulate multivariate normal scenarios. Either returns or prices are stored as matrices with samples going down the rows and assets going across the columns. In addition, returns or prices can be stored in a financial time series fints object (see "Simulating Normal Scenarios from Time Series Data" on page 6-53). To illustrate using simulateNormalScenariosByData, generate random samples of 120 observations of asset returns for four assets from the mean and covariance of asset returns in the variables m and C with portsim. The default behavior of portsim creates simulated data with estimated mean and covariance identical to the input moments m and C . In addition to a return series created by portsim in the variable \(X\), a price series is created in the variable \(Y\) :
```

m = [0.0042; 0.0083; 0.01; 0.15];
C = [0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208];
X = portsim(m', C, 120);
Y = ret2tick(X);

```

Note Portfolio optimization requires that you use total returns and not just price returns. Consequently, "returns" should be total returns and "prices" should be total return prices.

Given asset returns and prices in variables \(X\) and \(Y\) from above, this sequence of examples demonstrates equivalent ways to simulate multivariate normal scenarios for the PortfolioMAD object. Assume a PortfolioMAD object created in \(p\) that uses the asset returns in \(X\) uses simulateNormalScenariosByData:
```

p = PortfolioMAD;
p = p.simulateNormalScenariosByData(X, 20000);
[passetmean, passetcovar] = p.estimateScenarioMoments
passetmean =

```
0.0046
0.0085
0.0106
0.1499
passetcovar =
\begin{tabular}{rrrr}
0.0053 & 0.0004 & 0.0002 & -0.0000 \\
0.0004 & 0.0024 & 0.0017 & 0.0010 \\
0.0002 & 0.0017 & 0.0048 & 0.0028 \\
-0.0000 & 0.0010 & 0.0028 & 0.0101
\end{tabular}

The moments that you obtain from this simulation will likely differ from the moments listed here because the scenarios are random samples from the estimated multivariate normal probability distribution of the input returns \(X\).

The default behavior of simulateNormalScenariosByData is to work with asset returns. If, instead, you have asset prices as in the variable \(Y\), simulateNormalScenariosByData accepts an argument name 'DataFormat' with a corresponding value set to 'prices' to indicate that the input to the method is in the form of asset prices and not returns (the default value for the 'DataFormat' argument is 'returns'). This example simulates scenarios with the asset price data in \(Y\) for the PortfolioMAD object q:
```

p = PortfolioMAD;
p = p.simulateNormalScenariosByData(Y, 20000, 'dataformat', 'prices');
[passetmean, passetcovar] = p.estimateScenarioMoments
passetmean =
0.0040
0.0083
0.0105
0.1506
passetcovar =

```
\begin{tabular}{rrrr}
0.0054 & 0.0004 & 0.0002 & -0.0000 \\
0.0004 & 0.0024 & 0.0017 & 0.0010 \\
0.0002 & 0.0017 & 0.0047 & 0.0027 \\
-0.0000 & 0.0010 & 0.0027 & 0.0102
\end{tabular}

\section*{Simulating Normal Scenarios with Missing Data}

Often when working with multiple assets, you have missing data indicated by NaN values in your return or price data. Although "Multivariate Normal Regression" on page 9-2 goes into detail about regression with missing data, the simulateNormalScenariosByData method has an argument name 'MissingData' that indicates with a Boolean value whether to use the missing data capabilities of Financial Toolbox. The default value for 'MissingData' is false which removes all samples with NaN values. If, however, 'MissingData' is set to true, simulateNormalScenariosByData uses the ECM algorithm to estimate asset moments. This example shows how this works on price data with missing values:
```

m = [0.0042; 0.0083; 0.01; 0.15];
C = [0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208];
X = portsim(m', C, 120);
Y = ret2tick(X);
Y(1:20,1) = NaN;
Y(1:12,4) = NaN;

```

Notice that the prices above in \(Y\) have missing values in the first and fourth series.
```

p = PortfolioMAD;
p = p.simulateNormalScenariosByData(Y, 20000, 'dataformat', 'prices');
q = PortfolioMAD;
q = q.simulateNormalScenariosByData(Y, 20000, 'dataformat', 'prices', 'missingdata', true);
[passetmean, passetcovar] = p.estimateScenarioMoments
[qassetmean, qassetcovar] = q.estimateScenarioMoments

```
```

passetmean =
0.0024
0.0089
0.0113
0.1553
passetcovar =

0.0056	0.0001	0.0000	-0.0004
0.0001	0.0025	0.0017	0.0012
0.0000	0.0017	0.0047	0.0030
-0.0004	0.0012	0.0030	0.0105

qassetmean =
0.0035
0.0083
0.0100
0.1520
qassetcovar =
0.0074 0.0002 0.0001 -0.0006
0.0002 0.0032 0.0022 0.0014
0.0001 0.0022 0.0063 0.0039
-0.0006 0.0014 0.0039 0.0133

```

The first PortfolioMAD object, p, contains scenarios obtained from price data in Y where NaN values are discarded and the second PortfolioMAD object, q, contains scenarios obtained from price data in \(Y\) that accommodate missing values. Each time you run this example, you will get different estimates for the moments in \(p\) and \(q\).

\section*{Simulating Normal Scenarios from Time Series Data}

The simulateNormalScenariosByData method also accepts asset returns or prices stored in financial time series (fints) objects. The method implicitly works with matrices of data or data in a fints object using the same rules for whether the data are returns or prices. To illustrate, use fints to create the fints object Xfts that contains asset returns generated with fints (see "Simulating Normal Scenarios from Returns or Prices" on page 6-49) and add series labels:
```

m = [0.0042; 0.0083; 0.01; 0.15];
C = [0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208];
X = portsim(m', C, 120);
d = (datenum('31-jan-2001'):datenum('31-dec-2010'))';
Xfts = fints(d, zeros(numel(d),4), {'Bonds', 'LargeCap', 'SmallCap', 'Emerging'});
Xfts = tomonthly(Xfts);
Xfts.Bonds = X(:,1);
Xfts.LargeCap = X(:,2);
Xfts.SmallCap = X(:,3);
Xfts.Emerging = X(:,4);
p = PortfolioMAD;
p = p.simulateNormalScenariosByData(Xfts, 20000);
[passetmean, passetcovar] = p.estimateScenarioMoments
passetmean =
0.0038
0.0078
0.0100
0.1493
passetcovar =

```
\begin{tabular}{llll}
0.0054 & 0.0004 & 0.0002 & 0.0001 \\
0.0004 & 0.0024 & 0.0017 & 0.0010 \\
0.0002 & 0.0017 & 0.0047 & 0.0027 \\
0.0001 & 0.0010 & 0.0027 & 0.0102
\end{tabular}

The name-value inputs 'DataFormat' to handle return or price data and 'MissingData' to ignore or use samples with missing values also work for fints data. In addition, simulateNormalScenariosByData extracts asset names or identifiers from a fints object if the argument name 'GetAssetList' is set to true (the default value is false). If the 'GetAssetList' value is true, the identifiers are used to set the AssetList property of the PortfolioMAD object. Thus, repeating the formation of the PortfolioMAD object q from the previous example with the 'GetAssetList' flag set to true extracts the series labels from the fints object:
```

p = p.simulateNormalScenariosByData(Xfts, 20000, 'getassetlist', true);
disp(p.AssetList)
'Bonds' 'LargeCap' 'SmallCap' 'Emerging'

```

If you set the 'GetAssetList' flag set to true and your input data is in a matrix, simulateNormalScenariosByData uses the default labeling scheme from setAssetList as described in "Setting Up a List of Asset Identifiers" on page 6-37.

\section*{Simulating Normal Scenarios for Mean and Covariance}

Given the mean and covariance of asset returns, use the simulateNormalScenariosByMoments method to simulate multivariate normal scenarios. The mean can be either a row or column vector and the covariance matrix must be a symmetric positive-semidefinite matrix. Various rules for scalar expansion apply. To illustrate using simulateNormalScenariosByMoments, start with moments in \(m\) and \(C\) and generate 20,000 scenarios:
```

m = [0.0042; 0.0083; 0.01; 0.15];
C = [0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;

```
```

0 0.000992 0.0028 0.010208];
p = PortfolioMAD;
p = p.simulateNormalScenariosByMoments(m, C, 20000);
[passetmean, passetcovar] = p.estimateScenarioMoments
passetmean =
0.0047
0.0079
0.0096
0.1511
passetcovar =

0.0053	0.0003	0.0001	-0.0001
0.0003	0.0024	0.0017	0.0009
0.0001	0.0017	0.0048	0.0028
-0.0001	0.0009	0.0028	0.0100

```
simulateNormalScenariosByMoments performs scalar expansion on arguments for the moments of asset returns. If NumAssets has not already been set, a scalar argument is interpreted as a scalar with NumAssets set to 1. simulateNormalScenariosByMoments provides an additional optional argument to specify the number of assets so that scalar expansion works with the correct number of assets. In addition, if either a scalar or vector is input for the covariance of asset returns, a diagonal matrix is formed such that a scalar expands along the diagonal and a vector becomes the diagonal.

\section*{Working with a Riskless Asset}

The PortfolioMAD object has a separate RiskFreeRate property that stores the rate of return of a riskless asset. Thus, you can separate your universe into a riskless asset and a collection of risky assets. For example, assume that your riskless asset has a return in the scalar variable r0, then the property for the RiskFreeRate is set using the constructor:
r0 = 0.01/12;
```

p = PortfolioMAD;
p = PortfolioMAD('RiskFreeRate', ro);
disp(p.RiskFreeRate);

```
8.3333e-04

Note If your portfolio problem has a budget constraint such that your portfolio weights must sum to 1 , then the riskless asset is irrelevant.

\section*{Working with Transaction Costs}

The difference between net and gross portfolio returns is transaction costs. The net portfolio return proxy has distinct proportional costs to purchase and to sell assets which are maintained in the PortfolioMAD object properties BuyCost and SellCost. Transaction costs are in units of total return and, as such, are proportional to the price of an asset so that they enter the model for net portfolio returns in return form. For example, suppose you have a stock currently priced \(\$ 40\) and your usual transaction costs are 5 cents per share. Then the transaction cost for the stock is \(0.05 / 40=0.00125\) (as defined in "Net Portfolio Returns" on page 6-5). Costs are entered as positive values and credits are entered as negative values.

\section*{Setting Transaction Costs Using the Constructor}

To set up transaction costs, you must specify an initial or current portfolio in the InitPort property. If the initial portfolio is not set when you set up the transaction cost properties, InitPort is 0 . The properties for transaction costs can be set using the constructor PortfolioMAD. For example, assume that purchase and sale transaction costs are in the variables bc and sc and an initial portfolio is in the variable \(\times 0\), then transaction costs are set:
```

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = PortfolioMAD('BuyCost', bc, 'SellCost', sc, 'InitPort', x0);
disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);

```

5
0.0013
0.0013
0.0013
0.0013
0.0013
0.0013
0.0070
0.0013
0.0013
0.0024
0.4000
0.2000
0.2000
0.1000
0.1000

\section*{Setting Transaction Costs Using the setCosts Method}

You can also set the properties for transaction costs using setCosts. Assume that you have the same costs and initial portfolio as in the previous example. Given a PortfolioMAD object \(p\) with an initial portfolio already set, use setCosts to set up transaction costs:
bc \(=\) [ \(0.00125 ; 0.00125 ; 0.00125 ; 0.00125 ; 0.00125]\);
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
\(p=\) PortfolioMAD('InitPort', x0);
\(p=p . s e t C o s t s(b c, s c) ;\)
disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);
```

5
0.0013
0.0013
0.0013
0.0013
0.0013
0.0013
0.0070
0.0013
0.0013
0.0024
0.4000
0.2000
0.2000
0.1000
0.1000

```

You can also set up the initial portfolio's InitPort value as an optional argument to setCosts so that the following is an equivalent way to set up transaction costs:
```

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = PortfolioMAD;
p = p.setCosts(bc, sc, x0);
disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);
5
0.0013
0.0013

```
```

0.0013
0.0013
0.0013
0.0013
0.0070
0.0013
0.0013
0.0024
0.4000
0.2000
0.2000
0.1000
0.1000

```

\section*{Setting Transaction Costs with Scalar Expansion}

Both the constructor PortfolioMAD and setCosts method implement scalar expansion on the arguments for transaction costs and the initial portfolio. If the NumAssets property is already set in the PortfolioMAD object, scalar arguments for these properties are expanded to have the same value across all dimensions. In addition, setCosts lets you specify NumAssets as an optional final argument. For example, assume that you have an initial portfolio x0 and you want to set common transaction costs on all assets in your universe. You can set these costs in any of these equivalent ways:
```

x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = PortfolioMAD('InitPort', x0, 'BuyCost', 0.002, 'SellCost', 0.002);
or
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = PortfolioMAD('InitPort', x0);
p = p.setCosts(0.002, 0.002);
or
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = PortfolioMAD;
p = p.setCosts(0.002, 0.002, x0);

```

To clear costs from your PortfolioMAD object, use either the constructor or setCosts with empty inputs for the properties to be cleared. For example, you can clear sales costs from the PortfolioMAD object \(p\) in the previous example:
\(\mathrm{p}=\) PortfolioMAD(p, 'SellCost', []);
\begin{tabular}{ll} 
See Also & \begin{tabular}{l} 
PortfoliomAD | setCosts I setScenarios | \\
simulateNormalScenariosByMoments | simulateNormalScenariosByData
\end{tabular} \\
Related & - "Constructing the PortfolioMAD Object" on page 6-27 \\
Examples & \begin{tabular}{l} 
- "Working with MAD Portfolio Constraints" on page 6-61
\end{tabular} \\
& - "Validate the MAD Portfolio Problem" on page 6-85
\end{tabular}

\section*{Working with MAD Portfolio Constraints}

\author{
In this section... \\ "Setting Default Constraints for Portfolio Weights" on page 6-61 \\ "Working with Bound Constraints" on page 6-64 \\ "Working with Budget Constraints" on page 6-66 \\ "Working with Group Constraints" on page 6-68 \\ "Working with Group Ratio Constraints" on page 6-72 \\ "Working with Linear Equality Constraints" on page 6-75 \\ "Working with Linear Inequality Constraints" on page 6-77 \\ "Working with Average Turnover Constraints" on page 6-79 \\ "Working with One-Way Turnover Constraints" on page 6-82
}

\section*{Setting Default Constraints for Portfolio Weights}

The "default" MAD portfolio problem has two constraints on portfolio weights:
- Portfolio weights must be nonnegative.
- Portfolio weights must sum to 1 .

Implicitly, these constraints imply that portfolio weights are no greater than 1 , although this is a superfluous constraint to impose on the problem.

\section*{Setting Default Constraints Using the Constructor}

Given a portfolio optimization problem with NumAssets \(=20\) assets, use the PortfolioMAD constructor to set up a default problem and explicitly set bounds and budget constraints:
```

p = PortfolioMAD('NumAssets', 20, 'LowerBound', 0, 'Budget', 1); disp(p);

```
```

 SellCost: []
 RiskFreeRate: []
Turnover: []
BuyTurnover: []
SellTurnover: []
NumScenarios: []
Name: []
NumAssets: 20
AssetList: []
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: [20x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

\section*{Setting Default Constraints Using the setDefaultConstraints Method}

An alternative approach is to use the setDefaultConstraints method. If the number of assets is already known in a PortfolioMAD object, use setDefaultConstraints with no arguments to set up the necessary bound and budget constraints. Suppose you have 20 assets to set up the portfolio set for a default problem:
```

p = PortfolioMAD('NumAssets', 20);
p = p.setDefaultConstraints;
disp(p);

```
```

PortfolioMAD with properties:
BuyCost: []
SellCost: []
RiskFreeRate: []
Turnover: []
BuyTurnover: []
SellTurnover: []
NumScenarios: []
Name: []
NumAssets: 20
AssetList: []
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: [20x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

If the number of assets is unknown, setDefaultConstraints accepts NumAssets as an optional argument to form a portfolio set for a default problem. Suppose you have 20 assets:
```

p = PortfolioMAD;
p = p.setDefaultConstraints(20);
disp(p);
PortfolioMAD with properties:
BuyCost: []

```
```

 SellCost: []
 RiskFreeRate: []
Turnover: []
BuyTurnover: []
SellTurnover: []
NumScenarios: []
Name: []
NumAssets: 20
AssetList: []
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: [20x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

\section*{Working with Bound Constraints}

Bound constraints are optional linear constraints that maintain upper and lower bounds on portfolio weights (see "Bound Constraints" on page 6-10). Although every MAD portfolio set must be bounded, it is not necessary to specify a MAD portfolio set with explicit bound constraints. For example, you can create a MAD portfolio set with an implicit upper bound constraint or a MAD portfolio set with just average turnover constraints. The bound constraints have properties LowerBound for the lower-bound constraint and UpperBound for the upper-bound constraint. Set default values for these constraints using the setDefaultConstraints method (see "Setting Default Constraints for Portfolio Weights" on page 6-61).

\section*{Setting Bounds Using the Constructor}

The properties for bound constraints are set through the constructor PortfolioMAD. Suppose you have a balanced fund with stocks that can range from 50 to \(75 \%\) of your portfolio and bonds that can range from 25 to \(50 \%\) of your portfolio. The bound constraints for a balanced fund are set with:
```

lb = [0.5; 0.25];
ub = [0.75; 0.5];
p = PortfolioMAD('LowerBound', lb, 'UpperBound', ub);
disp(p.NumAssets);
disp(p.LowerBound);
disp(p.UpperBound);

```

2
0.5000
0.2500
0.7500
0.5000

To continue with this example, you must set up a budget constraint. For details, see "Budget Constraints" on page 6-11.

\section*{Setting Bounds Using the setBounds Method}

You can also set the properties for bound constraints using setBounds. Suppose you have a balanced fund with stocks that can range from \(50 \%\) to \(75 \%\) of your portfolio and bonds that can range from \(25 \%\) to \(50 \%\) of your portfolio. Given a PortfolioMAD object p, use setBounds to set the bound constraints:
```

lb = [0.5; 0.25];
ub = [0.75; 0.5];
p = PortfolioMAD;
p = p.setBounds(lb, ub);
disp(p.NumAssets);
disp(p.LowerBound);
disp(p.UpperBound);

```
0.5000
0.2500
0.7500
0.5000

\section*{Setting Bounds Using the Constructor or setBounds Method}

Both the constructor PortfolioMAD and setBounds method implement scalar expansion on either the LowerBound or UpperBound properties. If the NumAssets property is already set in the PortfolioMAD object, scalar arguments for either property expand to have the same value across all dimensions. In addition, setBounds lets you specify NumAssets as an optional argument. Suppose you have a universe of 500 assets and you want to set common bound constraints on all assets in your universe. Specifically, you are a long-only investor and want to hold no more than \(5 \%\) of your portfolio in any single asset. You can set these bound constraints in any of these equivalent ways:
```

p = PortfolioMAD('NumAssets', 500, 'LowerBound', 0, 'UpperBound', 0.05);
or
p = PortfolioMAD('NumAssets', 500);
p = p.setBounds(0, 0.05);
or
p = PortfolioMAD;
p = p.setBounds(0, 0.05, 500);

```

To clear bound constraints from your PortfolioMAD object, use either the PortfolioMAD constructor or setBounds with empty inputs for the properties to be cleared. For example, to clear the upper-bound constraint from the PortfolioMAD object \(p\) in the previous example:
```

p = PortfolioMAD(p, 'UpperBound', []);

```

\section*{Working with Budget Constraints}

The budget constraint is an optional linear constraint that maintains upper and lower bounds on the sum of portfolio weights (see "Budget Constraints"
on page \(5-11\) ). Budget constraints have properties LowerBudget for the lower budget constraint and UpperBudget for the upper budget constraint. If you set up a MAD portfolio optimization problem that requires portfolios to be fully invested in your universe of assets, you can set LowerBudget to be equal to UpperBudget. These budget constraints can be set with default values equal to 1 using setDefaultConstraints (see "Setting Default Constraints for Portfolio Weights" on page 6-61).

\section*{Setting Budget Constraints Using the Constructor}

The properties for the budget constraint can also be set using the constructor PortfolioMAD. Suppose you have an asset universe with many risky assets and a riskless asset and you want to ensure that your portfolio never holds more than \(1 \%\) cash, that is, you want to ensure that you are 99 to \(100 \%\) invested in risky assets. The budget constraint for this portfolio can be set with:
```

p = PortfolioMAD('LowerBudget', 0.99, 'UpperBudget', 1);
disp(p.LowerBudget);
disp(p.UpperBudget);

```
0.9900

1

\section*{Setting Budget Constraints Using the setBudget Method}

You can also set the properties for a budget constraint using setBudget. Suppose you have a fund that permits up to \(10 \%\) leverage which means that your portfolio can be from 100 to \(110 \%\) invested in risky assets. Given a PortfolioMAD object \(p\), use setBudget to set the budget constraints:
```

p = PortfolioMAD;
p = p.setBudget(1, 1.1);
disp(p.LowerBudget);
disp(p.UpperBudget);

```
1
1.1000

If you were to continue with this example, then set the RiskFreeRate property to the borrowing rate to finance possible leveraged positions. For details on the RiskFreeRate property, see "Working with a Riskless Asset" on page 6-55. To clear either bound for the budget constraint from your PortfolioMAD object, use either the constructor PortfolioMAD or setBudget with empty inputs for the properties to be cleared. For example, clear the upper-budget constraint from the PortfolioMAD object \(p\) in the previous example with:
```

p = PortfolioMAD(p, 'UpperBudget', []);

```

\section*{Working with Group Constraints}

Group constraints are optional linear constraints that group assets together and enforce bounds on the group weights (see "Group Constraints" on page 6-12). Although the constraints are implemented as general constraints, the usual convention is to form a group matrix that identifies membership of each asset within a specific group with Boolean indicators (either true or false or with 1 or 0) for each element in the group matrix. Group constraints have properties GroupMatrix for the group membership matrix, LowerGroup for the lower-bound constraint on groups, and UpperGroup for the upper-bound constraint on groups.

\section*{Setting Group Constraints Using the Constructor}

The properties for group constraints are set through the constructor PortfolioMAD. Suppose you have a portfolio of five assets and want to ensure that the first three assets constitute no more than \(30 \%\) of your portfolio, then you can set group constraints:
```

G = [1 1 1 1 0 0];
p = PortfolioMAD('GroupMatrix', G, 'UpperGroup', 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

```
5
\(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)

The group matrix \(G\) can also be a logical matrix so that the following code achieves the same result.
```

G = [true true true false false];
p = PortfolioMAD('GroupMatrix', G, 'UpperGroup', 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

```

5
0.3000

\section*{Setting Group Constraints Using the setGroups and addGroups Methods}

You can also set the properties for group constraints using setGroups. Suppose you have a portfolio of five assets and want to ensure that the first three assets constitute no more than \(30 \%\) of your portfolio. Given a PortfolioMAD object p, use setGroups to set the group constraints:
```

G = [true true true false false];
p = PortfolioMAD;
p = p.setGroups(G, [], 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);
5
1
0.3000

```

In this example, you would set the LowerGroup property to be empty ([ ]).
Suppose you want to add another group constraint to make odd-numbered assets constitute at least \(20 \%\) of your portfolio. Set up an augmented group matrix and introduce infinite bounds for unconstrained group bounds or use
the addGroups method to build up group constraints. For this example, create another group matrix for the second group constraint:
```

p = PortfolioMAD;
G = [true true true false false]; % group matrix for first group constraint
p = p.setGroups(G, [], 0.3);
G = [true false true false true]; % group matrix for second group constraint
p = p.addGroups(G, 0.2);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.LowerGroup);
disp(p.UpperGroup);

```
    5
\(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
\(\begin{array}{lllll}1 & 0 & 1 & 0 & 1\end{array}\)
    - Inf
0.2000
0.3000
    Inf
addGroups determines which bounds are unbounded so you only need to focus on the constraints that you want to set.

The constructor PortfolioMAD and setGroups and addGroups implement scalar expansion on either the LowerGroup or UpperGroup properties based on the dimension of the group matrix in the property GroupMatrix. Suppose you have a universe of 30 assets with 6 asset classes such that assets \(1-5\), assets \(6-12\), assets \(13-18\), assets \(19-22\), assets \(23-27\), and assets \(28-30\) constitute each of your asset classes and you want each asset class to fall from 0 to \(25 \%\) of your portfolio. Let the following group matrix define your groups and scalar expansion define the common bounds on each group:
```

p = PortfolioMAD;
G = blkdiag(true(1,5), true(1,7), true(1,6), true(1,4), true(1,5), true(1,3));
p = p.setGroups(G, 0, 0.25);
disp(p.NumAssets);
disp(p.GroupMatrix);

```
disp(p.LowerGroup) ;
disp(p.UpperGroup);

30

Columns 1 through 13
\begin{tabular}{lllllllllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

Columns 14 through 26
\begin{tabular}{lllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

Columns 27 through 30

0.2500
0.2500
0.2500
0.2500
0.2500

\section*{Working with Group Ratio Constraints}

Group ratio constraints are optional linear constraints that maintain bounds on proportional relationships among groups of assets (see "Group Ratio Constraints" on page 6-12). Although the constraints are implemented as general constraints, the usual convention is to specify a pair of group matrices that identify membership of each asset within specific groups with Boolean indicators (either true or false or with 1 or 0 ) for each element in each of the group matrices. The goal is to ensure that the ratio of a base group to a comparison group fall within specified bounds. Group ratio constraints have properties:
- GroupA for the base membership matrix
- GroupB for the comparison membership matrix
- LowerRatio for the lower-bound constraint on the ratio of groups
- UpperRatio for the upper-bound constraint on the ratio of groups

\section*{Setting Group Ratio Constraints Using the Constructor}

The properties for group ratio constraints are set using constructor PortfolioMAD. For example, assume you want the ratio of financial to nonfinancial companies in your portfolios to never go above \(50 \%\). Suppose you have six assets with three financial companies (assets 1-3) and three nonfinanical companies (assets 4-6). To set group ratio constraints:
```

GA = [1 1 1 1 0 0 0 0]; % financial companies
GB = [0 0 0 1 1 1 1]; % nonfinancial companies
p = PortfolioMAD('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.UpperRatio);

```
```

6

1	1	1	0	0	0
0	0	0	1	1	1

0.5000

```

Group matrices GA and GB in this example can be logical matrices with true and false elements that yield the same result:
```

GA = [true true true false false false]; % financial companies
GB = [false false false true true true]; % nonfinancial companies
p = PortfolioMAD('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.UpperRatio);

```

6
\begin{tabular}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{tabular}
0.5000

\section*{Setting Group Ratio Constraints Using the setGroupRatio and addGroupRatio Methods}

You can also set the properties for group ratio constraints using setGroupRatio. For example, assume that you want the ratio of financial to nonfinancial companies in your portfolios to never go above \(50 \%\). Suppose you have six assets with three financial companies (assets 1-3) and three nonfinanical companies (assets 4-6). Given a PortfolioMAD object p, use setGroupRatio to set the group constraints:
```

GA = [true true true false false false]; % financial companies
GB = [false false false true true true]; % nonfinancial companies
p = PortfolioMAD;

```
```

p = p.setGroupRatio(GA, GB, [], 0.5);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.UpperRatio);
6
1
0
0.5000

```

In this example, you would set the LowerRatio property to be empty ([ ]).
Suppose you want to add another group ratio constraint to ensure that the weights in odd-numbered assets constitute at least \(20 \%\) of the weights in nonfinancial assets your portfolio. You can set up augmented group ratio matrices and introduce infinite bounds for unconstrained group ratio bounds, or you can use the addGroupRatio method to build up group ratio constraints. For this example, create another group matrix for the second group constraint:
```

p = PortfolioMAD;
GA = [true true true false false false]; % financial companies
GB = [false false false true true true]; % nonfinancial companies
p = p.setGroupRatio(GA, GB, [], 0.5);
GA = [true false true false true false]; % odd-numbered companies
GB = [false false false true true true]; % nonfinancial companies
p = p.addGroupRatio(GA, GB, 0.2);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.LowerRatio);
disp(p.UpperRatio);

```
6
\(\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 0\end{array}\)
```

1 0
0
0
- Inf
0.2000
0.5000
Inf

```

Notice that addGroupRatio determines which bounds are unbounded so you only need to focus on the constraints you want to set.

The constructor PortfolioMAD, setGroupRatio, and addGroupRatio implement scalar expansion on either the LowerRatio or UpperRatio properties based on the dimension of the group matrices in GroupA and GroupB properties.

\section*{Working with Linear Equality Constraints}

Linear equality constraints are optional linear constraints that impose systems of equalities on portfolio weights (see "Linear Equality Constraints" on page 6-9). Linear equality constraints have properties AEquality, for the equality constraint matrix, and bEquality, for the equality constraint vector.

\section*{Setting Linear Equality Constraints Using the Constructor}

The properties for linear equality constraints are set using the constructor PortfolioMAD. Suppose you have a portfolio of five assets and want to ensure that the first three assets are \(50 \%\) of your portfolio. To set this constraint:
```

A = [1 1 1 0 0]];
b = 0.5;
p = PortfolioMAD('AEquality', A, 'bEquality', b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);

```
5
```

1 1

```
0.5000

\section*{Setting Linear Equality Constraints Using the setEquality and addEquality Methods}

You can also set the properties for linear equality constraints using setEquality. Suppose you have a portfolio of five assets and want to ensure that the first three assets are \(50 \%\) of your portfolio. Given a PortfolioMAD object \(p\), use setEquality to set the linear equality constraints:
```

A = [1 1 1 1 0 0];
b = 0.5;
p = PortfolioMAD;
p = p.setEquality(A, b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);

```
5
\(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
0.5000

Suppose you want to add another linear equality constraint to ensure that the last three assets also constitute \(50 \%\) of your portfolio. You can set up an augmented system of linear equalities or use addEquality to build up linear equality constraints. For this example, create another system of equalities:
```

p = PortfolioMAD;
A = [1 1 1 1 0 0]; % first equality constraint
b = 0.5;
p = p.setEquality(A, b);
A = [0 0 0 1 1 1 1]; % second equality constraint
b = 0.5;
p = p.addEquality(A, b);

```
```

disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);
5
1
0.5000
0.5000

```

The constructor PortfolioMAD and setEquality and addEquality implement scalar expansion on the bEquality property based on the dimension of the matrix in the AEquality property.

\section*{Working with Linear Inequality Constraints}

Linear inequality constraints are optional linear constraints that impose systems of inequalities on portfolio weights (see "Linear Inequality Constraints" on page 6-8). Linear inequality constraints have properties AInequality for the inequality constraint matrix, and bInequality for the inequality constraint vector.

\section*{Setting Linear Inequality Constraints Using the Constructor}

The properties for linear inequality constraints are set using the constructor PortfolioMAD. Suppose you have a portfolio of five assets and you want to ensure that the first three assets are no more than \(50 \%\) of your portfolio. To set up these constraints:
```

A = [1 1 1 1 0 0];
b = 0.5;
p = PortfolioMAD('AInequality', A, 'bInequality', b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

```
5

\section*{Setting Linear Inequality Constraints Using the setInequality and addInequality Methods}

You can also set the properties for linear inequality constraints using setInequality. Suppose you have a portfolio of five assets and you want to ensure that the first three assets constitute no more than \(50 \%\) of your portfolio. Given a PortfolioMAD object p, use setInequality to set the linear inequality constraints:
```

A = [1 1 1 1 0 0];
b = 0.5;
p = PortfolioMAD;
p = p.setInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);
5
1
0.5000

```

Suppose you want to add another linear inequality constraint to ensure that the last three assets constitute at least \(50 \%\) of your portfolio. You can set up an augmented system of linear inequalities or use the addInequality method to build up linear inequality constraints. For this example, create another system of inequalities:
```

p = PortfolioMAD;
A = [1 1 1 1 0 0]; % first inequality constraint
b = 0.5;
p = p.setInequality(A, b);
A = [0 0 -1 -1 -1]; % second inequality constraint
b = -0.5;

```
```

p = p.addInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);
5

1	1	1	0	0
0	0	-1	1	1

0.5000
-0.5000

```

The PortfolioMAD constructor and setInequality and addInequality implement scalar expansion on the bInequality property based on the dimension of the matrix in the AInequality property.

\section*{Working with Average Turnover Constraints}

The turnover constraint is an optional linear absolute value constraint (see "Average Turnover Constraints" on page 6-13) that enforces an upper bound on the average of purchases and sales. The turnover constraint can be set using the PortfoliomAD constructor or the setTurnover method. The turnover constraint depends on an initial or current portfolio, which is assumed to be zero if not set when the turnover constraint is set. The turnover constraint has properties Turnover, for the upper bound on average turnover, and InitPort, for the portfolio against which turnover is computed.

\section*{Setting Average Turnover Constraints Using the Constructor}

The properties for the turnover constraints are set using the PortfolioMAD constructor. Suppose you have an initial portfolio of 10 assets in a variable \(x 0\) and you want to ensure that average turnover is no more than \(30 \%\). To set this turnover constraint:
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = PortfolioMAD('Turnover', 0.3, 'InitPort', x0);
disp(p.NumAssets);
disp(p.Turnover);
disp(p.InitPort);

```
```

1 0
0.3000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

```

Note if the NumAssets or InitPort properties are not set before or when the turnover constraint is set, various rules are applied to assign default values to these properties (see "Setting Up an Initial or Current Portfolio" on page 6-40).

\section*{Setting Average Turnover Constraints Using the setTurnover Method}

You can also set properties for portfolio turnover using setTurnover to specify both the upper bound for average turnover and an initial portfolio. Suppose you have an initial portfolio of 10 assets in a variable \(\times 0\) and want to ensure that average turnover is no more than \(30 \%\). Given a PortfolioMAD object p, use setTurnover to set the turnover constraint with and without the initial portfolio being set previously:
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = PortfolioMAD('InitPort', x0);
p = p.setTurnover(0.3);
disp(p.NumAssets);
disp(p.Turnover);
disp(p.InitPort);
1 0
0.3000

```
```

0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000
or
x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = PortfolioMAD;
p = p.setTurnover(0.3, x0);
disp(p.NumAssets);
disp(p.Turnover);
disp(p.InitPort);
1 0
0.3000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000
setTurnover implements scalar expansion on the argument for the initial portfolio. If the NumAssets property is already set in the PortfolioMAD object, a scalar argument for InitPort expands to have the same value across all dimensions. In addition, setTurnover lets you specify NumAssets as an optional argument. To clear turnover from your PortfolioMAD object, use

```
the constructor PortfolioMAD or setTurnover with empty inputs for the properties to be cleared.

\section*{Working with One-Way Turnover Constraints}

One-way turnover constraints are optional constraints (see "One-Way Turnover Constraints" on page 6-14) that enforce upper bounds on net purchases or net sales. One-way turnover constraints can be set using the PortfolioMAD constructor or the setOneWayTurnover method. One-way turnover constraints depend upon an initial or current portfolio, which is assumed to be zero if not set when the turnover constraints are set. One-way turnover constraints have properties BuyTurnover, for the upper bound on net purchases, SellTurnover, for the upper bound on net sales, and InitPort, for the portfolio against which turnover is computed.

\section*{Setting One-Way Turnover Constraints Using the Constructor}

The Properties for the one-way turnover constraints are set using the PortfolioMAD constructor. Suppose you have an initial portfolio with 10 assets in a variable xO and you want to ensure that turnover on purchases is no more than \(30 \%\) and turnover on sales is no more than \(20 \%\) of the initial portfolio. To set these turnover constraints:
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = PortfolioMAD('BuyTurnover', 0.3, 'SellTurnover', 0.2, 'InitPort', x0);
disp(p.NumAssets);
disp(p.BuyTurnover);
disp(p.SellTurnover);
disp(p.InitPort);

```

10
0.3000
0.2000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

If the NumAssets or InitPort properties are not set before or when the turnover constraint is set, various rules are applied to assign default values to these properties (see "Setting Up an Initial or Current Portfolio" on page 6-40).

\section*{Setting Turnover Constraints Using the setOneWayTurnover Method}

You can also set properties for portfolio turnover using setOneWayTurnover to specify to the upper bounds for turnover on purchases (BuyTurnover) and sales (SellTurnover) and an initial portfolio. Suppose you have an initial portfolio of 10 assets in a variable \(\times 0\) and want to ensure that turnover on purchases is no more than \(30 \%\) and that turnover on sales is no more than \(20 \%\) of the initial portfolio. Given a PortfolioMAD object p, use setOneWayTurnover to set the turnover constraints with and without the initial portfolio being set previously:
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = PortfolioMAD('InitPort', x0);
p = p.setOneWayTurnover(0.3, 0.2);
disp(p.NumAssets);
disp(p.BuyTurnover);
disp(p.SellTurnover);
disp(p.InitPort);
Or
x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = PortfolioMAD;
p = p.setOneWayTurnover(0.3, 0.2, x0);
disp(p.NumAssets);
disp(p.BuyTurnover);
disp(p.SellTurnover);

```
```

1 0
0.3000
0.2000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

```
disp(p.InitPort)
setOneWayTurnover implements scalar expansion on the argument for the initial portfolio. If the NumAssets property is already set in the PortfolioMAD object, a scalar argument for InitPort expands to have the same value across all dimensions. In addition, setOneWayTurnover lets you specify NumAssets as an optional argument. To remove one-way turnover from your PortfolioMAD object, use the constructor PortfolioMAD or setOneWayTurnover with empty inputs for the properties to be cleared.
```

See Also
PortfolioMAD | setDefaultConstraints | setBounds | setBudget | setGroups | setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

```
- "Constructing the PortfolioMAD Object" on page 6-27

Concepts
Related
- "Constructing the PortfolioMAD Object" on page 6-27
- "Validate the MAD Portfolio Problem" on page 6-85
- "Estimate Efficient Portfolios" on page 6-90
- "Estimate Efficient Frontiers" on page 6-103
- "Asset Returns and Scenarios" on page 6-44
- "PortfolioMAD Object" on page 6-17
- "Portfolio Optimization Theory" on page 6-2

\section*{Validate the MAD Portfolio Problem}

\author{
In this section... \\ "Validating a MAD Portfolio Set" on page 6-85 \\ "Validating MAD Portfolios" on page 6-87
}

In some cases, you may want to validate either your inputs to, or outputs from, a portfolio optimization problem. Although most error checking that occurs during the problem setup phase catches most difficulties with a portfolio optimization problem, the processes to validate MAD portfolio sets and portfolios are time consuming and are best done offline. Consequently, the portfolio optimization tools have specialized methods to validate MAD portfolio sets and portfolios.

\section*{Validating a MAD Portfolio Set}

Since it is necessary and sufficient that your MAD portfolio set must be a nonempty, closed, and bounded set to have a valid portfolio optimization problem, the method estimateBounds lets you examine your portfolio set to determine if it is nonempty and, if nonempty, whether it is bounded. Suppose you have the following MAD portfolio set which is an empty set because the initial portfolio at 0 is too far from a portfolio that satisfies the budget and turnover constraint:
```

p = PortfolioMAD('NumAssets', 3, 'Budget', 1);
p = p.setTurnover(0.3, 0);

```

If a MAD portfolio set is empty, estimateBounds returns NaN bounds and sets the isbounded flag to []:
[lb, ub, isbounded] = p.estimateBounds
\(1 b=\)
```

 NaN
 NaN
 NaN
 isbounded =
[]

```

Suppose you create an unbounded MAD portfolio set as follows:
```

p = PortfolioMAD('AInequality', [1 -1; 1 1], 'bInequality', 0);
[lb, ub, isbounded] = p.estimateBounds
lb =
-Inf
-Inf
ub =
1.0e-008 *
-0.3712
Inf
isbounded =
0

```

In this case, estimateBounds returns (possibly infinite) bounds and sets the isbounded flag to false. The result shows which assets are unbounded so that you can apply bound constraints as necessary.

Finally, suppose you created a MAD that is both nonempty and bounded. estimateBounds not only validates the set, but also obtains tighter bounds which is useful if you are concerned with the actual range of portfolio choices for individual assets in your :
```

p = PortfolioMAD;
p = p.setBudget(1,1);

```
```

p = p.setBounds([-0.1; 0.2; 0.3; 0.2], [0.5; 0.3; 0.9; 0.8]);
[lb, ub, isbounded] = p.estimateBounds
lb =
-0.1000
0.2000
0.3000
0.2000
ub =
0.3000
0.3000
0.7000
0.6000
isbounded =

```
    1

In this example, all but the second asset have tighter upper bounds than the input upper bound implies.

\section*{Validating MAD Portfolios}

Given a MAD portfolio set specified in a PortfolioMAD object, you often want to check if specific portfolios are feasible with respect to the portfolio set. This can occur with, for example, initial portfolios and with portfolios obtained from other procedures. The checkFeasibility method determines whether a collection of portfolios is feasible. Suppose you perform the following portfolio optimization and want to determine if the resultant efficient portfolios are feasible relative to a modified problem.

First, set up a problem in the PortfolioMAD object p, estimate efficient portfolios in pwgt, and then confirm that these portfolios are feasible relative to the initial problem:
m = [ 0.05; 0.1; 0.12; 0.18 ];
```

C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier;
p.checkFeasibility(pwgt)
ans =
1

```

Next, set up a different portfolio problem that starts with the initial problem with an additional a turnover constraint and an equally weighted initial portfolio:
```

q = p.setTurnover(0.3, 0.25);
q.checkFeasibility(pwgt)
ans =

```
    \(\begin{array}{llllllllll}0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\)

In this case, only two of the ten efficient portfolios from the initial problem are feasible relative to the new problem in PortfolioMAD object q. Solving the second problem using checkFeasibility demonstrates that the efficient portfolio for PortfolioMAD object q is feasible relative to the initial problem:
```

qwgt = q.estimateFrontier;
p.checkFeasibility(qwgt)
ans =

```

\section*{Related Examples}

\section*{Concepts}
- "Constructing the PortfolioMAD Object" on page 6-27
- "Working with MAD Portfolio Constraints" on page 6-61
- "Estimate Efficient Portfolios" on page 6-90
- "Estimate Efficient Frontiers" on page 6-103
- "Asset Returns and Scenarios" on page 6-44
- "PortfolioMAD Object" on page 6-17
- "Portfolio Optimization Theory" on page 6-2

\section*{Estimate Efficient Portfolios}

\author{
In this section... \\ "Obtaining Portfolios Along the Entire Efficient Frontier" on page 6-90 \\ "Obtaining Endpoints of the Efficient Frontier" on page 6-93 \\ "Obtaining Efficient Portfolios for Target Returns" on page 6-95 \\ "Obtaining Efficient Portfolios for Target Risks" on page 6-98 \\ "Choosing and Controlling the Solver" on page 6-101
}

There are two ways to look at a portfolio optimization problem that depends on what you are trying to do. One goal is to estimate efficient portfolios and the other is to estimate efficient frontiers. This section focuses on the former goal and "Estimate Efficient Frontiers" on page 6-103 focuses on the latter goal.

\section*{Obtaining Portfolios Along the Entire Efficient Frontier}

The most basic way to obtain optimal portfolios is to obtain points over the entire range of the efficient frontier. Given a portfolio optimization problem in a PortfolioMAD object, the estimateFrontier method computes efficient portfolios spaced evenly according to the return proxy from the minimum to maximum return efficient portfolios. The number of portfolios estimated is controlled by the hidden property defaultNumPorts which is set to 10. A different value for the number of portfolios estimated is specified as input to estimateFrontier. This example shows the default number of efficient portfolios over the entire range of the efficient frontier:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;

```
```

p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier;
disp(pwgt);
Columns 1 through 7

```
\begin{tabular}{lllllll}
0.8878 & 0.7224 & 0.5522 & 0.3890 & 0.2220 & 0.0568 & -0.0000 \\
0.0402 & 0.1248 & 0.2085 & 0.2932 & 0.3785 & 0.4647 & 0.3767 \\
0.0379 & 0.0533 & 0.0802 & 0.0910 & 0.1088 & 0.1218 & 0.1428 \\
0.0342 & 0.0995 & 0.1591 & 0.2269 & 0.2907 & 0.3567 & 0.4805
\end{tabular}

Columns 8 through 10
\begin{tabular}{rrr}
-0.0000 & 0.0000 & 0.0000 \\
0.2062 & 0.0345 & 0.0000 \\
0.1562 & 0.1712 & 0.0000 \\
0.6376 & 0.7944 & 1.0000
\end{tabular}

If you want only four portfolios in the previous example:
```

pwgt = p.estimateFrontier(4);
disp(pwgt);

0.8878	0.3928	0.0000	0.0000
0.0402	0.2829	0.3773	0.0000
0.0379	0.0968	0.1420	0.0000
0.0342	0.2275	0.4807	1.0000

```

Starting from the initial portfolio, estimateFrontier also returns purchases and sales to get from your initial portfolio to each efficient portfolio on the efficient frontier. For example, given an initial portfolio in pwgt0, you can obtain purchases and sales:
```

pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateFrontier;
display(pwgt);
display(pbuy);

```
```

display(psell);
pwgt =
Columns 1 through 7

0.8878	0.7224	0.5522	0.3890	0.2220	0.0568	-0.0000
0.0402	0.1248	0.2085	0.2932	0.3785	0.4647	0.3767
0.0379	0.0533	0.0802	0.0910	0.1088	0.1218	0.1428
0.0342	0.0995	0.1591	0.2269	0.2907	0.3567	0.4805

 Columns 8 through 10
 | -0.0000 | 0.0000 | 0.0000 |
| ---: | ---: | ---: |
| 0.2062 | 0.0345 | 0.0000 |
| 0.1562 | 0.1712 | 0.0000 |
| 0.6376 | 0.7944 | 1.0000 |

pbuy =
Columns 1 through 7

0.5878	0.4224	0.2522	0.0890	0	0	0
0	0	0	0	0.0785	0.1647	0.0767
0	0	0	0	0	0	0
0	0	0.0591	0.1269	0.1907	0.2567	0.3805

 Columns 8 through 10
 | 0 | 0 | 0 |
| ---: | ---: | ---: |
| 0 | 0 | 0 |
| 0 | 0 | 0 |
| 0.5376 | 0.6944 | 0.9000 |

psell =
Columns 1 through 7

```
\begin{tabular}{rrrrrrr}
0 & 0 & 0 & 0 & 0.0780 & 0.2432 & 0.3000 \\
0.2598 & 0.1752 & 0.0915 & 0.0068 & 0 & 0 & 0 \\
0.1621 & 0.1467 & 0.1198 & 0.1090 & 0.0912 & 0.0782 & 0.0572 \\
0.0658 & 0.0005 & 0 & 0 & 0 & 0 & 0
\end{tabular}

Columns 8 through 10
\begin{tabular}{rrr}
0.3000 & 0.3000 & 0.3000 \\
0.0938 & 0.2655 & 0.3000 \\
0.0438 & 0.0288 & 0.2000 \\
0 & 0 & 0
\end{tabular}

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial portfolio is 0 .

\section*{Obtaining Endpoints of the Efficient Frontier}

In many cases, you might be interested in the endpoint portfolios for the efficient frontier. Suppose you want to determine the range of returns from minimum to maximum to refine a search for a portfolio with a specific target return. Use the estimateFrontierLimits method to obtain the endpoint portfolios:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierLimits;
disp(pwgt);

```
\begin{tabular}{ll}
0.8867 & 0.0000 \\
0.0397 & 0.0000 \\
0.0378 & 0.0000 \\
0.0358 & 1.0000
\end{tabular}

Note The endpoints of the efficient frontier depend upon the Scenarios in the PortfolioMAD object. If you change the Scenarios, you are likely to obtain different endpoints.

Starting from an initial portfolio, estimateFrontierLimits also returns purchases and sales to get from the initial portfolio to the endpoint portfolios on the efficient frontier. For example, given an initial portfolio in pwgt0, you can obtain purchases and sales:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateFrontierLimits;
display(pwgt);
display(pbuy);
display(psell);
pwgt =

```
```

0.8874 0.0000
0.0359 0.0000
0.0433 0.0000
0.0334 1.0000
pbuy =
0.5874 0
0 0
0 0
0 0.9000
psell =

0	0.3000
0.2641	0.3000
0.1567	0.2000
0.0666	0

```

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial portfolio is 0 .

\section*{Obtaining Efficient Portfolios for Target Returns}

To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn method accepts one or more target portfolio returns and obtains efficient portfolios with the specified returns. For example, assume that you have a universe of four assets where you want to obtain efficient portfolios with target portfolio returns of \(7 \%, 10 \%\), and \(12 \%\) :
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
AssetScenarios = mvnrnd(m, C, 20000);

```
```

p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierByReturn([0.07, 0.10, .12]);
display(pwgt);
pwgt =
0.7604 0.3833 0.1387
0.1055 0.3081 0.4383
0.0519 0.1006 0.1242
0.0821 0.2080 0.2988

```

In some cases, you can request a return for which no efficient portfolio exists. Based on the previous example, suppose you want a portfolio with a \(4 \%\) return (which is the return of the first asset). A portfolio that is fully invested in the first asset, however, is inefficient. estimateFrontierByReturn warns if your target returns are outside the range of efficient portfolio returns and replaces it with the endpoint portfolio of the efficient frontier closest to your target return:
```

pwgt = p.estimateFrontierByReturn([0.04]);

```
```

Warning: One or more target return values are outside the feasible range
0.0595144, 0.179454].
Will return portfolios associated with endpoints of the range for these
values.
> In PortfolioMAD.estimateFrontierByReturn at 85

```

The best way to avoid this situation is to bracket your target portfolio returns with estimateFrontierLimits and estimatePortReturn (see "Obtaining Endpoints of the Efficient Frontier" on page 6-93 and "Obtaining MAD Portfolio Risks and Returns" on page 6-103).
```

pret = p.estimatePortReturn(p.estimateFrontierLimits);
display(pret);
pret =

```
```

0.0595
0.1795

```

This result indicates that efficient portfolios have returns that range from 6.5 to \(17.8 \%\). Note, your results for these examples may be different due to the random generation of scenarios.

If you have an initial portfolio, estimateFrontierByReturn also returns purchases and sales to get from your initial portfolio to the target portfolios on the efficient frontier. For example, given an initial portfolio in pwgto, to obtain purchases and sales with target returns of \(7 \%, 10 \%\), and \(12 \%\) :
```

pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgtO);
[pwgt, pbuy, psell] = p.estimateFrontierByReturn([0.07, 0.10, .12]);
display(pwgt);
display(pbuy);
display(psell);
pwgt =
0.7604 0.3833 0.1387
0.1055 0.3081 0.4383
0.0519 0.1006 0.1242
0.0821 0.2080 0.2988
pbuy =
0.4604 0.0833 0
0 0.0081 0.1383
0 0 0
0 0.1080 0.1988
psell =
0 0 0.1613

```
\begin{tabular}{lrr}
0.1945 & 0 & 0 \\
0.1481 & 0.0994 & 0.0758 \\
0.0179 & 0 & 0
\end{tabular}

If you do not have an initial portfolio, the purchase and sale weights assume that your initial portfolio is 0 .

\section*{Obtaining Efficient Portfolios for Target Risks}

To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk method accepts one or more target portfolio risks and obtains efficient portfolios with the specified risks. Suppose you have a universe of four assets where you want to obtain efficient portfolios with target portfolio risks of \(12 \%, 14 \%\), and \(16 \%\).
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierByRisk([0.12, 0.14, 0.16]);
display(pwgt);
pwgt =

0.2053	0.0509	0.0000
0.3900	0.4709	0.4098
0.1264	0.1489	0.1581
0.2783	0.3292	0.4321

```

In some cases, you can request a risk for which no efficient portfolio exists. Based on the previous example, suppose you want a portfolio with \(6 \%\) risk (individual assets in this universe have risks ranging from 7 to \(42.5 \%\) ). It
turns out that a portfolio with \(6 \%\) risk cannot be formed with these four assets. estimateFrontierByRisk warns if your target risks are outside the range of efficient portfolio risks and replaces it with the endpoint of the efficient frontier closest to your target risk:
```

pwgt = p.estimateFrontierByRisk(0.06)
Warning: One or more target risk values are outside the feasible range
[0.061541, 0.278343].
Will return portfolios associated with endpoints of the range for these
values.
> In PortfolioMAD.estimateFrontierByRisk at 100
pwgt =
0.8942
0.0281
0.0426
0.0351

```

The best way to avoid this situation is to bracket your target portfolio risks with estimateFrontierLimits and estimatePortRisk (see "Obtaining Endpoints of the Efficient Frontier" on page 6-93 and "Estimate Efficient Frontiers" on page 6-103).
```

prsk = p.estimatePortRisk(p.estimateFrontierLimits);

```
display(prsk);
prsk =
    \(0.0615 \quad 0.2783\)

This result indicates that efficient portfolios have risks that range from 7 to \(42.5 \%\). Note, your results for these examples may be different due to the random generation of scenarios.

Starting with an initial portfolio, estimateFrontierByRisk also returns purchases and sales to get from your initial portfolio to the target portfolios on the efficient frontier. For example, given an initial portfolio in pwgt0,
you can obtain purchases and sales from the example with target risks of \(12 \%, 14 \%\), and \(16 \%\) :
```

pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateFrontierByRisk([0.12, 0.14, 0.16]);
display(pwgt);
display(pbuy);
display(psell);
pwgt =

0.2053	0.0509	0.0000
0.3900	0.4709	0.4098
0.1264	0.1489	0.1581
0.2783	0.3292	0.4321

pbuy =

0	0	0
0.0900	0.1709	0.1098
0	0	0
0.1783	0.2292	0.3321

psell =

0.0947	0.2491	0.3000
0	0	0
0.0736	0.0511	0.0419
0	0	0

```

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial portfolio is 0 .

\section*{Choosing and Controlling the Solver}

When solving portfolio optimizations for a PortfolioMAD object, while all variations of fmincon from Optimization Toolbox are supported, using 'sqp' and 'active-set' algorithms for fmincon is recommended and the use of 'interior-point' algorithm is not recommended for MAD portfolio optimization.

Unlike Optimization Toolbox which uses the 'trust-region-reflective' algorithm as the default algorithm for fmincon, the portfolio optimization for a PortfolioMAD object uses the 'active-set' algorithm. For details about fmincon and constrained nonlinear optimization algorithms and options, see "Constrained Nonlinear Optimization Algorithms".

To modify fmincon options for MAD portfolio optimizations, use setSolver to set the hidden properties solverType and solverOptions to specify and control the solver. Since these solver properties are hidden, you cannot set them using the PortfolioMAD constructor. The default solver is fmincon with the 'sqb' algorithm and no displayed output, so you do not need to use setSolver to specify this.

If you want to specify additional options associated with the fmincon solver, setSolver accepts these options as name-value pair arguments. For example, if you want to use fmincon with the sqp algorithm and with displayed output, use setSolver with:
```

p = PortfolioMAD;
p = p.setSolver('fmincon', 'Algorithm', 'sqp', 'Display', 'final');
display(p.solverOptions.Algorithm);
display(p.solverOptions.Display);

```
sqp
final

Alternatively, setSolver accepts an optimoptions object as the second argument. For example, you can change the algorithm to trust-region-reflective with no displayed output as follows:
```

p = PortfolioMAD;
options = optimoptions('fmincon', 'Algorithm', 'trust-region-reflective', 'Display', 'off');
p = p.setSolver('fmincon', options);

```
```

display(p.solverOptions.Algorithm);
display(p.solverOptions.Display);
trust-region-reflective
off

```
See AlsoRelated
Examples
- "Constructing the PortfolioMAD Object" on page 6-27
- "Working with MAD Portfolio Constraints" on page 6-61
- "Estimate Efficient Frontiers" on page 6-103
- "Asset Returns and Scenarios" on page 6-44

Concepts - "PortfolioMAD Object" on page 6-17
- "Portfolio Optimization Theory" on page 6-2

\section*{Estimate Efficient Frontiers}

\author{
In this section... \\ "Obtaining MAD Portfolio Risks and Returns" on page 6-103 \\ "Obtaining Portfolio Standard Deviation" on page 6-105 \\ "Plotting the Efficient Frontier" on page 6-106
}

Whereas "Estimate Efficient Portfolios" on page 6-90 focused on estimation of efficient portfolios, this section focuses on the estimation of efficient frontiers.

\section*{Obtaining MAD Portfolio Risks and Returns}

Given any portfolio and, in particular, efficient portfolios, the methods estimatePortReturn and estimatePortRisk provide estimates for the return (or return proxy), risk (or the risk proxy). Each method has the same input syntax but with different combinations of outputs. Suppose you have this following portfolio optimization problem that gave you a collection of portfolios along the efficient frontier in pwgt:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);
pwgt = p.estimateFrontier

```
pwgt =

Columns 1 through 8
\begin{tabular}{rrrrrrrr}
0.8826 & 0.7176 & 0.5497 & 0.3859 & 0.2193 & 0.0506 & 0 & 0.0000 \\
0.0421 & 0.1409 & 0.2404 & 0.3392 & 0.4386 & 0.5371 & 0.4739 & 0.3363 \\
0.0401 & 0.0425 & 0.0496 & 0.0497 & 0.0544 & 0.0644 & 0.0371 & 0 \\
0.0352 & 0.0990 & 0.1602 & 0.2252 & 0.2877 & 0.3479 & 0.4890 & 0.6637
\end{tabular}

Columns 9 through 10
\begin{tabular}{rr}
0 & 0.0000 \\
0.1682 & 0.0000 \\
0 & 0.0000 \\
0.8318 & 1.0000
\end{tabular}

Note Remember that the risk proxy for MAD portfolio optimization is mean-absolute deviation.

Given pwgt0 and pwgt, use the portfolio risk and return estimation methods to obtain risks and returns for your initial portfolio and the portfolios on the efficient frontier:
```

prsk0 = p.estimatePortRisk(pwgt0);
pret0 = p.estimatePortReturn(pwgt0);
prsk = p.estimatePortRisk(pwgt);
pret = p.estimatePortReturn(pwgt);
display(prsk0);
display(pret0);
display(prsk);
display(pret);

```

You obtain these risks and returns:
prsk0 =
0.0252
```

pret0 =
0.0071
prsk =
Columns 1 through 7
0.0175 0.0190 0.0227 0.0279 0.0337 0.0400
Columns 8 through 10
0.0568 0.0678 0.0796
pret =
0.0049
0.0060
0.0071
0.0082
0.0093
0.0104
0.0115
0.0125
0.0136
0.0147

```

\section*{Obtaining Portfolio Standard Deviation}

The PortfolioMAD object has a method to compute standard deviations of portfolio returns, estimatePortStd. This methods work with any portfolios, not necessarily efficient portfolios. For example, the following example obtains five portfolios (pwgt) on the efficient frontier and also has an initial portfolio in pwgt0. Various portfolio statistics are computed that include the return, risk, and standard deviation. The listed estimates are for the initial portfolio in the first row followed by estimates for each of the five efficient portfolios in subsequent rows.
```

m = [0.0042; 0.0083; 0.01; 0.15];
C = [0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208];
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = PortfolioMAD('initport', pwgt0);
p = p.simulateNormalScenariosByMoments(m, C, 20000);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier(5);
pret = p.estimatePortReturn([pwgt0, pwgt]);
prsk = p.estimatePortRisk([pwgt0, pwgt]);
pstd = p.estimatePortStd([pwgt0, pwgt]);
[pret, prsk, pstd]
ans =

0.0206	0.0300	0.0377
0.0196	0.0321	0.0403
0.0521	0.0365	0.0459
0.0846	0.0480	0.0603
0.1172	0.0629	0.0789
0.1497	0.0796	0.0999

```

\section*{Plotting the Efficient Frontier}

The plotFrontier method creates a plot of the efficient frontier for a given portfolio optimization problem. This method accepts several types of inputs and generates a plot with an optional possibility to output the estimates for portfolio risks and returns along the efficient frontier. plotFrontier has four different ways that it can be used. In addition to a plot of the efficient frontier, if you have an initial portfolio in the InitPort property, plotFrontier also displays the return versus risk of the initial portfolio on the same plot. If you have a well-posed portfolio optimization problem set up in a PortfolioMAD object and you use plotFrontier, you will get a plot of the efficient frontier with the default number of portfolios on the frontier (the default number is
currently 10 and is maintained in the hidden property defaultNumPorts). This example illustrates a typical use of plotFrontier to create a new plot:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
O 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p.plotFrontier;

```


The Name property appears as the title of the efficient frontier plot if you set it in the PortfolioMAD object. Without an explicit name, the title on the plot would be "Efficient Frontier." If you want to obtain a specific number of portfolios along the efficient frontier, use plotFrontier with the number of portfolios that you want. Suppose you have the PortfolioMAD object from the previous example and you want to plot 20 portfolios along the efficient frontier and to obtain 20 risk and return values for each portfolio:
```

[prsk, pret] = p.plotFrontier(20);
display([pret, prsk]);
ans =
0.0051 0.0178
0.0056 0.0181
0.0062 0.0191
0.0067 0.0207
0.0073 0.0226
0.0078 0.0249
0.0083 0.0274
0.0089 0.0301
0.0094 0.0330
0.0099 0.0360
0.0105 0.0390
0.0110 0.0422
0.0116 0.0456
0.0121 0.0496
0.0126 0.0542
0.0132 0.0590
0.0137 0.0642
0.0143 0.0695
0.0148 0.0751
0.0153 0.0808

```


\section*{Plotting Existing Efficient Portfolios}

If you already have efficient portfolios from any of the "estimateFrontier" methods (see "Estimate Efficient Frontiers" on page 6-103), pass them into plotFrontier directly to plot the efficient frontier:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
pwgt0 = [0.3; 0.3; 0.2; 0.1];

```
```

p = PortfolioMAD('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier(20);
p.plotFrontier(pwgt)

```


\section*{Plotting Existing Efficient Portfolio Risks and Returns}

If you already have efficient portfolio risks and returns, you can use the interface to plotFrontier to pass them into plotFrontier to obtain a plot of the efficient frontier:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;

```
```

 0 0.0119 0.0336 0.1225];
 AssetScenarios = mvnrnd(m, C, 20000);
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = PortfolioMAD('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier;
pret= p.estimatePortReturn(pwgt)
prsk = p.estimatePortRisk(pwgt)
p.plotFrontier(prsk, pret)
pret =
0.0595
0.0725
0.0855
0.0985
0.1115
0.1245
0.1375
0.1505
0.1635
0.1765
prsk =
0.0616
0.0662
0.0785
0.0957
0.1156
0.1369
0.1615

```
```

0.1948
0.2333
0.2754

```


\section*{See Also}

\section*{Related Examples}

\section*{Concepts}

\section*{PortfolioMAD | estimatePortReturn | plotFrontier | estimatePortStd}
- "Constructing the PortfolioMAD Object" on page 6-27
- "Working with MAD Portfolio Constraints" on page 6-61
- "Estimate Efficient Portfolios" on page 6-90
- "Asset Returns and Scenarios" on page 6-44
- "Postprocessing Results" on page 6-113
- "PortfolioMAD Object" on page 6-17
- "Portfolio Optimization Theory" on page 6-2

\section*{Postprocessing Results}

\section*{In this section...}
"Setting Up Tradable Portfolios" on page 6-113
"Working with Other Portfolio Objects" on page 6-115
"Troubleshooting MAD Portfolio Optimization Results" on page 6-118

After obtaining efficient portfolios or estimates for expected portfolio risks and returns, use your results to set up trades to move toward an efficient portfolio.

\section*{Setting Up Tradable Portfolios}

Suppose you set up a portfolio optimization problem and obtained portfolios on the efficient frontier. Use the dataset object from Statistics Toolbox to form a blotter that lists your portfolios with the names for each asset. For example, suppose you want to obtain five portfolios along the efficient frontier. You can set up a blotter with weights multiplied by 100 to view the allocations for each portfolio:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = PortfolioMAD;
p = p.setAssetList('Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');
p = p.setInitPort(pwgt0);
p = p.simulateNormalScenariosByMoments(m, C, 20000);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier(5);
pnames = cell(1,5);
for i = 1:5
pnames{i} = sprintf('Port%d',i);

```
```

end
Blotter = dataset([{100*pwgt},pnames],'obsnames',p.AssetList);
display(Blotter);
Blotter =

	Port1	Port2	Port3	Port4	Port5
Bonds	89.456	51.374	13.806	$-3.4951 \mathrm{e}-16$	$1.1769 \mathrm{e}-12$
Large-Cap Equities	3.0871	23.142	42.607	23.468	$8.8999 \mathrm{e}-13$
Small-Cap Equities	4.1423	9.133	13.804	19.054	$7.5906 \mathrm{e}-14$
Emerging Equities	3.3148	16.351	29.783	57.477	100

```

Note Your results may differ from this result due to the simulation of scenarios.

This result indicates that you would invest primarily in bonds at the minimum-risk/minimum-return end of the efficient frontier (Port1), and that you would invest completely in emerging equity at the maximum-risk/maximum-return end of the efficient frontier (Port5). You can also select a particular efficient portfolio, for example, suppose you want a portfolio with \(15 \%\) risk and you add purchase and sale weights outputs obtained from the "estimateFrontier" methods to set up a trade blotter:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = PortfolioMAD;
p = p.setAssetList('Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');
p = p.setInitPort(pwgt0);
p = p.simulateNormalScenariosByMoments(m, C, 20000);
p = p.setDefaultConstraints;

```
```

[pwgt, pbuy, psell] = p.estimateFrontierByRisk(0.15);
Blotter = dataset([{100*[pwgt0, pwgt, pbuy, psell]}, ...
{'Initial','Weight', 'Purchases','Sales'}],'obsnames',p.AssetList);
display(Blotter);

```
Blotter =
\begin{tabular}{llrrr} 
& Initial & Weight & Purchases & Sales \\
Bonds & 30 & \(-4.9791 \mathrm{e}-16\) & 0 & 30 \\
Large-Cap Equities & 30 & 48.562 & 18.562 & 0 \\
Small-Cap Equities & 20 & 14.869 & 0 & 5.1306 \\
Emerging Equities & 10 & 36.568 & 26.568 & 0
\end{tabular}

If you have prices for each asset (in this example, they can be ETFs), add them to your blotter and then use the tools of the dataset object to obtain shares and shares to be traded.

\section*{Working with Other Portfolio Objects}

The PortfolioMAD object is for MAD portfolio optimization. The PortfolioCVaR object is for CVaR portfolio optimization. The Portfolio object is for mean-variance portfolio optimization. In some cases, you might want to examine portfolio optimization problems according to different combinations of return and risk proxies. A common example is that you want to do a MAD portfolio optimization and then want to work primarily with moments of portfolio returns. Suppose you set up a MAD portfolio optimization problem with:
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = PortfolioMAD;
p = p.setAssetList('Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');

```
```

p = p.setInitPort(pwgt0);
p = p.simulateNormalScenariosByMoments(m, C, 20000);
p = p.setDefaultConstraints;

```

To work with the same problem in a mean-variance framework, you can use the scenarios from the PortfolioMAD object to set up a Portfolio object so that p contains a MAD optimization problem and q contains a mean-variance optimization problem based on the same data.
```

q = Portfolio('AssetList', p.AssetList);
q = q.estimateAssetMoments(p.getScenarios);
q = q.setDefaultConstraints;
pwgt = p.estimateFrontier;
qwgt = q.estimateFrontier;

```

Note that since each object has a different risk proxy, it is not possible to compare results side by side. To obtain means and standard deviations of portfolio returns, you can use the methods associated with each object to obtain:
```

pret = p.estimatePortReturn(pwgt);
pstd = p.estimatePortStd(pwgt);
qret = q.estimatePortReturn(qwgt);
qstd = q.estimatePortStd(qwgt);
[pret, qret]
[pstd, qstd]
ans =

0.0604	0.0602
0.0740	0.0739
0.0877	0.0875
0.1013	0.1012
0.1149	0.1148
0.1286	0.1285
0.1422	0.1422

```
```

 0.1559 0.1558
 0.1695 0.1695
 0.1831 0.1831
 ans =
0.0765 0.0765
0.0832 0.0830
0.1002 0.0999
0.1233 0.1231
0.1498 0.1496
0.1782 0.1780
0.2100 0.2098
0.2506 0.2504
0.2967 0.2966
0.3469 0.3469

```

To produce comparable results, you can use the returns or risks from one portfolio optimization as target returns or risks for the other portfolio optimization.
```

qwgt = q.estimateFrontierByReturn(pret);
qret = q.estimatePortReturn(qwgt);
qstd = q.estimatePortStd(qwgt);
[pret, qret]
[pstd, qstd]
ans =
$0.0604 \quad 0.0604$
0.0740 0.0740
0.0877 0.0877
0.1013 0.1013
0.1149 0.1149
0.1286 0.1286
0.1422 0.1422
0.1559 0.1559
0.1695 0.1695

```
\begin{tabular}{cc}
0.1831 & 0.1831 \\
ans \(=\) & \\
0.0765 & 0.0765 \\
0.0832 & 0.0832 \\
0.1002 & 0.1002 \\
0.1233 & 0.1233 \\
0.1498 & 0.1498 \\
0.1782 & 0.1782 \\
0.2100 & 0.2100 \\
0.2506 & 0.2506 \\
0.2967 & 0.2967 \\
0.3469 & 0.3469
\end{tabular}

Now it is possible to compare standard deviations of portfolio returns from either type of portfolio optimization.

\section*{Troubleshooting MAD Portfolio Optimization Results}

\section*{PortfolioMAD Object Destroyed When Modifying}

If a PortfolioMAD object is destroyed when modifying, remember to pass an existing object into the constructor if you want to modify it, otherwise it creates a new object. See "Constructing the PortfolioMAD Object" on page 6-27 for details.

\section*{Matrix Incompatibility and "Non-Conformable" Errors}

If you get matrix incompatibility or "non-conformable" errors, the representation of data in the tools follows a specific set of basic rules described in "Conventions for Representation of Data" on page 6-26.

\section*{Missing Data Estimation Fails}

If asset return data has missing or NaN values, the method simulateNormalScenariosByData with the 'missingdata' flag set to true may fail with either too many iterations or a singular covariance. To correct this problem, consider this:
- If you have asset return data with no missing or NaN values, you can compute a covariance matrix that may be singular without difficulties. If you have missing or NaN values in your data, the supported missing data feature requires that your covariance matrix must be positive-definite, i.e., nonsingular.
- simulateNormalScenariosByData uses default settings for the missing data estimation procedure that might not be appropriate for all problems.

In either case, you might want to estimate the moments of asset returns separately with either the ECM estimation functions such as ecmnmle or with your own methods.

\section*{mad_optim_transform Errors}

If you obtain optimization errors such as:
```

Error using mad_optim_transform (line 276)
Portfolio set appears to be either empty or unbounded. Check constraints.
Error in PortfolioMAD/estimateFrontier (line 64)
[AI, bI, AE, bE, lB, uB, f0, f, x0] = mad_optim_transform(obj);
or
Error using mad_optim_transform (line 281)
Cannot obtain finite lower bounds for specified portfolio set.
Error in PortfolioMAD/estimateFrontier (line 64)
[AI, bI, AE, bE, lB, uB, f0, f, x0] = mad_optim_transform(obj);

```

Since the portfolio optimization tools require a bounded portfolio set, these errors (and similar errors) can occur if your portfolio set is either empty and, if nonempty, unbounded. Specifically, the portfolio optimization algorithm requires that your portfolio set have at least a finite lower bound. The best way to deal with these problems is to use the validation methods in "Validate the MAD Portfolio Problem" on page 6-85. Specifically, use estimateBounds to examine your portfolio set, and use checkFeasibility to ensure that your initial portfolio is either feasible and, if infeasible, that you have sufficient turnover to get from your initial portfolio to the portfolio set.

Tip To correct this problem, try solving your problem with larger values for turnover and gradually reduce to the value that you want.

\section*{Efficient Portfolios Do Not Make Sense}

If you obtain efficient portfolios that do not seem to make sense, this can happen if you forget to set specific constraints or you set incorrect constraints. For example, if you allow portfolio weights to fall between 0 and 1 and do not set a budget constraint, you can get portfolios that are \(100 \%\) invested in every asset. Although it may be hard to detect, the best thing to do is to review the constraints you have set with display of the PortfolioMAD object. If you get portfolios with \(100 \%\) invested in each asset, you can review the display of your object and quickly see that no budget constraint is set. Also, you can use estimateBounds and checkFeasibility to determine if the bounds for your portfolio set make sense and to determine if the portfolios you obtained are feasible relative to an independent formulation of your portfolio set.
\begin{tabular}{ll} 
See Also & PortfolioMAD | estimateScenarioMoments | checkFeasibility \\
Related & - "Constructing the PortfolioMAD Object" on page 6-27 \\
Examples & - "Working with MAD Portfolio Constraints" on page 6-61 \\
& - "Estimate Efficient Portfolios" on page 6-90 \\
& - "Assimate Efficient Frontiers" on page 6-103 \\
& \\
Concepts & - "PortfolioMs and Scenarios" on page 6-44 \\
& - "Portfolio Optimization Theory" on page 6-2
\end{tabular}

\title{
Investment Performance Metrics
}
- "Overview of Performance Metrics" on page 7-2
- "Using the Sharpe Ratio" on page 7-6
- "Using the Information Ratio" on page 7-8
- "Tracking Error" on page 7-10
- "Risk-Adjusted Return" on page 7-11
- "Sample and Expected Lower Partial Moments" on page 7-14
- "Maximum and Expected Maximum Drawdown" on page 7-17

\section*{Overview of Performance Metrics}

\author{
In this section... \\ "Performance Metrics Types" on page 7-2 \\ "Performance Metrics" on page 7-3
}

\section*{Performance Metrics Types}

Sharpe first proposed a ratio of excess return to total risk as an investment performance metric. Subsequent work by Sharpe, Lintner, and Mossin extended these ideas to entire asset markets in what is called the Capital Asset Pricing Model (CAPM). Since the development of the CAPM, a variety of investment performance metrics has evolved.

This section presents four type of investment performance metrics:
- The first type of metrics are absolute investment performance metrics that are called "classic" metrics since they are based on the CAPM. They include the Sharpe ratio, the information ratio, and tracking error. To compute the Sharpe ratio from data, use sharpe to calculate the ratio for one or more asset return series. To compute the information ratio and associated tracking error, use inforatio to calculate these quantities for one or more asset return series.
- The second type of metrics are relative investment performance metrics to compute risk-adjusted returns. These metrics are also based on the CAPM and include Beta, Jensen's Alpha, the Security Market Line (SML), Modigliani and Modigliani Risk-Adjusted Return, and the Graham-Harvey measures. To calculate risk-adjusted alpha and return, use portalpha.
- The third type of metrics are alternative investment performance metrics based on lower partial moments. To calculate lower partial moments, use lpm for sample lower partial moments and elpm for expected lower partial moments.
- The fourth type of metrics are performance metrics based on maximum drawdown and expected maximum drawdown. To calculate maximum or expected maximum drawdowns, use maxdrawdown and emaxdrawdown.

\section*{Performance Metrics}

To illustrate the functions for investment performance metrics, you will work with three financial time series objects using performance data for:
- An actively managed, large-cap value mutual fund
- A large-cap market index
- 90-day Treasury bills

The data is monthly total return prices that cover a span of 5 years.
The following plot illustrates the performance of each series in terms of total returns to an initial \(\$ 1\) invested at the start of this 5 -year period:
```

load FundMarketCash
plot(TestData)
hold all
title('\bfFive-Year Total Return Performance');
legend('Fund','Market','Cash','Location','SouthEast');
hold off

```


The mean (Mean) and standard deviation (Sigma) of returns for each series are
```

Returns = tick2ret(TestData);
Assets
Mean = mean(Returns)
Sigma = std(Returns, 1)

```
which gives the following result:
```

Assets =
'Fund' 'Market' 'Cash'
Mean =
0.0038 0.0030 0.0017
Sigma =
0.0229 0.0389 0.0009

```

> Note Functions for investment performance metrics use total return price and total returns. To convert between total return price and total returns, use ret2tick and tick2ret.

\section*{Using the Sharpe Ratio}
```

In this section...
"Introduction" on page 7-6
"Sharpe Ratio" on page 7-6

```

\section*{Introduction}

The Sharpe ratio is the ratio of the excess return of an asset divided by the asset's standard deviation of returns. The Sharpe ratio has the form:
(Mean - Riskless) / Sigma
Here Mean is the mean of asset returns, Riskless is the return of a riskless asset, and Sigma is the standard deviation of asset returns. A higher Sharpe ratio is better than a lower Sharpe ratio. A negative Sharpe ratio indicates "anti-skill" since the performance of the riskless asset is superior. For more information, see sharpe.

\section*{Sharpe Ratio}

To compute the Sharpe ratio, the mean return of the cash asset is used as the return for the riskless asset. Thus, given asset return data and the riskless asset return, the Sharpe ratio is calculated with
```

load FundMarketCash
Returns = tick2ret(TestData);
Riskless = mean(Returns(:,3))
Sharpe = sharpe(Returns, Riskless)

```
which gives the following result:
Riskless =
0.0017

Sharpe =
\(0.0886 \quad 0.03150\)

The Sharpe ratio of the example fund is significantly higher than the Sharpe ratio of the market. As will be demonstrated with portalpha, this translates
into a strong risk-adjusted return. Since the Cash asset is the same as Riskless, it makes sense that its Sharpe ratio is 0 . The Sharpe ratio was calculated with the mean of cash returns. It can also be calculated with the cash return series as input for the riskless asset
```

Sharpe = sharpe(Returns, Returns(:,3))

```
which gives the following result:
Sharpe =
\(0.0886 \quad 0.03150\)

When using the Portfolio. object, you can use the estimateMaxSharpeRatio method to estimate an efficient portfolio that maximizes the Sharpe ratio. For more information, see "Efficient Portfolio that Maximizes Sharpe Ratio" on page 4-98.

\section*{Using the Information Ratio}

\author{
In this section... \\ "Introduction" on page 7-8 \\ "Information Ratio" on page 7-8
}

\section*{Introduction}

Although originally called the "appraisal ratio" by Treynor and Black, the information ratio is the ratio of relative return to relative risk (known as "tracking error"). Whereas the Sharpe ratio looks at returns relative to a riskless asset, the information ratio is based on returns relative to a risky benchmark which is known colloquially as a "bogey." Given an asset or portfolio of assets with random returns designated by Asset and a benchmark with random returns designated by Benchmark, the information ratio has the form:
```

Mean(Asset - Benchmark) / Sigma (Asset - Benchmark)

```

Here Mean(Asset - Benchmark) is the mean of Asset minus Benchmark returns, and Sigma(Asset - Benchmark) is the standard deviation of Asset minus Benchmark returns. A higher information ratio is considered better than a lower information ratio. For more information, see inforatio.

\section*{Information Ratio}

To calculate the information ratio using the example data, the mean return of the market series is used as the return of the benchmark. Thus, given asset return data and the riskless asset return, compute the information ratio with
load FundMarketCash
Returns = tick2ret(TestData);
Benchmark = Returns(:,2);
InfoRatio = inforatio(Returns, Benchmark)
which gives the following result:
```

InfoRatio =

```
\(0.0432 \mathrm{NaN}-0.0315\)

Since the market series has no risk relative to itself, the information ratio for the second series is undefined (which is represented as NaN in MATLAB software). Its standard deviation of relative returns in the denominator is 0 .

\section*{Tracking Error}

\section*{In this section...}
"Introduction" on page 7-10
"Tracking Error" on page 7-10

\section*{Introduction}

Given an asset or portfolio of assets and a benchmark, the relative standard deviation of returns between the asset or portfolio of assets and the benchmark is called tracking error.

\section*{Tracking Error}

The function inforatio computes tracking error and returns it as a second argument
```

load FundMarketCash
Returns = tick2ret(TestData);
Benchmark = Returns(:,2);
[InfoRatio, TrackingError] = inforatio(Returns, Benchmark)

```
which gives the following results:
```

InfoRatio =
0.0432 NaN -0.0315
TrackingError =
0.0187 0 0.0390

```

Tracking error is a useful measure of performance relative to a benchmark since it is in units of asset returns. For example, the tracking error of \(1.87 \%\) for the fund relative to the market in this example is reasonable for an actively managed, large-cap value fund.

\section*{Risk-Adjusted Return}

\author{
In this section... \\ "Introduction" on page 7-11 \\ "Risk-Adjusted Return" on page 7-11
}

\section*{Introduction}

Risk-adjusted return either shifts the risk (which is the standard deviation of returns) of a portfolio to match the risk of a market portfolio or shifts the risk of a market portfolio to match the risk of a fund. According to the Capital Asset Pricing Model (CAPM), the market portfolio and a riskless asset are points on a Security Market Line (SML). The return of the resultant shifted portfolio, levered or unlevered, to match the risk of the market portfolio, is the risk-adjusted return. The SML provides another measure of risk-adjusted return, since the difference in return between the fund and the SML, return at the same level of risk.

\section*{Risk-Adjusted Return}

Given our example data with a fund, a market, and a cash series, you can calculate the risk-adjusted return and compare it with the fund and market's mean returns
```

load FundMarketCash
Returns = tick2ret(TestData);
Fund = Returns(:,1);
Market = Returns(:,2);
Cash = Returns(:,3);
MeanFund = mean(Fund)
MeanMarket = mean(Market)

```
[MM, aMM] = portalpha(Fund, Market, Cash, 'MM')
[GH1, aGH1] = portalpha(Fund, Market, Cash, 'gh1')
[GH2, aGH2] = portalpha(Fund, Market, Cash, 'gh2')
[SML, aSML] = portalpha(Fund, Market, Cash, 'sml')
which gives the following results:
```

MeanFund =
0.0038
MeanMarket =
0.0030
MM =
0.0022
aMM =
0.0052
GH1 =
0.0013
aGH1 =
0.0025
GH2 =
0.0022
aGH2 =
0.0052
SML =
0.0013
aSML =
0.0025

```

Since the fund's risk is much less than the market's risk, the risk-adjusted return of the fund is much higher than both the nominal fund and market returns.

\section*{Sample and Expected Lower Partial Moments}

\author{
In this section... \\ "Introduction" on page 7-14 \\ "Sample Lower Partial Moments" on page 7-14 \\ "Expected Lower Partial Moments" on page 7-15
}

\section*{Introduction}

Use lower partial moments to examine what is colloquially known as "downside risk." The main idea of the lower partial moment framework is to model moments of asset returns that fall below a minimum acceptable level of return. To compute lower partial moments from data, use lpm to calculate lower partial moments for multiple asset return series and for multiple moment orders. To compute expected values for lower partial moments under several assumptions about the distribution of asset returns, use elpm to calculate lower partial moments for multiple assets and for multiple orders.

\section*{Sample Lower Partial Moments}

The following example demonstrates lpm to compute the zero-order, first-order, and second-order lower partial moments for the three time series, where the mean of the third time series is used to compute MAR (with the so-called risk-free rate).
```

load FundMarketCash
Returns = tick2ret(TestData);
Assets
MAR = mean(Returns(:,3))
LPM = lpm(Returns, MAR, [00 1 2])

```
which gives the following results:
```

Assets =
'Fund' 'Market' 'Cash'
MAR =
0.0017
LPM =

```
\begin{tabular}{lll}
0.4333 & 0.4167 & 0.6167 \\
0.0075 & 0.0140 & 0.0004 \\
0.0003 & 0.0008 & 0.0000
\end{tabular}

The first row of LPM contains zero-order lower partial moments of the three series. The fund and market index fall below MAR about \(40 \%\) of the time and cash returns fall below its own mean about \(60 \%\) of the time.

The second row contains first-order lower partial moments of the three series. The fund and market have large expected shortfall returns relative to MAR by 75 and 140 basis points per month. On the other hand, cash underperforms MAR by about only 4 basis points per month on the downside.

The third row contains second-order lower partial moments of the three series. The square root of these quantities provides an idea of the dispersion of returns that fall below the MAR. The market index has a much larger variation on the downside when compared to the fund.

\section*{Expected Lower Partial Moments}

To compare realized values with expected values, use elpm to compute expected lower partial moments based on the mean and standard deviations of normally distributed asset returns. The elpm function works with the mean and standard deviations for multiple assets and multiple orders.
```

load FundMarketCash
Returns = tick2ret(TestData);
MAR = mean(Returns(:,3))
Mean = mean(Returns)
Sigma = std(Returns, 1)
Assets
ELPM = elpm(Mean, Sigma, MAR, [0 0 1 2])

```
which gives the following results:
```

Assets =
'Fund' 'Market' 'Cash'
ELPM =
0.4647 0.4874 0.5000
0.0082 0.0149 0.0004

```

Based on the moments of each asset, the expected values for lower partial moments imply better than expected performance for the fund and market and worse than expected performance for cash. Note that this function works with either degenerate or nondegenerate normal random variables. For example, if cash were truly riskless, its standard deviation would be 0 . You can examine the difference in expected shortfall.
```

RisklessCash = elpm(Mean(3), 0, MAR, 1)

```
which gives the following result:
```

RisklessCash =
0

```

\title{
Maximum and Expected Maximum Drawdown
}

\author{
In this section... \\ "Introduction" on page 7-17 \\ "Maximum Drawdown" on page 7-17 \\ "Expected Maximum Drawdown" on page 7-21
}

\section*{Introduction}

Maximum drawdown is the maximum decline of a series, measured as return, from a peak to a nadir over a period of time. Although additional metrics exist that are used in the hedge fund and commodity trading communities (see Pederson and Rudholm-Alfvin [20] in Appendix A, "Bibliography"), the original definition and subsequent implementation of these metrics is not yet standardized.

It is possible to compute analytically the expected maximum drawdown for a Brownian motion with drift (see Magdon-Ismail, Atiya, Pratap, and Abu-Mostafa [16] Appendix A, "Bibliography"). These results are used to estimate the expected maximum drawdown for a series that approximately follows a geometric Brownian motion.

Use maxdrawdown and emaxdrawdown to calculate the maximum and expected maximum drawdowns.

\section*{Maximum Drawdown}

This example demonstrates how to compute the maximum drawdown (MaxDD) using our example data with a fund, a market, and a cash series:
load FundMarketCash
MaxDD = maxdrawdown(TestData)
which gives the following results:
```

MaxDD =

```
\(0.1658 \quad 0.3381 \quad 0\)

The maximum drop in the given time period was of \(16.58 \%\) for the fund series, and \(33.81 \%\) for the market. There was no decline in the cash series, as expected, because the cash account never loses value.
maxdrawdown can also return the indices (MaxDDIndex) of the maximum drawdown intervals for each series in an optional output argument:
```

[MaxDD, MaxDDIndex] = maxdrawdown(TestData)

```
which gives the following results:
```

MaxDD =
0.1658 0.3381 0
MaxDDIndex =
2 NaN
18 18 NaN

```

The first two series experience their maximum drawdowns from the 2nd to the 18th month in the data. The indices for the third series are NaNs because it never has a drawdown.

The \(16.58 \%\) value loss from month 2 to month 18 for the fund series is verified using the reported indices:
```

Start = MaxDDIndex(1,:);
End = MaxDDIndex(2,:);
(TestData(Start(1),1) - TestData(End(1),1))/TestData(Start(1),1)
ans =
0.1658

```

Although the maximum drawdown is measured in terms of returns, maxdrawdown can measure the drawdown in terms of absolute drop in value, or in terms of log-returns. To contrast these alternatives more clearly, we work with the fund series assuming, an initial investment of 50 dollars:
```

Fund50 = 50*TestData(:,1);
plot(Fund50);
title('\bfFive-Year Fund Performance, Initial Investment 50 usd');
xlabel('Months');
ylabel('Value of Investment');

```


First, we compute the standard maximum drawdown, which coincides with the results above because returns are independent of the initial amounts invested:

MaxDD50Ret = maxdrawdown(Fund50)

\section*{MaxDD50Ret =}
0.1658

Next, we compute the maximum drop in value, using the arithmetic argument:
[MaxDD50Arith, Ind50Arith] = maxdrawdown(Fund50,'arithmetic')
```

MaxDD50Arith =
8.4285
Ind50Arith =
2
18

```

The value of this investment was \(\$ 50.84\) in month 2 , but by month 18 the value was down to \(\$ 42.41\), a drop of \(\$ 8.43\). This is the largest loss in dollar value from a previous high in the given time period. In this case, the maximum drawdown period, 2 nd to 18 th month, is the same independently of whether drawdown is measured as return or as dollar value loss.

Last, we compute the maximum decline based on log-returns using the geometric argument. In this example, the log-returns result in a maximum drop of \(18.13 \%\), again from the 2nd to the 18th month, not far from the \(16.58 \%\) obtained using standard returns.
[MaxDD50LogRet, Ind50LogRet] = maxdrawdown(Fund50,'geometric')
MaxDD50LogRet =
0.1813

Ind50LogRet \(=\)

2
18
Note, the last measure is equivalent to finding the arithmetic maximum drawdown for the log of the series:

MaxDD50LogRet2 = maxdrawdown(log(Fund50),'arithmetic')
MaxDD50LogRet2 =

\section*{Expected Maximum Drawdown}

This example demonstrates using the log-return moments of the fund to compute the expected maximum drawdown (EMaxDD) and then compare it with the realized maximum drawdown (MaxDD).
load FundMarketCash
logReturns = log(TestData(2:end,:) ./ TestData(1:end - 1,:)); Mu = mean(logReturns(:,1));
Sigma = std(logReturns(:,1),1);
T = size(logReturns,1);
MaxDD = maxdrawdown(TestData(:,1),'geometric')
EMaxDD = emaxdrawdown(Mu-0.5*Sigma^2, Sigma, T)
which gives the following results:
MaxDD =
0.1813

EMaxDD =
0.1588

The drawdown observed in this time period is above the expected maximum drawdown. There is no contradiction here. The expected maximum drawdown is not an upper bound on the maximum losses from a peak, but an estimate of their average, based on a geometric Brownian motion assumption.

\section*{Credit Risk Analysis}
- "Credit Rating by Bagging Decision Trees" on page 8-2
- "Estimation of Transition Probabilities" on page 8-18
- "Forecasting Corporate Default Rates" on page 8-40
- "Credit Quality Thresholds" on page 8-64

\section*{Credit Rating by Bagging Decision Trees}

This example shows how to build an automated credit rating tool.
One of the fundamental tasks in credit risk management is to assign a credit grade to a borrower. Grades are used to rank customers according to their perceived creditworthiness: better grades mean less risky customers; similar grades mean similar level of risk. Grades come in two categories: credit ratings and credit scores. Credit ratings are a small number of discrete classes, usually labeled with letters, such as 'AAA', 'BB-', etc. Credit scores are numeric grades such as ' 640 ' or ' 720 '. Credit grades are one of the key elements in regulatory frameworks, such as Basel II (see Basel Committee on Banking Supervision [3]).

Assigning a credit grade involves analyzing information on the borrower. If the borrower is an individual, information of interest could be the individual's income, outstanding debt (mortgage, credit cards), household size, residential status, etc. For corporate borrowers, one may consider certain financial ratios (e.g., sales divided by total assets), industry, etc. Here, we refer to these pieces of information about a borrower as features or predictors. Different institutions use different predictors, and they may also have different rating classes or score ranges to rank their customers. For relatively small loans offered to a large market of potential borrowers (e.g., credit cards), it is common to use credit scores, and the process of grading a borrower is usually automated. For larger loans, accessible to small- to medium-sized companies and larger corporations, credit ratings are usually used, and the grading process may involve a combination of automated algorithms and expert analysis.

There are rating agencies that keep track of the creditworthiness of companies. Yet, most banks develop an internal methodology to assign credit grades for their customers. Rating a customer internally can be a necessity if the customer has not been rated by a rating agency, but even if a third-party rating exists, an internal rating offers a complementary assessment of a customer's risk profile.

This example shows how MATLAB® can help with the automated stage of a credit rating process. In particular, we take advantage of one of the statistical learning tools readily available in Statistics Toolbox \({ }^{\mathrm{TM}}\), a classification algorithm known as a bagged decision tree.

We assume that historical information is available in the form of a data set where each record contains the features of a borrower and the credit rating that was assigned to it. These may be internal ratings, assigned by a committee that followed policies and procedures already in place. Alternatively, the ratings may come from a rating agency, whose ratings are being used to "jump start" a new internal credit rating system.

The existing historical data is the starting point, and it is used to train the bagged decision tree that will automate the credit rating. In the vocabulary of statistical learning, this training process falls in the category of supervised learning. The classifier is then used to assign ratings to new customers. In practice, these automated or predicted ratings would most likely be regarded as tentative, until a credit committee of experts reviews them. The type of classifier we use here can also facilitate the revision of these ratings, because it provides a measure of certainty for the predicted ratings, a classification score.

In practice, one needs to train a classifier first, then use it to assign a credit rating to new customers, and finally one also needs to profile or evaluate the quality or accuracy of the classifier, a process also known as validation or back-testing. We discuss some readily available back-testing tools, as well.

\section*{Loading the Existing Credit Rating Data}

We load the historical data from the comma-delimited text file CreditRating_Historical.dat. We choose to work with text files here, but users with access to Database Toolbox \({ }^{\text {TM }}\) can certainly load this information directly from a database.

The data set contains financial ratios, industry sector, and credit ratings for a list of corporate customers. This is simulated, not real data. The first column is a customer ID. Then we have five columns of financial ratios. These are the same ratios used in Altman's z-score (see Altman [1]; see also Loeffler and Posch [4] for a related analysis).
- Working capital / Total Assets (WC_TA)
- Retained Earnings / Total Assets (RE_TA)
- Earnings Before Interests and Taxes / Total Assets (EBIT_TA)
- Market Value of Equity / Book Value of Total Debt (MVE_BVTD)
- Sales / Total Assets (S_TA)

Next, we have an industry sector label, an integer value ranging from 1 to 12. The last column has the credit rating assigned to the customer. We load the data into a table array.
creditDS = readtable('CreditRating_Historical.dat');
We copy the features into a matrix \(X\), and the corresponding classes, the ratings, into a vector Y . This is not a required step, since we could access this information directly from the dataset or table array, but we do it here to simplify some repeated function calls below.

The features to be stored in the matrix \(X\) are the five financial ratios, and the industry label. Industry is a categorical variable, nominal in fact, because there is no ordering in the industry sectors. The response variable, the credit ratings, is also categorical, though this is an ordinal variable, because, by definition, ratings imply a ranking of creditworthiness. We can use this variable "as is" to train our classifier. Here we choose to copy it into an ordinal array because this way the outputs come out in the natural order of the ratings and are easier to read. The ordering of the ratings is established by the cell array we pass as a third argument in the definition of \(Y\). The credit ratings can also be mapped into numeric values, which can be useful to try alternative methods to analyze the data (e.g., regression). It is always recommended to try different methods in practice.
```

X = [creditDS.WC_TA creditDS.RE_TA creditDS.EBIT_TA creditDS.MVE_BVTD...
creditDS.S_TA creditDS.Industry];
Y = ordinal(creditDS.Rating);

```

We use the predictors \(X\) and the response \(Y\) to fit a particular type of classification ensemble called a bagged decision tree. "Bagging," in this context, stands for "bootstrap aggregation." The methodology consists in generating a number of sub-samples, or bootstrap replicas, from the data set. These sub-samples are randomly generated, sampling with replacement from the list of customers in the data set. For each replica, a decision tree is grown. Each decision tree is a trained classifier on its own, and could be used in isolation to classify new customers. The predictions of two trees grown
from two different bootstrap replicas may be different, though. The ensemble aggregates the predictions of all the decision trees that are grown for all the bootstrap replicas. If the majority of the trees predict one particular class for a new customer, it is reasonable to consider that prediction to be more robust than the prediction of any single tree alone. Moreover, if a different class is predicted by a smaller set of trees, that information is useful, too. In fact, the proportion of trees that predict different classes is the basis for the classification scores that are reported by the ensemble when classifying new data.

\section*{Constructing the Tree Bagger}

The first step to construct our classification ensemble will be to find a good leaf size for the individual trees; here we try sizes of 1,5 and 10. (See Statistics Toolbox documentation for more on TreeBagger.) We start with a small number of trees, 25 only, because we mostly want to compare the initial trend in the classification error for different leaf sizes. For reproducibility and fair comparisons, we reinitialize the random number generator, which is used to sample with replacement from the data, each time we build a classifier.
```

leaf = [1 5 5 10];
nTrees = 25;
rng(9876,'twister');
savedRng = rng; % save the current RNG settings
color = 'bgr';
for ii = 1:length(leaf)
% Reinitialize the random number generator, so that the
% random samples are the same for each leaf size
rng(savedRng);
% Create a bagged decision tree for each leaf size and plot out-of-bag
% error 'oobError'
b = TreeBagger(nTrees,X,Y,'oobpred','on','cat',6,'minleaf',leaf(ii));
plot(b.oobError,color(ii));
hold on;
end
xlabel('Number of grown trees');
ylabel('Out-of-bag classification error');
legend({'1', '5', '10'},'Location','NorthEast');
title('Classification Error for Different Leaf Sizes');

```
hold off;

The errors are comparable for the three leaf-size options. We will therefore work with a leaf size of 10 , because it results in leaner trees and more efficient computations.

Note that we did not have to split the data into training and test subsets. This is done internally, it is implicit in the sampling procedure that underlies the method. At each bootstrap iteration, the bootstrap replica is the training set, and any customers left out ("out-of-bag") are used as test points to estimate the out-of-bag classification error reported above.

Next, we want to find out whether all the features are important for the accuracy of our classifier. We do this by turning on the feature importance measure (oobvarimp), and plot the results to visually find the most important features. We also try a larger number of trees now, and store the classification error, for further comparisons below.
```

nTrees = 50;
leaf = 10;
rng(savedRng);
b = TreeBagger(nTrees,X,Y,'oobvarimp','on','cat',6,'minleaf',leaf);
bar(b.OOBPermutedVarDeltaError);
xlabel('Feature number');
ylabel('Out-of-bag feature importance');
title('Feature importance results');
oobErrorFullX = b.oobError;

```

Features 2, 4 and 6 stand out from the rest. Feature 4, market value of equity / book value of total debt (MVE_BVTD), is the most important predictor for this data set. This ratio is closely related to the predictors of creditworthiness in structural models, such as Merton's model [5], where the value of the firm's equity is compared to its outstanding debt to determine the default probability.

Information on the industry sector, feature 6 (Industry), is also relatively more important than other variables to assess the creditworthiness of a firm for this data set.

Although not as important as MVE_BVTD, feature 2, retained earnings / total assets (RE_TA), stands out from the rest. There is a correlation between retained earnings and the age of a firm (the longer a firm has existed, the more earnings it can accumulate, in general), and in turn the age of a firm is correlated to its creditworthiness (older firms tend to be more likely to survive in tough times).

Let us fit a new classification ensemble using only predictors RE_TA, MVE_BVTD, and Industry. We compare its classification error with the previous classifier, which uses all features.
```

X = [creditDS.RE_TA creditDS.MVE_BVTD creditDS.Industry];
rng(savedRng);
b = TreeBagger(nTrees,X,Y,'oobpred','on','cat',3,'minleaf',leaf);
oobErrorX246 = b.oobError;
plot(oobErrorFullX,'b');
hold on;
plot(oobErrorX246,'r');
xlabel('Number of grown trees');
ylabel('Out-of-bag classification error');
legend({'All features', 'Features 2, 4, 6'},'Location','NorthEast');
title('Classification Error for Different Sets of Predictors');
hold off;

```

The accuracy of the classification does not deteriorate significantly when we remove the features with relatively low importance ( 1,3 , and 5 ), so we will use the more parsimonious classification ensemble for our predictions.

In this example, we have started with a set of six features only, and used the feature importance measure of the classifier, and the out-of-bag classification error as criteria to screen out three of the variables. Feature selection can be
a time consuming process when the initial set of potential predictors contains dozens of variables. Besides the tools we have used here (variable importance and a "visual" comparison of out-of-bag errors), other variable selection tools in Statistics Toolbox can be helpful for these types of analyses (see documentation). However, in the end, a successful feature selection process requires a combination of quantitative tools and an analyst's judgement.

For example, the variable importance measure we used here is a ranking mechanism that estimates the relative impact of a feature by measuring how much the predictive accuracy of the classifier deteriorates when this feature's values are randomly permuted. The idea is that when the feature in question adds little to the predictive power of the classifier, using altered (in this case permuted) values should not impact the classification results. Relevant information, on the other hand, cannot be randomly swapped without degrading the predictions. Now, if two highly correlated features are important, they will both rank high in this analysis. In that case, keeping one of these features should suffice for accurate classifications, but one would not know that from the ranking results alone. One would have to check the correlations separately, or use an expert's judgement. That is to say, tools like variable importance or sequentialfs can greatly help for feature selection, but an analyst's judgment is a key piece in this process.

At this point, the classifier could be saved (e.g., save classifier.mat b), to be loaded in a future session (load classifier) to classify new customers. For efficiency, it is recommended to keep a compact version of the classifier once the training process is finished.
b = b.compact;

\section*{Classifying New Data}

Here we use the previously constructed classification ensemble to assign credit ratings to new customers. Because the ratings of existing customers need to be reviewed, too, on a regular basis, especially when their financial information has substantially changed, the data set could also contain a list of existing customers under review. We start by loading the new data.
```

newDS = readtable('CreditRating_NewCompanies.dat');

```

To predict the credit rating for this new data, we call the predict method on the classifier. The method returns two arguments, the predicted class and the classification score. We certainly want to get both output arguments, since the classification scores contain information on how certain the predicted ratings seem to be. We could copy variables RE_TA, MVE_BVTD and Industry into a matrix \(X\), as before, but since we will make only one call to predict, we can skip this step and use newDS directly.
```

[predClass,classifScore] = b.predict([newDS.RE_TA newDS.MVE_BVTD...
newDS.Industry]);

```

At this point, we can create a report. Here we only display on the screen a small report for the first three customers, for illustration purposes, but MATLAB's deployment tools could greatly improve the workflow here. For example, using MATLAB Builder \({ }^{\text {TM }} \mathrm{JA}\), credit analysts could run this classification remotely, using a web browser, and get a report, without even having MATLAB on their desktops.
```

for i = 1:3
fprintf('Customer %d:\n',newDS.ID(i));
fprintf(' RE/TA = %5.2f\n',newDS.RE_TA(i));
fprintf(' MVE/BVTD = %5.2f\n',newDS.MVE_BVTD(i));
fprintf(' Industry = %2d\n',newDS.Industry(i));
fprintf(' Predicted Rating : %s\n',predClass{i});
fprintf(' Classification score : \n');
for j = 1:length(b.ClassNames)
if (classifScore(i,j)>0)
fprintf(' %s : %5.4f \n',b.ClassNames{j},classifScore(i,j));
end
end
end
Customer 60644:
RE/TA = 0.22
MVE/BVTD = 2.40
Industry = 6
Predicted Rating : AA
Classification score :
A : 0.3064
AA : 0.6778

```
```

 BBB : 0.0158
 Customer 33083:
RE/TA = 0.24
MVE/BVTD = 1.51
Industry = 4
Predicted Rating : BBB
Classification score :
A : 0.0656
BBB : 0.9344
Customer 63830:
RE/TA = 0.18
MVE/BVTD = 1.69
Industry = 7
Predicted Rating : A
Classification score :
A : 0.7020
AA : 0.0113
B : 0.0022
BB : 0.0002
BBB : 0.2842

```

Keeping records of the predicted ratings and corresponding scores can be useful for periodic assessments of the quality of the classifier. We store this information here in the table array predDS.
```

classnames = b.ClassNames;
predDS = [table(newDS.ID,predClass),array2table(classifScore)];
predDS.Properties.VariableNames = {'ID','PredRating',classnames{:}};

```

This information could be saved, for example, to a comma-delimited text file PredictedRatings.dat using the command
```

export(predDS,'file','PredictedRatings.dat','delimiter',',')

```
or written directly to a database using Database Toolbox.

\section*{Back-Testing: Profiling the Classification Process}

Validation or back-testing is the process of profiling or assessing the quality of the credit ratings. There are many different measures and tests related
to this task (see, for example, Basel Committee on Banking Supervision [2]). Here, we focus on the following two questions:
- How accurate are the predicted ratings, as compared to the actual ratings? Here "predicted ratings" refers to those obtained from the automated classification process, and "actual ratings" to those assigned by a credit committee that puts together the predicted ratings and their classification scores, and other pieces of information, such as news and the state of the economy to determine a final rating.
- How well do the actual ratings rank customers according to their creditworthiness? This is done in an ex-post analysis performed, for example, one year later, when it is known which companies defaulted during the year.

The file CreditRating_ExPost.dat contains "follow up" data on the same companies considered in the previous section. It contains the actual ratings that the committee assigned to these companies, as well as a "default flag" that indicates whether the corresponding company defaulted within one year of the rating process (if 1 ) or not (if 0 ).
```

exPostDS = readtable('CreditRating_ExPost.dat');

```

If this were a new MATLAB session, besides reading the follow up data from CreditRating_ExPost.dat we would need to load the predicted ratings information stored in predDS, for example, with the command
```

predDS = readtable('PredictedRatings.dat')

```

Comparing predicted ratings vs. actual ratings. The rationale to train an automated classifier is to expedite the work of the credit committee. The more accurate the predicted ratings are, the less time the committee has to spend reviewing the predicted ratings. So it is conceivable that the committee wants to have regular checks on how closely the predicted ratings match the final ratings they assign, and to recommend re-training the automated classifier (and maybe include new features, for example) if the mismatch seems concerning.

The first tool we can use to compare predicted vs. actual ratings is a confusion matrix, readily available in Statistics Toolbox:
```

C = confusionmat(exPostDS.Rating,predDS.PredRating,...
'order',{'AAA' 'AA' 'A' 'BBB' 'BB' 'B' 'CCC'})

```
C =
\begin{tabular}{rrrrrrr}
204 & 12 & 0 & 0 & 0 & 0 & 0 \\
8 & 110 & 20 & 0 & 0 & 0 & 0 \\
0 & 18 & 157 & 29 & 0 & 0 & 0 \\
0 & 1 & 28 & 247 & 47 & 0 & 0 \\
0 & 0 & 0 & 41 & 227 & 17 & 0 \\
0 & 0 & 0 & 0 & 48 & 42 & 3 \\
0 & 0 & 0 & 0 & 0 & 10 & 42
\end{tabular}

The rows in C correspond to the actual ratings, and the columns to the predicted ratings. The amount in the position (i,j) in this matrix indicates how many customers received an actual rating \(i\) and were predicted as rating \(j\). For example, position \((3,2)\) tells us how many customers received a rating of 'A' by the credit committee, but were predicted as 'AA' with the automated classifier. One can also present this matrix in percentage form with a simple transformation:

Cperc \(=\operatorname{diag}(\operatorname{sum}(C, 2)) \backslash C\)

Cperc =
\begin{tabular}{rrrrrrr}
0.9444 & 0.0556 & 0 & 0 & 0 & 0 & 0 \\
0.0580 & 0.7971 & 0.1449 & 0 & 0 & 0 & 0 \\
0 & 0.0882 & 0.7696 & 0.1422 & 0 & 0 & 0 \\
0 & 0.0031 & 0.0867 & 0.7647 & 0.1455 & 0 & 0 \\
0 & 0 & 0 & 0.1439 & 0.7965 & 0.0596 & 0 \\
0 & 0 & 0 & 0 & 0.5161 & 0.4516 & 0.0323 \\
0 & 0 & 0 & 0 & 0 & 0.1923 & 0.8077
\end{tabular}

Good agreement between the predicted and the actual ratings would result in values in the main diagonal that dominate the rest of the values in a row, ideally values close to 1 . In this case, we actually see an important
disagreement for 'B,' since about half of the customers that were rated as 'B' by the credit committee had been predicted as 'BB' by the automated classifier. On the other hand, it is good to see that ratings differ in at most one notch in most cases, with the only exception of 'BBB.'

A confusion matrix could also be used to compare the internal ratings assigned by the institution against third-party ratings; this is often done in practice.

For each specific rating, we can compute yet another measure of agreement between predicted and actual ratings. We can build a Receiver Operating Characteristic (ROC) curve using the perfcurve function from Statistics Toolbox, and check the area under the curve (AUC). The perfcurve function takes as an argument the actual ratings, which are our benchmark, the standard we are comparing against, and the 'BBB' classification scores determined by the automated process. Let us build a ROC and calculate the AUC for rating 'BBB' in our example.
```

[xVal,yVal,~,auc] = perfcurve(exPostDS.Rating,predDS.BBB,'BBB');
plot(xVal,yVal);
xlabel('False positive rate');
ylabel('True positive rate');
text(0.5,0.25,strcat('AUC=',num2str(auc)),'EdgeColor','k');
title('ROC curve BBB, predicted vs. actual rating');

```

Here is an explanation of how the ROC is built. Recall that for each customer the automated classifier returns a classification score for each of the credit ratings, in particular, for 'BBB,' which can be interpreted as how likely it is that this particular customer should be rated 'BBB.' In order to build the ROC curve, one needs to vary the classification threshold. That is, the minimum score to classify a customer as 'BBB.' In other words, if the threshold is \(t\), we only classify customers as 'BBB' if their 'BBB' score is greater than or equal to \(t\). For example, suppose that company \(X Y Z\) had a 'BBB' score of 0.87 . If the actual rating of \(X Y Z\) (the information in exPostDS. Rating) is 'BBB,' then \(X Y Z\) would be correctly classified as 'BBB' for any threshold of up to 0.87 . This would be a true positive, and it would increase what is call the sensitivity of the classifier. For any threshold greater than 0.87 , this company would not receive a 'BBB' rating, and we would have a false negative case. To complete the description, suppose now that XYZ's actual rating is 'BB.' Then it would
be correctly rejected as a 'BBB' for thresholds of more than 0.87 , becoming a true negative, and thus increasing the so called specificity of the classifier. However, for thresholds of up to 0.87 , it would become a false positive (it would be classified as 'BBB,' when it actually is a 'BB'). The ROC curve is constructed by plotting the proportion of true positives (sensitivity), versus false positives ( 1 -specificity), as the threshold varies from 0 to 1 .

The AUC, as its name indicates, is the area under the ROC curve. The closer the AUC is to 1 , the more accurate the classifier (a perfect classifier would have an AUC of 1). In this example, the AUC seems high enough, but it would be up to the committee to decide which level of AUC for the ratings should trigger a recommendation to improve the automated classifier.

Comparing actual ratings vs. defaults in the following year. A common tool used to assess the ranking of customers implicit in the credit ratings is the Cumulative Accuracy Profile (CAP), and the associated accuracy ratio measure. The idea is to measure the relationship between the credit ratings assigned and the number of defaults observed in the following year. One would expect that fewer defaults are observed for better rating classes. If the default rate were the same for all ratings, the rating system would be no different from a naive (and useless) classification system in which customers were randomly assigned a rating, independently of their creditworthiness.

It is not hard to see that the perfcurve function can also be used to construct the CAP. The standard we compare against is not a rating, as before, but the default flag that we loaded from the CreditRating_ExPost.dat file. The score we use is a "dummy score" that indicates the ranking in creditworthiness implicit in the list of ratings. The dummy score only needs to satisfy that better ratings get lower dummy scores (they are "less likely to have a default flag of 1"), and that any two customers with the same rating get the same dummy score. A default probability could be passed as a score, of course, but we do not have default probabilities here, and in fact we do not need to have estimates of the default probabilities to construct the CAP, because we are not validating default probabilities. All we are assessing with this tool is how well the ratings rank customers according to their creditworthiness.

Usually, the CAP of the rating system under consideration is plotted together with the CAP of the "perfect rating system." The latter is a hypothetical credit rating system for which the lowest rating includes all the defaulters, and no other customers. The area under this perfect curve is the maximum possible

AUC attainable by a rating system. By convention, the AUC is adjusted for CAPs to subtract the area under the naive system's CAP, that is, the CAP of the system that randomly assigns ratings to customers. The naive system's CAP is simply a straight line from the origin to \((1,1)\), with an AUC of 0.5. The accuracy ratio for a rating system is then defined as the ratio of the adjusted AUC (AUC of the system in consideration minus AUC of the naive system) to the maximum accuracy (AUC of the perfect system minus AUC of the naive system).
```

ratingsList = {'AAA' 'AA' 'A' 'BBB' 'BB' 'B' 'CCC'};
Nratings = length(ratingsList);
dummyDelta = 1/(Nratings+1);
dummyRank = linspace(dummyDelta,1-dummyDelta,Nratings)';
D = exPostDS.Def tplus1;
fracTotDef = sum(D)/length(D);
maxAcc = 0.5 - 0.5 * fracTotDef;
R = double(ordinal(exPostDS.Rating,[],ratingsList));
S = dummyRank(R);
[xVal,yVal,~,auc] = perfcurve(D,S,1);
accRatio = (auc-0.5)/maxAcc;
fprintf('Accuracy ratio for actual ratings: %5.3f\n',accRatio);
xPerfect(1) = 0; xPerfect(2) = fracTotDef; xPerfect(3) = 1;
yPerfect(1) = 0; yPerfect(2) = 1; yPerfect(3) = 1;
xNaive(1) = 0; xNaive(2) = 1;
yNaive(1) = 0; yNaive(2) = 1;
plot(xPerfect,yPerfect,'--k',xVal,yVal,'b',xNaive,yNaive,'-.k');
xlabel('Fraction of all companies');
ylabel('Fraction of defaulted companies');
title('Cumulative Accuracy Profile');
legend({'Perfect','Actual','Naive'},'Location','SouthEast');
text(xVal(2)+0.01,yVal(2)-0.01,'CCC')
text(xVal(3)+0.01,yVal(3)-0.02,'B')
text(xVal(4)+0.01,yVal(4)-0.03,'BB')
Accuracy ratio for actual ratings: 0.850

```

The key to reading the information of the CAP is in the "kinks," labeled in the plot for ratings 'CCC, 'B,' and 'BB.' For example, the second kink is associated with the second lowest rating, 'B,' and it is located at ( \(0.097,0.714\) ). This means that \(9.7 \%\) of the customers were ranked 'B' or lower, and they account for \(71.4 \%\) of the defaults observed.

In general, the accuracy ratio should be treated as a relative, rather than an absolute measure. For example, we can add the CAP of the predicted ratings in the same plot, and compute its accuracy ratio to compare it with the accuracy ratio of the actual ratings.
```

Rpred = double(ordinal(predDS.PredRating,[],ratingsList));
Spred = dummyRank(Rpred);
[xValPred,yValPred,~,aucPred] = perfcurve(D,Spred,1);
accRatioPred = (aucPred-0.5)/maxAcc;
fprintf('Accuracy ratio for predicted ratings: %5.3f\n',accRatioPred);
plot(xPerfect,yPerfect,'--k',xVal,yVal,'b',xNaive,yNaive,'-.k',...
xValPred,yValPred,':r');
xlabel('Fraction of all companies');
ylabel('Fraction of defaulted companies');
title('Cumulative Accuracy Profile');
legend({'Perfect','Actual','Naive','Predicted'},'Location','SouthEast');
Accuracy ratio for predicted ratings: 0.831

```

The accuracy ratio of the predicted rating is smaller, and its CAP is mostly below the CAP of the actual rating. This is reasonable, since the actual ratings are assigned by the credit committees that take into consideration the predicted ratings and extra information that can be important to fine-tune the ratings.

\section*{Final Remarks}

MATLAB offers a wide range of machine learning tools, besides bagged decision trees, that can be used in the context of credit rating. In Statistics Toolbox you can find classification tools such as discriminant analysis and naive Bayes classifiers. MATLAB also offers Neural Networks Toolbox \({ }^{\mathrm{TM}}\). Also, Database Toolbox and MATLAB's deployment tools such as MATLAB Builder JA may provide you with more flexibility to adapt the workflow presented here to your own preferences and needs.

No probabilities of default have been computed here. For credit ratings, the probabilities of default are usually computed based on credit-rating migration history. See the transprob reference page in Financial Toolbox \({ }^{\text {TM }}\) for more information.

\section*{Bibliography}
[1] Altman, E., "Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy," Journal of Finance, Vol. 23, No. 4, (Sep., 1968), pp. 589-609.
[2] Basel Committee on Banking Supervision, "Studies on the Validation of Internal Rating Systems," Bank for International Settlements (BIS), Working Papers No. 14, revised version, May 2005. Available at: http://www.bis.org/publ/bcbs_wp14.htm.
[3] Basel Committee on Banking Supervision, "International Convergence of Capital Measurement and Capital Standards: A Revised Framework," Bank for International Settlements (BIS), comprehensive version, June 2006. Available at: http://www.bis.org/publ/bcbsca.htm.
[4] Loeffler, G., and P. N. Posch, Credit Risk Modeling Using Excel and VBA, West Sussex, England: Wiley Finance, 2007.
[5] Merton, R., "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, Vol. 29, No. 2, (May, 1974), pp. 449-70.

\section*{Estimation of Transition Probabilities}

\author{
In this section... \\ "Introduction" on page 8-18 \\ "Estimate Transition Probabilities" on page 8-19 \\ "Estimate Transition Probabilities for Different Rating Scales" on page 8-22 \\ "Estimate Point-in-Time and Through-the-Cycle Probabilities" on page 8-24 \\ "Estimate \(t\)-Year Default Probabilities" on page 8-27 \\ "Estimate Bootstrap Confidence Intervals" on page 8-28 \\ "Group Credit Ratings" on page 8-30 \\ "Work with Nonsquare Matrices" on page 8-32 \\ "Remove Outliers" on page 8-34 \\ "Estimate Probabilities for Different Segments" on page 8-35 \\ "Work with Large Datasets" on page 8-37
}

\section*{Introduction}

Credit ratings rank borrowers according to their credit worthiness. Though this ranking is, in itself, useful, institutions are also interested in knowing how likely it is that borrowers in a particular rating category will be upgraded or downgraded to a different rating, and especially, how likely it is that they will default.

Transition probabilities offer one way to characterize the past changes in credit quality of obligors (typically firms), and are cardinal inputs to many risk management applications. Financial Toolbox software supports the estimation of transition probabilities using both cohort and duration (also known as hazard rate or intensity) approaches using transprob and related functions.

Note The sample dataset used throughout this section is simulated using a single transition matrix. No attempt is made to match historical trends in transition rates.

\section*{Estimate Transition Probabilities}

The Data_TransProb.mat file contains sample credit ratings data.
```

load Data_TransProb
data(1:10,:)
ans =

$00010283{ }^{\prime}$	'10-Nov-1984'	CCC ${ }^{\prime}$
'00010283'	'12-May-1986'	'B'
'00010283'	'29-Jun-1988'	CCC'
'00010283'	'12-Dec-1991'	'D'
'00013326'	'09-Feb-1985'	'A'
'00013326'	'24-Feb-1994'	'AA'
'00013326'	'10-Nov-2000'	'BBB'
'00014413'	'23-Dec-1982'	'B'
'00014413'	'20-Apr-1988'	'BB'
00014413'	16-Jan-1998	B

```

The sample data is formatted as a cell array with three columns. Each row contains an ID (column 1), a date (column 2), and a credit rating (column 3). The assigned credit rating corresponds to the associated ID on the associated date. All information corresponding to the same ID must be stored in contiguous rows. In this example, IDs, dates, and ratings are stored in string format, but you also can enter them in numeric format.

In this example, the simplest calling syntax for transprob passes the nRecords-by- 3 cell array as the only input argument. The default startDate and endDate are the earliest and latest dates in the data. The default estimation algorithm is the duration method and 1-year transition probabilities are estimated:
```

transMatO = transprob(data)

```
transMat0 =
\begin{tabular}{rrrrrrrr}
93.1170 & 5.8428 & 0.8232 & 0.1763 & 0.0376 & 0.0012 & 0.0001 & 0.0017 \\
1.6166 & 93.1518 & 4.3632 & 0.6602 & 0.1626 & 0.0055 & 0.0004 & 0.0396 \\
0.1237 & 2.9003 & 92.2197 & 4.0756 & 0.5365 & 0.0661 & 0.0028 & 0.0753 \\
0.0236 & 0.2312 & 5.0059 & 90.1846 & 3.7979 & 0.4733 & 0.0642 & 0.2193 \\
0.0216 & 0.1134 & 0.6357 & 5.7960 & 88.9866 & 3.4497 & 0.2919 & 0.7050 \\
0.0010 & 0.0062 & 0.1081 & 0.8697 & 7.3366 & 86.7215 & 2.5169 & 2.4399 \\
0.0002 & 0.0011 & 0.0120 & 0.2582 & 1.4294 & 4.2898 & 81.2927 & 12.7167 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000
\end{tabular}

It is recommended to provide explicit start and end dates. Otherwise the estimation window for two different datasets can differ, and the estimates might not be comparable. From this point, assume that the time window of interest is the 5 -year period from the end of 1995 to the end of 2000 . For comparisons, compute the estimates for this time window. First use the duration algorithm (default option), and then the cohort algorithm explicitly set.
```

startDate = '31-Dec-1995';
endDate = '31-Dec-2000';
transMat1 = transprob(data,'startDate',startDate,'endDate',endDate)
transMat2 = transprob(data,'startDate',startDate,'endDate',endDate,...
'algorithm','cohort')

```
transMat1 =
\begin{tabular}{rrrrrrrr}
90.6236 & 7.9051 & 1.0314 & 0.4123 & 0.0210 & 0.0020 & 0.0003 & 0.0043 \\
4.4780 & 89.5558 & 4.5298 & 1.1225 & 0.2284 & 0.0094 & 0.0009 & 0.0754 \\
0.3983 & 6.1164 & 87.0641 & 5.4801 & 0.7637 & 0.0892 & 0.0050 & 0.0832 \\
0.1029 & 0.8572 & 10.7918 & 83.0204 & 3.9971 & 0.7001 & 0.1313 & 0.3992 \\
0.1043 & 0.3745 & 2.2962 & 14.0954 & 78.9840 & 3.0013 & 0.0463 & 1.0980 \\
0.0113 & 0.0544 & 0.7055 & 3.2925 & 15.4350 & 75.5988 & 1.8166 & 3.0860 \\
0.0044 & 0.0189 & 0.1903 & 1.9743 & 6.2320 & 10.2334 & 75.9983 & 5.3484 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000
\end{tabular}
transMat2 =
\begin{tabular}{rrrrrrrr}
90.1554 & 8.5492 & 0.9067 & 0.3886 & 0 & 0 & 0 & 0 \\
4.9512 & 88.5221 & 5.1763 & 1.0503 & 0.2251 & 0 & 0 & 0.0750
\end{tabular}
\begin{tabular}{rrrrrrrr}
0.2770 & 6.6482 & 86.2188 & 6.0942 & 0.6233 & 0.0693 & 0 & 0.0693 \\
0.0794 & 0.8737 & 11.6759 & 81.6521 & 4.3685 & 0.7943 & 0.1589 & 0.3971 \\
0.1002 & 0.4008 & 1.9038 & 15.4309 & 77.8557 & 3.4068 & 0 & 0.9018 \\
0 & 0 & 0.2262 & 2.4887 & 17.4208 & 74.2081 & 2.2624 & 3.3937 \\
0 & 0 & 0.7576 & 1.5152 & 6.0606 & 10.6061 & 75.0000 & 6.0606 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000
\end{tabular}

By default, the cohort algorithm internally gets yearly snapshots of the credit ratings, but the number of snapshots per year is definable using the parameter/value pair snapsPerYear. To get the estimates using quarterly snapshots:
```

transMat3 = transprob(data,'startDate',startDate,'endDate',endDate, ...
'algorithm','cohort','snapsPerYear',4)
transMat3 =

90.4765	8.0881	1.0072	0.4069	0.0164	0.0015	0.0002	0.0032
4.5949	89.3216	4.6489	1.1239	0.2276	0.0074	0.0007	0.0751
0.3747	6.3158	86.7380	5.6344	0.7675	0.0856	0.0040	0.0800
0.0958	0.7967	11.0441	82.6138	4.1906	0.7230	0.1372	0.3987
0.1028	0.3571	2.3312	14.4954	78.4276	3.1489	0.0383	1.0987
0.0084	0.0399	0.6465	3.0962	16.0789	75.1300	1.9044	3.0956
0.0031	0.0125	0.1445	1.8759	6.2613	10.7022	75.6300	5.3705
0	0	0	0	0	0	0	100.0000

```

Both duration and cohort compute 1-year transition probabilities by default, but the time interval for the transitions is definable using the parameter/value pair transInterval. For example, to get the 2 -year transition probabilities using the cohort algorithm with the same snapshot periodicity and estimation window:
```

transMat4 = transprob(data,'startDate',startDate,'endDate',endDate,...
'algorithm','cohort','snapsPerYear',4,'transInterval',2)
transMat4 =

82.2358	14.6092	2.2062	0.8543	0.0711	0.0074	0.0011	0.0149
8.2803	80.4584	8.3606	2.2462	0.4665	0.0316	0.0030	0.1533
0.9604	11.1975	76.1729	9.7284	1.5322	0.2044	0.0162	0.1879
0.2483	2.0903	18.8440	69.5145	6.9601	1.2966	0.2329	0.8133

```
\begin{tabular}{rrrrrrrr}
0.2129 & 0.8713 & 5.4893 & 23.5776 & 62.6438 & 4.9464 & 0.1390 & 2.1198 \\
0.0378 & 0.1895 & 1.7679 & 7.2875 & 24.9444 & 57.1783 & 2.8816 & 5.7132 \\
0.0154 & 0.0716 & 0.6576 & 4.2157 & 11.4465 & 16.3455 & 57.4078 & 9.8399 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000
\end{tabular}

\section*{Estimate Transition Probabilities for Different Rating Scales}

The dataset data from Data_TransProb.mat contains sample credit ratings using the default rating scale \{'AAA', 'AA','A', 'BBB', 'BB', 'B', 'CCC', 'D'\}. It also contains the dataset dataIGSG with ratings investment grade ('IG'), speculative grade ('SG'), and default ('D'). To estimate the transition matrix for this dataset, use the labels argument.
```

load Data_TransProb
startDate = '31-Dec-1995';
endDate = '31-Dec-2000';
dataIGSG(1:10,:)
transMatIGSG = transprob(dataIGSG,'labels',{'IG','SG','D'},...
'startDate',startDate,'endDate',endDate)
ans =

${ }^{\prime} 00011253^{\prime}$	'04-Apr-1983'	'IG'
'00012751'	'17-Feb-1985'	'SG'
'00012751'	'19-May-1986'	'D'
'00014690'	'17-Jan-1983'	'IG'
'00012144'	'21-Nov-1984'	'IG'
'00012144'	'25-Mar-1992'	'SG'
'00012144'	'07-May-1994'	'IG'
'00012144'	'23-Jan-2000'	'SG'
'00012144'	'20-Aug-2001'	'IG'
00012937^{\prime}	'07-Feb-1984'	'IG'

transMatIGSG =

98.1986	1.5179	0.2835
8.5396	89.4891	1.9713
0	0	100.0000

```

There is another dataset, dataIGSGnum, with the same information as dataIGSG, except the ratings are mapped to a numeric scale where ' \(I G\) ' \(=1\), 'SG'=2, and 'D'=3. To estimate the transition matrix, use the labels optional argument specifying the numeric scale as a cell array.
```

dataIGSGnum(1:10,:)
% Note {1,2,3} and num2cell(1:3) are equivalent; num2cell is convenient
% when the number of ratings is larger
transMatIGSGnum = transprob(dataIGSGnum,'labels',{1,2,3},...
'startDate',startDate,'endDate',endDate)
ans =
'00011253' '04-Apr-1983' [1]
'00012751' '17-Feb-1985' [2]
'00012751' '19-May-1986' [3]
'00014690' '17-Jan-1983' [1]
'00012144' '21-Nov-1984' [1]
'00012144' '25-Mar-1992' [2]
'00012144' '07-May-1994' [1]
'00012144' '23-Jan-2000' [2]
'00012144' '20-Aug-2001' [1]
'00012937' '07-Feb-1984' [1]
transMatIGSGnum =

98.1986	1.5179	0.2835
8.5396	89.4891	1.9713
0	0	100.0000

```

Any time the input dataset contains ratings not included in the default rating scale \{'AAA', 'AA', 'A', 'BBB', 'BB', 'B', 'CCC', 'D'\}, the full rating scale needs to be specified using the labels optional argument. For example, if the dataset contains ratings 'AAA', ..., 'CCC, 'D', and 'NR' (not rated), use labels with this cell array \{'AAA', 'AA', 'A','BBB','BB','B', 'CCC', 'D','NR'\}.

\section*{Estimate Point-in-Time and Through-the-Cycle Probabilities}

Transition probability estimates are sensitive to the length of the estimation window. When the estimation window is small, the estimates only capture recent credit events, and these can change significantly from one year to the next. These are called point-in-time (PIT) estimates. In contrast, a large time window yields fairly stable estimates that average transition rates over a longer period of time. These are called through-the-cycle (TTC) estimates.

The estimation of PIT probabilities requires repeated calls to transprob with a rolling estimation window. Use transprobprep every time repeated calls to transprob are required. transprobprep performs a preprocessing step on the raw dataset that is independent of the estimation window. The benefits of transprobprep are greater as the number of repeated calls to transprob increases. Also, the performance gains from transprobprep are more significant for the cohort algorithm.
```

load Data_TransProb
prepData = transprobprep(data);
Years = 1991:2000;
nYears = length(Years);
nRatings = length(prepData.ratingsLabels);
transMatPIT = zeros(nRatings,nRatings,nYears);
algorithm = 'duration';
sampleTotals(nYears,1) = struct('totalsVec',[],'totalsMat',[],...
'algorithm',algorithm);
for t = 1:nYears
startDate = ['31-Dec-' num2str(Years(t)-1)];
endDate = ['31-Dec-' num2str(Years(t))];
[transMatPIT(:,:,t),sampleTotals(t)] = transprob(prepData,...
'startDate',startDate,'endDate',endDate,'algorithm',algorithm);
end

```

Here is the PIT transition matrix for 1993. Recall that the sample dataset contains simulated credit migrations so the PIT estimates in this example do not match actual historical transition rates.
```

transMatPIT(:,:,Years==1993)

```
ans =
\begin{tabular}{rrrrrrrr}
95.3193 & 4.5999 & 0.0802 & 0.0004 & 0.0002 & 0.0000 & 0.0000 & 0.0000 \\
2.0631 & 94.5931 & 3.3057 & 0.0254 & 0.0126 & 0.0002 & 0.0000 & 0.0000 \\
0.0237 & 2.1748 & 95.5901 & 1.4700 & 0.7284 & 0.0131 & 0.0000 & 0.0000 \\
0.0003 & 0.0372 & 3.2585 & 95.2914 & 1.3876 & 0.0250 & 0.0001 & 0.0000 \\
0.0000 & 0.0005 & 0.0657 & 3.8292 & 92.7474 & 3.3459 & 0.0111 & 0.0001 \\
0.0000 & 0.0001 & 0.0128 & 0.7977 & 8.0926 & 90.4897 & 0.5958 & 0.0113 \\
0.0000 & 0.0000 & 0.0005 & 0.0459 & 0.5026 & 11.1621 & 84.9315 & 3.3574 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000
\end{tabular}

A structure array stores the sampleTotals optional output from transprob. The sampleTotals structure contains summary information on the total time spent on each rating, and the number of transitions out of each rating, for each year under consideration. For more information on the sampleTotals structure, see "Algorithms" on page 18-1774.

As an example, the sampleTotals structure for 1993 is used here. The total time spent on each rating is stored in the totalsVec field of the structure. The total transitions out of each rating are stored in the totalsMat field. A third field, algorithm, indicates the algorithm used to generate the structure.
```

sampleTotals(Years==1993).totalsVec
sampleTotals(Years==1993).totalsMat
sampleTotals(Years==1993).algorithm
ans =
144.4411 230.0356 262.2438

```
ans =
\begin{tabular}{rrrrrrrr}
0 & 7 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 0 & 8 & 0 & 0 & 0 & 0 & 0 \\
0 & 6 & 0 & 4 & 2 & 0 & 0 & 0 \\
0 & 0 & 7 & 0 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 10 & 0 & 9 & 0 & 0 \\
0 & 0 & 0 & 1 & 13 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 7 & 0 & 2
\end{tabular}
ans \(=\)
duration

To get the TTC transition matrix, pass the sampleTotals structure array to transprobbytotals. Internally, transprobbytotals aggregates the information in the sampleTotals structures to get the total time spent on each rating over the 10 years considered in this example, and the total number of transitions out of each rating during the same period. transprobbytotals uses the aggregated information to get the TTC matrix, or average 1-year transition matrix.
transMatTTC = transprobbytotals(sampleTotals)
transMatTTC \(=\)
\begin{tabular}{rrrrrrrr}
92.8544 & 6.1068 & 0.7463 & 0.2761 & 0.0123 & 0.0009 & 0.0001 & 0.0032 \\
2.9399 & 92.2329 & 3.8394 & 0.7349 & 0.1676 & 0.0050 & 0.0004 & 0.0799 \\
0.2410 & 4.5963 & 90.3468 & 3.9572 & 0.6909 & 0.0521 & 0.0025 & 0.1133 \\
0.0530 & 0.4729 & 7.9221 & 87.2751 & 3.5075 & 0.4650 & 0.0791 & 0.2254 \\
0.0460 & 0.1636 & 1.1873 & 9.3442 & 85.4305 & 2.9520 & 0.1150 & 0.7615 \\
0.0031 & 0.0152 & 0.2608 & 1.5563 & 10.4468 & 83.8525 & 1.9771 & 1.8882 \\
0.0009 & 0.0041 & 0.0542 & 0.8378 & 2.9996 & 7.3614 & 82.4758 & 6.2662 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000
\end{tabular}

The same TTC matrix could be obtained with a direct call to transprob, setting the estimation window to the 10 years under consideration. But it is much more efficient to use the sampleTotals structures, whenever they are available. (Note, for the duration algorithm, these alternative workflows can result in small numerical differences in the estimates whenever leap years are part of the sample.)

In "Estimate Transition Probabilities" on page 8-19, a 1-year transition matrix is estimated using the 5 -year time window from 1996 through 2000. This is another example of a TTC matrix and this can also be computed using the sampleTotals structure array.
```

transprobbytotals(sampleTotals(Years>=1996\&Years<=2000))

```
\begin{tabular}{rrrrrrrr}
90.6239 & 7.9048 & 1.0313 & 0.4123 & 0.0210 & 0.0020 & 0.0003 & 0.0043 \\
4.4776 & 89.5565 & 4.5294 & 1.1224 & 0.2283 & 0.0094 & 0.0009 & 0.0754 \\
0.3982 & 6.1159 & 87.0651 & 5.4797 & 0.7636 & 0.0892 & 0.0050 & 0.0832 \\
0.1029 & 0.8571 & 10.7909 & 83.0218 & 3.9968 & 0.7001 & 0.1313 & 0.3991 \\
0.1043 & 0.3744 & 2.2960 & 14.0947 & 78.9851 & 3.0012 & 0.0463 & 1.0980 \\
0.0113 & 0.0544 & 0.7054 & 3.2922 & 15.4341 & 75.6004 & 1.8165 & 3.0858 \\
0.0044 & 0.0189 & 0.1903 & 1.9742 & 6.2318 & 10.2332 & 75.9990 & 5.3482 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000
\end{tabular}

\section*{Estimate t-Year Default Probabilities}

By varying the start and end dates, the amount of data considered for the estimation is changed, but the output still contains, by default, 1-year transition probabilities. You can change the default behavior by specifying the transInterval argument, as illustrated in "Estimate Transition Probabilities" on page 8-19.

However, when \(t\)-year transition probabilities are required for a whole range of values of \(t\), for example, 1 -year, 2 -year, 3 -year, 4 -year, and 5 -year transition probabilities, it is more efficient to call transprob once to get the optional output sampleTotals. You can use the same sampleTotals structure can be used to get the \(t\)-year transition matrix for any transition interval \(t\). Given a sampleTotals structure and a transition interval, you can get the corresponding transition matrix by using transprobbytotals.
```

load Data_TransProb
startDate = '31-Dec-1995';
endDate = '31-Dec-2000';
[~,sampleTotals] = transprob(data,'startDate', ...
startDate, 'endDate',endDate);
DefProb = zeros(7,5);
for t = 1:5
transMatTemp = transprobbytotals(sampleTotals,'transInterval',t);
DefProb(:,t) = transMatTemp(1:7,8);
end

```

DefProb

DefProb =
\begin{tabular}{rrrrr}
0.0043 & 0.0169 & 0.0377 & 0.0666 & 0.1033 \\
0.0754 & 0.1542 & 0.2377 & 0.3265 & 0.4213 \\
0.0832 & 0.1936 & 0.3276 & 0.4819 & 0.6536 \\
0.3992 & 0.8127 & 1.2336 & 1.6566 & 2.0779 \\
1.0980 & 2.1189 & 3.0668 & 3.9468 & 4.7644 \\
3.0860 & 5.6994 & 7.9281 & 9.8418 & 11.4963 \\
5.3484 & 9.8053 & 13.5320 & 16.6599 & 19.2964
\end{tabular}

\section*{Estimate Bootstrap Confidence Intervals}
transprob also returns the idTotals structure array which contains, for each ID, or company, the total time spent on each rating, and the total transitions out of each rating. For more information on the the idTotals structure, see "Algorithms" on page 18-1774. The idTotals structure is similar to the sampleTotals structures (see "Estimate Point-in-Time and Through-the-Cycle Probabilities" on page 8-24), but idTotals has the information at an ID level. Because most companies only migrate between very few ratings, the numeric arrays in idTotals are stored as sparse arrays to reduce memory requirements.

You can use the idTotals structure array to estimate confidence intervals for the transition probabilities using a bootstrapping procedure, as the following example demonstrates. To do this, call transprob and keep the third output argument, idTotals. The idTotals fields are displayed for the last company in the sample. Within the estimation window, this company spends almost a year as 'AA' and it is then upgraded to 'AAA'.
```

load Data_TransProb
startDate = '31-Dec-1995';
endDate = '31-Dec-2000';
[transMat,~,idTotals] = transprob(data,...
'startDate',startDate,'endDate',endDate);
% Total time spent on each rating
full(idTotals(end).totalsVec)
% Total transitions out of each rating

```
```

full(idTotals(end).totalsMat)
% Algorithm
idTotals(end).algorithm
ans =
$4.0820 \quad 0.9180 \quad 0$
0

0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

ans =

```
duration
Next, use bootstrp from Statistics Toolbox with transprobbytotals as the bootstrap function and idTotals as the data to sample from. Each bootstrap sample corresponds to a dataset made of companies sampled with replacement from the original data. However, you do not have to draw companies from the original data, because a bootstrap idTotals sample contains all the information required to compute the transition probabilities. transprobbytotals aggregates all structures in each bootstrap idTotals sample and finds the corresponding transition matrix.

To estimate \(95 \%\) confidence intervals for the transition matrix and display the probabilities of default together with its upper and lower confidence bounds:
```

PD = transMat(1:7,8);
bootstat = bootstrp(100,@(totals)transprobbytotals(totals),idTotals);

```
```

ci = prctile(bootstat,[2.5 97.5]); % 95% confidence
CIlower = reshape(ci(1,:),8,8);
CIupper = reshape(ci(2,:),8,8);
PD_LB = CIlower(1:7,8);
PD_UB = CIupper(1:7,8);
[PD_LB PD PD_UB]
ans =

0.0004	0.0043	0.0106
0.0028	0.0754	0.2192
0.0126	0.0832	0.2180
0.1659	0.3992	0.6617
0.5703	1.0980	1.7260
1.7264	3.0860	4.7602
1.7678	5.3484	9.5055

```

\section*{Group Credit Ratings}

Credit rating scales can be more or less granular. For example, there are ratings with qualifiers (such as 'AA+', 'BB-', etc.), whole ratings ('AA', 'BB', etc.), and investment or speculative grade ('IG', 'SG') categories. Given a dataset with credit ratings at a more granular level, transition probabilities for less granular categories can be of interest. For example, you might be interested in a transition matrix for investment and speculative grades given a dataset with whole ratings. Use transprobgrouptotals for this evaluation, as illustrated in the following examples. The sample dataset data has whole credit ratings:
```

load Data_TransProb
startDate = '31-Dec-1995';
endDate = '31-Dec-2000';
data(1:5,:)
ans =

'00010283'	'10-Nov-1984'	'CCC'
'00010283'	'12-May-1986'	'B'
'00010283'	'29-Jun-1988'	'CCC'
'00010283'	'12-Dec-1991'	'D'

```

A call to transprob returns the transition matrix and totals structures for the eight ('AAA' to 'D') whole credit ratings. The array with number of transitions out of each credit rating is displayed after the call to transprob:
```

[transMat,sampleTotals,idTotals] = transprob(data,'startDate',startDate,...
'endDate',endDate);
sampleTotals.totalsMat
ans =

0	67	7	3	0	0	0	0
67	0	68	15	3	0	0	1
4	101	0	93	11	1	0	1
1	7	163	0	62	10	2	5
1	3	16	168	0	37	0	11
0	0	2	10	83	0	10	14
0	0	0	2	8	16	0	7
0	0	0	0	0	0	0	0

```

Next, use transprobgrouptotals to group whole ratings into investment and speculative grades. This function takes a totals structure as the first argument. The second argument indicates the edges between rating categories. In this case, ratings 1 through 4 ('AAA' through 'BBB') correspond to the first category ('IG'), ratings 5 through 7 ('BB' through 'CCC') to the second category ('SG'), and rating 8 ('D') is a category of its own. transprobgrouptotals adds up the total time spent on ratings that belong to the same category. For example, total times spent on 'AAA' through 'BBB' are added up as the total time spent on 'IG'. transprobgrouptotals also adds up the total number of transitions between any 'IG' rating and any 'SG' rating, for example, a credit migration from 'BBB' to 'BB'.

The grouped totals can then be passed to transprobbytotals to obtain the transition matrix for investment and speculative grades. Note that both totalsMat and the new transition matrix are both 3-by-3, corresponding to the grouped categories 'IG', 'SG', and 'D'.
```

sampleTotalsIGSG = transprobgrouptotals(sampleTotals,[4 7 8])
transMatIGSG = transprobbytotals(sampleTotalsIGSG)

```
```

sampleTotalsIGSG =
totalsVec: [4.8591e+003 1.5034e+003 1.1621e+003]
totalsMat: [3x3 double]
algorithm: 'duration'
transMatIGSG =

98.1591	1.6798	0.1611
12.3228	85.6961	1.9811
0	0	100.0000

```

When a totals structure array is passed to transprobgrouptotals, this function groups each structure in the array individually and preserves sparsity, if the fields in the input structures are sparse. One way to exploit this feature is to compute confidence intervals for the investment grade default rate and the speculative grade default rate (see also "Estimate Bootstrap Confidence Intervals" on page 8-28).
```

PDIGSG = transMatIGSG(1:2,3);
idTotalsIGSG = transprobgrouptotals(idTotals,[4 7 8]);
bootstat = bootstrp(100,@(totals)transprobbytotals(totals),idTotalsIGSG);
ci = prctile(bootstat,[2.5 97.5]); % 95% confidence
CIlower = reshape(ci(1,:),3,3);
CIupper = reshape(ci(2,:),3,3);
PDIGSG_LB = CIlower(1:2,3);
PDIGSG_UB = CIupper(1:2,3);
[PDIGSG_LB PDIGSG PDIGSG_UB]
ans =
$0.0603 \quad 0.1611 \quad 0.2538$
1.3470 1.9811 2.6195

```

\section*{Work with Nonsquare Matrices}

Transition probabilities and the number of transitions between ratings are usually reported without the 'D' ('Default') row. For example, a credit report can contain the following table, indicating the number of issuers
starting in each rating (first column), and the number of transitions between ratings (remaining columns):
\begin{tabular}{rrrrrrrrrr} 
Initial & AAA & AA & A & BBB & BB & B & CCC & D \\
AAA & 98 & 88 & 9 & 1 & 0 & 0 & 0 & 0 & 0 \\
AA & 389 & 0 & 368 & 19 & 2 & 0 & 0 & 0 & 0 \\
A & 1165 & 1 & 21 & 1087 & 56 & 0 & 0 & 0 & 0 \\
BBB & 1435 & 0 & 2 & 89 & 1289 & 45 & 8 & 0 & 2 \\
BB & 915 & 0 & 0 & 1 & 60 & 776 & 73 & 2 & 3 \\
B & 867 & 0 & 0 & 1 & 7 & 88 & 715 & 39 & 17 \\
CCC & 112 & 0 & 0 & 0 & 1 & 3 & 34 & 61 & 13
\end{tabular}

You can store the information in this table in a totals structure compatible with the cohort algorithm. For more information on the cohort algorithm and the totals structure, see "Algorithms" on page 18-1774. Note that the totalsMat field is a nonsquare array in this case.
```

% Define totals structure
totals.totalsVec = [98 389 1165 1435 915 867 112];
totals.totalsMat =

88	9	1	0	0	0	0	$0 ;$
0	368	19	2	0	0	0	$0 ;$
1	21	1087	56	0	0	0	$0 ;$
0	2	89	1289	45	8	0	$2 ;$
0	0	1	60	776	73	2	$3 ;$
0	0	1	7	88	715	39	$17 ;$
0	0	0	1	3	34	61	$13] ;$

totals.algorithm = 'cohort';

```
transprobbytotals and transprobgrouptotals accept totals inputs with nonsquare totalsMat fields. To get the transition matrix corresponding to the previous table, and to group ratings into investment and speculative grade with the corresponding matrix:
transMat \(=\) transprobbytotals(totals)
```

% Group into IG/SG and get IG/SG transition matrix
totalsIGSG = transprobgrouptotals(totals,[4 7]);
transMatIGSG = transprobbytotals(totalsIGSG)

```
\begin{tabular}{rrrrrrrr}
89.7959 & 9.1837 & 1.0204 & 0 & 0 & 0 & 0 & 0 \\
0 & 94.6015 & 4.8843 & 0.5141 & 0 & 0 & 0 & 0 \\
0.0858 & 1.8026 & 93.3047 & 4.8069 & 0 & 0 & 0 & 0 \\
0 & 0.1394 & 6.2021 & 89.8258 & 3.1359 & 0.5575 & 0 & 0.1394 \\
0 & 0 & 0.1093 & 6.5574 & 84.8087 & 7.9781 & 0.2186 & 0.3279 \\
0 & 0 & 0.1153 & 0.8074 & 10.1499 & 82.4683 & 4.4983 & 1.9608 \\
0 & 0 & 0 & 0.8929 & 2.6786 & 30.3571 & 54.4643 & 11.6071
\end{tabular}
transMatIGSG =
\begin{tabular}{rrr}
98.2183 & 1.7169 & 0.0648 \\
3.6959 & 94.5618 & 1.7423
\end{tabular}

\section*{Remove Outliers}

The idTotals output from transprob can also be exploited to update the transition probability estimates after removing some outlier information. For more information on idTotals, see "Algorithms" on page 18-1774. For example, if you know that the credit rating migration information for the 4 th and 27 th companies in the data have problems, you can remove those companies and efficiently update the transition probabilities as follows:
```

load Data_TransProb
startDate = '31-Dec-1995';
endDate = '31-Dec-2000';
[transMat,~,idTotals] = transprob(data,'startDate', ...
startDate, 'endDate',endDate);
transMat
transMat =

90.6236	7.9051	1.0314	0.4123	0.0210	0.0020	0.0003	0.0043
4.4780	89.5558	4.5298	1.1225	0.2284	0.0094	0.0009	0.0754
0.3983	6.1164	87.0641	5.4801	0.7637	0.0892	0.0050	0.0832
0.1029	0.8572	10.7918	83.0204	3.9971	0.7001	0.1313	0.3992
0.1043	0.3745	2.2962	14.0954	78.9840	3.0013	0.0463	1.0980
0.0113	0.0544	0.7055	3.2925	15.4350	75.5988	1.8166	3.0860
0.0044	0.0189	0.1903	1.9743	6.2320	10.2334	75.9983	5.3484

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000 \\
\hline nIDs \(=1\)
keepInd
transMat & ghth(idTo
setdiff
Outlier & \begin{tabular}{l}
als); \\
:nIDs, [4 \\
transpro
\end{tabular} & \begin{tabular}{l}
7]) ; \\
bytotals
\end{tabular} & dTotals( & epInd)) & & \\
\hline \multicolumn{8}{|l|}{transMatNoOutlier \(=\)} \\
\hline 90.6241 & 7.9067 & 1.0290 & 0.4124 & 0.0211 & 0.0020 & 0.0003 & 0.0043 \\
\hline 4.4917 & 89.5918 & 4.4779 & 1.1240 & 0.2288 & 0.0094 & 0.0009 & 0.0756 \\
\hline 0.3990 & 6.1220 & 87.0530 & 5.4841 & 0.7643 & 0.0893 & 0.0050 & 0.0833 \\
\hline 0.1030 & 0.8576 & 10.7909 & 83.0207 & 3.9971 & 0.7001 & 0.1313 & 0.3992 \\
\hline 0.1043 & 0.3746 & 2.2960 & 14.0955 & 78.9840 & 3.0013 & 0.0463 & 1.0980 \\
\hline 0.0113 & 0.0544 & 0.7054 & 3.2925 & 15.4350 & 75.5988 & 1.8166 & 3.0860 \\
\hline 0.0044 & 0.0189 & 0.1903 & 1.9743 & 6.2320 & 10.2334 & 75.9983 & 5.3484 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000 \\
\hline
\end{tabular}

Deciding which companies to remove is a case-by-case situation. Reasons to remove a company can include a typo in one of the ratings history, or an unusual migration between ratings whose impact on the transition probability estimates must be measured. Note that transprob does not reorder the companies in any way. The ordering of companies in the input data is the same as the ordering in the idTotals array.

\section*{Estimate Probabilities for Different Segments}

You can use idTotals efficiently to get estimates over different segments of the sample. For more information on idTotals, see "Algorithms" on page 18-1774. For example, assume that the companies in the example are grouped into three geographic regions and that the companies were grouped by geographic regions previously, so that the first 340 companies correspond to the first region, the next 572 companies to the second region, and the rest to the third region. You can efficiently get transition probabilities for each region as follows:
```

load Data_TransProb
startDate = '31-Dec-1995';
endDate = '31-Dec-2000';
[~,~,idTotals] = transprob(data,'startDate', ...
startDate, 'endDate',endDate);

```
```

n1 = 340;
n2 = 572;
transMatG1 = transprobbytotals(idTotals(1:n1))
transMatG2 = transprobbytotals(idTotals(n1+1:n1+n2))
transMatG3 = transprobbytotals(idTotals(n1+n2+1:end))

```
transMatG1 =
\begin{tabular}{rrrrrrrr}
90.8299 & 7.6501 & 0.3178 & 1.1700 & 0.0255 & 0.0044 & 0.0021 & 0.0002 \\
4.3572 & 89.0262 & 5.7838 & 0.8039 & 0.0245 & 0.0029 & 0.0013 & 0.0001 \\
0.7066 & 6.7567 & 86.6320 & 5.4950 & 0.3721 & 0.0252 & 0.0101 & 0.0023 \\
0.0626 & 1.3688 & 10.3895 & 83.5022 & 3.6823 & 0.6466 & 0.3084 & 0.0396 \\
0.0256 & 0.7884 & 2.6970 & 13.7857 & 78.8321 & 2.8310 & 0.0561 & 0.9842 \\
0.0026 & 0.1095 & 0.4280 & 3.5204 & 21.1437 & 72.9230 & 1.6456 & 0.2273 \\
0.0005 & 0.0216 & 0.0730 & 0.4574 & 4.9586 & 4.2821 & 80.3062 & 9.9006 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000
\end{tabular}
transMatG2 =
\begin{tabular}{rrrrrrrr}
90.5798 & 8.4877 & 0.8202 & 0.0884 & 0.0132 & 0.0011 & 0.0000 & 0.0096 \\
4.1999 & 90.0371 & 3.8657 & 1.4744 & 0.2144 & 0.0128 & 0.0001 & 0.1956 \\
0.3022 & 5.9869 & 86.7128 & 5.5526 & 1.0411 & 0.1902 & 0.0015 & 0.2127 \\
0.0204 & 0.5606 & 10.9342 & 82.9195 & 4.0123 & 0.7398 & 0.0059 & 0.8073 \\
0.0089 & 0.3338 & 2.1185 & 16.6496 & 76.2395 & 3.1241 & 0.0261 & 1.4995 \\
0.0013 & 0.0465 & 0.6710 & 2.4731 & 14.7281 & 76.7378 & 1.2993 & 4.0428 \\
0.0002 & 0.0080 & 0.0681 & 0.4598 & 4.1324 & 8.4380 & 80.9092 & 5.9843 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000
\end{tabular}
transMatG3 \(=\)
\begin{tabular}{rrrrrrrr}
90.5655 & 7.5408 & 1.5288 & 0.3369 & 0.0258 & 0.0015 & 0.0003 & 0.0004 \\
4.8073 & 89.3842 & 4.4865 & 0.9582 & 0.3509 & 0.0095 & 0.0009 & 0.0025 \\
0.3153 & 5.8771 & 87.6353 & 5.4101 & 0.7160 & 0.0322 & 0.0052 & 0.0088 \\
0.1995 & 0.8625 & 10.8682 & 82.8717 & 4.1423 & 0.6903 & 0.1565 & 0.2090 \\
0.2465 & 0.1091 & 2.1558 & 12.0289 & 81.5803 & 3.0057 & 0.0616 & 0.8122 \\
0.0227 & 0.0400 & 0.9380 & 4.3175 & 12.3632 & 75.9429 & 2.5766 & 3.7991 \\
0.0149 & 0.0180 & 0.3414 & 3.6918 & 8.1414 & 13.6010 & 70.7254 & 3.4661 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000
\end{tabular}

\section*{Work with Large Datasets}

This example shows how to aggregate estimates from two (or more) datasets. It is possible that two datasets, coming from two different databases, must be considered for the estimation of the transition probabilities. Also, if a dataset is too large and cannot be loaded into memory, the dataset can be split into two (or more) datasets. In these cases, it is simple to apply transprob to each individual dataset, and then get the final estimates corresponding to the aggregated data with a call to transprobbytotals at the end.

For example, the dataset data is artificially split into two sections in this example. In practice the two datasets would come from different files or databases. When aggregating multiple datasets, the history of a company cannot be split across datasets. You can verify that this condition is satisfied for the arbitrarily chosen cut-off point.
```

load Data_TransProb
cutoff = 2099;
data(cutoff-5:cutoff,:)
data(cutoff+1:cutoff+6,:)

```
ans =
\begin{tabular}{lll} 
'00011166' & '24-Aug-1995' & 'BBB' \\
'00011166' & '25-Jan-1997' & 'A' \\
'00011166' & '01-Feb-1998' & 'AA' \\
'00014878' & '15-Mar-1983' & 'B' \\
'00014878' & '21-Sep-1986' & 'BB' \\
'00014878' & '17-Jan-1998' & 'BBB'
\end{tabular}
ans =
\begin{tabular}{lll} 
'00012043' & '09-Feb-1985' & 'BBB' \\
'00012043' & '03-Jan-1988' & 'A' \\
'00012043' & '15-Jan-1994' & 'AAA \\
'00011157' & '24-Jun-1984' & 'A' \\
'00011157' & '09-Dec-1999' & 'BBB' \\
'00011157' & '28-Mar-2001' & 'A'
\end{tabular}

When working with multiple datasets, it is important to set the start and end dates explicitly. Otherwise, the estimation window will differ for each dataset because the default start and end dates used by transprob are the earliest and latest dates found in the input data.
```

startDate = '31-Dec-1995';
endDate = '31-Dec-2000';

```

In practice, this is the point where you can read in the first dataset. Now, the dataset is already obtained. Call transprob with the first dataset and the explicit start and end dates. Keep only the sampleTotals output. For details on sampleTotals, see"Algorithms" on page 18-1774.
```

[~,sampleTotals(1)] = transprob(data(1:cutoff,:),...
'startDate',startDate,'endDate',endDate);

```

Repeat for the remaining datasets. Note the different sampleTotals structures are stored in a structured array.
```

[~,sampleTotals(2)] = transprob(data(cutoff+1:end,:),...
'startDate',startDate,'endDate',endDate);

```

To get the transition matrix corresponding to the aggregated dataset, use transprobbytotals. When the totals input is a structure array, transprobbytotals aggregates the information over all structures, and returns a single transition matrix.
transMatAggr \(=\) transprobbytotals(sampleTotals)
\begin{tabular}{rrrrrrrr} 
transMatAggr \(=\) \\
90.6236 & 7.9051 & 1.0314 & 0.4123 & 0.0210 & 0.0020 & 0.0003 & 0.0043 \\
4.4780 & 89.5558 & 4.5298 & 1.1225 & 0.2284 & 0.0094 & 0.0009 & 0.0754 \\
0.3983 & 6.1164 & 87.0641 & 5.4801 & 0.7637 & 0.0892 & 0.0050 & 0.0832 \\
0.1029 & 0.8572 & 10.7918 & 83.0204 & 3.9971 & 0.7001 & 0.1313 & 0.3992 \\
0.1043 & 0.3745 & 2.2962 & 14.0954 & 78.9840 & 3.0013 & 0.0463 & 1.0980 \\
0.0113 & 0.0544 & 0.7055 & 3.2925 & 15.4350 & 75.5988 & 1.8166 & 3.0860 \\
0.0044 & 0.0189 & 0.1903 & 1.9743 & 6.2320 & 10.2334 & 75.9983 & 5.3484 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000
\end{tabular}

As a sanity check, for this example you can verify that the aggregation procedure yields the same estimates (up to numerical differences) as estimating the probabilities directly over the entire sample:
```

transMatWhole = transprob(data,'startDate',startDate,'endDate',endDate)
aggError = max(max(abs(transMatAggr - transMatWhole)))
transMatWhole =

90.6236	7.9051	1.0314	0.4123	0.0210	0.0020	0.0003	0.0043
4.4780	89.5558	4.5298	1.1225	0.2284	0.0094	0.0009	0.0754
0.3983	6.1164	87.0641	5.4801	0.7637	0.0892	0.0050	0.0832
0.1029	0.8572	10.7918	83.0204	3.9971	0.7001	0.1313	0.3992
0.1043	0.3745	2.2962	14.0954	78.9840	3.0013	0.0463	1.0980
0.0113	0.0544	0.7055	3.2925	15.4350	75.5988	1.8166	3.0860
0.0044	0.0189	0.1903	1.9743	6.2320	10.2334	75.9983	5.3484
0	0	0	0	0	0	0	100.0000

```

\footnotetext{
\(2.8422 \mathrm{e}-014\)
}

\section*{Forecasting Corporate Default Rates}

This example shows how to build a forecasting model for corporate default rates.

Risk parameters are dynamic in nature, and understanding how these parameters change in time is a fundamental task for risk management.

In the first part, we work with historical credit migrations data to construct some time series of interest, and to visualize default rates dynamics. In the second part, we use some of the series constructed in the first part, and some additional data, to fit a forecasting model for corporate default rates, and to show some backtesting and stress testing concepts. A linear regression model for corporate default rates is studied there, but the tools and concepts described can be used in combination with other forecasting methodologies. The appendix at the end touches on the handling of models for full transition matrices.

People interested in forecasting, backtesting and stress testing may go directly to the second part. The first part is more relevant for people who work with credit migration data.

\section*{Part I: Working with Credit Migrations Data}

We work with historical transition probabilities for corporate issuers (variable TransMat). This is yearly data for the period 1981-2005, from [10]. The data includes, for each year, the number of issuers per rating at the beginning of the year (variable nIssuers), and the number of new issuers per rating per year (variable nNewIssuers). There is also a corporate profits forecast, from [9], and a corporate spread, from [4] (variables CPF and SPR). A variable indicating recession years (Recession), consistent with recession dates from [7], is used mainly for visualizations.

Example_LoadData

\section*{Getting Default Rates for Different Ratings Categories}

We start by performing some aggregations to get corporate default rates for Investment Grade (IG) and Speculative Grade (SG) issuers, and the overall corporate default rate.

Aggregation and segmentation are relative terms. IG is an aggregate with respect to credit ratings, but a segment from the perspective of the overall corporate portfolio. Other segments are of interest in practice, for example, economic sectors, industries, or geographic regions. The data we use, however, is aggregated by credit ratings, so further segmentation is not possible. Nonetheless, the tools and workflow discussed here may be useful to work with other segment-specific models.

We use existing functionality in Financial Toolbox \({ }^{\mathrm{TM}}\), specifically, functions transprobgrouptotals and transprobbytotals, to perform the aggregation. These functions take as inputs structures with credit migration information in a particular format. We set up the inputs here, and visualize them below to understand their information and format.
```

% Pre-allocate the struct array
totalsByRtg(nYears,1) = struct('totalsVec',[],'totalsMat',[],...
'algorithm','cohort');
for t = 1:nYears
% Number of issuers per rating at the beginning of the year
totalsByRtg(t).totalsVec = nIssuers(t,:);
% Number of transitions between ratings during the year
totalsByRtg(t).totalsMat = round(diag(nIssuers(t,:))*...
(0.01*TransMat(:,:,t)));
% Algorithm
totalsByRtg(t).algorithm = 'cohort';
end

```

It is useful to see both the original data and the data stored in these totals structures side to side. The original data contains number of issuers and transition probabilities for each year. For example, for 2005
```

fprintf('\nTransition matrix for 2005:\n\n')
Example_DisplayTransitions(squeeze(TransMat(:,:,end)),nIssuers(end,:),...
{'AAA','AA','A','BBB','BB','B','CCC'},...
{'AAA','AA','A','BBB','BB','B','CCC','D','NR'})

```

Transition matrix for 2005:
\begin{tabular}{llllllll} 
Init & \(A A A\) & \(A A\) & \(A\) & \(B B B\) & \(B B\) & \(B\) & \(C C C\)
\end{tabular}
\begin{tabular}{rrrrrrrrrrr} 
AAA & 98 & 88.78 & 9.18 & 1.02 & 0 & 0 & 0 & 0 & 0 & 1.0 \\
AA & 407 & 0 & 90.66 & 4.91 & 0.49 & 0 & 0 & 0 & 0 & 3.9 \\
A & 1224 & 0.08 & 1.63 & 88.89 & 4.41 & 0 & 0 & 0 & 0 & 4.9 \\
BBB & 1535 & 0 & 0.2 & 5.93 & 84.04 & 3.06 & 0.46 & 0 & 0.07 & 6.2 \\
BB & 1015 & 0 & 0 & 0 & 5.71 & 76.75 & 6.9 & 0.2 & 0.2 & 10.2 \\
B & 1010 & 0 & 0 & 0.1 & 0.59 & 8.51 & 70.59 & 3.76 & 1.58 & 14.8 \\
CCC & 126 & 0 & 0 & 0 & 0.79 & 0.79 & 25.4 & 46.83 & 8.73 & 17.4
\end{tabular}

The totals structure stores the total number of issuers per rating at the beginning of the year in the totalsVec field, and the total number of migrations between ratings (instead of transition probabilities) in the totalsMat field. Here is the information for 2005
```

fprintf('\nTransition counts (totals struct) for 2005:\n\n')
Example_DisplayTransitions(totalsByRtg(end).totalsMat,...
totalsByRtg(end).totalsVec,...
{'AAA','AA','A','BBB','BB','B','CCC'},...
{'AAA','AA','A','BBB','BB','B','CCC','D','NR'})

```

Transition counts (totals struct) for 2005:
\begin{tabular}{rrrrrrrrrr} 
& Init & AAA & AA & A & BBB & BB & B & CCC & D \\
AAA & 98 & 87 & 9 & 1 & 0 & 0 & 0 & 0 & 0 \\
AA & 407 & 0 & 369 & 20 & 2 & 0 & 0 & 0 & 0 \\
A & 1224 & 1 & 20 & 1088 & 54 & 0 & 0 & 0 & 0 \\
BBB & 1535 & 0 & 3 & 91 & 1290 & 47 & 7 & 0 & 1 \\
BB & 1015 & 0 & 0 & 0 & 58 & 779 & 70 & 2 & 2 \\
B & 1010 & 0 & 0 & 1 & 6 & 86 & 713 & 38 & 16 \\
CCC & 126 & 0 & 0 & 0 & 1 & 1 & 32 & 59 & 11
\end{tabular}

The third field in the totals structure, algorithm, indicates that we are working with the 'cohort' method ('duration' is also supported, although the information in totalsVec and totalsMat would be different). These structures are usually obtained as optional outputs from transprob, but this example shows how a user can define these structures directly.

We now group ratings 'AAA' to 'BBB' (ratings 1 to 4 ) into the IG category and ratings 'BB' to 'CCC' (ratings 5 to 7 ) into the SG category. We use transprobgrouptotals for this. The 'edges' argument tells the function
which ratings are to be grouped together ( 1 to 4 , and 5 to 7 ). We also group all non-default ratings into one category. These are preliminary steps to get the IG, SG and overall default rates for each year.
```

edgesIGSG = [4 7
totalsIGSG = transprobgrouptotals(totalsByRtg,edgesIGSG);
edgesAll = 7; % could also use edgesAll = 2 with totalsIGSG
totalsAll = transprobgrouptotals(totalsByRtg,edgesAll);

```

Here are the 2005 totals grouped at IG/SG level, and the corresponding transition matrix, recovered using transprobbytotals.
```

fprintf('\nTransition counts for 2005 at IG/SG level:\n\n')
Example_DisplayTransitions(totalsIGSG(end).totalsMat,...
totalsIGSG(end).totalsVec,...
{'IG','SG'},...
{'IG','SG','D','NR'})
fprintf('\nTransition matrix for 2005 at IG/SG level:\n\n')
Example_DisplayTransitions(transprobbytotals(totalsIGSG(end)),[],...
{'IG','SG'},...
{'IG','SG','D','NR'})
Transition counts for 2005 at IG/SG level:

	Init	IG	SG	D	NR
IG	3264	3035	54	1	174
SG	2151	66	1780	29	276

Transition matrix for 2005 at IG/SG level:

	IG	SG	D	NR
IG	92.98	1.65	0.03	5.33
SG	3.07	82.75	1.35	12.83

```

We now get transition matrices for every year both at IG/SG and non-default/default levels and store the default rates only (we do not use the rest of the transition probabilities).
```

DefRateIG = zeros(nYears,1);
DefRateSG = zeros(nYears,1);
DefRate = zeros(nYears,1);
for t=1:nYears
% Get transition matrix at IG/SG level and extract IG default rate and
% SG default rate for year t
tmIGSG = transprobbytotals(totalsIGSG(t));
DefRateIG(t) = tmIGSG(1,3);
DefRateSG(t) = tmIGSG(2,3);
% Get transition matrix at most aggregate level and extract overall
% corporate default rate for year t
tmAll = transprobbytotals(totalsAll(t));
DefRate(t) = tmAll(1,2);
end

```

Here is a visualization of the dynamics of IG, SG and overall corporate default rates together. To emphasize their patterns, rather than their magnitudes, a log scale is used. The shaded bands indicate recession years. The patterns of SG and IG are slightly different. For example, the IG rate is higher in 1994 than in 1995, but the opposite is true for SG. More noticeably, the IG default rate peaked after the 2001 recession, in 2002, whereas the peak for \(S G\) is in 2001. This suggests that models for the dynamics of the IG and SG default rates could have important differences, a common situation when working with different segments. The overall corporate default rate is by construction a combination of the other two, and its pattern is closer to SG, most likely due to the relative magnitude of SG versus IG.
```

minIG = min(DefRateIG(DefRateIG~=0));
figure
plot(Years,log(DefRateSG),'m-*')
hold on
plot(Years,log(DefRate),'b-o')
plot(Years,log(max(DefRateIG,minIG-0.001)),'r-+')
Example_RecessionBands
hold off
grid on
title('{\bf Default Rates (log scale)}')
ylabel('log %')
legend({'SG','Overall','IG'},'location','NW')

```

\section*{Getting Default Rates for Different Time Periods}

The default rates just obtained are examples of point-in-time (PIT) rates, only the most recent information is used to estimate them. On the other extreme, we can use all the migrations observed in the 25 years spanned by the dataset to estimate long-term, or through-the-cycle (TTC) default rates. Other rates of interest are the average default rates over recession or expansion years.

All of these are easy to estimate with the data we have and the same tools. For example, to estimate the average transition probabilities over recession years, pass to transprobbytotals the totals structures corresponding to the recession years only. We use logical indexing below, taking advantage of the Recession variable. transprobbytotals aggregates the information over time and returns the corresponding transition matrix.
```

tmAllRec = transprobbytotals(totalsAll(Recession));
DefRateRec = tmAllRec(1,2);
tmAllExp = transprobbytotals(totalsAll(~Recession));
DefRateExp = tmAllExp(1,2);
tmAllTTC = transprobbytotals(totalsAll);
DefRateTTC = tmAllTTC(1,2);

```

The following figure shows the estimated PIT rates, TTC rates and recession and expansion rates.
```

DefRateTwoValues = DefRateExp*ones(nYears,1);
DefRateTwoValues(Recession) = DefRateRec;
figure
plot(Years,DefRate,'bo:','LineWidth',1.2)
hold on
stairs(Years-0.5,DefRateTwoValues,'m-','LineWidth',1.5)
plot(Years,DefRateTTC*ones(nYears,1),'r-.','LineWidth',1.5)
Example_RecessionBands
hold off
grid on

```
```

title('{\bf Default Rate}')
ylabel('%')
legend({'Point-in-time (PIT)','Recession/Expansion Avg',...
'Through-the-cycle (TTC)'},'location','NW')

```

Some analyses (see, for example, [11]) use simulations where the default rate is conditional on the general state of the economy, e.g., recession v . expansion. The recession and expansion estimates just obtained can be useful in such a framework. These are all historical averages, however, and may not work well if used as predictions for the actual default rates expected on any particular year. In the second part, we revisit the use these types of historical averages as forecasting tools in a backtesting exercise.

\section*{Building Predictors Using Credit Ratings Data}

Using the credit data one can build new time series of interest. We start with an age proxy that is used as predictor in the forecasting model in the second part.

Age is known to be an important factor in predicting default rates; see, e.g., [1] and [5]. Age here means the number of years since a bond was issued. By extension, the age of a portfolio is the average age of its bonds. Certain patterns have been observed historically. Many low quality borrowers default just a few years after issuing a bond. When troubled companies issue bonds, the amount borrowed helps them make payments for a year or two. Beyond that point, their only source of money is their cash flows, and if they are insufficient, default occurs.

We cannot calculate the exact age of the portfolio, because there is no information at issuer level in the dataset. We follow [6], however, and use the number of new issuers in year t-3 divided by the total number of issuers at the end of year \(t\) as an age proxy. Because of the lag, the age proxy starts in 1984. For the numerator, we have explicit information on the number of new issuers. For the denominator, the number of issuers at the end of a year equals the number of issuers at the beginning of next year. This is known for all years but the last one, which is set to the total transitions into a non-default rating plus the number of new issuers on that year.
```

% Total number of issuers at the end of the year
nEOY = zeros(nYears,1);
% nIssuers is number of issuers per ratings at the beginning of the year
% nEOY (1981) = sum nIssuers (1982), etc until 2004
nEOY(1:end-1) = sum(nIssuers(2:end,:),2);
% nEOY (2005) = issuers in non-default state at end of 2005 plus
% new issuers in 2005
nEOY(end) = totalsAll(end).totalsMat(1,1) + sum(nNewIssuers(end,:));
% Age proxy
AGE = 100*[nan(3,1); sum(nNewIssuers(1:end-3,:),2)./nEOY(4:end)];

```

Examples of other time series of interest are the proportion of SG issuers at the end of each year, or an age proxy for SG.
\% nSGEOY: Number of SG issuers at the end of the year
\% nSGEOY is similar to nEOY, but for SG only, from 5 ('BB') to 7 ('CCC')
indSG = 5:7;
nSGEOY = zeros(nYears,1);
nSGEOY(1:end-1) = sum(nIssuers(2:end,indSG),2);
nSGEOY(end) = sum(totalsIGSG(end).totalsMat(:,2)) +...
    sum(nNewIssuers(end,indSG));
\% Proportion of SG issuers
SG = 100*nSGEOY./nEOY;
\% SG age proxy: new \(S G\) issuers in \(t-3\) / total issuers at the end of year \(t\)
AGESG \(=100^{*}[\) nan \((3,1)\); sum(nNewIssuers(1:end-3,indSG), 2 )./nEOY(4:end)];

\section*{Part II: A Forecasting Model for Default Rates}

We work with the following linear regression model for corporate default rates
where
- AGE: Age proxy defined above
- CPF: Corporate profits forecast
- SPR: Corporate spread over treasuries

This is the same model as in [6], except the model in [6] is for IG only.

As discussed above, age is known to be an important factor regarding default rates. The corporate profits provide information on the economic environment. The corporate spread is a proxy for credit quality. Age, environment and quality are three dimensions frequently found in credit analysis models.
```

inSample = 4:nYears-1;
T = length(inSample);
varNames = {'AGE','CPF','SPR'};
X = [AGE CPF SPR];
X = X(inSample,:);
y = DefRate(inSample+1); % DefaultRate, year t+1
stats = regstats(y,X);
fprintf('\nConst AGE CPF SPR adjR^2\n')
fprintf('%1.2f %1.2f %1.2f %1.2f %1.4f\n',...
[stats.beta;stats.adjrsquare])

```
\begin{tabular}{lrrrr} 
Const & AGE & CPF & SPR & adjR^2 \\
-1.19 & 0.15 & -0.10 & 0.71 & 0.7424
\end{tabular}

The coefficients have the expected sign: default rates tend to increase with a higher proportion of 3 -year issuers, decrease with good corporate profits, and increase when the corporate yields are higher. The adjusted \(R\) square shows a good fit.

The in-sample fit, or how close the model predictions are from the sample points used to fit the model, is shown in the following figure.
```

bHat = stats.beta;
yHat = [ones(T,1),X]*bHat;
figure
plot(Years(inSample+1),DefRate(inSample+1),'ko','LineWidth',1.5,...
'MarkerSize', 10, 'MarkerFaceColor' , 'g')
hold on
plot(Years(inSample+1),yHat,'b-s','LineWidth',1.2,'MarkerSize', 10)
hold off
grid on
legend({'Actual','Model'},'location','NW')

```
```

title('{\bf Corporate Default Rate Models: In-Sample Fit}')
xlabel('Year')
ylabel('Percent')

```

It can be shown that there is no strong statistical evidence to conclude that the linear regression assumptions are violated. It is apparent that default rates are not normally distributed. The model, however, does not make that assumption. The only normality assumption in the model is that, given the predictors values, the error between the predicted and the observed default rates is normally distributed. By looking at the in-sample fit, this does not seem unreasonable. The magnitude of the errors certainly seems independent of whether the default rates are high or low. Year 2001 has a high default rate and a high error, but years 1991 or 2002 also have high rates and yet very small errors. Likewise, low default rate years like 1996 and 1997 show considerable errors, but years 2004 or 2005 have similarly low rates and tiny errors.

A thorough statistical analysis of the model is out of scope here, but there are several detailed examples in Statistics Toolbox \({ }^{\mathrm{TM}}\) and Econometrics Toolbox \({ }^{\mathrm{TM}}\).

\section*{Backtesting}

To evaluate how this model performs out-of-sample, we set up a backtesting exercise. Starting at the end of 1995, we fit the linear regression model with the information available up to that date, and compare the model prediction to the actual default rate observed the following year. We repeat the same for all subsequent years until the end of the sample.

For backtesting, relative performance of a model, when compared to alternatives, is easier to assess than the performance of a model in isolation. Here we include two alternatives to determine next year's default rate, both likely candidates in practice. One is the TTC default rate, estimated with data from the beginning of the sample to the current year, a very stable default rate estimate. The other is the PIT rate, estimated using data from the most recent year only, much more sensitive to recent events.
```

XBT = [AGE,CPF,SPR];
yBT = DefRate;

```
```

iYearO = find(Years==1984); % index of first year in sample, 1984
T = find(Years==1995); % ind "current" year, start at 1995, updated in loop
YearsBT = 1996:2005; % years predicted in BT exercise
iYearsBT = find(Years==1996):find(Years==2005); % corresponding indices
nYearsBT = length(YearsBT); % number of years in BT exercise
MethodTags = {'Model','PIT','TTC'};
nMethods = length(MethodTags);
PredDefRate = zeros(nYearsBT,nMethods);
ErrorBT = zeros(nYearsBT,nMethods);
alpha = 0.05;
PredDefLoBnd = zeros(nYearsBT,1);
PredDefUpBnd = zeros(nYearsBT,1);
for k=1:nYearsBT
% In sample years for predictors, from 1984 to "last" year (T-1)
inSampleBT = iYear0:T-1;
% Method 1: Linear regression model
% Fit regression model with data up to "current" year (T)
s = regstats(yBT(inSampleBT+1),XBT(inSampleBT,:));
% Predict default rate for "next" year (T+1)
PredDefRate(k,1) = [1 XBT(T,:)]*s.beta;
% Compute prediction intervals
tCrit = tinv(1-alpha/2,s.tstat.dfe);
PredStd = sqrt([1 XBT(T,:)]*s.covb*[1 XBT(T,:)]'+s.mse);
PredDefLoBnd(k) = max(0,PredDefRate(k,1) - tCrit*PredStd);
PredDefUpBnd(k) = PredDefRate(k,1) + tCrit*PredStd;
% Method 2: Point-in-time (PIT) default rate
PredDefRate(k,2) = DefRate(T);
% Method 3: Through-the-cycle (TTC) default rate
tmAll = transprobbytotals(totalsAll(iYear0:T));
PredDefRate(k,3) = tmAll(1,2);
% Update error
ErrorBT(k,:) = PredDefRate(k,:) - DefRate(T+1);

```
```

 % Move to next year
 T = T + 1;
 end

```

Here are the predictions of the three alternative approaches, compared to the actual default rates observed. Unsurprisingly, TTC shows a very poor predictive power. However, it is not obvious whether PIT or the linear regression model makes better predictions in this 10 -year time span.
```

Example_BacktestPlot(YearsBT,DefRate(iYearsBT),PredDefRate,'Year', '%',...
'{\bf Default Rate Estimation Methods: Backtesting}',...
['Actual' MethodTags],'NW')

```

The following plot keeps track of cumulative square error, a measure often used for comparisons in backtesting exercises. This confirms TTC as a poor alternative. PIT shows lower cumulative error than the linear regression model in the late nineties, but after the 2001 recession the situation is reversed. Cumulative square error, however, is not an intuitive measure, it is hard to get a sense of what the difference between these alternatives means in practical terms.
```

CumSqError = cumsum(ErrorBT.^2);
Example_BacktestPlot(YearsBT,[],CumSqError,'Year','Cum Sq Error',...
'{\bf Cumulative Square Error in Backtesting Exercise}',...
MethodTags,'NW')

```

It makes sense to translate the prediction errors into a monetary measure. Here we measure the impact of the prediction error on a simplified framework for generating loss reserves in an institution.

We assume a homogeneous portfolio, where all credits have the same probability of default, the same loss given default (LGD), and the same exposure at default (EAD). Both LGD and EAD are assumed to be known. For simplicity, we keep these values constant for the 10 years of the exercise. We set LGD at \(45 \%\), and EAD per bond at 100 million. The portfolio is assumed
to have a thousand bonds, so the total value of the portfolio, the total EAD, is 100 billion.

The predicted default rate for year \(t\), determined at the end of year \(t-1\), is used to calculate the expected loss for year t

This is the amount added to the loss reserves at the start of year \(t\). At the end of the year, the actual losses are known

We assume that unused loss reserves remain in the reserves fund. The starting balance in reserves at the beginning of the exercise is set to zero. If the actual losses surpass the expected loss, unused reserves accumulated over the years are used first, and only if these run out, capital is used to cover a shortfall. All this translates into the following formula
or equivalently

The following figure shows the loss reserves balance for each of the three alternatives in the backtesting exercise.
```

EAD = 100*ones(nYearsBT,1); % in billions
LGD = 0.45*ones(nYearsBT,1); % Loss given default, 45%
% Reserves excess or shortfall for each year, in billions
ReservesExcessShortfall = bsxfun(@times,EAD.*LGD,ErrorBT/100);
% Cumulative reserve balance for each year, in billions
ReservesBalanceEOY = cumsum(ReservesExcessShortfall);
Example_BacktestPlot(YearsBT,[],ReservesBalanceEOY,'Year',...
'Billions of Dollars',...
'{\bf Reserves Balance (EOY): Backtesting}',...
MethodTags,'SW')
grid on

```

Using the linear regression model we only observe a deficit in reserves in two out of ten years, and the maximum deficit, in 2001, is 0.09 billion, only nine basis points of the portfolio value.

In contrast, both TTC and PIT reach a deficit of 1.2 billion by 2001. Things get worse for TTC in the next two years, reaching a deficit of 2.1 billion by 2003. PIT does make a correction quickly after 2001, and by 2004 the reserves have a surplus. Yet, both TTC and PIT lead to more deficit years than surplus years in this exercise.

The linear regression model shows more of a counter-cyclical effect than the alternatives in this exercise. The money set aside using the linear regression model reaches close to a billion in 1997 and 1998. High levels of unused reserves translate into a slower pace of lending (not reflected in the exercise, because we exogenously impose the portfolio value). Moreover, capital is only slightly impacted during the 2001 recession thanks to the reserves accumulated over the previous expansion. This translates into more capital available to back up further lending, if desired, during the economic recovery.

The last backtesting tool we discuss is the use of prediction intervals. Linear regression models provide standard formulas to compute confidence intervals for the values of new observations. These intervals are shown in the next figure for the 10 years spanned in the backtesting exercise.
```

figure
plot(YearsBT,DefRate(iYearsBT),'ko','LineWidth',1.5,'MarkerSize',10,...
'MarkerFaceColor','g')
hold on
plot(YearsBT,PredDefRate(:,1),'b-s','LineWidth',1.2,'MarkerSize',10)
plot(YearsBT,[PredDefLoBnd PredDefUpBnd],'b:','LineWidth',1.2)
hold off
strConf = num2str((1-alpha)*100);
title(['{\bf Backtesting Results with ' strConf '% Prediction Intervals}'])
xlabel('Year');
ylabel('%');
legend({'Actual','Predicted','Conf Bounds'},'location','NW');

```

The observed default rates fall outside the prediction intervals for two years, 1996 and 1997, where very low default rates are observed. For a 95\% confidence level, two out of ten seems high. Yet, the observed values in these cases fall barely outside the prediction interval, which is a positive sign for the model. It is also positive that the prediction intervals contain the observed values around the 2001 recession.

\section*{Stress Testing}

Stress testing is a broad area that reaches far beyond computational tools; see, for example, [3]. We show here some tools that can be incorporated into a comprehensive stress testing framework. We build on the linear regression model presented above, but the concepts and tools are compatible with other forecasting methodologies.

The first tool is the use of prediction intervals to define a worst-case scenario forecasts. This is to account for uncertainty in the model only, not in the value of the predictors.

We take a baseline scenario of predictors, in our case, the latest known values of our age proxy AGE, corporate profits forecast CPF and corporate spread SPR. We then use the linear regression model to compute a \(95 \%\) confidence upper bound for the predicted default rate. The motivation for this is illustrated in the last plot of the backtesting section, where the \(95 \%\) confidence upper limit acts as a conservative bound when the prediction underestimates the actual default rates.
```

tCrit = tinv(1-alpha/2,stats.tstat.dfe);
XLast = [AGE(end),CPF(end),SPR(end)];
yPred = [1 XLast]*stats.beta;
PredStd = sqrt([1 XLast]*stats.covb*[1 XLast]'+stats.mse);
yPredUB = yPred + tCrit*PredStd;
fprintf('\nPredicted default rate:\n');
fprintf(' Baseline: %4.2f%%\n',yPred);
fprintf(' %g%% Upper Bound: %4.2f%%\n',(1-alpha)*100,yPredUB);

```

\section*{Predicted default rate:}

Baseline: 1.18\%
95\% Upper Bound: 2.31\%

The next step is to incorporate stressed scenarios of the predictors in the analysis. CPF and SPR can change in the short term, whereas AGE cannot. This is important. The corporate profits forecast and the corporate spread are influenced by world events, including, for example, natural disasters. These predictors can significantly change overnight. On the other hand, AGE depends on managerial decisions that can alter the proportion of old and new loans in time, but these decisions take months, if not years, to reflect in the AGE time series. Scenarios for AGE are compatible with longer term analyses. Here we look at one year ahead only, and keep AGE fixed for the remainder of this section.

It is convenient to define the predicted default rate and the confidence bounds as functions of CPF and SPR to simplify the scenario analysis.
```

yPredFn = @(cpf,spr) [1 AGE(end) cpf spr]*stats.beta;
PredStdFn = @(cpf,spr) sqrt([1 AGE(end) cpf spr]*stats.covb*...
[1 AGE(end) cpf spr]'+stats.mse);
yPredUBFn = @(cpf,spr) (yPredFn(cpf,spr) + tCrit*PredStdFn(cpf,spr));
yPredLBFn = @(cpf,spr) (yPredFn(cpf,spr) - tCrit*PredStdFn(cpf,spr));

```

Two extreme scenarios of interest can be a drop in the corporate profits forecast of \(4 \%\) relative to the baseline, and an increase in the corporate spread of 100 basis points over the baseline.

Moving one predictor at a time is not unreasonable in this case, because the correlation between CPF and SPR is very low. Moderate correlation levels may require perturbing predictors together to get more reliable results. Highly correlated predictors usually do not coexist in the same model, since they offer redundant information.
```

fprintf('\n\n What-if Analysis\n');
fprintf('Scenario LB Pred UB\n');
cpf = CPF(end)-4;
spr = SPR(end);
yPredRange = [yPredLBFn(cpf,spr),yPredFn(cpf,spr),yPredUBFn(cpf,spr)];

```
```

fprintf('CPF drops 4%% %4.2f%%% %4.2f%%% %4.2f%%\n',yPredRange);
cpf = CPF(end);
spr = SPR(end)+1;
yPredRange = [yPredLBFn(cpf,spr),yPredFn(cpf,spr),yPredUBFn(cpf,spr)];
fprintf('SPR rises 1%% %4.2f%% %4.2f%% %4.2f%%\n',yPredRange);
cpf = CPF(end);
spr = SPR(end);
yPredRange = [yPredLBFn(cpf,spr),yPredFn(cpf,spr),yPredUBFn(cpf,spr)];
fprintf(' Baseline %4.2f%% %4.2f%% %4.2f%%\n',yPredRange);
fprintf('\nCorrelation between CPF and SPR: %4.3f\n',corr(CPF,SPR));

```
\begin{tabular}{llll}
\multicolumn{4}{c}{ What-if Analysis } \\
Scenario & LB & Pred & UB \\
CPF drops 4\% & \(0.42 \%\) & \(1.57 \%\) & \(2.71 \%\) \\
SPR rises 1\% & \(0.71 \%\) & \(1.88 \%\) & \(3.05 \%\) \\
Baseline & \(0.04 \%\) & \(1.18 \%\) & \(2.31 \%\)
\end{tabular}

Correlation between CPF and SPR: 0.012

We now take a more global view of the scenario analysis. Instead of analyzing one scenario at a time, we visualize the default rate forecasts as a function of CPF and SPR. More precisely, we plot default rate contours over a whole grid of CPF and SPR values. We use the conservative \(95 \%\) upper bound.

If we assumed a particular bivariate distribution for the values of CPF and SPR, we could plot the contours of their distribution in the same figure. That would give visual information on the probability of falling on each region. Lacking such a distribution, we simply add to the plot the CPF - SPR pairs observed in our sample, as a historical, empirical distribution. The last observation in the sample, the baseline scenario, is marked in red.
```

gridCPF = 2*min(CPF):0.1:max(CPF);
gridSPR = min(SPR):0.1:2*max(SPR);
nGridCPF = length(gridCPF);
nGridSPR = length(gridSPR);
DefRateUB = zeros(nGridCPF,nGridSPR);

```
```

for i=1:nGridCPF
for j=1:nGridSPR
DefRateUB(i,j) = yPredUBFn(gridCPF(i),gridSPR(j));
end
end
Example_StressTestPlot(gridCPF,gridSPR,DefRateUB,CPF,SPR,...
'Corporate Profits Forecast (%)','Corporate Spread (%)',...
['{\bf ' strConf '% UB Default Rate Regions (in %)}'])

```

Very different predictor values result in similar default rate levels. For example, consider a profits forecast around \(10 \%\) with a spread of \(3.5 \%\), and a profits forecast of \(-2.5 \%\) with a spread of \(2 \%\), they both result in a default rate slightly above \(3 \%\). Also, only one point in the available history yields a default rate higher than \(4 \%\).

Monetary terms, once again, may be more meaningful. We use Basel II's capital requirements formula (see [2]) to translate the default rates into a monetary measure. Basel II's formula is convenient because it is analytic (there is no need to simulate to estimate the capital requirements), but also because it depends only on the probabilities of default. We define Basel II's capital requirements as a function K.
```

% Correlation as a function of PD
w = @(pd) (1-\operatorname{exp}(-50*pd))/(1-\operatorname{exp}(-50)); % weight
R = @(pd) (0.12*w(pd)+0.24*(1-w(pd))); % correlation
% Vasicek formula
V = @(pd) normcdf(norminv(pd)+R(pd).*norminv(0.999)./sqrt(1-R(pd)));
% Parameter b for maturity adjustment
b = @(pd) (0.11852-0.05478*log(pd)).^2;
% Basel II capital requirement with LGD=45% and maturity M=2.5 (numerator
% in maturity adjustment term becomes 1)
K = @(pd) 0.45*(V(pd)-pd).*(1./(1-1.5*b(pd)));

```

Worst-case default rates for a whole grid of CPF - SPR pairs are stored in DefRateUB. By applying the function \(K\) to DefRateUB we can visualize the capital requirements over the same grid.

CapReq \(=100 * K(\) DefRateUB/100);
```

Example_StressTestPlot(gridCPF,gridSPR,CapReq,CPF,SPR,...
'Corporate Profits Forecast (%)','Corporate Spread (%)',...
{'{\bf Capital Requirement Regions (% of value)}';...
['{\bf using ' strConf '% UB Default Rate}']})

```

The contour levels now indicate capital requirements as a percentage of portfolio value. The two scenarios above, profits of \(10 \%\) with spread of \(3.5 \%\), and profits of \(-2.5 \%\) and spread of \(2 \%\), result in capital requirements near \(2.75 \%\). The worst-case point from the historical data yields a capital requirement of about \(3 \%\).

This visualization can also be used, for example, as part of a reverse stress test analysis. Critical levels of capital can be determined first, and the figure can be used to determine regions of risk factor values (in this case CPF and SPR) that lead to those critical levels.

Instead of historical observations of CPF and SPR, an empirical distribution for the risk factors can be simulated using, for example, a vector autoregressive (VAR) model from Econometrics Toolbox \({ }^{\text {TM }}\). The capital requirements corresponding to each default probability level can be found by simulation if a closed form formula is not available, and the same plots can be generated. For large simulations, a distributed computing implementation using Parallel Computing Toolbox \({ }^{\text {TM }}\) or MATLAB Distributed Computing Server \({ }^{\text {TM }}\) can make the process more efficient.

\section*{Appendix: Modeling Full Transition Matrices}

Transition matrices change in time, and a full description of their dynamics requires working with multi-dimensional time series. There are, however, techniques that exploit the particular structure of transition matrices to reduce the dimensionality of the problem. In [8], for example, a single parameter related to the proportion of downgrades is used, and both [6] and [8] describe a method to shift transition probabilities using a single parameter. The latter approach is shown in this appendix.

The method takes the TTC transition matrix as a baseline.
```

tmTTC = transprobbytotals(totalsByRtg);

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{\begin{tabular}{l}
ample_DisplayTransitions(tmTTC, [],... \\
\{'AAA','AA','A','BBB','BB','B','CCC'\},... \\
\{'AAA','AA','A','BBB','BB','B','CCC','D','NR'\})
\end{tabular}} \\
\hline & AAA & AA & A & BBB & BB & B & CCC & D & NR \\
\hline AAA & 88.2 & 7.67 & 0.49 & 0.09 & 0.06 & 0 & 0 & 0 & 3.49 \\
\hline AA & 0.58 & 87.16 & 7.63 & 0.58 & 0.06 & 0.11 & 0.02 & 0.01 & 3.85 \\
\hline A & 0.05 & 1.9 & 87.24 & 5.59 & 0.42 & 0.15 & 0.03 & 0.04 & 4.58 \\
\hline BBB & 0.02 & 0.16 & 3.85 & 84.13 & 4.27 & 0.76 & 0.17 & 0.27 & 6.37 \\
\hline BB & 0.03 & 0.04 & 0.25 & 5.26 & 75.74 & 7.36 & 0.9 & 1.12 & 9.29 \\
\hline B & 0 & 0.05 & 0.19 & 0.31 & 5.52 & 72.67 & 4.21 & 5.38 & 11.67 \\
\hline CCC & 0 & 0 & 0.28 & 0.41 & 1.24 & 10.92 & 47.06 & 27.02 & 13.06 \\
\hline
\end{tabular}

An equivalent way to represent this matrix is by transforming it into credit quality thresholds, that is, critical values of a standard normal distribution that yield the same transition probabilities (row by row).
```

thresholdMat = transprobtothresholds(tmTTC);
Example_DisplayTransitions(thresholdMat,[],...
{'AAA','AA','A','BBB','BB','B','CCC'},...
{'AAA','AA','A','BBB','BB','B','CCC','D','NR'})

	AAA	AA	A	BBB	BB	B	CCC	D	NR
AAA	Inf	-1.19	-1.74	-1.8	-1.81	-1.81	-1.81	-1.81	-1.81
AA	Inf	2.52	-1.16	-1.68	-1.75	-1.75	-1.76	-1.77	-1.77
A	Inf	3.31	2.07	-1.24	-1.62	-1.66	-1.68	-1.68	-1.69
BBB	Inf	3.57	2.91	1.75	-1.18	-1.43	-1.49	-1.5	-1.52
BB	Inf	3.39	3.16	2.72	1.59	-0.89	-1.21	-1.26	-1.32
B	Inf	Inf	3.28	2.82	2.54	1.55	-0.8	-0.95	-1.19
CCC	Inf	Inf	Inf	2.77	2.46	2.07	1.13	-0.25	-1.12

```

Credit quality thresholds are illustrated in the following figure. The segments in the vertical axis represent transition probabilities, and the boundaries between them determine the critical values in the horizontal axis, via the standard normal distribution. Each row in the transition matrix determines a set of thresholds. The figure shows the thresholds for the 'CCC' rating.
```

xliml = -5;
xlimr = 5;
step = 0.1;

```
```

x=xliml:step:xlimr;
thresCCC = thresholdMat(7,:);
centersY = (normcdf([thresCCC(2:end) xliml])+...
normcdf([xlimr thresCCC(2:end)]))/2;
labels = {'AAA','AA','A','BBB','BB','B','CCC','D','NR'};
figure
plot(x,normcdf(x),'m','LineWidth',1.5)
for i=2:length(labels)
val = thresCCC(i);
line([val val],[0 normcdf(val)],'LineStyle',':');
line([x(1) val],[normcdf(val) normcdf(val)],'LineStyle',':');
if (centersY(i-1)-centersY(i))>0.05
text(-4.5,centersY(i),labels{i});
end
end
xlabel('Credit Quality Thresholds')
ylabel('Cumulative Probability')
title('{\bf Visualization of Credit Quality Thresholds}')
legend('Std Normal CDF','Location','E')

```

Shifting the critical values to the right or left changes the transition probabilities. For example, here is the transition matrix obtained by shifting the TTC thresholds by 0.5 to the right. Note that default probabilities increase.
shiftedThresholds = thresholdMat+0.5;
Example_DisplayTransitions(transprobfromthresholds(shiftedThresholds),... [],\{'AAA', 'AA','A','BBB','BB','B','CCC'\},... \{'AAA','AA','A','BBB','BB','B','CCC','D','NR'\})
\begin{tabular}{rrrrrrrrrr} 
& AAA & AA & A & BBB & BB & B & CCC & D & NR \\
AAA & 75.34 & 13.84 & 1.05 & 0.19 & 0.13 & 0 & 0 & 0 & 9.45 \\
AA & 0.13 & 74.49 & 13.53 & 1.21 & 0.12 & 0.22 & 0.04 & 0.02 & 10.24 \\
A & 0.01 & 0.51 & 76.4 & 10.02 & 0.83 & 0.31 & 0.06 & 0.08 & 11.77 \\
BBB & 0 & 0.03 & 1.2 & 74.03 & 7.22 & 1.39 & 0.32 & 0.51 & 15.29 \\
BB & 0 & 0.01 & 0.05 & 1.77 & 63.35 & 10.94 & 1.47 & 1.88 & 20.52 \\
B & 0 & 0.01 & 0.04 & 0.07 & 1.91 & 59.67 & 5.74 & 8.1 & 24.46
\end{tabular}
\[
\begin{array}{llllllllll}
\text { CCC } & 0 & 0 & 0.05 & 0.1 & 0.36 & 4.61 & 35.06 & 33.18 & 26.65
\end{array}
\]

Given a particular PIT matrix, the idea in [6] and [8] is to vary the shifting parameter applied to the TTC thresholds so that the resulting transition matrix is as close as possible to the PIT matrix. Closeness is measured as the sum of squares of differences between corresponding transition probabilities. The optimal shifting value is called credit index. A credit index is determined for every PIT transition matrix in the sample.

Here we use fminunc from Optimization Toolbox \({ }^{\text {TM }}\) to find the credit indices.
```

CreditIndex = zeros(nYears,1);
ExitFlag = zeros(nYears,1);
options = optimset('LargeScale','Off','Display','Off');
for i=1:nYears
errorfun = @(z)norm(squeeze(TransMat(:,:,i))-...
transprobfromthresholds(...
transprobtothresholds(tmTTC)+z),'fro');
[CreditIndex(i),~,ExitFlag(i)] = fminunc(errorfun,0,options);
end

```

In general, one expects that higher credit indices correspond to riskier years. The series of credit indices found does not entirely match this pattern. There may be different reasons for this. First, transition probabilities may deviate from their long-term averages in different ways that may lead to confounding effects in the single parameter trying to capture these difference, the credit index. Having separate credit indices for IG and SG, for example, may help separate confounding effects. Second, a difference of five basis points may be very significant for the 'BBB' default rate, but not as important for the 'CCC' default rate, yet the norm used weights them equally. Other norms can be considered. Also, it is always a good idea to check the exit flags of optimization solvers, in case the algorithm could not find a solution. Here we get valid solutions for each year (all exit flags are 1).
```

figure
plot(Years,CreditIndex,'-d')
hold on
Example_RecessionBands
hold off
grid on

```
```

xlabel('Year')
ylabel('Shift')
title('{\bf Credit Index}')

```

The workflow above can be adapted to work with the series of credit indices instead of the series of corporate default rates. A model can be fit to predict a credit index for the following year, and a predicted transition matrix can be inferred and used for risk analyses.

\section*{References}
[1] Altman, E., and E. Hotchkiss, Corporate Financial Distress and Bankruptcy, third edition, New Jersey: Wiley Finance, 2006.
[2] Basel Committee on Banking Supervision, "International Convergence of Capital Measurement and Capital Standards: A Revised Framework," Bank for International Settlements (BIS), comprehensive version, June 2006. Available at: http://www.bis.org/publ/bcbsca.htm.
[3] Basel Committee on Banking Supervision, "Principles for Sound Stress Testing Practices and Supervision - Final Paper," Bank for International Settlements (BIS), May 2009. Available at: http://www.bis.org/publ/bcbs155.htm.
[4] FRED, St. Louis Federal Reserve, Federal Reserve Economic Database, http://research.stlouisfed.org/fred2/.
[5] Helwege, J., and P. Kleiman, "Understanding Aggregate Default Rates of High Yield Bonds," Federal Reserve Bank of New York, Current Issues in Economics and Finance, Volume 2, Number 6, May, 1996.
[6] Loeffler, G., and P. N. Posch, Credit Risk Modeling Using Excel and VBA, West Sussex, England: Wiley Finance, 2007.
[7] NBER, National Bureau of Economic Research, Business Cycle Expansions and Contractions, http://www.nber.org/cycles/.
[8] Otani, A., S. Shiratsuka, R. Tsurui, and T. Yamada, "Macro Stress-Testing on the Loan Portfolio of Japanese Banks," Bank of Japan Working Paper Series No.09-E-1, March, 2009.
[9] Survey of Professional Forecasters, Federal Reserve Bank of Philadelphia, http://www.philadelphiafed.org/.
[10] Vazza, D., D. Aurora, and R. Schneck, "Annual 2005 Global Corporate Default Study And Rating Transitions," Standard \& Poor's, Global Fixed Income Research, New York, January, 2006.
[11] Wilson, T. C., "Portfolio Credit Risk," FRBNY Economic Policy Review, October 1998.

\section*{Credit Quality Thresholds}

\author{
In this section... \\ "Introduction" on page 8-64 \\ "Compute Credit Quality Thresholds" on page 8-64 \\ "Visualize Credit Quality Thresholds" on page 8-66
}

\section*{Introduction}

An equivalent way to represent transition probabilities is by transforming them into credit quality thresholds. These are critical values of a standard normal distribution that yield the same transition probabilities.

An M-by-N matrix of transition probabilities TRANS and the corresponding M-by-N matrix of credit quality thresholds THRESH are related as follows. The thresholds \(\operatorname{THRESH}(i, j)\) are critical values of a standard normal distribution \(z\), such that
```

TRANS(i,N) = P[z < THRESH(i,N)],
TRANS(i,j) = P[z< THRESH(i,j)] - P[z< THRESH(i,j+1)], for 1<=j<N

```

Financial Toolbox supports the transformation between transition probabilities and credit quality thresholds with the functions transprobtothresholds and transprobfromthresholds.

\section*{Compute Credit Quality Thresholds}

To compute credit quality thresholds, transition probabilities are required as input. Here is a transition matrix estimated from credit ratings data:
```

load Data_TransProb
trans = transprob(data)
trans =

93.1170	5.8428	0.8232	0.1763	0.0376	0.0012	0.0001	0.0017
1.6166	93.1518	4.3632	0.6602	0.1626	0.0055	0.0004	0.0396
0.1237	2.9003	92.2197	4.0756	0.5365	0.0661	0.0028	0.0753

```
\begin{tabular}{rrrrrrrr} 
\\
0.0236 & 0.2312 & 5.0059 & 90.1846 & 3.7979 & 0.4733 & 0.0642 & 0.2193 \\
0.0216 & 0.1134 & 0.6357 & 5.7960 & 88.9866 & 3.4497 & 0.2919 & 0.7050 \\
0.0010 & 0.0062 & 0.1081 & 0.8697 & 7.3366 & 86.7215 & 2.5169 & 2.4399 \\
0.0002 & 0.0011 & 0.0120 & 0.2582 & 1.4294 & 4.2898 & 81.2927 & 12.7167 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000
\end{tabular}

Convert the transition matrix to credit quality thresholds using transprobtothresholds:
thresh = transprobtothresholds(trans)
thresh =
\begin{tabular}{rrrrrrrr} 
Inf & -1.4846 & -2.3115 & -2.8523 & -3.3480 & -4.0083 & -4.1276 & -4.1413 \\
Inf & 2.1403 & -1.6228 & -2.3788 & -2.8655 & -3.3166 & -3.3523 & -3.3554 \\
Inf & 3.0264 & 1.8773 & -1.6690 & -2.4673 & -2.9800 & -3.1631 & -3.1736 \\
Inf & 3.4963 & 2.8009 & 1.6201 & -1.6897 & -2.4291 & -2.7663 & -2.8490 \\
Inf & 3.5195 & 2.9999 & 2.4225 & 1.5089 & -1.7010 & -2.3275 & -2.4547 \\
Inf & 4.2696 & 3.8015 & 3.0477 & 2.3320 & 1.3838 & -1.6491 & -1.9703 \\
Inf & 4.6241 & 4.2097 & 3.6472 & 2.7803 & 2.1199 & 1.5556 & -1.1399 \\
Inf & Inf
\end{tabular}

Conversely, given a matrix of thresholds, you can compute transition probabilities using transprobfromthresholds. For example, take the thresholds computed previously as input to recover the original transition probabilities:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{trans1 \(=\)} \\
\hline 93.1170 & 5.8428 & 0.8232 & 0.1763 & 0.0376 & 0.0012 & 0.0001 & 0.0017 \\
\hline 1.6166 & 93.1518 & 4.3632 & 0.6602 & 0.1626 & 0.0055 & 0.0004 & 0.0396 \\
\hline 0.1237 & 2.9003 & 92.2197 & 4.0756 & 0.5365 & 0.0661 & 0.0028 & 0.0753 \\
\hline 0.0236 & 0.2312 & 5.0059 & 90.1846 & 3.7979 & 0.4733 & 0.0642 & 0.2193 \\
\hline 0.0216 & 0.1134 & 0.6357 & 5.7960 & 88.9866 & 3.4497 & 0.2919 & 0.7050 \\
\hline 0.0010 & 0.0062 & 0.1081 & 0.8697 & 7.3366 & 86.7215 & 2.5169 & 2.4399 \\
\hline 0.0002 & 0.0011 & 0.0120 & 0.2582 & 1.4294 & 4.2898 & 81.2927 & 12.7167 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 100.0000 \\
\hline
\end{tabular}

\section*{Visualize Credit Quality Thresholds}

You can graphically represent the relationship between credit quality thresholds and transition probabilities. Here, this example shows the relationship for the 'CCC' credit rating. In the plot, the thresholds are marked by the vertical lines and the transition probabilities are the area below the standard normal density curve:
```

load Data_TransProb
trans = transprob(data);
thresh = transprobtothresholds(trans);
xliml = -5;
xlimr = 5;
step = 0.1;
x=xliml:step:xlimr;
thresCCC = thresh(7,:);
labels = {'AAA','AA','A','BBB','BB','B','CCC','D'};
centersX = ([5 thresCCC(2:end)]+[thresCCC(2:end) -5])*0.5;
omag = round(log10(trans(7,:)));
omag(omag>0)=omag(omag>0).^2;
fs = 14+2*omag;

```
figure
plot(x, normpdf(x),'LineWidth', 1.5)
text(centersX(1), 0.2,labels\{1\},'FontSize',fs(1),...
    'HorizontalAlignment', 'center')
for i=2:length(labels)
    val = thresCCC(i);
    line([val val],[0 0.4],'LineStyle',':')
    text(centersX(i), 0.2,labels\{i\},'FontSize',fs(i),...
        'HorizontalAlignment','center')
end
xlabel('Credit Quality Thresholds')
ylabel('Probability Density Function')
title('\{\bf Visualization of Credit Quality Thresholds\}')
legend('Std Normal PDF','Location','S')


The second plot uses the cumulative density function instead. The thresholds are represented by vertical lines. The transition probabilities are given by the distance between horizontal lines.
```

figure
plot(x,normcdf(x),'m','LineWidth',1.5)
text(centersX(1),0.2,labels{1},'FontSize',fs(1),...
'HorizontalAlignment','center')
for i=2:length(labels)
val = thresCCC(i);
line([val val],[0 normcdf(val)],'LineStyle',':');
line([x(1) val],[normcdf(val) normcdf(val)],'LineStyle',':');
text(centersX(i),0.2,labels{i},'FontSize',fs(i),...
'HorizontalAlignment','center')
end
xlabel('Credit Quality Thresholds')
ylabel('Cumulative Probability')
title('{\bf Visualization of Credit Quality Thresholds}')

```
legend('Std Normal CDF','Location','W')


\title{
Regression with Missing Data
}
- "Multivariate Normal Regression" on page 9-2
- "Maximum Likelihood Estimation with Missing Data" on page 9-9
- "Multivariate Normal Regression Types" on page 9-17
- "Valuation with Missing Data" on page 9-35

\section*{Multivariate Normal Regression}

\author{
In this section... \\ "Introduction" on page 9-2 \\ "Multivariate Normal Linear Regression" on page 9-3 \\ "Maximum Likelihood Estimation" on page 9-4 \\ "Special Case of Multiple Linear Regression Model" on page 9-5 \\ "Least-Squares Regression" on page 9-5 \\ "Mean and Covariance Estimation" on page 9-5 \\ "Convergence" on page 9-6 \\ "Fisher Information" on page 9-6 \\ "Statistical Tests" on page 9-7
}

\section*{Introduction}

This section focuses on using likelihood-based methods for multivariate normal regression. The parameters of the regression model are estimated via maximum likelihood estimation. For multiple series, this requires iteration until convergence. The complication due to the possibility of missing data is incorporated into the analysis with a variant of the EM algorithm known as the ECM algorithm.

The underlying theory of maximum likelihood estimation and the definition and significance of the Fisher information matrix can be found in Caines [1] and Cramér [2]. The underlying theory of the ECM algorithm can be found in Meng and Rubin [8] and Sexton and Swensen [9].

In addition, these two examples of maximum likelihood estimation are presented:
- "Portfolios with Missing Data" on page 9-27
- "Estimation of Some Technology Stock Betas" on page 9-37

\section*{Multivariate Normal Linear Regression}

Suppose you have a multivariate normal linear regression model in the form
\[
\left[\begin{array}{c}
Z_{1} \\
\vdots \\
Z_{m}
\end{array}\right] \sim N\left(\left[\begin{array}{c}
H_{1} b \\
\vdots \\
H_{m} b
\end{array}\right],\left[\begin{array}{ccc}
C & & 0 \\
& \ddots & \\
0 & & C
\end{array}\right]\right)
\]
where the model has \(m\) observations of \(n\)-dimensional random variables \(\mathbf{Z}_{1}, \ldots\), \(\mathbf{Z}_{m}\) with a linear regression model that has a \(p\)-dimensional model parameter vector \(\mathbf{b}\). In addition, the model has a sequence of \(m\) design matrices \(\mathbf{H}_{1}, \ldots\), \(\mathbf{H}_{m}\), where each design matrix is a known \(n\)-by- \(p\) matrix.

Given a parameter vector \(\mathbf{b}\) and a collection of design matrices, the collection of \(m\) independent variables \(\mathbf{Z}_{k}\) is assumed to have independent identically distributed multivariate normal residual errors \(\mathbf{Z}_{k}-\mathbf{H}_{k} \mathbf{b}\) with \(n\)-vector mean \(\mathbf{0}\) and n-by-n covariance matrix \(\mathbf{C}\) for each \(k=1, \ldots, m\).

A concise way to write this model is
\[
Z_{k} \square N\left(H_{k} b, C\right)
\]
for \(k=1, \ldots, m\).
The goal of multivariate normal regression is to obtain maximum likelihood estimates for \(\mathbf{b}\) and \(\mathbf{C}\) given a collection of \(m\) observations \(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\) of the random variables \(\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{m}\). The estimated parameters are the \(p\) distinct elements of \(\mathbf{b}\) and the \(n(n+1) / 2\) distinct elements of \(\mathbf{C}\) (the lower-triangular elements of \(\mathbf{C}\) ).

Note Quasi-maximum likelihood estimation works with the same models but with a relaxation of the assumption of normally distributed residuals. In this case, however, the parameter estimates are asymptotically optimal.

\section*{Maximum Likelihood Estimation}

To estimate the parameters of the multivariate normal linear regression model using maximum likelihood estimation, it is necessary to maximize the \(\log\)-likelihood function over the estimation parameters given observations \(\mathbf{z}_{1}\), \(\ldots, \mathbf{z}_{m}\).

Given the multivariate normal model to characterize residual errors in the regression model, the log-likelihood function is
\[
\begin{aligned}
L\left(z_{1}, \ldots, z_{m} ; b, C\right)= & \frac{1}{2} m n \log (2 \pi)+\frac{1}{2} m \log (\operatorname{det}(C)) \\
& +\frac{1}{2} \sum_{k=1}^{m}\left(z_{k}-H_{k} b\right)^{T} C^{-1}\left(z_{k}-H_{k} b\right) .
\end{aligned}
\]

Although the cross-sectional residuals must be independent, you can use this log-likelihood function for quasi-maximum likelihood estimation. In this case, the estimates for the parameters \(\mathbf{b}\) and \(\mathbf{C}\) provide estimates to characterize the first and second moments of the residuals. See Caines [1] for details.

Except for a special case (see "Special Case of Multiple Linear Regression Model" on page 9-5), if both the model parameters in \(\mathbf{b}\) and the covariance parameters in \(\mathbf{C}\) are to be estimated, the estimation problem is intractably nonlinear and a solution must use iterative methods. Denote estimates for the parameters \(\mathbf{b}\) and \(\mathbf{C}\) for iteration \(t=0,1, \ldots\) with the superscript notation \(\mathbf{b}^{(t)}\) and \(\mathbf{C}^{(t)}\).

Given initial estimates \(\mathbf{b}^{(0)}\) and \(\mathbf{C}^{(0)}\) for the parameters, the maximum likelihood estimates for \(\mathbf{b}\) and \(\mathbf{C}\) are obtained using a two-stage iterative process with
\[
b^{(t+1)}=\left(\sum_{k=1}^{m} H_{k}^{T}\left(C^{(t)}\right)^{-1} H_{k}\right)^{-1}\left(\sum_{k=1}^{m} H_{k}^{T}\left(C^{(t)}\right)^{-1} z_{k}\right)
\]
and
\[
C^{(t+1)}=\frac{1}{m} \sum_{k=1}^{m}\left(z_{k}-H_{k} b^{(t+1)}\right)\left(z_{k}-H_{k} b^{(t+1)}\right)^{T}
\]
for \(t=0,1, \ldots\).

\section*{Special Case of Multiple Linear Regression Model}

The special case mentioned in "Maximum Likelihood Estimation" on page 9-4 occurs if \(n=1\) so that the sequence of observations is a sequence of scalar observations. This model is known as a multiple linear regression model. In this case, the covariance matrix \(\mathbf{C}\) is a 1 -by- 1 matrix that drops out of the maximum likelihood iterates so that a single-step estimate for \(\mathbf{b}\) and \(\mathbf{C}\) can be obtained with converged estimates \(\mathbf{b}^{(1)}\) and \(\mathbf{C}^{(1)}\).

\section*{Least-Squares Regression}

Another simplification of the general model is called least-squares regression. If \(\mathbf{b}^{(0)}=\mathbf{0}\) and \(\mathbf{C}^{(0)}=\mathbf{I}\), then \(\mathbf{b}^{(1)}\) and \(\mathbf{C}^{(1)}\) from the two-stage iterative process are least-squares estimates for \(\mathbf{b}\) and \(\mathbf{C}\), where
\[
b^{L S}=\left(\sum_{k=1}^{m} H_{k}^{T} H_{k}\right)^{-1}\left(\sum_{k=1}^{m} H_{k}^{T} z_{k}\right)
\]
and
\[
C^{L S}=\frac{1}{m} \sum_{k=1}^{m}\left(z_{k}-H_{k} b^{L S}\right)\left(z_{k}-H_{k} b^{L S}\right)^{T} .
\]

\section*{Mean and Covariance Estimation}

A final simplification of the general model is to estimate the mean and covariance of a sequence of \(n\)-dimensional observations \(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\). In this case, the number of series is equal to the number of model parameters with \(n=p\) and the design matrices are identity matrices with \(\mathbf{H}_{k}=\mathbf{I}\) for \(i=1, \ldots, m\) so that \(\mathbf{b}\) is an estimate for the mean and \(\mathbf{C}\) is an estimate of the covariance of the collection of observations \(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\).

\section*{Convergence}

If the iterative process continues until the log-likelihood function increases by no more than a specified amount, the resultant estimates are said to be maximum likelihood estimates \(\mathbf{b}^{M L}\) and \(\mathbf{C}^{M L}\).

Note that if \(n=1\) (which implies a single data series), convergence occurs after only one iterative step, which, in turn, implies that the least-squares and maximum likelihood estimates are identical. If, however, \(n>1\), the least-squares and maximum likelihood estimates are usually distinct.

In Financial Toolbox software, both the changes in the log-likelihood function and the norm of the change in parameter estimates are monitored. Whenever both changes fall below specified tolerances (which should be something between machine precision and its square root), the toolbox functions terminate under an assumption that convergence has been achieved.

\section*{Fisher Information}

Since maximum likelihood estimates are formed from samples of random variables, their estimators are random variables; an estimate derived from such samples has an uncertainty associated with it. To characterize these uncertainties, which are called standard errors, two quantities are derived from the total log-likelihood function.

The Hessian of the total log-likelihood function is
\[
\nabla^{2} L\left(z_{1}, \ldots, z_{m} ; \theta\right)
\]
and the Fisher information matrix is
\[
I(\theta)=-E\left[\nabla^{2} L\left(z_{1}, \ldots, z_{m} ; \theta\right)\right]
\]
where the partial derivatives of the \(\nabla^{2}\) operator are taken with respect to the combined parameter vector \(\Theta\) that contains the distinct components of \(\mathbf{b}\) and \(\mathbf{C}\) with a total of \(q=p+n(n+1) / 2\) parameters.

Since maximum likelihood estimation is concerned with large-sample estimates, the central limit theorem applies to the estimates and the Fisher
information matrix plays a key role in the sampling distribution of the parameter estimates. Specifically, maximum likelihood parameter estimates are asymptotically normally distributed such that
\[
\left(\theta^{(t)}-\theta\right)_{\square N}\left(0, I^{-1},\left(\theta^{(t)}\right)\right) \text { as } t \rightarrow \infty,
\]
where \(\Theta\) is the combined parameter vector and \(\Theta^{(t)}\) is the estimate for the combined parameter vector at iteration \(t=0,1, \ldots\).

The Fisher information matrix provides a lower bound, called a Cramér-Rao lower bound, for the standard errors of estimates of the model parameters.

\section*{Statistical Tests}

Given an estimate for the combined parameter vector \(\Theta\), the squared standard errors are the diagonal elements of the inverse of the Fisher information matrix
\[
s^{2}\left(\hat{\theta}_{i}\right)=\left(I^{-1}\left(\hat{\theta}_{i}\right)\right)_{i i}
\]
for \(i=1, \ldots, q\).
Since the standard errors are estimates for the standard deviations of the parameter estimates, you can construct confidence intervals so that, for example, a \(95 \%\) interval for each parameter estimate is approximately
\[
\hat{\theta}_{i} \pm 1.96 s\left(\hat{\theta}_{i}\right)
\]
for \(i=1, \ldots, q\).
Error ellipses at a level-of-significance \(\alpha \varepsilon[0,1\) ] for the parameter estimates satisfy the inequality
\[
(\theta-\hat{\theta})^{T} I(\hat{\theta})(\theta-\hat{\theta}) \leq \chi_{1-\alpha, q}^{2}
\]
and follow a \(\chi^{2}\) distribution with \(q\) degrees-of-freedom. Note that similar inequalities can be formed for any subcollection of the parameters.

In general, given parameter estimates, the computed Fisher information matrix, and the log-likelihood function, you can perform numerous statistical tests on the parameters, the model, and the regression.

\section*{Maximum Likelihood Estimation with Missing Data}

\author{
In this section... \\ "Introduction" on page 9-9 \\ "ECM Algorithm" on page 9-10 \\ "Standard Errors" on page 9-10 \\ "Data Augmentation" on page 9-11 \\ "Multivariate Normal Regression Functions" on page 9-12 \\ "Multivariate Normal Regression Without Missing Data" on page 9-14 \\ "Multivariate Normal Regression With Missing Data" on page 9-14 \\ "Least-Squares Regression with Missing Data" on page 9-15 \\ "Multivariate Normal Parameter Estimation with Missing Data" on page 9-15
}
"Support Functions" on page 9-16

\section*{Introduction}

Suppose that a portion of the sample data is missing, where missing values are represented as NaNs. If the missing values are missing-at-random and ignorable, where Little and Rubin [7] have precise definitions for these terms, it is possible to use a version of the Expectation Maximization, or EM, algorithm of Dempster, Laird, and Rubin [3] to estimate the parameters of the multivariate normal regression model. The algorithm used in Financial Toolbox software is the ECM (Expectation Conditional Maximization) algorithm of Meng and Rubin [8] with enhancements by Sexton and Swensen [9].

Each sample \(\mathbf{z}_{k}\) for \(k=1, \ldots, m\), is either complete with no missing values, empty with no observed values, or incomplete with both observed and missing values. Empty samples are ignored since they contribute no information.

To understand the missing-at-random and ignorabable conditions, consider an example of stock price data before an IPO. For a counterexample, censored data, in which all values greater than some cutoff are replaced with NaNs, does not satisfy these conditions.

In sample \(k\), let \(\mathbf{x}_{k}\) represent the missing values in \(\mathbf{z}_{k}\), and \(\mathbf{y}_{k}\) represent the observed values. Define a permutation matrix \(\mathbf{P}_{\mathrm{k}}\) so that
\[
z_{k}=P_{k}\left[\begin{array}{l}
x_{k} \\
y_{k}
\end{array}\right]
\]
for \(k=1, \ldots, m\).

\section*{ECM Algorithm}

The ECM algorithm has two steps - an E, or expectation step, and a CM, or conditional maximization, step. As with maximum likelihood estimation, the parameter estimates evolve according to an iterative process, where estimates for the parameters after \(t\) iterations are denoted as \(\mathbf{b}^{(t)}\) and \(\mathbf{C}^{(t)}\).

The E step forms conditional expectations for the elements of missing data with
\[
\begin{aligned}
& E\left[X_{k} \mid Y_{k}=y_{k} ; b^{(t)}, C^{(t)}\right] \\
& \operatorname{cov}\left[X_{k} \mid Y_{k}=y_{k} ; b^{(t)}, C^{(t)}\right]
\end{aligned}
\]
for each sample \(k \in\{1, \ldots, m\}\) that has missing data.
The CM step proceeds in the same manner as the maximum likelihood procedure without missing data. The main difference is that missing data moments are imputed from the conditional expectations obtained in the E step.

The E and CM steps are repeated until the log-likelihood function ceases to increase. One of the important properties of the ECM algorithm is that it is always guaranteed to find a maximum of the log-likelihood function and, under suitable conditions, this maximum can be a global maximum.

\section*{Standard Errors}

The negative of the expected Hessian of the log-likelihood function and the Fisher information matrix are identical if no data is missing. However, if
data is missing, the Hessian, which is computed over available samples, accounts for the loss of information due to missing data. Consequently, the Fisher information matrix provides standard errors that are a Cramér-Rao lower bound whereas the Hessian matrix provides standard errors that may be greater if there is missing data.

\section*{Data Augmentation}

The ECM functions do not "fill in" missing values as they estimate model parameters. In some cases, you may want to fill in the missing values. Although you can fill in the missing values in your data with conditional expectations, you would get optimistic and unrealistic estimates because conditional estimates are not random realizations.

Several approaches are possible, including resampling methods and multiple imputation (see Little and Rubin [7] and Shafer [10] for details). A somewhat informal sampling method for data augmentation is to form random samples for missing values based on the conditional distribution for the missing values. Given parameter estimates for \(X \subset R^{n}\) and \(\hat{C}\), each observation has moments
\[
E\left[Z_{k}\right]=H_{k} \hat{b}
\]
and
\[
\operatorname{cov}\left(Z_{k}\right)=H_{k} \hat{C} H_{k}^{T}
\]
for \(k=1, \ldots, m\), where you have dropped the parameter dependence on the left sides for notational convenience.

For observations with missing values partitioned into missing values \(\mathbf{X}_{k}\) and observed values \(\mathbf{Y}_{k}=\mathbf{y}_{k}\), you can form conditional estimates for any subcollection of random variables within a given observation. Thus, given estimates \(\boldsymbol{E}\left[\mathbf{Z}_{k}\right]\) and \(\operatorname{cov}\left(\mathbf{Z}_{k}\right)\) based on the parameter estimates, you can create conditional estimates
\[
E\left[X_{k} \mid y_{k}\right]
\]
and
\[
\operatorname{cov}\left(X_{k} \mid y_{k}\right)
\]
using standard multivariate normal distribution theory. Given these conditional estimates, you can simulate random samples for the missing values from the conditional distribution
\[
X_{k} \square N\left(E\left[X_{k} \mid y_{k}\right], \operatorname{cov}\left(X_{k} \mid y_{k}\right)\right) .
\]

The samples from this distribution reflect the pattern of missing and nonmissing values for observations \(k=1, \ldots, m\). You must sample from conditional distributions for each observation to preserve the correlation structure with the nonmissing values at each observation.

If you follow this procedure, the resultant filled-in values are random and generate mean and covariance estimates that are asymptotically equivalent to the ECM-derived mean and covariance estimates. Note, however, that the filled-in values are random and reflect likely samples from the distribution estimated over all the data and may not reflect "true" values for a particular observation.

\section*{Multivariate Normal Regression Functions}

Financial Toolbox software has a number of functions for multivariate normal regression with or without missing data. The toolbox functions solve four classes of regression problems with functions to estimate parameters, standard errors, log-likelihood functions, and Fisher information matrices. The four classes of regression problems are:
- "Multivariate Normal Regression Without Missing Data" on page 9-14
- "Multivariate Normal Regression With Missing Data" on page 9-14
- "Least-Squares Regression with Missing Data" on page 9-15
- "Multivariate Normal Parameter Estimation with Missing Data" on page 9-15

Additional support functions are also provided, see "Support Functions" on page 9-16.

In all functions, the MATLAB representation for the number of observations (or samples) is NumSamples \(=m\), the number of data series is NumSeries \(=\) \(n\), and the number of model parameters is NumParams \(=p\). Note that the moment estimation functions have NumSeries = NumParams.

The collection of observations (or samples) is stored in a MATLAB matrix Data such that
\[
\operatorname{Data}(\mathrm{k},:)=z_{k}^{T}
\]
for \(\mathrm{k}=1\), ..., NumSamples, where Data is a NumSamples-by-NumSeries matrix.

For the multivariate normal regression or least-squares functions, an additional required input is the collection of design matrices that is stored as either a MATLAB matrix or a vector of cell arrays denoted as Design.

If Numseries = 1, Design can be a NumSamples-by-NumParams matrix. This is the "standard" form for regression on a single data series.

If Numseries = 1, Design can be either a cell array with a single cell or a cell array with NumSamples cells. Each cell in the cell array contains a NumSeries-by-NumParams matrix such that
\[
\operatorname{Design}\{\mathrm{k}\}=H_{k}
\]
for \(k=1, \ldots\), NumSamples. If Design has a single cell, it is assumed to be the same Design matrix for each sample such that
\[
\operatorname{Design}\{1\}=H_{1}=\ldots=H_{m} .
\]

Otherwise, Design must contain individual design matrices for each and every sample.

The main distinction among the four classes of regression problems depends upon how missing values are handled and where missing values are represented as the MATLAB value NaN . If a sample is to be ignored given any missing values in the sample, the problem is said to be a problem "without missing data." If a sample is to be ignored if and only if every element of the sample is missing, the problem is said to be a problem "with missing data" since the estimation must account for possible NaN values in the data.

In general, Data may or may not have missing values and Design should have no missing values. In some cases, however, if an observation in Data is to be ignored, the corresponding elements in Design are also ignored. Consult the function reference pages for details.

\section*{Multivariate Normal Regression Without Missing Data}

You can use the following functions for multivariate normal regression without missing data.
\begin{tabular}{ll}
\hline mvnrmle & \begin{tabular}{l} 
Estimate model parameters, residuals, and the \\
residual covariance.
\end{tabular} \\
mvnrstd & \begin{tabular}{l} 
Estimate standard errors of model and \\
covariance parameters.
\end{tabular} \\
mvnrfish & Estimate the Fisher information matrix. \\
mvnrobj & Calculate the log-likelihood function. \\
\hline
\end{tabular}

The first two functions are the main estimation functions. The second two are supporting functions that can be used for more detailed analyses.

\section*{Multivariate Normal Regression With Missing Data}

You can use the following functions for multivariate normal regression with missing data.
\begin{tabular}{ll}
\hline ecmmvnrmle & \begin{tabular}{l} 
Estimate model parameters, residuals, and the \\
residual covariance.
\end{tabular} \\
ecmmvnrstd & \begin{tabular}{l} 
Estimate standard errors of model and \\
covariance parameters.
\end{tabular} \\
ecmmvnrfish & \begin{tabular}{l} 
Estimate the Fisher information matrix.
\end{tabular} \\
ecmmvnrobj & Calculate the log-likelihood function. \\
\hline
\end{tabular}

The first two functions are the main estimation functions. The second two are supporting functions used for more detailed analyses.

\section*{Least-Squares Regression with Missing Data}

You can use the following functions for least-squares regression with missing data or for covariance-weighted least-squares regression with a fixed covariance matrix.
\begin{tabular}{ll}
\hline ecmlsrmle & \begin{tabular}{l} 
Estimate model parameters, residuals, and the \\
residual covariance.
\end{tabular} \\
ecmlsrobj & \begin{tabular}{l} 
Calculate the least-squares objective function \\
(pseudo log-likelihood).
\end{tabular} \\
\hline
\end{tabular}

To compute standard errors and estimates for the Fisher information matrix, the multivariate normal regression functions with missing data are used.
\begin{tabular}{ll}
\hline ecmmvnrstd & \begin{tabular}{l} 
Estimate standard errors of model and \\
covariance parameters.
\end{tabular} \\
ecmmvnrfish & Estimate the Fisher information matrix. \\
\hline
\end{tabular}

\section*{Multivariate Normal Parameter Estimation with Missing Data}

You can use the following functions to estimate the mean and covariance of multivariate normal data.
\begin{tabular}{ll} 
ecmnmle & Estimate the mean and covariance of the data. \\
ecmnstd & \begin{tabular}{l} 
Estimate standard errors of the mean and \\
covariance of the data.
\end{tabular} \\
ecmnfish & Estimate the Fisher information matrix. \\
ecmnhess & \begin{tabular}{l} 
Estimate the Fisher information matrix using \\
the Hessian.
\end{tabular} \\
ecmnobj & Calculate the log-likelihood function.
\end{tabular}

These functions behave slightly differently from the more general regression functions since they solve a specialized problem. Consult the function reference pages for details.

\section*{Support Functions}

Two support functions are included.
\begin{tabular}{ll}
\hline convert2sur & \begin{tabular}{l} 
Convert a multivariate normal regression model \\
into an SUR model.
\end{tabular} \\
ecmninit & \begin{tabular}{l} 
Obtain initial estimates for the mean and \\
covariance of a Data matrix.
\end{tabular} \\
\hline
\end{tabular}

The convert2sur function converts a multivariate normal regression model into a seemingly unrelated regression, or SUR, model. The second function ecmninit is a specialized function to obtain initial ad hoc estimates for the mean and covariance of a Data matrix with missing data. (If there are no missing values, the estimates are the maximum likelihood estimates for the mean and covariance.)

\section*{Multivariate Normal Regression Types}
In this section...
"Regressions" on page 9-18
"Multivariate Normal Regression" on page 9-18
"Multivariate Normal Regression Without Missing Data" on page 9-18
"Multivariate Normal Regression with Missing Data" on page 9-18
"Least-Squares Regression" on page 9-18
"Least-Squares Regression Without Missing Data" on page 9-19
"Least-Squares Regression with Missing Data" on page 9-19
"Covariance-Weighted Least Squares" on page 9-19
"Covariance-Weighted Least Squares Without Missing Data" on page 9-20
"Covariance-Weighted Least Squares with Missing Data" on page 9-20
"Feasible Generalized Least Squares" on page 9-20
"Feasible Generalized Least Squares Without Missing Data" on page 9-21
"Feasible Generalized Least Squares with Missing Data" on page 9-21
"Seemingly Unrelated Regression" on page 9-21
"Seemingly Unrelated Regression Without Missing Data" on page 9-23
"Seemingly Unrelated Regression with Missing Data" on page 9-23
"Mean and Covariance Parameter Estimation" on page 9-23
"Troubleshooting Multivariate Normal Regression" on page 9-24
"Slow Convergence" on page 9-25
"Nonrandom Residuals" on page 9-25
"Nonconvergence" on page 9-25
"Portfolios with Missing Data" on page 9-27

\section*{Regressions}

Each regression function has a specific operation. This section shows how to use these functions to perform specific types of regressions. To illustrate use of the functions for various regressions, "typical" usage is shown with optional arguments kept to a minimum. For a typical regression, you estimate model parameters and residual covariance matrices with the mle functions and estimate the standard errors of model parameters with the std functions. The regressions "without missing data" essentially ignore samples with any missing values, and the regressions "with missing data" ignore samples with every value missing.

\section*{Multivariate Normal Regression}

Multivariate normal regression, or MVNR, is the "standard" implementation of the regression functions in Financial Toolbox software.

\section*{Multivariate Normal Regression Without Missing Data}

Estimate Parameters
[Parameters, Covariance] = mvnrmle(Data, Design);
Estimate Standard Errors
StdParameters = mvnrstd(Data, Design, Covariance);

\section*{Multivariate Normal Regression with Missing Data}

Estimate Parameters
[Parameters, Covariance] = ecmmvnrmle(Data, Design);
Estimate Standard Errors
StdParameters = ecmmvnrstd(Data, Design, Covariance);

\section*{Least-Squares Regression}

Least-squares regression, or LSR, sometimes called ordinary least-squares or multiple linear regression, is the simplest linear regression model. It also
enjoys the property that, independent of the underlying distribution, it is a best linear unbiased estimator (BLUE).

Given \(m=\) NumSamples observations, the typical least-squares regression model seeks to minimize the objective function
\[
\sum_{k=1}^{m}\left(Z_{k}-H_{k} b\right)^{T}\left(Z_{k}-H_{k} b\right),
\]
which, within the maximum likelihood framework of the multivariate normal regression routine mvnrmle, is equivalent to a single-iteration estimation of just the parameters to obtain Parameters with the initial covariance matrix Covariance held fixed as the identity matrix. In the case of missing data, however, the internal algorithm to handle missing data requires a separate routine ecmlsrmle to do least-squares instead of multivariate normal regression.

\section*{Least-Squares Regression Without Missing Data}

Estimate Parameters
[Parameters, Covariance] = mvnrmle(Data, Design, 1);
Estimate Standard Errors

StdParameters = mvnrstd(Data, Design, Covariance);

\section*{Least-Squares Regression with Missing Data}

\author{
Estimate Parameters
}
[Parameters, Covariance] = ecmlsrmle(Data, Design);
Estimate Standard Errors

StdParameters = ecmmvnrstd(Data, Design, Covariance);

\section*{Covariance-Weighted Least Squares}

Given \(m=\) NUMSAMPLES observations, the typical covariance-weighted least squares, or CWLS, regression model seeks to minimize the objective function
\[
\sum_{k=1}^{m}\left(Z_{k}-H_{k} b\right)^{T} C_{0}\left(Z_{k}-H_{k} b\right)
\]
with fixed covariance \(C_{0}\).
In most cases, \(C_{0}\) is a diagonal matrix. The inverse matrix \(W=C_{0}^{-1}\) has diagonal elements that can be considered relative "weights" for each series. Thus, CWLS is a form of weighted least squares with the weights applied across series.

\section*{Covariance-Weighted Least Squares Without Missing Data}

Estimate Parameters
[Parameters, Covariance] = mvnrmle(Data, Design, 1, [], [], [], Covar0) ;

Estimate Standard Errors
StdParameters = mvnrstd(Data, Design, Covariance);

\section*{Covariance-Weighted Least Squares with Missing Data}

Estimate Parameters
[Parameters, Covariance] = ecmlsrmle(Data, Design, [], [], [], [], Covar0) ;

Estimate Standard Errors
StdParameters = ecmmvnrstd(Data, Design, Covariance);

\section*{Feasible Generalized Least Squares}

An ad hoc form of least squares that has surprisingly good properties for misspecified or nonnormal models is known as feasible generalized least squares, or FGLS. The basic procedure is to do least-squares regression and
then to do covariance-weighted least-squares regression with the resultant residual covariance from the first regression.

\section*{Feasible Generalized Least Squares Without Missing Data}

Estimate Parameters
[Parameters, Covariance] = mvnrmle(Data, Design, 2, 0, 0);
or (to illustrate the FGLS process explicitly)
[Parameters, Covar0] = mvnrmle(Data, Design, 1);
[Parameters, Covariance] = mvnrmle(Data, Design, 1, [], [], [], Covar0);

Estimate Standard Errors

StdParameters = mvnrstd(Data, Design, Covariance);

\title{
Feasible Generalized Least Squares with Missing Data
}

Estimate Parameters
```

[Parameters, Covar0] = ecmlsrmle(Data, Design);
[Parameters, Covariance] = ecmlsrmle(Data, Design, [], [], [], [],
Covar0);

```

Estimate Standard Errors
StdParameters = ecmmvnrstd(Data, Design, Covariance);

\section*{Seemingly Unrelated Regression}

Given a multivariate normal regression model in standard form with a Data matrix and a Design array, it is possible to convert the problem into a seemingly unrelated regression (SUR) problem by a simple transformation of the Design array. The main idea of SUR is that instead of having a common parameter vector over all data series, you have a separate parameter vector associated with each separate series or with distinct groups of series that, nevertheless, share a common residual covariance. It is this ability to
aggregate and disaggregate series and to perform comparative tests on each design that is the power of SUR.

To make the transformation, use the function convert2sur, which converts a standard-form design array into an equivalent design array to do SUR with a specified mapping of the series into NUMGROUPS groups. The regression functions are used in the usual manner, but with the SUR design array instead of the original design array. Instead of having NUMPARAMS elements, the SUR output parameter vector has NUMGROUPS of stacked parameter estimates, where the first NUMPARAMS elements of Parameters contain parameter estimates associated with the first group of series, the next NUMPARAMS elements of Parameters contain parameter estimates associated with the second group of series, and so on. If the model has only one series, for example, NUMSERIES = 1, then the SUR design array is the same as the original design array since SUR requires two or more series to generate distinct parameter estimates.

Given NUMPARAMS parameters and NUMGROUPS groups with a parameter vector Parameters with NUMGROUPS * NUMPARAMS elements from any of the regression routines, the following MATLAB code fragment shows how to print a table of SUR parameter estimates with rows that correspond to each parameter and columns that correspond to each group or series:
```

fprintf(1,'Seemingly Unrelated Regression Parameter
Estimates\n');
fprintf(1,' %7s ',' ');
fprintf(1,' Group(%3d) ',1:NumGroups);
fprintf(1,'\n');
for i = 1:NumParams
fprintf(1,' %7d ',i);
ii = i;
for j = 1:NumGroups
fprintf(1,'%12g ',Param(ii));
ii = ii + NumParams;
end
fprintf(1,'\n');
end
fprintf(1,'\n');

```
```

Seemingly Unrelated Regression Without Missing
Data
Form an SUR Design
DesignSUR = convert2sur(Design, Group);
Estimate Parameters
[Parameters, Covariance] = mvnrmle(Data, DesignSUR);
Estimate Standard Errors
StdParameters = mvnrstd(Data, DesignSUR, Covariance);

```

\section*{Seemingly Unrelated Regression with Missing Data}
```

Form an SUR Design
DesignSUR = convert2sur(Design, Group);
Estimate Parameters
[Parameters, Covariance] = ecmmvnrmle(Data, DesignSUR);
Estimate Standard Errors
StdParameters = ecmmvnrstd(Data, DesignSUR, Covariance);

```

\section*{Mean and Covariance Parameter Estimation}
```

Without missing data, you can estimate the mean of your Data with the function mean and the covariance with the function cov. Nevertheless, the function ecmnmle does this for you if it detects an absence of missing values. Otherwise, it uses the ECM algorithm to handle missing values.
Estimate Parameters
[Mean, Covariance] = ecmnmle(Data);
Estimate Standard Errors
StdMean $=$ ecmnstd(Data, Mean, Covariance);

```

\section*{Troubleshooting Multivariate Normal Regression}

This section provides a few pointers to handle various technical and operational difficulties that might occur.

\section*{Biased Estimates}

If samples are ignored, the number of samples used in the estimation is less than NumSamples. Clearly the actual number of samples used must be sufficient to obtain estimates. In addition, although the model parameters Parameters (or mean estimates Mean) are unbiased maximum likelihood estimates, the residual covariance estimate Covariance is biased. To convert to an unbiased covariance estimate, multiply Covariance by
Count/(Count-1),
where Count is the actual number of samples used in the estimation with Count \(\leq\) NumSamples. Note that none of the regression functions perform this adjustment.

\section*{Requirements}

The regression functions, particularly the estimation functions, have several requirements. First, they must have consistent values for NumSamples, NumSeries, and NumParams. As a general rule, the multivariate normal regression functions require

Count \(\times\) NumSeries \(\leq \max \{\) NumParams, NumSeries \(\times(\) NumSeries +1\() / 2\}\)
and the least-squares regression functions require
Count \(\times\) NumSeries \(\leq\) NumParams,
where Count is the actual number of samples used in the estimation with
Count \(\leq\) NumSamples.

Second, they must have enough nonmissing values to converge. Third, they must have a nondegenerate covariance matrix.

Although some necessary and sufficient conditions can be found in the references, general conditions for existence and uniqueness of solutions in the missing-data case do not exist. Nonconvergence is usually due to an ill-conditioned covariance matrix estimate, which is discussed in greater detail in "Nonconvergence" on page 9-25.

\section*{Slow Convergence}

Since worst-case convergence of the ECM algorithm is linear, it is possible to execute hundreds and even thousands of iterations before termination of the algorithm. If you are estimating with the ECM algorithm on a regular basis with regular updates, you can use prior estimates as initial guesses for the next period's estimation. This approach often speeds things up since the default initialization in the regression functions sets the initial parameters \(\mathbf{b}\) to zero and the initial covariance \(\mathbf{C}\) to be the identity matrix.

Other ad hoc approaches are possible although most approaches are problem-dependent. In particular, for mean and covariance estimation, the estimation function ecmnmle uses a function ecmninit to obtain an initial estimate.

\section*{Nonrandom Residuals}

Simultaneous estimates for parameters \(\mathbf{b}\) and covariances \(\mathbf{C}\) require \(\mathbf{C}\) to be positive-definite. Consequently, the general multivariate normal regression routines require nondegenerate residual errors. If you are faced with a model that has exact results, the least-squares routine ecmlsrmle still works, although it provides a least-squares estimate with a singular residual covariance matrix. The other regression functions will fail.

\section*{Nonconvergence}

Although the regression functions are robust and work for most "typical" cases, they can fail to converge. The main failure mode is an ill-conditioned covariance matrix, where failures are either soft or hard. A soft failure wanders endlessly toward a nearly singular covariance matrix and can be spotted if the algorithm fails to converge after about 100 iterations. If

MaxIterations is increased to 500 and display mode is initiated (with no output arguments), a typical soft failure looks like this.


This case, which is based on 20 observations of 5 assets with \(30 \%\) of data missing, shows that the log-likelihood goes linearly to infinity as the likelihood function goes to 0 . In this case, the function converges but the covariance matrix is effectively singular with a smallest eigenvalue on the order of machine precision (eps).

For the function ecmnmle, a hard error looks like this:
```

> In ecmninit at 60
In ecmnmle at 140
??? Error using ==> ecmnmle
Full covariance not positive-definite in iteration 218.

```

From a practical standpoint, if in doubt, test your residual covariance matrix from the regression routines to ensure that it is positive-definite. This is important because a soft error has a matrix that appears to be positive-definite but actually has a near-zero-valued eigenvalue to within machine precision. To do this with a covariance estimate Covariance, use cond(Covariance), where any value greater than \(1 / \mathrm{eps}\) should be considered suspect.

If either type of failure occurs, however, note that the regression routine is indicating that something is probably wrong with the data. (Even with no missing data, two time series that are proportional to one another produce a singular covariance matrix.)

\section*{Portfolios with Missing Data}

This example illustrates how to use the missing data algorithms for portfolio optimization and for valuation. This example works with 5 years of daily total return data for 12 computer technology stocks, with 6 hardware and 6 software companies. The example estimates the mean and covariance matrix for these stocks, forms efficient frontiers with both a naïve approach and the ECM approach, and compares results.

You can run the example directly with ecmtechdemo.m.
1 Load the following data file:
load ecmtechdemo
This file contains these three quantities:
- Assets is a cell array of the tickers for the twelve stocks in the example.
- Data is a 1254 -by-12 matrix of 1254 daily total returns for each of the 12 stocks.
- Dates is a 1254-by-1 column vector of the dates associated with the data.

The time period for the data extends from April 19, 2000 to April 18, 2005.
The sixth stock in Assets is Google (GOOG), which started trading on August 19, 2004. Consequently, all returns before August 20, 2004 are missing and
represented as NaNs. Also, Amazon (AMZN) had a few days with missing values scattered throughout the past 5 years.

2 A naïve approach to the estimation of the mean and covariance for these 12 assets is to eliminate all days that have missing values for any of the 12 assets. Use the function ecmninit with the nanskip option to do this.
[NaNMean, NaNCovar] = ecmninit(Data,'nanskip');
3 Contrast the result of this approach with using all available data and the function ecmnmle to compute the mean and covariance. First, call ecmnmle with no output arguments to establish that enough data is available to obtain meaningful estimates.
```

ecmnmle(Data);

```

The following figure shows that, even with almost \(87 \%\) of the Google data being NaN values, the algorithm converges after only four iterations.


4 Estimate the mean and covariance as computed by ecmnmle.
[ECMMean, ECMCovar] = ecmnmle(Data)
```

ECMMean =
0.0008
0.0008
-0.0005
0.0002
0.0011
0.0038
-0.0003
-0.0000
-0.0003
-0.0000
-0.0003
0.0004

```
ECMCovar =
\begin{tabular}{llllll}
0.0012 & 0.0005 & 0.0006 & 0.0005 & 0.0005 & 0.0003 \\
0.0005 & 0.0024 & 0.0007 & 0.0006 & 0.0010 & 0.0004 \\
0.0006 & 0.0007 & 0.0013 & 0.0007 & 0.0007 & 0.0003 \\
0.0005 & 0.0006 & 0.0007 & 0.0009 & 0.0006 & 0.0002 \\
0.0005 & 0.0010 & 0.0007 & 0.0006 & 0.0016 & 0.0006 \\
0.0003 & 0.0004 & 0.0003 & 0.0002 & 0.0006 & 0.0022 \\
0.0005 & 0.0005 & 0.0006 & 0.0005 & 0.0005 & 0.0001 \\
0.0003 & 0.0003 & 0.0004 & 0.0003 & 0.0003 & 0.0002 \\
0.0006 & 0.0006 & 0.0008 & 0.0007 & 0.0006 & 0.0002 \\
0.0003 & 0.0004 & 0.0005 & 0.0004 & 0.0004 & 0.0001 \\
0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0007 & 0.0003 \\
0.0006 & 0.0012 & 0.0008 & 0.0007 & 0.0011 & 0.0016
\end{tabular} ECMCovar (continued)
\begin{tabular}{llllll}
0.0005 & 0.0003 & 0.0006 & 0.0003 & 0.0005 & 0.0006 \\
0.0005 & 0.0003 & 0.0006 & 0.0004 & 0.0006 & 0.0012 \\
0.0006 & 0.0004 & 0.0008 & 0.0005 & 0.0008 & 0.0008 \\
0.0005 & 0.0003 & 0.0007 & 0.0004 & 0.0005 & 0.0007
\end{tabular}
\begin{tabular}{llllll}
0.0005 & 0.0003 & 0.0006 & 0.0004 & 0.0007 & 0.0011 \\
0.0001 & 0.0002 & 0.0002 & 0.0001 & 0.0003 & 0.0016 \\
0.0009 & 0.0003 & 0.0005 & 0.0004 & 0.0005 & 0.0006 \\
0.0003 & 0.0005 & 0.0004 & 0.0003 & 0.0004 & 0.0004 \\
0.0005 & 0.0004 & 0.0011 & 0.0005 & 0.0007 & 0.0007 \\
0.0004 & 0.0003 & 0.0005 & 0.0006 & 0.0004 & 0.0005 \\
0.0005 & 0.0004 & 0.0007 & 0.0004 & 0.0013 & 0.0007 \\
0.0006 & 0.0004 & 0.0007 & 0.0005 & 0.0007 & 0.0020
\end{tabular}

5 Given estimates for the mean and covariance of asset returns derived from the naïve and ECM approaches, estimate portfolios, and associated expected returns and risks on the efficient frontier for both approaches.
```

[ECMRisk, ECMReturn, ECMWts] = portopt(ECMMean',ECMCovar,10);
[NaNRisk, NaNReturn, NaNWts] = portopt(NaNMean',NaNCovar,10);

```

6 Plot the results on the same graph to illustrate the differences.
```

figure(gcf)
plot(ECMRisk,ECMReturn,'-bo','MarkerFaceColor','b','MarkerSize', 3);
hold all
plot(NaNRisk,NaNReturn,'-ro','MarkerFaceColor','r','MarkerSize', 3);
title('\bfMean-Variance Efficient Frontiers under Various Assumptions');
legend('ECM','NaN','Location','SouthEast');
xlabel('\bfStd. Dev. of Returns');
ylabel('\bfMean of Returns');
hold off

```


7 Clearly, the naïve approach is optimistic about the risk-return trade-offs for this universe of 12 technology stocks. The proof, however, lies in the portfolio weights. To view the weights, enter

Assets
ECMWts
NaNWts
which generates
>> Assets
ans \(=\)
'AAPL' 'AMZN' 'CSCO' 'DELL' 'EBAY' 'GOOG'
ans =
\begin{tabular}{rrrrrr}
0.0358 & 0.0011 & -0.0000 & 0.0000 & 0.0000 & 0.0989 \\
0.0654 & 0.0110 & 0.0000 & 0.0000 & 0.0000 & 0.1877 \\
0.0923 & 0.0194 & 0.0000 & 0.0000 & 0.0000 & 0.2784 \\
0.1165 & 0.0264 & 0.0000 & -0.0000 & 0.0000 & 0.3712 \\
0.1407 & 0.0334 & -0.0000 & 0 & 0.0000 & 0.4639 \\
0.1648 & 0.0403 & 0.0000 & 0 & -0.0000 & 0.5566 \\
0.1755 & 0.0457 & 0.0000 & -0.0000 & -0.0000 & 0.6532 \\
0.1845 & 0.0509 & 0.0000 & 0.0000 & -0.0000 & 0.7502 \\
0.1093 & 0.0174 & -0.0000 & 0.0000 & 0 & 0.8733 \\
0 & 0 & -0.0000 & 0.0000 & 0 & 1.0000
\end{tabular}
\(\gg\) NaNWts
ans \(=\)
\begin{tabular}{rrrrrr}
-0.0000 & 0.0000 & -0.0000 & 0.1185 & 0.0000 & 0.0522 \\
0.0576 & -0.0000 & -0.0000 & 0.1219 & 0.0000 & 0.0854 \\
0.1248 & -0.0000 & -0.0000 & 0.0952 & -0.0000 & 0.1195 \\
0.1969 & -0.0000 & -0.0000 & 0.0529 & -0.0000 & 0.1551 \\
0.2690 & -0.0000 & -0.0000 & 0.0105 & 0.0000 & 0.1906 \\
0.3414 & 0.0000 & -0.0000 & -0.0000 & -0.0000 & 0.2265 \\
0.4235 & 0.0000 & -0.0000 & -0.0000 & -0.0000 & 0.2639 \\
0.5245 & 0.0000 & -0.0000 & -0.0000 & -0.0000 & 0.3034 \\
0.6269 & -0.0000 & -0.0000 & -0.0000 & -0.0000 & 0.3425 \\
1.0000 & -0.0000 & -0.0000 & 0.0000 & -0.0000 & 0
\end{tabular}

Assets (continued)
'HPQ' 'IBM' 'INTC' 'MSFT' 'ORCL' 'YHOO'

ECMWts (continued)
\begin{tabular}{rrrrrr}
0.0535 & 0.4676 & 0.0000 & 0.3431 & -0.0000 & 0.0000 \\
0.0179 & 0.3899 & -0.0000 & 0.3282 & 0.0000 & -0.0000 \\
0 & 0.3025 & -0.0000 & 0.3074 & 0.0000 & -0.0000 \\
0.0000 & 0.2054 & -0.0000 & 0.2806 & 0.0000 & 0.0000 \\
0.0000 & 0.1083 & -0.0000 & 0.2538 & -0.0000 & 0.0000
\end{tabular}
\begin{tabular}{rrrrrr}
0.0000 & 0.0111 & -0.0000 & 0.2271 & -0.0000 & 0.0000 \\
0.0000 & 0.0000 & -0.0000 & 0.1255 & -0.0000 & 0.0000 \\
0.0000 & 0 & -0.0000 & 0.0143 & -0.0000 & -0.0000 \\
0.0000 & -0.0000 & -0.0000 & -0.0000 & -0.0000 & 0.0000 \\
0.0000 & -0.0000 & -0.0000 & -0.0000 & -0.0000 & 0.0000
\end{tabular}

NaNWts (continued)
\begin{tabular}{rrrrrr}
0.0824 & 0.1779 & 0.0000 & 0.5691 & -0.0000 & 0.0000 \\
0.1274 & 0.0460 & 0.0000 & 0.5617 & -0.0000 & -0.0000 \\
0.1674 & -0.0000 & 0.0000 & 0.4802 & 0.0129 & -0.0000 \\
0.2056 & -0.0000 & 0.0000 & 0.3621 & 0.0274 & -0.0000 \\
0.2438 & -0.0000 & 0.0000 & 0.2441 & 0.0419 & -0.0000 \\
0.2782 & -0.0000 & 0.0000 & 0.0988 & 0.0551 & -0.0000 \\
0.2788 & -0.0000 & 0.0000 & -0.0000 & 0.0337 & -0.0000 \\
0.1721 & -0.0000 & 0.0000 & -0.0000 & -0.0000 & -0.0000 \\
0.0306 & -0.0000 & 0.0000 & 0.0000 & 0 & -0.0000 \\
0 & 0.0000 & 0.0000 & -0.0000 & -0.0000 & -0.0000
\end{tabular}

The naïve portfolios in NaNWts tend to favor Apple Computer (AAPL), which happened to do well over the period from the Google IPO to the end of the estimation period, while the ECM portfolios in ECMWts tend to underweight Apple Computer and to recommend increased weights in Google relative to the naïve weights.

8 To evaluate the impact of estimation error and, in particular, the effect of missing data, use ecmnstd to calculate standard errors. Although it is possible to estimate the standard errors for both the mean and covariance, the standard errors for the mean estimates alone are usually the main quantities of interest.

StdMeanF = ecmnstd(Data,ECMMean,ECMCovar,'fisher');
9 Calculate standard errors that use the data-generated Hessian matrix (which accounts for the possible loss of information due to missing data) with the option HESSIAN.
```

StdMeanH = ecmnstd(Data,ECMMean,ECMCovar,'hessian');

```

The difference in the standard errors shows the increase in uncertainty of estimation of asset expected returns due to missing data. This can be viewed by entering

Assets
StdMeanH \({ }^{\prime}\)
StdMeanF'
StdMeanH' - StdMeanF'

The two assets with missing data, AMZN and GOOG, are the only assets to have differences due to missing information.

\section*{Valuation with Missing Data}

\author{
In this section... \\ "Introduction" on page 9-35 \\ "Capital Asset Pricing Model" on page 9-35 \\ "Estimation of the CAPM" on page 9-36 \\ "Estimation with Missing Data" on page 9-37 \\ "Estimation of Some Technology Stock Betas" on page 9-37 \\ "Grouped Estimation of Some Technology Stock Betas" on page 9-40 \\ "References" on page 9-43
}

\section*{Introduction}

The Capital Asset Pricing Model (CAPM) is a venerable but often maligned tool to characterize comovements between asset and market prices. Although many issues arise in CAPM implementation and interpretation, one problem that practitioners face is to estimate the coefficients of the CAPM with incomplete stock price data.

This example shows how to use the missing data regression functions to estimate the coefficients of the CAPM. You can run the example directly using CAPMdemo.m located at matlabroot/toolbox/finance/findemos.

\section*{Capital Asset Pricing Model}

Given a host of assumptions that can be found in the references (see Sharpe [11], Lintner [6], Jarrow [5], and Sharpe, et. al. [12]), the CAPM concludes that asset returns have a linear relationship with market returns. Specifically, given the return of all stocks that constitute a market denoted as \(M\) and the return of a riskless asset denoted as \(C\), the CAPM states that the return of each asset \(R_{\mathrm{i}}\) in the market has the expectational form
\[
E\left[R_{i}\right]=\alpha_{i}+C+\beta_{i}(E[M]-C)
\]
for assets \(i=1, \ldots, n\), where \(\beta_{i}\) is a parameter that specifies the degree of comovement between a given asset and the underlying market. In other
words, the expected return of each asset is equal to the return on a riskless asset plus a risk-adjusted expected market return net of riskless asset returns. The collection of parameters \(\beta_{1}, \ldots, \beta_{n}\) is called asset betas.

Note that the beta of an asset has the form
\[
\beta_{i}=\frac{\operatorname{cov}\left(R_{i}, M\right)}{\operatorname{var}(M)},
\]
which is the ratio of the covariance between asset and market returns divided by the variance of market returns. If an asset has a beta \(=1\), the asset is said to move with the market; if an asset has a beta \(>1\), the asset is said to be more volatile than the market. Conversely, if an asset has a beta \(<1\), the asset is said to be less volatile than the market.

\section*{Estimation of the CAPM}

The standard CAPM model is a linear model with additional parameters for each asset to characterize residual errors. For each of \(n\) assets with \(m\) samples of observed asset returns \(R_{k, i}\), market returns \(M_{k}\), and riskless asset returns \(C_{k}\), the estimation model has the form
\[
R_{k, i}=\alpha_{i}+C_{k}+\beta_{i}\left(M_{k}-C_{k}\right)+V_{k, i}
\]
for samples \(k=1, \ldots, m\) and assets \(i=1, \ldots, n\), where \(a_{i}\) is a parameter that specifies the nonsystematic return of an asset, \(\beta_{i}\) is the asset beta, and \(V_{k, i}\) is the residual error for each asset with associated random variable \(V_{i}\).

The collection of parameters \(a_{1}, \ldots, a_{n}\) are called asset alphas. The strict form of the CAPM specifies that alphas must be zero and that deviations from zero are the result of temporary disequilibria. In practice, however, assets may have nonzero alphas, where much of active investment management is devoted to the search for assets with exploitable nonzero alphas.

To allow for the possibility of nonzero alphas, the estimation model generally seeks to estimate alphas and to perform tests to determine if the alphas are statistically equal to zero.

The residual errors \(V_{i}\) are assumed to have moments
\[
E\left[V_{i}\right]=0
\]
and
\[
E\left[V_{i} V_{j}\right]=S_{i j}
\]
for assets \(i, j=1, \ldots, n\), where the parameters \(S_{11}, \ldots, S_{n n}\) are called residual or nonsystematic variances/covariances.

The square root of the residual variance of each asset, for example, \(\operatorname{sqrt}\left(S_{i i}\right)\) for \(i=1, \ldots, n\), is said to be the residual or nonsystematic risk of the asset since it characterizes the residual variation in asset prices that are not explained by variations in market prices.

\section*{Estimation with Missing Data}

Although betas can be estimated for companies with sufficiently long histories of asset returns, it is difficult to estimate betas for recent IPOs. However, if a collection of sufficiently observable companies exists that can be expected to have some degree of correlation with the new company's stock price movements, that is, companies within the same industry as the new company, it is possible to obtain imputed estimates for new company betas with the missing-data regression routines.

\section*{Estimation of Some Technology Stock Betas}

To illustrate how to use the missing-data regression routines, estimate betas for 12 technology stocks, where a single stock (GOOG) is an IPO.

1 Load dates, total returns, and ticker symbols for the 12 stocks from the MAT-file CAPMuniverse.
load CAPMuniverse
whos Assets Data Dates
\begin{tabular}{lrrl} 
Name & Size & Bytes & Class \\
& & & \\
Assets & \(1 \times 14\) & 952 & cell array \\
Data & \(1471 \times 14\) & 164752 & double array
\end{tabular}

Grand total is 22135 elements using 177472 bytes
The assets in the model have the following symbols, where the last two series are proxies for the market and the riskless asset:
```

Assets(1:7)
Assets(8:14)
ans =
'AAPL' 'AMZN' 'CSCO' 'DELL' 'EBAY' 'GOOG' 'HPQ'
ans =
'IBM' 'INTC' 'MSFT' 'ORCL' 'YHOO' 'MARKET' 'CASH'

```

The data covers the period from January 1, 2000 to November 7, 2005 with daily total returns. Two stocks in this universe have missing values that are represented by NaNs. One of the two stocks had an IPO during this period and, consequently, has significantly less data than the other stocks.

2 Compute separate regressions for each stock, where the stocks with missing data will have estimates that reflect their reduced observability.
```

[NumSamples, NumSeries] = size(Data);
NumAssets = NumSeries - 2;
StartDate = Dates(1);
EndDate = Dates(end);
fprintf(1,'Separate regressions with ');
fprintf(1,'daily total return data from %s to %s ...\n', ...
datestr(StartDate,1),datestr(EndDate,1));
fprintf(1,' %4s %-20s %-20s %-20s\n','','Alpha','Beta','Sigma');
fprintf(1,' ---- ------------------- ');
fprintf(1,'------------------ ----------------------\n');
for i = 1:NumAssets
% Set up separate asset data and design matrices

```
```

 TestData = zeros(NumSamples,1);
 TestDesign = zeros(NumSamples,2);
 TestData(:) = Data(:,i) - Data(:,14);
 TestDesign(:,1) = 1.0;
 TestDesign(:,2) = Data(:,13) - Data(:,14);
 % Estimate CAPM for each asset separately
[Param, Covar] = ecmmvnrmle(TestData, TestDesign);
% Estimate ideal standard errors for covariance parameters
[StdParam, StdCovar] = ecmmvnrstd(TestData, TestDesign, ...
Covar, 'fisher');
% Estimate sample standard errors for model parameters
StdParam = ecmmvnrstd(TestData, TestDesign, Covar, 'hessian');
% Set up results for output
Alpha = Param(1);
Beta = Param(2);
Sigma = sqrt(Covar);
StdAlpha = StdParam(1);
StdBeta = StdParam(2);
StdSigma = sqrt(StdCovar);
% Display estimates
fprintf(' %4s %9.4f (%8.4f) %9.4f (%8.4f) %9.4f (%8.4f)\n', ...
Assets{i},Alpha(1),abs(Alpha(1)/StdAlpha(1)), ...
Beta(1),abs(Beta(1)/StdBeta(1)),Sigma(1),StdSigma(1));
end

```

This code fragment generates the following table.
```

Separate regressions with daily total return data from 03-Jan-2000
to 07-Nov-2005 ...
Alpha Beta Sigma

| AAPL | $0.0012(1.3882)$ | $1.2294(17.1839)$ | $0.0322($ | $0.0062)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AMZN | $0.0006(0.5326)$ | $1.3661(13.6579)$ | 0.0449 | (0.0086) |

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline CSCO & -0.0002 & 0.2878) & 1.5653 ( 23.6085) & 0.0298 & 0.0057) \\
\hline DELL & -0.0000 & ( 0.0368) & 1.2594 ( 22.2164) & 0.0255 & 0.0049) \\
\hline EBAY & 0.0014 & ( 1.4326) & 1.3441 ( 16.0732) & 0.0376 & 0.0072) \\
\hline GOOG & 0.0046 & ( 3.2107) & 0.3742 ( 1.7328) & 0.0252 & 0.0071) \\
\hline HPQ & 0.0001 & ( 0.1747) & 1.3745 ( 24.2390) & 0.0255 & 0.0049) \\
\hline IBM & -0.0000 & ( 0.0312) & 1.0807 ( 28.7576) & 0.0169 & 0.0032) \\
\hline INTC & 0.0001 & ( 0.1608) & 1.6002 ( 27.3684) & 0.0263 & 0.0050) \\
\hline MSFT & -0.0002 & ( 0.4871) & 1.1765 ( 27.4554) & 0.0193 & 0.0037) \\
\hline ORCL & 0.0000 & ( 0.0389) & 1.5010 ( 21.1855) & 0.0319 & 0.0061) \\
\hline YHOO & 0.0001 & ( 0.1282) & 1.6543 ( 19.3838) & 0.0384 & 0.0074) \\
\hline
\end{tabular}

The Alpha column contains alpha estimates for each stock that are near zero as expected. In addition, the \(t\)-statistics (which are enclosed in parentheses) generally reject the hypothesis that the alphas are nonzero at the \(99.5 \%\) level of significance.

The Beta column contains beta estimates for each stock that also have t-statistics enclosed in parentheses. For all stocks but GOOG, the hypothesis that the betas are nonzero is accepted at the \(99.5 \%\) level of significance. It seems, however, that GOOG does not have enough data to obtain a meaningful estimate for beta since its t-statistic would imply rejection of the hypothesis of a nonzero beta.

The Sigma column contains residual standard deviations, that is, estimates for nonsystematic risks. Instead of t -statistics, the associated standard errors for the residual standard deviations are enclosed in parentheses.

\section*{Grouped Estimation of Some Technology Stock Betas}

To estimate stock betas for all 12 stocks, set up a joint regression model that groups all 12 stocks within a single design. (Since each stock has the same design matrix, this model is actually an example of seemingly unrelated regression.) The routine to estimate model parameters is ecmmvnrmle, and the routine to estimate standard errors is ecmmvnrstd.

Because GOOG has a significant number of missing values, a direct use of the missing data routine ecmmvnrmle takes 482 iterations to converge. This can take a long time to compute. For the sake of brevity, the parameter and covariance estimates after the first 480 iterations are contained in a MAT-file and are used as initial estimates to compute stock betas.
load CAPMgroupparam
whos Param0 Covar0
\begin{tabular}{llrl} 
Name & Size & Bytes Class \\
Covar0 & \(12 \times 12\) & 1152 double array \\
Param0 & \(24 \times 1\) & 192 double array \\
Grand total is 168 elements using 1344 bytes
\end{tabular}

Now estimate the parameters for the collection of 12 stocks.
```

fprintf(1,'\n');
fprintf(1,'Grouped regression with ');
fprintf(1,'daily total return data from %s to %S ...\n', ...
datestr(StartDate,1), datestr(EndDate,1));
fprintf(1,' %4s %-20s %-20s %-20s\n','','Alpha','Beta','Sigma');
fprintf(1,' ---- --------------------------
fprintf(1, '--}\mp@subsup{}{}{\prime})
NumParams = 2 * NumAssets;
% Set up grouped asset data and design matrices
TestData = zeros(NumSamples, NumAssets);
TestDesign = cell(NumSamples, 1);
Design = zeros(NumAssets, NumParams);
for k = 1:NumSamples
for i = 1:NumAssets
TestData(k,i) = Data(k,i) - Data(k,14);
Design(i,2*i - 1) = 1.0;
Design(i,2*i) = Data(k,13) - Data(k,14);
end
TestDesign{k} = Design;
end
% Estimate CAPM for all assets together with initial parameter
% estimates
[Param, Covar] = ecmmvnrmle(TestData, TestDesign, [], [], [],...
Param0, Covar0);

```
```

% Estimate ideal standard errors for covariance parameters
[StdParam, StdCovar] = ecmmvnrstd(TestData, TestDesign, Covar,...
fisher');
% Estimate sample standard errors for model parameters
StdParam = ecmmvnrstd(TestData, TestDesign, Covar, 'hessian');
% Set up results for output
Alpha = Param(1:2:end-1);
Beta = Param(2:2:end);
Sigma = sqrt(diag(Covar));
StdAlpha = StdParam(1:2:end-1);
StdBeta = StdParam(2:2:end);
StdSigma = sqrt(diag(StdCovar));
% Display estimates
for i = 1:NumAssets
fprintf(' %4s %9.4f (%8.4f) %9.4f (%8.4f) %9.4f (%8.4f)\n', ...
Assets{i},Alpha(i),abs(Alpha(i)/StdAlpha(i)), ...
Beta(i),abs(Beta(i)/StdBeta(i)),Sigma(i),StdSigma(i));
end

```

This code fragment generates the following table.
```

Grouped regression with daily total return data from 03-Jan-2000

```
to 07-Nov-2005 ...
Alpha Beta Sigma
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline AAPL & 0.0012 & 1.3882) & 1.2294 & 17.1839) & 0.0322 & \(0.0062)\) \\
\hline AMZN & 0.0007 & \(0.6086)\) & 1.3673 & 13.6427) & 0.0450 & \(0.0086)\) \\
\hline CSCO & -0.0002 & \(0.2878)\) & 1.5653 & 23.6085) & 0.0298 & \(0.0057)\) \\
\hline DELL & -0.0000 & \(0.0368)\) & 1.2594 & 22.2164) & 0.0255 & 0.0049) \\
\hline EBAY & 0.0014 & 1.4326) & 1.3441 & 16.0732) & 0.0376 & \(0.0072)\) \\
\hline GOOG & 0.0041 & 2.8907) & 0.6173 & \(3.1100)\) & 0.0337 & \(0.0065)\) \\
\hline HPQ & 0.0001 & \(0.1747)\) & 1.3745 & 24.2390) & 0.0255 & \(0.0049)\) \\
\hline IBM & -0.0000 & \(0.0312)\) & 1.0807 & ( 28.7576 ) & 0.0169 & \(0.0032)\) \\
\hline INTC & 0.0001 & \(0.1608)\) & 1.6002 & ( 27.3684) & 0.0263 & \(0.0050)\) \\
\hline MSFT & -0.0002 & \(0.4871)\) & 1.1765 & ( 27.4554 ) & 0.0193 & \(0.0037)\) \\
\hline
\end{tabular}
\begin{tabular}{lllllll} 
ORCL & \(0.0000(0.0389)\) & \(1.5010(21.1855)\) & \(0.0319(0.0061)\) \\
YHOO & \(0.0001(0.1282)\) & \(1.6543(19.3838)\) & \(0.0384(0.0074)\)
\end{tabular}

Although the results for complete-data stocks are the same, note that the beta estimates for AMZN and GOOG (the two stocks with missing values) are different from the estimates derived for each stock separately. Since AMZN has few missing values, the differences in the estimates are small. With GOOG, however, the differences are more pronounced.

The t-statistic for the beta estimate of GOOG is now significant at the \(99.5 \%\) level of significance. Note, however, that the \(t\)-statistics for beta estimates are based on standard errors from the sample Hessian which, in contrast to the Fisher information matrix, accounts for the increased uncertainty in an estimate due to missing values. If the \(t\)-statistic is obtained from the more optimistic Fisher information matrix, the t-statistic for GOOG is 8.25. Thus, despite the increase in uncertainty due to missing data, GOOG nonetheless has a statistically significant estimate for beta.

Finally, note that the beta estimate for GOOG is 0.62 -a value that may require some explanation. Although the market has been volatile over this period with sideways price movements, GOOG has steadily appreciated in value. Consequently, it is less tightly correlated with the market, implying that it is less volatile than the market (beta < 1).

\section*{References}
[1] Caines, Peter E. Linear Stochastic Systems. John Wiley \& Sons, Inc., 1988.
[2] Cramér, Harald. Mathematical Methods of Statistics. Princeton University Press, 1946.
[3] Dempster, A.P, N.M. Laird, and D.B Rubin. "Maximum Likelihood from Incomplete Data via the EM Algorithm,"Journal of the Royal Statistical Society, Series B, Vol. 39, No. 1, 1977, pp. 1-37.
[4] Greene, William H. Econometric Analysis, 5th ed., Pearson Education, Inc., 2003.
[5] Jarrow, R.A. Finance Theory, Prentice-Hall, Inc., 1988.
[6] Lintner, J. "The Valuation of Risk Assets and the Selection of Risky Investments in Stocks," Review of Economics and Statistics, Vol. 14, 1965, pp. 13-37.
[7] Little, Roderick J. A and Donald B. Rubin. Statistical Analysis with Missing Data, 2nd ed., John Wiley \& Sons, Inc., 2002.
[8] Meng, Xiao-Li and Donald B. Rubin. "Maximum Likelihood Estimation via the ECM Algorithm," Biometrika, Vol. 80, No. 2, 1993, pp. 267-278.
[9] Sexton, Joe and Anders Rygh Swensen. "ECM Algorithms that Converge at the Rate of EM," Biometrika, Vol. 87, No. 3, 2000, pp. 651-662.
[10] Shafer, J. L. Analysis of Incomplete Multivariate Data, Chapman \& Hall/CRC, 1997.
[11] Sharpe, W. F. "Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk," Journal of Finance, Vol. 19, 1964, pp. 425-442.
[12] Sharpe, W. F., G. J. Alexander, and J. V. Bailey. Investments, 6th ed., Prentice-Hall, Inc., 1999.

\section*{Solving Sample Problems}
- "Introduction" on page 10-2
- "Common Problems in Finance" on page 10-3
- "Producing Graphics with the Toolbox" on page 10-21

\section*{Introduction}

This section shows how Financial Toolbox functions solve real-world problems. The examples ship with the toolbox as MATLAB files. Try them by entering the commands directly or by executing the code.

This section contains two major topics:
- "Common Problems in Finance" on page 10-3

Shows how the toolbox solves real-world financial problems, specifically:
- "Sensitivity of Bond Prices to Interest Rates" on page 10-3
- "Bond Portfolio for Hedging Duration and Convexity" on page 10-6
- "Bond Prices and Yield Curve Parallel Shifts" on page 10-9
- "Greek-Neutral Portfolios of European Stock Options" on page 10-14
- "Term Structure Analysis and Interest-Rate Swaps" on page 10-18
- "Producing Graphics with the Toolbox" on page 10-21

Shows how the toolbox produces presentation-quality graphics by solving these problems:
- "Plotting an Efficient Frontier" on page 10-21
- "Plotting Sensitivities of an Option" on page 10-24
- "Plotting Sensitivities of a Portfolio of Options" on page 10-26

\section*{Common Problems in Finance}

\author{
In this section... \\ "Sensitivity of Bond Prices to Interest Rates" on page 10-3 \\ "Bond Portfolio for Hedging Duration and Convexity" on page 10-6 \\ "Bond Prices and Yield Curve Parallel Shifts" on page 10-9 \\ "Bond Prices and Yield Curve Nonparallel Shifts" on page 10-12 \\ "Greek-Neutral Portfolios of European Stock Options" on page 10-14 \\ "Term Structure Analysis and Interest-Rate Swaps" on page 10-18
}

\section*{Sensitivity of Bond Prices to Interest Rates}

Macaulay and modified duration measure the sensitivity of a bond's price to changes in the level of interest rates. Convexity measures the change in duration for small shifts in the yield curve, and thus measures the second-order price sensitivity of a bond. Both measures can gauge the vulnerability of a bond portfolio's value to changes in the level of interest rates.

Alternatively, analysts can use duration and convexity to construct a bond portfolio that is partly hedged against small shifts in the term structure. If you combine bonds in a portfolio whose duration is zero, the portfolio is insulated, to some extent, against interest rate changes. If the portfolio convexity is also zero, this insulation is even better. However, since hedging costs money or reduces expected return, you need to know how much protection results from hedging duration alone compared to hedging both duration and convexity.

This example demonstrates a way to analyze the relative importance of duration and convexity for a bond portfolio using some of the SIA-compliant bond functions in Financial Toolbox software. Using duration, it constructs a first-order approximation of the change in portfolio price to a level shift in interest rates. Then, using convexity, it calculates a second-order approximation. Finally, it compares the two approximations with the true price change resulting from a change in the yield curve.

Step 1. Define three bonds using values for the settlement date, maturity date, face value, and coupon rate. For simplicity, accept default values for the coupon payment periodicity (semiannual), end-of-month payment rule (rule in effect), and day-count basis (actual/actual). Also, synchronize the coupon payment structure to the maturity date (no odd first or last coupon dates). Any inputs for which defaults are accepted are set to empty matrices ([ ]) as placeholders where appropriate.
```

Settle = '19-Aug-1999';
Maturity = ['17-Jun-2010'; '09-Jun-2015'; '14-May-2025'];
Face = [100; 100; 1000];
CouponRate = [0.07; 0.06; 0.045];

```

Also, specify the yield curve information.
```

Yields = [0.05; 0.06; 0.065];

```

Step 2. Use Financial Toolbox functions to calculate the price, modified duration in years, and convexity in years of each bond.

The true price is quoted (clean) price plus accrued interest.
```

[CleanPrice, AccruedInterest] = bndprice(Yields, CouponRate,...
Settle, Maturity, 2, 0, [], [], [], [], [], Face);
Durations = bnddury(Yields, CouponRate, Settle, Maturity, 2, 0,···.
[], [], [], [], [], Face);
Convexities = bndconvy(Yields, CouponRate, Settle, Maturity, 2, 0,···.
[], [], [], [], [], Face);
Prices = CleanPrice + AccruedInterest;

```

Step 3. Choose a hypothetical amount by which to shift the yield curve (here, 0.2 percentage point or 20 basis points).
```

dY = 0.002;

```

Weight the three bonds equally, and calculate the actual quantity of each bond in the portfolio, which has a total value of \(\$ 100,000\).
```

PortfolioPrice = 100000;
PortfolioWeights = ones(3,1)/3;
PortfolioAmounts = PortfolioPrice * PortfolioWeights ./ Prices;

```

Step 4. Calculate the modified duration and convexity of the portfolio. Note that the portfolio duration or convextity is a weighted average of the durations or convexities of the individual bonds. Calculate the first- and second-order approximations of the percent price change as a function of the change in the level of interest rates.
```

PortfolioDuration = PortfolioWeights' * Durations;
PortfolioConvexity = PortfolioWeights' * Convexities;
PercentApprox1 = -PortfolioDuration * dY * 100;
PercentApprox2 = PercentApprox1 + ...
PortfolioConvexity*dY^2*100/2.0;

```

Step 5. Estimate the new portfolio price using the two estimates for the percent price change.
```

PriceApprox1 = PortfolioPrice + ...
PercentApprox1 * PortfolioPrice/100;
PriceApprox2 = PortfolioPrice + ...
PercentApprox2 * PortfolioPrice/100;

```

Step 6. Calculate the true new portfolio price by shifting the yield curve.
[CleanPrice, AccruedInterest] = bndprice(Yields + dY,... CouponRate, Settle, Maturity, 2, 0, [], [], [], [], [],... Face);

NewPrice = PortfolioAmounts' * (CleanPrice + AccruedInterest);
Step 7. Compare the results. The analysis results are as follows:
- The original portfolio price was \(\$ 100,000\).
- The yield curve shifted up by 0.2 percentage point or 20 basis points.
- The portfolio duration and convexity are 10.3181 and 157.6346 , respectively. These will be needed for "Bond Portfolio for Hedging Duration and Convexity" on page 10-6.
- The first-order approximation, based on modified duration, predicts the new portfolio price (PriceApprox1) will be \(\$ 97,936.37\).
- The second-order approximation, based on duration and convexity, predicts the new portfolio price (PriceApprox2) will be \(\$ 97,967.90\).
- The true new portfolio price (NewPrice) for this yield curve shift is \$97,967.51.
- The estimate using duration and convexity is quite good (at least for this fairly small shift in the yield curve), but only slightly better than the estimate using duration alone. The importance of convexity increases as the magnitude of the yield curve shift increases. Try a larger shift (dY) to see this effect.

The approximation formulas in this example consider only parallel shifts in the term structure, because both formulas are functions of dY , the change in yield. The formulas are not well-defined unless each yield changes by the same amount. In actual financial markets, changes in yield curve level typically explain a substantial portion of bond price movements. However, other changes in the yield curve, such as slope, may also be important and are not captured here. Also, both formulas give local approximations whose accuracy deteriorates as dY increases in size. You can demonstrate this by running the program with larger values of dY .

\section*{Bond Portfolio for Hedging Duration and Convexity}

This example constructs a bond portfolio to hedge the portfolio of "Sensitivity of Bond Prices to Interest Rates" on page 10-3 It assumes a long position in (holding) the portfolio, and that three other bonds are available for hedging. It chooses weights for these three other bonds in a new portfolio so that the duration and convexity of the new portfolio match those of the original portfolio. Taking a short position in the new portfolio, in an amount equal to the value of the first portfolio, partially hedges against parallel shifts in the yield curve.

Recall that portfolio duration or convexity is a weighted average of the durations or convexities of the individual bonds in a portfolio. As in the
previous example, this example uses modified duration in years and convexity in years. The hedging problem therefore becomes one of solving a system of linear equations, which is an easy to do in MATLAB software.

Step 1. Define three bonds available for hedging the original portfolio. Specify values for the settlement date, maturity date, face value, and coupon rate. For simplicity, accept default values for the coupon payment periodicity (semiannual), end-of-month payment rule (rule in effect), and day-count basis (actual/actual). Also, synchronize the coupon payment structure to the maturity date (that is, no odd first or last coupon dates). Set any inputs for which defaults are accepted to empty matrices ([]) as placeholders where appropriate. The intent is to hedge against duration and convexity and constrain total portfolio price.
```

Settle = '19-Aug-1999';
Maturity = ['15-Jun-2005'; '02-Oct-2010'; '01-Mar-2025'];
Face = [500; 1000; 250];
CouponRate = [0.07; 0.066; 0.08];

```

Also, specify the yield curve for each bond.
```

Yields = [0.06; 0.07; 0.075];

```

Step 2. Use Financial Toolbox functions to calculate the price, modified duration in years, and convexity in years of each bond.

The true price is quoted (clean price plus accrued interest.
[CleanPrice, AccruedInterest] = bndprice(Yields, CouponRate,... Settle, Maturity, 2, 0, [], [], [], [], [], Face);

Durations = bnddury(Yields, CouponRate, Settle, Maturity,...
2, 0, [], [], [], [], [], Face);
Convexities = bndconvy(Yields, CouponRate, Settle,...
Maturity, 2, 0, [], [], [], [], [], Face);
Prices = CleanPrice + AccruedInterest;

Step 3. Set up and solve the system of linear equations whose solution is the weights of the new bonds in a new portfolio with the same duration and convexity as the original portfolio. In addition, scale the weights to sum to 1 ; that is, force them to be portfolio weights. You can then scale this unit portfolio to have the same price as the original portfolio. Recall that the original portfolio duration and convexity are 10.3181 and 157.6346, respectively. Also, note that the last row of the linear system ensures that the sum of the weights is unity.
```

A = [Durations'
Convexities'
1 1];
b = [10.3181
157.6346
1];
Weights = A\b;

```

Step 4. Compute the duration and convexity of the hedge portfolio, which should now match the original portfolio.
```

PortfolioDuration = Weights' * Durations;
PortfolioConvexity = Weights' * Convexities;

```

Step 5. Finally, scale the unit portfolio to match the value of the original portfolio and find the number of bonds required to insulate against small parallel shifts in the yield curve.

PortfolioValue = 100000;
HedgeAmounts = Weights ./ Prices * PortfolioValue;
Step 6. Compare the results.
- As required, the duration and convexity of the new portfolio are 10.3181 and 157.6346, respectively.
- The hedge amounts for bonds 1,2 , and 3 are -57.37, 71.70, and 216.27, respectively.

Notice that the hedge matches the duration, convexity, and value ( \(\$ 100,000\) ) of the original portfolio. If you are holding that first portfolio, you can hedge by taking a short position in the new portfolio.

Just as the approximations of the first example are appropriate only for small parallel shifts in the yield curve, the hedge portfolio is appropriate only for reducing the impact of small level changes in the term structure.

\section*{Bond Prices and Yield Curve Parallel Shifts}

Often bond portfolio managers want to consider more than just the sensitivity of a portfolio's price to a small shift in the yield curve, particularly if the investment horizon is long. This example shows how MATLAB software can help you to visualize the price behavior of a portfolio of bonds over a wide range of yield curve scenarios, and as time progresses toward maturity.

This example uses Financial Toolbox bond pricing functions to evaluate the impact of time-to-maturity and yield variation on the price of a bond portfolio. It plots the portfolio value and shows the behavior of bond prices as yield and time vary.

Step 1. Specify values for the settlement date, maturity date, face value, coupon rate, and coupon payment periodicity of a four-bond portfolio. For simplicity, accept default values for the end-of-month payment rule (rule in effect) and day-count basis (actual/actual). Also, synchronize the coupon payment structure to the maturity date (no odd first or last coupon dates). Any inputs for which defaults are accepted are set to empty matrices ([ ]) as placeholders where appropriate.
```

Settle = '15-Jan-1995';
Maturity = datenum(['03-Apr-2020'; '14-May-2025'; ...
09-Jun-2019'; '25-Feb-2019']);
Face = [1000; 1000; 1000; 1000];
CouponRate = [0; 0.05; 0; 0.055];
Periods = [0; 2; 0; 2];

```

Also, specify the points on the yield curve for each bond.
```

Yields = [0.078; 0.09; 0.075; 0.085];

```

Step 2. Use Financial Toolbox functions to calculate the true bond prices as the sum of the quoted price plus accrued interest.
```

[CleanPrice, AccruedInterest] = bndprice(Yields,...
CouponRate,Settle, Maturity, Periods,...
[], [], [], [], [], [], Face);
Prices = CleanPrice + AccruedInterest;

```

Step 3. Assume the value of each bond is \(\$ 25,000\), and determine the quantity of each bond such that the portfolio value is \(\$ 100,000\).

BondAmounts = 25000 ./ Prices;
Step 4. Compute the portfolio price for a rolling series of settlement dates over a range of yields. The evaluation dates occur annually on January 15, beginning on 15-Jan-1995 (settlement) and extending out to 15-Jan-2018. Thus, this step evaluates portfolio price on a grid of time of progression (dT) and interest rates (dY).
```

dy = -0.05:0.005:0.05; % Yield changes
D = datevec(Settle); % Get date components
dt = datenum(D(1):2018, D(2), D(3)); % Get evaluation dates
[dT, dY] = meshgrid(dt, dy); % Create grid
NumTimes = length(dt); % Number of time steps
NumYields = length(dy); % Number of yield changes
NumBonds = length(Maturity); % Number of bonds

```
\% Preallocate vector
Prices \(=\) zeros(NumTimes*NumYields, NumBonds);

Now that the grid and price vectors have been created, compute the price of each bond in the portfolio on the grid one bond at a time.
```

for i = 1:NumBonds

```
    [CleanPrice, AccruedInterest] = bndprice(Yields(i)+...
    dY(:), CouponRate(i), dT(:), Maturity(i), Periods(i),...
```

 [], [], [], [], [], [], Face(i));
 Prices(:,i) = CleanPrice + AccruedInterest;
 end

```

Scale the bond prices by the quantity of bonds.

Prices = Prices * BondAmounts;
Reshape the bond values to conform to the underlying evaluation grid.
Prices = reshape(Prices, NumYields, NumTimes);
Step 5. Plot the price of the portfolio as a function of settlement date and a range of yields, and as a function of the change in yield (dY). This plot illustrates the interest rate sensitivity of the portfolio as time progresses (dT), under a range of interest rate scenarios. With the following graphics commands, you can visualize the three-dimensional surface relative to the current portfolio value (that is, \(\$ 100,000\) ).
```

figure % Open a new figure window
surf(dt, dy, Prices) % Draw the surface

```

Add the base portfolio value to the existing surface plot.
```

hold on % Add the current value for reference
basemesh = mesh(dt, dy, 100000*ones(NumYields, NumTimes));

```

Make it transparent, plot it so the price surface shows through, and draw a box around the plot.
```

set(basemesh, 'facecolor', 'none');
set(basemesh, 'edgecolor', 'm');
set(gca, 'box', 'on');

```

Plot the \(x\)-axis using two-digit year (YY format) labels for ticks.
```

dateaxis('x', 11);

```

Add axis labels and set the three-dimensional viewpoint. MATLAB produces the figure.
```

xlabel('Evaluation Date (YY Format)');
ylabel('Change in Yield');
zlabel('Portfolio Price');
hold off
view(-25,25);

```


MATLAB three-dimensional graphics allow you to visualize the interest rate risk experienced by a bond portfolio over time. This example assumed parallel shifts in the term structure, but it might similarly have allowed other components to vary, such as the level and slope.

\section*{Bond Prices and Yield Curve Nonparallel Shifts}

Key rate duration enables you to determine the sensitivity of the price of a bond to nonparallel shifts in the yield curve. This example uses bndkrdur to
construct a portfolio to hedge the interest rate risk of a U.S. Treasury bond maturing in 20 years.
```

Settle = datenum('2-Dec-2008');
CouponRate = 5.500/100;
Maturity = datenum('15-Aug-2028');
Price = 128.68;

```

The interest rate risk of this bond is hedged with the following four on-the-run Treasury bonds:

The 30 -year bond.
```

Maturity_30 = datenum('15-May-2038');
Coupon_30 = .045;
Price_30 = 124.69;

```

The ten-year note.
```

Maturity_10 = datenum('15-Nov-2018');
Coupon_10 = .0375;
Price_10 = 109.35;

```

The five-year note.
```

Maturity_05 = datenum('30-Nov-2013');
Coupon_05 = .02;
Price_05 = 101.67;

```

The two-year note.
```

Maturity_02 = datenum('30-Nov-2010');
Coupon_02 = .01250;
Price_02 = 100.72;

```

You can get the Treasury spot or zero curve from:
http://www.treas.gov/offices/domestic-finance/debt-management/interest-rate/yield.shtml.
```

ZeroDates = daysadd(Settle,[30 90 180 360 360*2 360*3 360*5 ...
360*7 360*10 360*20 360*30]);
ZeroRates =([0.09 0.07 0.44 0.81 0.90 1.16 1.71 2.13 2.72 3.51 3.22]/100)';

```

Step 1. Compute the key rate durations for both the bond and the hedging portfolio:
```

BondKRD = bndkrdur([ZeroDates ZeroRates], CouponRate, Settle,...
Maturity,'keyrates',[2 5 10 20]);
HedgeMaturity = [Maturity_02;Maturity_05;Maturity_10;Maturity_30];
HedgeCoupon = [Coupon_02;Coupon_05;Coupon_10;Coupon_30];
HedgeKRD = bndkrdur([ZeroDates ZeroRates], HedgeCoupon,...
Settle, HedgeMaturity, 'keyrates',[2 5 10 20]);

```

Step 2. Compute the dollar durations for each of the instruments and each of the key rates (assuming holding 100 bonds):
```

PortfolioDD = 100*Price* BondKRD;
HedgeDD = bsxfun(@times, HedgeKRD,[Price_30;Price_10;Price_05;Price_02]);

```

Step 3. Compute the number of bonds to sell short to obtain a key rate duration that is 0 for the entire portfolio:

NumBonds = PortfolioDD/HedgeDD;
NumBonds =
\(\begin{array}{llll}3.8973 & 6.1596 & 23.0282 \quad 80.0522\end{array}\)

These results indicate selling 4, 6, 23 and 80 bonds respectively of the 2 -, 5 -, \(10-\), and 30 -year bonds achieves a portfolio that is neutral with respect to the 2 -, 5 -, 10 -, and 30 -year spot rates.

\section*{Greek-Neutral Portfolios of European Stock Options}

The option sensitivity measures familiar to most option traders are often referred to as the greeks: delta, gamma, vega, lambda, rho, and theta. Delta is the price sensitivity of an option with respect to changes in the price of the underlying asset. It represents a first-order sensitivity measure analogous to duration in fixed income markets. Gamma is the sensitivity of an option's delta to changes in the price of the underlying asset, and represents a second-order price sensitivity analogous to convexity in fixed income markets. Vega is the price sensitivity of an option with respect to changes in the volatility of the underlying asset. See "Pricing and Analyzing

Equity Derivatives" on page 2-44 or the "Glossary" on page Glossary-1 for other definitions.

The greeks of a particular option are a function of the model used to price the option. However, given enough different options to work with, a trader can construct a portfolio with any desired values for its greeks. For example, to insulate the value of an option portfolio from small changes in the price of the underlying asset, one trader might construct an option portfolio whose delta is zero. Such a portfolio is then said to be "delta neutral." Another trader may want to protect an option portfolio from larger changes in the price of the underlying asset, and so might construct a portfolio whose delta and gamma are both zero. Such a portfolio is both delta and gamma neutral. A third trader may want to construct a portfolio insulated from small changes in the volatility of the underlying asset in addition to delta and gamma neutrality. Such a portfolio is then delta, gamma, and vega neutral.

Using the Black-Scholes model for European options, this example creates an equity option portfolio that is simultaneously delta, gamma, and vega neutral. The value of a particular greek of an option portfolio is a weighted average of the corresponding greek of each individual option. The weights are the quantity of each option in the portfolio. Hedging an option portfolio thus involves solving a system of linear equations, an easy process in MATLAB.

Step 1. Create an input data matrix to summarize the relevant information. Each row of the matrix contains the standard inputs to Financial Toolbox Black-Scholes suite of functions: column 1 contains the current price of the underlying stock; column 2 the strike price of each option; column 3 the time to-expiry of each option in years; column 4 the annualized stock price volatility; and column 5 the annualized dividend rate of the underlying asset. Note that rows 1 and 3 are data related to call options, while rows 2 and 4 are data related to put options.
\begin{tabular}{rlrllll} 
DataMatrix \(=[100.000\) & 100 & 0.2 & 0.3 & 0 & \% Call \\
119.100 & 125 & 0.2 & 0.2 & 0.025 & \% Put \\
87.200 & 85 & 0.1 & 0.23 & 0 & \% Call \\
& 301.125 & 315 & 0.5 & 0.25 & \(0.0333]\) & \% Put
\end{tabular}

Also, assume the annualized risk-free rate is \(10 \%\) and is constant for all maturities of interest.
```

RiskFreeRate = 0.10;

```

For clarity, assign each column of DataMatrix to a column vector whose name reflects the type of financial data in the column.
```

StockPrice = DataMatrix(:,1);
StrikePrice = DataMatrix(:,2);
ExpiryTime = DataMatrix(:,3);
Volatility = DataMatrix(:,4);
DividendRate = DataMatrix(:,5);

```

Step 2. Based on the Black-Scholes model, compute the prices, and the delta, gamma, and vega sensitivity greeks of each of the four options. Note that the functions blsprice and blsdelta have two outputs, while blsgamma and blsvega have only one. The price and delta of a call option differ from the price and delta of an otherwise equivalent put option, in contrast to the gamma and vega sensitivities, which are valid for both calls and puts.
[CallPrices, PutPrices] = blsprice(StockPrice, StrikePrice,... RiskFreeRate, ExpiryTime, Volatility, DividendRate);
[CallDeltas, PutDeltas] = blsdelta(StockPrice,...
StrikePrice, RiskFreeRate, ExpiryTime, Volatility,... DividendRate);

Gammas = blsgamma(StockPrice, StrikePrice, RiskFreeRate,...
ExpiryTime, Volatility , DividendRate)';
Vegas = blsvega(StockPrice, StrikePrice, RiskFreeRate,...
ExpiryTime, Volatility , DividendRate)';
Extract the prices and deltas of interest to account for the distinction between call and puts.

Prices \(=\) [CallPrices(1) PutPrices(2) CallPrices(3)... PutPrices(4)];

Deltas \(=\) [CallDeltas(1) PutDeltas(2) CallDeltas(3)... PutDeltas(4)];

Step 3. Now, assuming an arbitrary portfolio value of \(\$ 17,000\), set up and solve the linear system of equations such that the overall option portfolio is simultaneously delta, gamma, and vega-neutral. The solution computes the value of a particular greek of a portfolio of options as a weighted average of the corresponding greek of each individual option in the portfolio. The system of equations is solved using the back slash ( \(\backslash\) ) operator discussed in "Solving Simultaneous Linear Equations" on page 1-13.
```

A = [Deltas; Gammas; Vegas; Prices];
b = [0; 0; 0; 17000];
OptionQuantities = A\b; % Quantity (number) of each option.

```

Step 4. Finally, compute the market value, delta, gamma, and vega of the overall portfolio as a weighted average of the corresponding parameters of the component options. The weighted average is computed as an inner product of two vectors.
```

PortfolioValue = Prices * OptionQuantities;
PortfolioDelta = Deltas * OptionQuantities;
PortfolioGamma = Gammas * OptionQuantities;
PortfolioVega = Vegas * OptionQuantities;

```

The output for these computations is:
\begin{tabular}{crrrrr} 
Option & Price & Delta & Gamma & Vega & Quantity \\
1 & 6.3441 & 0.5856 & 0.0290 & 17.4293 & 22332.6131 \\
2 & 6.6035 & -0.6255 & 0.0353 & 20.0347 & 6864.0731 \\
3 & 4.2993 & 0.7003 & 0.0548 & 9.5837 & -15654.8657 \\
4 & 22.7694 & -0.4830 & 0.0074 & 83.5225 & -4510.5153 \\
Portfolio Value: \(\$ 17000.00\) & & \\
Portfolio Delta: & 0.00 & & \\
Portfolio Gamma: & -0.00 & & \\
Portfolio Vega : & 0.00 & &
\end{tabular}

You can verify that the portfolio value is \(\$ 17,000\) and that the option portfolio is indeed delta, gamma, and vega neutral, as desired. Hedges based on these measures are effective only for small changes in the underlying variables.

\section*{Term Structure Analysis and Interest-Rate Swaps}

This example illustrates some of the term-structure analysis functions found in Financial Toolbox software. Specifically, it illustrates how to derive implied zero (spot) and forward curves from the observed market prices of coupon-bearing bonds. The zero and forward curves implied from the market data are then used to price an interest rate swap agreement.

In an interest rate swap, two parties agree to a periodic exchange of cash flows. One of the cash flows is based on a fixed interest rate held constant throughout the life of the swap. The other cash flow stream is tied to some variable index rate. Pricing a swap at inception amounts to finding the fixed rate of the swap agreement. This fixed rate, appropriately scaled by the notional principal of the swap agreement, determines the periodic sequence of fixed cash flows.

In general, interest rate swaps are priced from the forward curve such that the variable cash flows implied from the series of forward rates and the periodic sequence of fixed-rate cash flows have the same current value. Thus, interest rate swap pricing and term structure analysis are intimately related.

Step 1. Specify values for the settlement date, maturity dates, coupon rates, and market prices for 10 U.S. Treasury Bonds. This data allows you to price a five-year swap with net cash flow payments exchanged every six months. For simplicity, accept default values for the end-of-month payment rule (rule in effect) and day-count basis (actual/actual). To avoid issues of accrued interest, assume that all Treasury Bonds pay semiannual coupons and that settlement occurs on a coupon payment date.
```

Settle = datenum('15-Jan-1999');

```
\begin{tabular}{|c|c|c|}
\hline BondData \(=\) \{'15-Jul-1999' & 0.06000 & 99.93 \\
\hline '15-Jan-2000' & 0.06125 & 99.72 \\
\hline '15-Jul-2000' & 0.06375 & 99.70 \\
\hline '15-Jan-2001' & 0.06500 & 99.40 \\
\hline '15-Jul-2001' & 0.06875 & 99.73 \\
\hline '15-Jan-2002' & 0.07000 & 99.42 \\
\hline '15-Jul-2002' & 0.07250 & 99.32 \\
\hline '15-Jan-2003' & 0.07375 & 98.45 \\
\hline '15-Jul-2003' & 0.07500 & 97.71 \\
\hline '15-Jan-2004' & 0.08000 & \(98.15\}\) \\
\hline
\end{tabular}

BondData is an instance of a MATLAB cell array, indicated by the curly braces (\{\}).

Next assign the date stored in the cell array to Maturity, CouponRate, and Prices vectors for further processing.
```

Maturity = datenum(char(BondData{:,1}));
CouponRate = [BondData{:,2}]';
Prices = [BondData{:,3}]';
Period = 2; % semiannual coupons

```

Step 2. Now that the data has been specified, use the term structure function zbtprice to bootstrap the zero curve implied from the prices of the coupon-bearing bonds. This implied zero curve represents the series of zero-coupon Treasury rates consistent with the prices of the coupon-bearing bonds such that arbitrage opportunities will not exist.

ZeroRates = zbtprice([Maturity CouponRate], Prices, Settle);
The zero curve, stored in ZeroRates, is quoted on a semiannual bond basis (the periodic, six-month, interest rate is doubled to annualize). The first element of ZeroRates is the annualized rate over the next six months, the second element is the annualized rate over the next 12 months, and so on.

Step 3. From the implied zero curve, find the corresponding series of implied forward rates using the term structure function zero2fwd.

ForwardRates = zero2fwd(ZeroRates, Maturity, Settle);
The forward curve, stored in ForwardRates, is also quoted on a semiannual bond basis. The first element of ForwardRates is the annualized rate applied to the interval between settlement and six months after settlement, the second element is the annualized rate applied to the interval from six months to 12 months after settlement, and so on. This implied forward curve is also consistent with the observed market prices such that arbitrage activities will be unprofitable. Since the first forward rate is also a zero rate, the first element of ZeroRates and ForwardRates are the same.

Step 4. Now that you have derived the zero curve, convert it to a sequence of discount factors with the term structure function zero2disc.
```

DiscountFactors = zero2disc(ZeroRates, Maturity, Settle);

```

Step 5. From the discount factors, compute the present value of the variable cash flows derived from the implied forward rates. For plain interest rate swaps, the notional principle remains constant for each payment date and cancels out of each side of the present value equation. The next line assumes unit notional principle.

PresentValue = sum((ForwardRates/Period) .* DiscountFactors);
Step 6. Compute the swap's price (the fixed rate) by equating the present value of the fixed cash flows with the present value of the cash flows derived from the implied forward rates. Again, since the notional principle cancels out of each side of the equation, it is simply assumed to be 1 .

SwapFixedRate = Period * PresentValue / sum(DiscountFactors);
The output for these computations is:
```

Zero Rates Forward Rates
0.0614 0.0614
0.0642 0.0670
0.0660 0.0695
0.0684 0.0758
0.0702 0.0774
0.0726 0.0846
0.0754 0.0925
0.0795 0.1077
0.0827 0.1089
0.0868 0.1239
Swap Price (Fixed Rate) = 0.0845

```

All rates are in decimal format. The swap price, \(8.45 \%\), would likely be the mid-point between a market-maker's bid/ask quotes.

\section*{Producing Graphics with the Toolbox}

\author{
In this section... \\ "Introduction" on page 10-21 \\ "Plotting an Efficient Frontier" on page 10-21 \\ "Plotting Sensitivities of an Option" on page 10-24 \\ "Plotting Sensitivities of a Portfolio of Options" on page 10-26
}

\section*{Introduction}

Financial Toolbox and MATLAB graphics functions work together to produce presentation quality graphics, as these examples show. The examples ship with the toolbox as MATLAB files. Try them by entering the commands directly or by executing the code. For help using MATLAB plotting functions, see "Creating Line Plots" in the MATLAB documentation.

\section*{Plotting an Efficient Frontier}

This example plots the efficient frontier of a hypothetical portfolio of three assets. It illustrates how to specify the expected returns, standard deviations, and correlations of a portfolio of assets, how to convert standard deviations and correlations into a covariance matrix, and how to compute and plot the efficient frontier from the returns and covariance matrix. The example also illustrates how to randomly generate a set of portfolio weights, and how to add the random portfolios to an existing plot for comparison with the efficient frontier. The file for this example is ftgex1.m.

First, specify the expected returns, standard deviations, and correlation matrix for a hypothetical portfolio of three assets.
```

Returns = [0.1 0.15 0.12];
STDs = [0.2 0.25 0.18];
Correlations = [1 0.3 0.4
0.3 1 0.3
0.4 0.3 1];

```

Convert the standard deviations and correlation matrix into a variance-covariance matrix with the Financial Toolbox function corr2cov.

Covariances \(=\) corr2cov(STDs, Correlations);
Evaluate and plot the efficient frontier at 20 points along the frontier, using the function portopt and the expected returns and corresponding covariance matrix. Although rather elaborate constraints can be placed on the assets in a portfolio, for simplicity accept the default constraints and scale the total value of the portfolio to 1 and constrain the weights to be positive (no short-selling).
portopt (Returns, Covariances, 20)


Now that the efficient frontier is displayed, randomly generate the asset weights for 1000 portfolios starting from the MATLAB initial state.
```

rng('default')
Weights = rand(1000, 3);

```

The previous line of code generates three columns of uniformly distributed random weights, but does not guarantee they sum to 1 . The following code segment normalizes the weights of each portfolio so that the total of the three weights represent a valid portfolio.
```

Total = sum(Weights, 2); % Add the weights
Total = Total(:,ones(3,1)); % Make size-compatible matrix
Weights = Weights./Total; % Normalize so sum = 1

```

Given the 1000 random portfolios just created, compute the expected return and risk of each portfolio associated with the weights.
```

[PortRisk, PortReturn] = portstats(Returns, Covariances, ...
Weights);

```

Finally, hold the current graph, and plot the returns and risks of each portfolio on top of the existing efficient frontier for comparison. After plotting, annotate the graph with a title and return the graph to default holding status (any subsequent plots will erase the existing data). The efficient frontier appears in blue, while the 1000 random portfolios appear as a set of red dots on or below the frontier.
```

hold on
plot (PortRisk, PortReturn, '.r')
title('Mean-Variance Efficient Frontier and Random Portfolios')
hold off

```


\section*{Plotting Sensitivities of an Option}

This example creates a three-dimensional plot showing how gamma changes relative to price for a Black-Scholes option. Recall that gamma is the second derivative of the option price relative to the underlying security price. The plot shows a three-dimensional surface whose \(z\)-value is the gamma of an option as price ( \(x\)-axis) and time ( \(y\)-axis) vary. It adds yet a fourth dimension by showing option delta (the first derivative of option price to security price) as the color of the surface. The file for this example is ftgex2.m.

First set the price range of the options, and set the time range to one year divided into half-months and expressed as fractions of a year.
```

Range = 10:70;
Span = length(Range);

```
```

j = 1:0.5:12;
Newj = j(ones(Span,1),:)'/12;

```

For each time period create a vector of prices from 10 to 70 and create a matrix of all ones.
```

JSpan = ones(length(j),1);
NewRange = Range(JSpan,:);
Pad = ones(size(Newj));

```

Calculate the toolbox gamma and delta sensitivity functions (greeks). (Recall that gamma is the second derivative of the option price with respect to the stock price, and delta is the first derivative of the option price with respect to the stock price.) The exercise price is \(\$ 40\), the risk-free interest rate is \(10 \%\), and volatility is 0.35 for all prices and periods.
```

ZVal = blsgamma(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);
Color = blsdelta(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);

```

Display the greeks as a function of price and time. Gamma is the \(z\)-axis; delta is the color.
```

mesh(Range, j, ZVal, Color);
xlabel('Stock Price (\$)');
ylabel('Time (months)');
zlabel('Gamma');
title('Call Option Price Sensitivity');
axis([10
view(-40, 50);
colorbar('horiz');

```


\section*{Plotting Sensitivities of a Portfolio of Options}

This example plots gamma as a function of price and time for a portfolio of 10 Black-Scholes options. The plot shows a three-dimensional surface. For each point on the surface, the height ( \(z\)-value) represents the sum of the gammas for each option in the portfolio weighted by the amount of each option. The \(x\)-axis represents changing price, and the \(y\)-axis represents time. The plot adds a fourth dimension by showing delta as surface color. This has applications in hedging.

The file for this example is \(\mathrm{ftgex} 3 . \mathrm{m}\).
First set up the portfolio with arbitrary data. Current prices range from \(\$ 20\) to \(\$ 90\) for each option. Set corresponding exercise prices for each option.
```

Range = 20:90;
PLen = length(Range);
ExPrice = [75 70 50 55 75 50 40 75 60 35];

```

Set all risk-free interest rates to \(10 \%\), and set times to maturity in days. Set all volatilities to 0.35 . Set the number of options of each instrument, and allocate space for matrices.
```

Rate = 0.1*ones(10,1);
Time = [[$$
\begin{array}{llllllllllll}{36}&{36}&{36}&{27}&{18}&{18}&{18}&{9}&{9}&{9}\end{array}
$$];
Sigma = 0.35*ones(10,1);
NumOpt = 1000*[4 [4 8 3 5 5.5 2 4.8 3 4.8 2.5];
ZVal = zeros(36, PLen);
Color = zeros(36, PLen);

```

For each instrument, create a matrix (of size Time by PLen) of prices for each period.
```

for i = 1:10
Pad = ones(Time(i),PLen);
NewR = Range(ones(Time(i),1),:);

```

Create a vector of time periods 1 to Time; and a matrix of times, one column for each price.
```

T = (1:Time(i))';
NewT = T(:,ones(PLen,1));

```

Call the toolbox gamma and delta sensitivity functions to compute gamma and delta.
```

 ZVal(36-Time(i)+1:36,:) = ZVal(36-Time(i)+1:36,:) ...
 + NumOpt(i) * blsgamma(NewR, ExPrice(i)*Pad, ...
 Rate(i)*Pad, NewT/36, Sigma(i)*Pad);
 Color(36-Time(i)+1:36,:) = Color(36-Time(i)+1:36,:) ...
+ NumOpt(i) * blsdelta(NewR, ExPrice(i)*Pad, ...
Rate(i)*Pad, NewT/36, Sigma(i)*Pad);

```
end

Draw the surface as a mesh, set the viewpoint, and reverse the \(x\)-axis because of the viewpoint. The axes range from 20 to 90,0 to 36 , and \(-\infty\) to \(\infty\).
```

mesh(Range, 1:36, ZVal, Color);
view(60,60);

```
```

set(gca, 'xdir','reverse', 'tag', 'mesh_axes_3');
axis([20 90 0 36 -inf inf]);

```

Add a title and axis labels and draw a box around the plot. Annotate the colors with a bar and label the colorbar.
```

title('Call Option Portfolio Sensitivity');
xlabel('Stock Price (\$)');
ylabel('Time (months)');
zlabel('Gamma');
set(gca, 'box', 'on');
colorbar('horiz');

```


\title{
Financial Time Series Analysis
}
- "Analyzing Financial Time Series" on page 11-2
- "Creating Financial Time Series Objects" on page 11-3
- "Visualizing Financial Time Series Objects" on page 11-18

\section*{Analyzing Financial Time Series}

Financial Toolbox software provides a collection of tools for the analysis of time series data in the financial markets. The toolbox contains a financial time series object constructor and several methods that operate on and analyze the object. Financial engineers working with time series data, such as equity prices or daily interest fluctuations, can use these tools for more intuitive data management than by using regular vectors or matrices.

This section discusses how to create a financial time series object in one of two ways:
- "Using the Constructor" on page 11-3
- "Transforming a Text File" on page 11-14
chartfts is a graphical tool for visualizing financial time series objects. You can find this discussion in "Visualizing Financial Time Series Objects" on page 11-18.

\section*{Creating Financial Time Series Objects}

\author{
In this section... \\ "Introduction" on page 11-3 \\ "Using the Constructor" on page 11-3 \\ "Transforming a Text File" on page 11-14
}

\section*{Introduction}

Financial Toolbox software provides two ways to create a financial time series object:
- At the command line using the object constructor fints
- From a text data file through the function ascii2fts

The structure of the object minimally consists of a description field, a frequency indicator field, the date vector field, and at least one data series vector. The names for the fields are fixed for the first three fields: desc, freq, and dates. You can specify names of your choice for any data series vectors. If you do not specify names, the object uses the default names series1, series2, series3, and so on.

If time-of-day information is incorporated in the date vector, the object contains an additional field named times.

\section*{Using the Constructor}

The object constructor function fints has five different syntaxes. These forms exist to simplify object construction. The syntaxes vary according to the types of input arguments presented to the constructor. The syntaxes are
- Single Matrix Input
- See "Time-of-Day Information Excluded" on page 11-4.
- See "Time-of-Day Information Included" on page 11-7.
- Separate Vector Input
- See "Time-of-Day Information Excluded" on page 11-8.
- See "Time-of-Day Information Included" on page 11-9.
- See "Data Name Input" on page 11-10.
- See "Frequency Indicator Input" on page 11-12.
- See "Description Field Input" on page 11-14.

\section*{Single Matrix Input}

The date information provided with this syntax must be in serial date number format. The date number may or may not include time-of-day information.

Note If you are unfamiliar with the concepts of date strings and serial date numbers, consult "Handle and Convert Dates" on page 2-4.

\section*{Time-of-Day Information Excluded.}
fts = fints(dates_and_data)
In this simplest form of syntax, the input must be at least a two-column matrix. The first column contains the dates in serial date format; the second column is the data series. The input matrix can have more than two columns, each additional column representing a different data series or set of observations.

If the input is a two-column matrix, the output object contains four fields: desc, freq, dates, and series1. The description field, desc, defaults to blanks ' ' , and the frequency indicator field, freq, defaults to 0 . The dates field, dates, contains the serial dates from the first column of the input matrix, while the data series field, series1, has the data from the second column of the input matrix.

The first example makes two financial time series objects. The first one has only one data series, while the other has more than one. A random vector provides the values for the data series. The range of dates is arbitrarily chosen using the today function:
```

date_series = (today:today+100)';

```
```

data_series = exp(randn(1, 101))';
dates_and_data = [date_series data_series];
fts1 = fints(dates_and_data);

```

Examine the contents of the object fts 1 create. The actual date series you observe will vary according to the day when you run the example (the value of today). Also, your values in series1 will differ from those shown, depending upon the sequence of random numbers generated:
fts1 =
desc: (none)
freq: Unknown (0)
\begin{tabular}{lll} 
'dates: (101)' & 'series1: & \((101) '\) \\
'12-Jul-1999' & {\([\)} & \(0.3124]\) \\
'13-Jul-1999' & {\([\)} & \(3.2665]\) \\
'14-Jul-1999' & {\([\)} & \(0.9847]\) \\
'15-Jul-1999' & {\([\)} & \(1.7095]\) \\
'16-Jul-1999' & {\([\)} & \(0.4885]\) \\
'17-Jul-1999' & {\([\)} & \(0.5192]\) \\
'18-Jul-1999' & {\([\)} & \(1.3694]\) \\
'19-Jul-1999' & {\([\)} & \(1.1127]\) \\
'20-Jul-1999' & {\([\)} & \(6.3485]\) \\
'21-Jul-1999' & {\([\)} & \(0.7595]\) \\
'22-Jul-1999' & {\([\)} & \(9.1390]\) \\
'23-Jul-1999' & {\([\)} & \(4.5201]\) \\
'24-Jul-1999' & {\([\)} & \(0.1430]\) \\
'25-Jul-1999' & {\([\)} & \(0.1863]\) \\
'26-Jul-1999' & {\([\)} & \(0.5635]\) \\
'27-Jul-1999' & {\([\)} & \(0.8304]\) \\
'28-Jul-1999' & {\([\)} & \(1.0090] . .\).
\end{tabular}

The output is truncated for brevity. There are actually 101 data points in the object.

Note that the desc field displays as (none) instead of ' ' , and that the contents of the object display as cell array elements. Although the object displays as such, it should be thought of as a MATLAB structure containing the default field names for a single data series object: desc, freq, dates, and series1.

Now create an object with more than one data series in it:
```

date_series = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
dates_and_data = [date_series data_series1 data_series2];
fts2 = fints(dates_and_data);

```

Now look at the object created (again in abbreviated form):
```

fts2 =
desc: (none)
freq: Unknown (0)

'dates: (101)'	'series1:	(101) ${ }^{\prime}$	'series2:	(101) ${ }^{\prime}$
'12-Jul-1999'	[$0.5816]$	[1.2816]
'13-Jul-1999'	[5.1253]	[$0.9262]$
'14-Jul-1999'	[2.2824]	[$5.6869]$
'15-Jul-1999'	[1.2596]	[5.0631]
'16-Jul-1999'	[1.9574]	[1.8709]
'17-Jul-1999'	[0.6017]	[1.0962]
'18-Jul-1999'	[$2.3546]$	[$0.4459]$
'19-Jul-1999'	[1.3080]	[$0.6304]$
'20-Jul-1999'	[1.8682]	[$0.2451]$
'21-Jul-1999'	[$0.3509]$	[$0.6876]$
'22-Jul-1999'	[4.6444]	[0.6244]
'23-Jul-1999'	[1.5441]	[5.7621]
'24-Jul-1999'	[$0.1470]$	[$2.1238]$
' 25-Jul-1999'	[1.5999]	[1.0671]
' 26-Jul-1999'	[$3.5764]$	[$0.7462]$
'27-Jul-1999'	[1.8937]	[1.0863]
'28-Jul-1999'	[3.9780]	[$2.1516]$

```

The second data series name defaults to series2, as expected.
Before you can perform any operations on the object, you must set the frequency indicator field freq to the valid frequency of the data series contained in the object. You can leave the description field desc blank.

To set the frequency indicator field to a daily frequency, enter
fts2.freq \(=1\), or
fts2.freq = 'daily'
For more information, see fints.
Time-of-Day Information Included. The serial date number used with this form of the fints function can incorporate time-of-day information. When time-of-day information is present, the output of the function contains a field times that indicates the time of day.

If you recode the previous example to include time-of-day information, you can see the additional column present in the output object:
```

time_series = (now:now+100)';
data_series = exp(randn(1, 101))';
times_and_data = [time_series data_series];
fts1 = fints(times_and_data);
fts1 =
desc: (none)
freq: Unknown (0)

'dates: (101)'	'times:	(101)'	'series1:
'29-Nov-2001'	'101)'		
'30-Nov-2001'	$' 14: 577^{\prime}$		$[$

```

\section*{Separate Vector Input}

The date information provided with this syntax can be in serial date number or date string format. The date information may or may not include time-of-day information.

\section*{Time-of-Day Information Excluded.}
```

fts = fints(dates, data)

```

In this second syntax the dates and data series are entered as separate vectors to fints, the financial time series object constructor function. The dates vector must be a column vector, while the data series data can be a column vector (if there is only one data series) or a column-oriented matrix (for multiple data series). A column-oriented matrix, in this context, indicates that each column is a set of observations. Different columns are different sets of data series.

Here is an example:
```

dates = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
fts = fints(dates, data)

```
fts \(=\)
    desc: (none)
    freq: Unknown (0)
\begin{tabular}{|c|c|c|c|c|}
\hline 'dates: (101)' & 'series1: & (101) \({ }^{\prime}\) & 'series2: & \((101)^{\prime}\) \\
\hline '12-Jul-1999' & [ & \(0.5816]\) & [ & 1.2816] \\
\hline '13-Jul-1999' & [ & 5.1253] & [ & \(0.9262]\) \\
\hline '14-Jul-1999' & [ & 2.2824] & [ & \(5.6869]\) \\
\hline '15-Jul-1999' & [ & 1.2596] & [ & 5.0631] \\
\hline '16-Jul-1999' & [ & \(1.9574]\) & [ & \(1.8709]\) \\
\hline '17-Jul-1999' & [ & \(0.6017]\) & [ & 1.0962] \\
\hline '18-Jul-1999' & [ & \(2.3546]\) & [ & \(0.4459]\) \\
\hline '19-Jul-1999' & [ & 1.3080] & [ & \(0.6304]\) \\
\hline '20-Jul-1999' & [ & 1.8682] & [ & \(0.2451]\) \\
\hline '21-Jul-1999' & [ & \(0.3509]\) & [ & \(0.6876]\) \\
\hline '22-Jul-1999' & [ & 4.6444] & [ & \(0.6244]\) \\
\hline ' 23-Jul-1999' & [ & 1.5441] & [ & \(5.7621]\) \\
\hline '24-Jul-1999' & [ & \(0.1470]\) & [ & 2.1238] \\
\hline '25-Jul-1999' & [ & 1.5999] & [ & 1.0671] \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
'26-Jul-1999' & [ & \(3.5764]\) & {\([\)} & \(0.7462]\) \\
'27-Jul-1999' & [ & \(1.8937]\) & {\([\)} & \(1.0863]\) \\
'28-Jul-1999' & {\([\)} & \(3.9780]\) & {\([\)} & \(2.1516] \ldots\)
\end{tabular}

The result is exactly the same as the first syntax. The only difference between the first and second syntax is the way the inputs are entered into the constructor function.

Time-of-Day Information Included. With this form of the function you can enter the time-of-day information either as a serial date number or as a date string. If more than one serial date and time are present, the entry must be in the form of a column-oriented matrix. If more than one string date and time are present, the entry must be a column-oriented cell array of dates and times.

With date string input the dates and times can initially be separate column-oriented date and time series, but you must concatenate them into a single column-oriented cell array before entering them as the first input to fints.

For date string input the allowable formats are
- 'ddmmmyy hh:mm' or 'ddmmmyyyy hh:mm'
- 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'
- 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy hh:mm'
- 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy hh:mm'

The next example shows time-of-day information input as serial date numbers in a column-oriented matrix:
```

f = fints([now;now+1],(1:2)')
f =
desc: (none)
freq: Unknown (0)
'dates: (2)' 'times: (2)' 'series1: (2)
'29-Nov-2001' '15:22' [1]
'30-Nov-2001' '15:22' [2]

```

If the time-of-day information is in date string format, you must provide it to fints as a column-oriented cell array:
```

f = fints({'01-Jan-2001 12:00';'02-Jan-2001 12:00'},(1:2)')
f =
desc: (none)
freq: Unknown (0)

```
```

'dates: (2)' 'times: (2)' 'series1: (2)'

```
'dates: (2)' 'times: (2)' 'series1: (2)'
'01-Jan-2001' '12:00' [ 1]
'01-Jan-2001' '12:00' [ 1]
'02-Jan-2001' '12:00' [ 2]
```

'02-Jan-2001' '12:00' [2]

```

If the dates and times are in date string format and contained in separate matrices, you must concatenate them before using the date and time information as input to fints:
```

dates = ['01-Jan-2001'; '02-Jan-2001'; '03-Jan-2001'];
times = ['12:00';'12:00';'12:00'];
dates_time = cellstr([dates,repmat(' ',size(dates,1),1),times]);
f = fints(dates_time,(1:3)')
f =

```
    desc: (none)
    freq: Unknown (0)
\begin{tabular}{llll} 
'dates: (3)' & 'times: & (3)' & 'series1: \\
'01-Jan-2001' & (3)' \\
'02-Jan-2001' & '12:00' & & {\([\)} \\
'03-Jan-2001' & \(' 12: 00 '\) & {\([\)} & \(1]\) \\
\end{tabular}

\section*{Data Name Input}
fts = fints(dates, data, datanames)

The third syntax lets you specify the names for the data series with the argument datanames. The datanames argument can be a MATLAB string for a single data series. For multiple data series names, it must be a cell array of strings.

Look at two examples, one with a single data series and a second with two. The first example sets the data series name to the specified name First:
```

dates = (today:today+100)';
data = exp(randn(1, 101))';
fts1 = fints(dates, data, 'First')
fts1 =

```
    desc: (none)
freq: Unknown (0)
'dates: (101)' 'First: (101)'
'12-Jul-1999' [ 0.4615]
'13-Jul-1999' [ 1.1640]
'14-Jul-1999' [ 0.7140]
'15-Jul-1999' [ 2.6400]
'16-Jul-1999' [ 0.8983]
'17-Jul-1999' [ 2.7552]
'18-Jul-1999' [ 0.6217]
'19-Jul-1999' [ 1.0714]
'20-Jul-1999' [ 1.4897]
'21-Jul-1999' [ 3.0536]
'22-Jul-1999' [ 1.8598]
'23-Jul-1999' [ 0.7500]
'24-Jul-1999' [ 0.2537]
'25-Jul-1999' [ 0.5037]
'26-Jul-1999' [ 1.3933]
'27-Jul-1999' [ 0.3687]...

The second example provides two data series named First and Second:
```

dates = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';

```
```

data = [data_series1 data_series2];
fts2 = fints(dates, data, {'First', 'Second'})
fts2 =
desc: (none)
freq: Unknown (0)
'dates: (101)' 'First: (101)' 'Second: (101)'
'12-Jul-1999' [1.2305] [0.7396]
'13-Jul-1999' [1.2473] [2.6038]
'14-Jul-1999' [0.3657] [0.5866]
'15-Jul-1999' [0.6357] [0.4061]
'16-Jul-1999' [4.0530] [0.4096]
'17-Jul-1999' [0.6300] [[1.3214]
'18-Jul-1999' [1.0333] [0.4744]
'19-Jul-1999' [2.2228] [4.9702]
'20-Jul-1999' [2.4518] [1.7758]
'21-Jul-1999' [1.1479] [1.3780]
'22-Jul-1999' [0.1981] [0.8595]
'23-Jul-1999' [0.1927] [1.3713]
'24-Jul-1999' [1.5353] [3.8332]
'25-Jul-1999' [0.4784] [0.1067]
'26-Jul-1999' [1.7593] [3.6434]
'27-Jul-1999' [0.2505] [0.6849]
'28-Jul-1999' [1.5845] [1.0025]...

```

Note Data series names must be valid MATLAB variable names. The only allowed nonalphanumeric character is the underscore ( \(\_\)) character.

Because freq for fts2 has not been explicitly indicated, the frequency indicator for fts2 is set to Unknown. Set the frequency indicator field freq before you attempt any operations on the object. You will not be able to use the object until the frequency indicator field is set to a valid indicator.

\section*{Frequency Indicator Input}
```

fts = fints(dates, data, datanames, freq)

```

With the fourth syntax you can set the frequency indicator field when you create the financial time series object. The frequency indicator field freq is set as the fourth input argument. You will not be able to use the financial time series object until freq is set to a valid indicator. Valid frequency indicators are
```

UNKNOWN, Unknown, unknown, U, u,0
DAILY, Daily, daily, D, d,1
WEEKLY, Weekly, weekly, W, w,2
MONTHLY, Monthly, monthly, M, m,3
QUARTERLY, Quarterly, quarterly, Q, q,4
SEMIANNUAL, Semiannual, semiannual, S, s,5
ANNUAL, Annual, annual, A, a,6

```

The previous example contained sets of daily data. The freq field displayed as Unknown ( 0 ) because the frequency indicator was not explicitly set. The command
```

fts = fints(dates, data, {'First', 'Second'}, 1);

```
sets the freq indicator to Daily (1) when creating the financial time series object:
```

fts =
desc: (none)
freq: Daily (1)

'dates: (101)'	'First: (101)'	'Second: (101)'		
'12-Jul-1999'	[$1.2305]$	$[$	$0.7396]$
'13-Jul-1999'	[$1.2473]$	$[$	$2.6038]$
'14-Jul-1999'	[$0.3657]$	$[$	$0.5866]$
'15-Jul-1999'	[$0.6357]$	$[$	$0.4061]$
'16-Jul-1999'	[$4.0530]$	[$0.4096]$
'17-Jul-1999'	$[$	$0.6300]$	[$1.3214]$

```

When you create the object using this syntax, you can use the other valid frequency indicators for a particular frequency. For a daily data set you can
use DAILY, Daily, daily, D, or d. Similarly, with the other frequencies, you can use the valid string indicators or their numeric counterparts.

\section*{Description Field Input}
```

fts = fints(dates, data, datanames, freq, desc)

```

With the fifth syntax, you can explicitly set the description field as the fifth input argument. The description can be anything you want. It is not used in any operations performed on the object.

This example sets the desc field to 'Test TS'.
```

dates = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
fts = fints(dates, data, {'First', 'Second'}, 1, 'Test TS')
fts =
desc: Test TS
freq: Daily (1)

'dates: (101)'	'First:	(101) ${ }^{\prime}$	'Second:	(101) ${ }^{\prime}$
'12-Jul-1999'	[0.5428]	[$1.2491]$
'13-Jul-1999'	[$0.6649]$	[$6.4969]$
'14-Jul-1999'	[0.2428]	[1.1163]
'15-Jul-1999'	[$1.2550]$	[$0.6628]$
'16-Jul-1999'	[$1.2312]$	[$1.6674]$
'17-Jul-1999'	[0.4869]	[$0.3015]$
'18-Jul-1999'	[$2.1335]$	[$0.9081]$

```

Now the description field is filled with the specified string 'Test TS' when the constructor is called.

\section*{Transforming a Text File}

The function ascii2fts creates a financial time series object from a text (ASCII) data file provided that the data file conforms to a general format. The general format of the text data file is as follows:
- Can contain header text lines.
- Can contain column header information. The column header information must immediately precede the data series columns unless the skiprows argument (see below) is specified.
- Leftmost column must be the date column.
- Dates must be in a valid date string format.
- 'ddmmmyy' or 'ddmmmyyyy'
- 'mm/dd/yy' or 'mm/dd/yyyy'
- 'dd-mmm-yy' or 'dd-mmm-yyyy'
- 'mmm.dd,yy' or 'mmm.dd,yyyy'
- Each column must be separated either by spaces or a tab.

Several example text data files are included with the toolbox. These files are in the ftsdata subdirectory within the directory matlabroot/toolbox/finance.

The syntax of the function
```

fts = ascii2fts(filename, descrow, colheadrow, skiprows);

```
takes in the data file name (filename), the row number where the text for the description field is (descrow), the row number of the column header information (colheadrow), and the row numbers of rows to be skipped (skiprows). For example, rows need to be skipped when there are intervening rows between the column head row and the start of the time series data.

Look at the beginning of the ASCII file disney.dat in the ftsdata subdirectory:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Daily prices (3/29/96 to 3/29/99)} \\
\hline DATE & OPEN & HIGH & Low & CLOSE & VOLUME \\
\hline 3/29/99 & 33.0625 & 33.188 & 32.75 & 33.063 & 6320500 \\
\hline 3/26/99 & 33.3125 & 33.375 & 32.75 & 32.938 & 5552800 \\
\hline 3/25/99 & 33.5 & 33.625 & 32.875 & 33.375 & 7936000 \\
\hline 3/24/9 & & & & & \\
\hline
\end{tabular}

The command line
```

disfts = ascii2fts('disney.dat', 1, 3, 2)

```
uses disney. dat to create time series object disfts. This example
- Reads the text data file disney.dat
- Uses the first line in the file as the content of the description field
- Skips the second line
- Parses the third line in the file for column header (or data series names)
- Parses the rest of the file for the date vector and the data series values

The resulting financial time series object looks like this.
disfts =
    desc: Walt Disney Company (DIS)
    freq: Unknown (0)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline dates: (782)' & & PEN: (782) & & HIGH: (78 & & 'LOW: & (782) \\
\hline '29-Mar-1996' & [ & 21.1938] & [ & \(21.6250]\) & [ & \(21.2920]\) & \\
\hline '01-Apr-1996' & [ & 21.1120] & [ & \(21.6250]\) & [ & \(21.4170]\) & \\
\hline '02-Apr-1996' & [ & 21.3165] & [ & \(21.8750]\) & [ & \(21.6670]\) & \\
\hline '03-Apr-1996' & [ & 21.4802] & [ & \(21.8750]\) & [ & \(21.7500]\) & \\
\hline '04-Apr-1996' & [ & 21.4393] & [ & \(21.8750]\) & [ & \(21.5000]\) & \\
\hline '05-Apr-1996' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) & \\
\hline '09-Apr-1996' & [ & 21.1529] & [ & 21.5420] & [ & \(21.2080]\) & \\
\hline '10-Apr-1996' & [ & \(20.7387]\) & [ & \(21.1670]\) & [ & \(20.2500]\) & \\
\hline '11-Apr-1996' & [ & 20.0829] & [ & \(20.5000]\) & [ & \(20.0420]\) & \\
\hline '12-Apr-1996' & [ & 19.9189] & [ & 20.5830] & [ & \(20.0830]\) & \\
\hline '15-Apr-1996' & [ & 20.2878] & [ & \(20.7920]\) & [ & \(20.3750]\) & \\
\hline '16-Apr-1996' & [ & 20.3698] & [ & 20.9170] & [ & \(20.1670]\) & \\
\hline '17-Apr-1996' & [ & 20.4927] & [ & 20.9170] & [ & 20.7080] & \\
\hline '18-Apr-1996' & [ & 20.4927] & [ & \(21.0420]\) & [ & \(20.7920]\) & \\
\hline
\end{tabular}

There are 782 data points in this object. Only the first few lines are shown here. Also, this object has two other data series, the CLOSE and VOLUME data
series, that are not shown here. Note that in creating the financial time series object, ascii2fts sorts the data into ascending chronological order.

The frequency indicator field, freq, is set to 0 for Unknown frequency. You can manually reset it to the appropriate frequency using structure syntax disfts.freq \(=1\) for Daily frequency.

With a slightly different syntax, the function ascii2fts can create a financial time series object when time-of-day data is present in the ASCII file. The new syntax has the form
```

fts = ascii2fts(filename, timedata, descrow, colheadrow,
skiprows);

```

Set timedata to ' \(T\) ' when time-of-day data is present and to ' \(N T\) ' when there is no time data. For an example using this function with time-of-day data, see the reference page for ascii2fts.

\section*{Visualizing Financial Time Series Objects}

\author{
In this section... \\ "Introduction" on page 11-18 \\ "Using chartfts" on page 11-18 \\ "Zoom Tool" on page 11-21 \\ "Combine Axes Tool" on page 11-24
}

\section*{Introduction}

Financial Toolbox software contains the function chartfts, which provides a visual representation of a financial time series object. chartfts is an interactive charting and graphing utility for financial time series objects. With this function, you can observe time series values on the entire range of dates covered by the time series.

Note Interactive charting is also available from the Graphs menu of the graphical user interface. See "Interactive Chart" on page 14-17 for additional information.

\section*{Using chartfts}
chartfts requires a single input argument, tsobj, where tsobj is the name of the financial time series object you want to explore. Most equity financial time series objects contain four price series, such as opening, closing, highest, and lowest prices, plus an additional series containing the volume traded. However, chartfts is not limited to a time series of equity prices and volume traded. It can be used to display any time series data you may have.

To illustrate the use of chartfts, use the equity price and volume traded data for the Walt Disney Corporation (NYSE: DIS) provided in the file disney.mat:
load disney.mat
whos
\begin{tabular}{lcrl} 
Name & Size & Bytes & Class \\
& & & \\
dis & \(782 \times 5\) & 39290 & fints object \\
dis_CLOSE & \(782 \times 1\) & 6256 & double array \\
dis_HIGH & \(782 \times 1\) & 6256 & double array \\
dis_LOW & \(782 \times 1\) & 6256 & double array \\
dis_OPEN & \(782 \times 1\) & 6256 & double array \\
dis_VOLUME & \(782 \times 1\) & 6256 & double array \\
dis_nv & \(782 \times 4\) & 32930 & fints object \\
q_dis & \(13 \times 4\) & 2196 fints object
\end{tabular}

For charting purposes look only at the objects dis (daily equity data including volume traded) and dis_nv (daily data without volume traded). Both objects contain the series OPEN, HIGH, LOW, and CLOSE, but only dis contains the additional VOLUME series.

Use chartfts(dis) to observe the values.


The chart contains five plots, each representing one of the series in the time series object. Boxes indicate the value of each individual plot. The date box is always on the left. The number of data boxes on the right depends upon the number of data series in the time series object, five in this case. The order in which these boxes are arranged (left to right) matches the plots from top to bottom. With more than eight data series in the object, the scroll bar on the right is activated so that additional data from the other series can be brought into view.

Slide the mouse cursor over the chart. A vertical bar appears across all plots. This bar selects the set of data shown in the boxes below. Move this bar horizontally and the data changes accordingly.


Click the plot. A small information box displays the data at the point where you click the mouse button.


\section*{Zoom Tool}

The zoom feature of chartfts enables a more detailed look at the data during a selected time frame. The Zoom tool is found under the Chart Tools menu.


Note Due to the specialized nature of this feature, do not use the MATLAB zoom command or Zoom In and Zoom Out from the Tools menu.

When the feature is turned on, you will see two inactive buttons (ZOOM In and Reset ZOOM) above the boxes. The buttons become active later after certain actions have been performed.


The window title bar displays the status of the chart tool that you are using. With the Zoom tool turned on, you see Zoom ON in the title bar in addition to the name of the time series you are working with. When the tool is off, no status is displayed.


To zoom into the chart, you need to define the starting and ending dates. Define the starting date by moving the cursor over the chart until the desired date appears at the bottom-left box and click the mouse button. A blue vertical line indicates the starting date you have selected. Next, again move the cursor over the chart until the desired ending date appears in the box and click the mouse once again. This time, a red vertical line appears and the ZOOM In button is activated.


To zoom into the chart, click the ZOOM In button.


The chart is zoomed in. Note that the Reset ZOOM button now becomes active while the ZOOM In button becomes inactive again. To return the chart
to its original state (not zoomed), click the Reset ZOOM button. To zoom into the chart even further, repeat the steps above for zooming into the chart.

Turn the Zoom tool off by going back to the Chart Tools menu and choosing Zoom Off.


With the tool turned off, the chart stays at the last state that it was in. If you turn it off when the chart is zoomed in, the chart stays zoomed in. If you reset the zoom before turning it off, the chart becomes the original (not zoomed).

\section*{Combine Axes Tool}

The Combine Axes tool allows you to combine all axes or specific axes into one. With axes combined, you can visually spot any trends that can occur among the data series in a financial time series object.

To illustrate this tool, use dis_nv, the financial time series object that does not contain volume traded data:
chartfts(dis_nv)


To combine axes, choose the Chart Tools menu, followed by Combine Axes and \(\mathbf{O n}\).


When the Combine Axes tool is on, check boxes appear beside each individual plot. An additional check box enables the combination of all plots.


\section*{Combining All Axes}

To combine all plots, select the Select all plots check box.


Now click the Combine Selected Graphs button to combine the chosen plots. In this case, all plots are combined.


The combined plots have a single plot axis with all data series traced. The background of each data box has changed to the color corresponding to the color of the trace that represents the data series. After the axes are combined, the tool is turned off.

\section*{Combining Selected Axes}

You can choose any combination of the available axes to combine. For example, combine the HIGH and LOW price series of the Disney time series. Click the check boxes next to the corresponding plots. The Combine Selected Graphs button appears and is active.


Click the Combine Selected Graphs button. The chart with the combined plots looks like the next figure.


The plot with the combined axes is located at the top of the chart while the remaining plots follow it. The data boxes have also been changed. The boxes that correspond to the combined axes are relocated to the beginning, and the background colors are set to the color of the respective traces. The data boxes for the remaining axes retain their original formats.

\section*{Resetting Axes}

If you have altered the chart by combining axes, you must reset the axes before you can visualize additional combinations. Reset the axes with the Reset Axes menu item under Chart Tools > Combine Axes. Note that now the On and Off features are turned off.


With axes reset, the interactive chart appears in its original format, and you can proceed with additional axes combinations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{- Interactive Chart: Walt Disney Company (DIS) - No volume} & - [a] \(\times\) \\
\hline \multicolumn{6}{|l|}{Eile Edit Yiew Insert Iools Window Help Chart Tools} \\
\hline \multicolumn{6}{|c|}{Walt Disney Company (DIS) - No VOLUME} \\
\hline \multicolumn{6}{|l|}{z
芫
0
0} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multirow[t]{2}{*}{Dates:
28-Jun-1996} & \[
\begin{aligned}
& \text { OPEN: } \\
& 20.8206
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& \text { HIGH: } \\
& 21.25
\end{aligned}\right.
\] & \[
\left\lvert\, \begin{aligned}
& \text { LOW: } \\
& 20.875
\end{aligned}\right.
\] & \[
\left\lvert\, \begin{aligned}
& \text { CLOSE: } \\
& 20.958
\end{aligned}\right.
\] & \(\triangle\) \\
\hline & & & & & \(-\) \\
\hline
\end{tabular}

\title{
Using Financial Time Series
}
- "Introduction" on page 12-2
- "Working with Financial Time Series Objects" on page 12-3
- "Using Time Series to Predict Equity Return" on page 12-25

\section*{Introduction}

This section discusses how to manipulate and analyze financial time series data. The major topics discussed include
- "Financial Time Series Object Structure" on page 12-3
- "Data Extraction" on page 12-4
- "Object-to-Matrix Conversion" on page 12-6
- "Indexing a Financial Time Series Object" on page 12-8
- "Financial Time Series Operations" on page 12-15
- "Data Transformation and Frequency Conversion" on page 12-19

Much of this information is summarized in the "Using Time Series to Predict Equity Return" on page 12-25.

\section*{Working with Financial Time Series Objects}

\author{
In this section... \\ "Introduction" on page 12-3 \\ "Financial Time Series Object Structure" on page 12-3 \\ "Data Extraction" on page 12-4 \\ "Object-to-Matrix Conversion" on page 12-6 \\ "Indexing a Financial Time Series Object" on page 12-8 \\ "Financial Time Series Operations" on page 12-15 \\ "Data Transformation and Frequency Conversion" on page 12-19
}

\section*{Introduction}

A financial time series object is designed to be used as if it were a MATLAB structure. (See the MATLAB documentation for a description of MATLAB structures or how to use MATLAB in general.)

This part of the tutorial assumes that you know how to use MATLAB and are familiar with MATLAB structures. The terminology is similar to that of a MATLAB structure. The financial time series object term component is interchangeable with the MATLAB structure term field.

\section*{Financial Time Series Object Structure}

A financial time series object always contains three component names: desc (description field), freq (frequency indicator field), and dates (date vector). If you build the object using the constructor fints, the default value for the description field is a blank string (' ' ). If you build the object from a text data file using ascii2fts, the default is the name of the text data file. The default for the frequency indicator field is 0 (Unknown frequency). Objects created from operations can default the setting to 0 . For example, if you decide to pick out values selectively from an object, the frequency of the new object might not be the same as that of the object from which it came.

The date vector dates does not have a default set of values. When you create an object, you have to supply the date vector. You can change the date vector afterward but, at object creation time, you must provide a set of dates.

The final component of a financial time series object is one or more data series vectors. If you do not supply a name for the data series, the default name is series1. If you have multiple data series in an object and do not supply the names, the default is the name series followed by a number, for example, series1, series2, and series3.

\section*{Data Extraction}

Here is an exercise on how to extract data from a financial time series object. As mentioned before, you can think of the object as a MATLAB structure. Highlight each line in the exercise in the MATLAB Help browser, press the right mouse button, and select Evaluate Selection to execute it.

To begin, create a financial time series object called myfts:
```

dates = (datenum('05/11/99'):datenum('05/11/99')+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
myfts = fints(dates, data);

```

The myfts object looks like this:
```

myfts =
desc: (none)
freq: Unknown (0)
'dates: (101)' 'series1: (101)' 'series2: (101)
'11-May-1999' [2.8108] [0.9323]
'12-May-1999' [0.2454] [0.5608]
'13-May-1999' [0.3568] [1.5989]
'14-May-1999' [0.5255] [3.6682]
'15-May-1999' [1.1862] [5.1284]
'16-May-1999' [3.8376] [0.4952]
'17-May-1999' [6.9329] [2.2417]

```


There are more dates in the object; only the first few lines are shown here.

Note The actual data in your series1 and series2 will differ from the above because of the use of random numbers.

Now create another object with only the values for series2:
```

srs2 = myfts.series2
srs2 =

```


The new object srs2 contains all the dates in myfts, but the only data series is series2. The name of the data series retains its name from the original object, myfts.

Note The output from referencing a data series field or indexing a financial time series object is always another financial time series object. The exceptions are referencing the description, frequency indicator, and dates fields, and indexing into the dates field.

\section*{Object-to-Matrix Conversion}

The function fts2mat extracts the dates and/or the data series values from an object and places them into a vector or a matrix. The default behavior extracts just the values into a vector or a matrix. Look at the next example:
```

srs2_vec = fts2mat(myfts.series2)
srs2_vec =
0.9323
0.5608
1.5989
3.6682
5.1284
0.4952
2.2417
0.3579
3.6492
1.0150
1.2445
5.5466
0.1251
1.1195
0.3374...

```

If you want to include the dates in the output matrix, provide a second input argument and set it to 1 . This results in a matrix whose first column is a vector of serial date numbers:
```

format long g

```
srs2_mtx = fts2mat(myfts.series2, 1)
srs2_mtx =
\begin{tabular}{ll}
730251 & 0.932251754559576 \\
730252 & 0.560845677519876 \\
730253 & 1.59888712183914 \\
730254 & 3.6681500883527 \\
730255 & 5.12842215360269 \\
730256 & 0.49519254119977 \\
730257 & 2.24174134286213 \\
730258 & 0.357918065917634 \\
730259 & 3.64915665824198 \\
730260 & 1.01504236943148 \\
730261 & 1.24446420606078 \\
730262 & 5.54661849025711 \\
730263 & 0.12507959735904 \\
730264 & 1.11953883096805 \\
730265 & 0.337398214166607
\end{tabular}

The vector srs2_vec contains just series2 values. The matrix srs2_mtx contains dates in the first column and the values of the series2 data series in the second. Dates in the first column are in serial date format. Serial date format is a representation of the date string format (for example, serial date \(=1\) is equivalent to 01-Jan-0000). (The serial date vector can include time-of-day information.)

The long g display format displays the numbers without exponentiation. (To revert to the default display format, use format short. (See the format command in the MATLAB documentation for a description of MATLAB display formats.) Remember that both the vector and the matrix have 101 rows of data as in the original object myfts but are shown truncated here.

\section*{Indexing a Financial Time Series Object}

You can also index into the object as with any other MATLAB variable or structure. A financial time series object lets you use a date string, a cell array of date strings, a date string range, or normal integer indexing. You cannot, however, index into the object using serial dates. If you have serial dates, you must first use the MATLAB datestr command to convert them into date strings.

When indexing by date string, note that
- Each date string must contain the day, month, and year. Valid formats are
- 'ddmmmy hh:mm' or 'ddmmmyyyy hh:mm'
- 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'
- 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy hh:mm'
- 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy hh:mm'
- All data falls at the end of the indicated time period, that is, weekly data falls on Fridays, monthly data falls on the end of each month, and so on, whenever the data has gone through a frequency conversion.

\section*{Indexing with Date Strings}

With date string indexing you get the values in a financial time series object for a specific date using a date string as the index into the object. Similarly, if you want values for multiple dates in the object, you can put those date strings into a cell array and use the cell array as the index to the object. Here are some examples.

This example extracts all values for May 11, 1999 from myfts:
format short
myfts('05/11/99')
ans =
desc: (none)
freq: Unknown (0)
'dates: (1)' 'series1: (1)' 'series2: (1)'
'11-May-1999' [
\(2.8108]\)
\(0.9323]\)

The next example extracts only series2 values for May 11, 1999 from myfts:
```

myfts.series2('05/11/99')
ans =
desc: (none)
freq: Unknown (0)
'dates: (1)' 'series2: (1)
'11-May-1999' [0.9323]

```

The third example extracts all values for three different dates:
```

myfts({'05/11/99', '05/21/99', '05/31/99'})
ans =
desc: (none)
freq: Unknown (0)
'dates: (3)' 'series1: (3)' 'series2: (3)
'11-May-1999' [2.8108] [0.9323]
'21-May-1999' [0.9050] [1.2445]
'31-May-1999' [1.4266] [0.6470]

```

The next example extracts only series2 values for the same three dates:
```

myfts.series2({'05/11/99', '05/21/99', '05/31/99'})
ans =
desc: (none)
freq: Unknown (0)
'dates: (3)' 'series2: (3)
'11-May-1999' [0.9323]
'21-May-1999' [1.2445]
'31-May-1999' [0.6470]

```

\section*{Indexing with Date String Range}

A financial time series is unique because it allows you to index into the object using a date string range. A date string range consists of two date strings separated by two colons (::). In MATLAB this separator is called the double-colon operator. An example of a MATLAB date string range is '05/11/99::05/31/99'. The operator gives you all data points available between those dates, including the start and end dates.

Here are some date string range examples:
```

myfts ('05/11/99::05/15/99')
ans =
desc: (none)
freq: Unknown (0)

'dates: (5)'	'series1: (5)'	'series2: (5)'		
'11-May-1999'	[$2.8108]$	[$0.9323]$
'12-May-1999'	[$0.2454]$	$[$	$0.5608]$
'13-May-1999'	[$0.3568]$	$[$	$1.5989]$
'14-May-1999'	[$0.5255]$	[$3.6682]$
'15-May-1999'	[$1.1862]$	[$5.1284]$

myfts.series2('05/11/99::05/15/99')
ans =
desc: (none)
freq: Unknown (0)
'dates: (5)' 'series2: (5)
'11-May-1999' [0.9323]
'12-May-1999' [0.5608]
'13-May-1999' [1.5989]
'14-May-1999' [3.6682]
'15-May-1999' [5.1284]

```

As with any other MATLAB variable or structure, you can assign the output to another object variable:
nfts = myfts.series2('05/11/99::05/20/99');
nft is the same as ans in the second example.
If one of the dates does not exist in the object, an error message indicates that one or both date indexes are out of the range of the available dates in the object. You can either display the contents of the object or use the command ftsbound to determine the first and last dates in the object.

\section*{Indexing with Integers}

Integer indexing is the normal form of indexing in MATLAB. Indexing starts at 1 (not 0 ); index \(=1\) corresponds to the first element, index \(=2\) to the second element, index \(=3\) to the third element, and so on. Here are some examples with and without data series reference.

Get the first item in series2:
```

myfts.series2(1)
ans =
desc: (none)
freq: Unknown (0)
'dates: (1)' 'series2: (1)
'11-May-1999' [0.9323]

```

Get the first, third, and fifth items in series2:
```

myfts.series2([1, 3, 5])

```
ans =
    desc: (none)
    freq: Unknown (0)
    'dates: (3)' 'series2: (3)
    '11-May-1999' [ 0.9323]
    '13-May-1999' [ 1.5989]
    '15-May-1999' [ 5.1284]
```

Get items 16 through 20 in series2:
myfts.series2(16:20)
ans =
desc: (none)
freq: Unknown (0)
'dates: (5)' 'series2: (5)
'26-May-1999' [0.2105]
'27-May-1999' [1.8916]
'28-May-1999' [0.6673]
'29-May-1999' [0.6681]
'30-May-1999' [1.0877]

```

Get items 16 through 20 in the financial time series object myfts:
```

myfts(16:20)
ans =
desc: (none)
freq: Unknown (0)

ates: (5)'	series1: (5)'	series2: (5)'
'26-May-1999'	[0.7571]	$0.2105]$
'27-May-1999'	[1.2425]	$1.8916]$
'28-May-1999'	[1.8790]	0.6673]
'29-May-1999'	0.57781	0.6681]
'30-May-1999'	1.2581]	$1.0877]$

```

Get the last item in myfts:
```

myfts(end)
ans =
desc: (none)
freq: Unknown (0)

```
```

'dates: (1)' 'series1: (1)' 'series2: (1)'
'19-Aug-1999' [1.4692] [3.4238]

```

This example uses the MATLAB special variable end, which points to the last element of the object when used as an index. The example returns an object whose contents are the values in the object myfts on the last date entry.

\section*{Indexing When Time-of-Day Data Is Present}

Both integer and date string indexing are permitted when time-of-day information is present in the financial time series object. You can index into the object with both date and time specifications, but not with time of day alone. To show how indexing works with time-of-day data present, create a financial time series object called timeday containing a time specification:
```

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...
times]);
timeday = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')
timeday =
desc: My first FINTS
freq: Daily (1)
'dates: (6)' 'times: (6)' 'Data1: (6)'
'01-Jan-2001' '11:00' [1]
'" ' '12:00' [2]
'02-Jan-2001' '11:00' [3]
' '12:00' [[1:00' 4]
'03-Jan-2001' '11:00' [5]
'12:00' [6]

```

Use integer indexing to extract the second and third data items from timeday:
timeday(2:3)
ans \(=\)
```

desc: My first FINTS
freq: Daily (1)

'dates: (2)'	'times:	(2)'	'Data1:	(2)'
'01-Jan-2001'	'12:00'		$[$	$2]$
'02-Jan-2001'	'11:00'	$[$	$3]$	

```

For date string indexing, enclose the date and time string in one pair of quotation marks. If there is one date with multiple times, indexing with only the date returns the data for all the times for that specific date. For example, the command timeday ('01-Jan-2001') returns the data for all times on January 1, 2001:
```

ans =
desc: My first FINTS
freq: Daily (1)

dates: (2)'	'times:	(2) '	Data1:	(2)
01-Jan-2001'	'11:00'		[
	'12:00'			

```

You can also indicate a specific date and time:
```

timeday('01-Jan-2001 12:00')
ans =
desc: My first FINTS
freq: Daily (1)
'dates: (1)' 'times: (1)' 'Data1: (1)
'01-Jan-2001' '12:00' [2]

```

Use the double-colon operator : : to specify a range of dates and times:
timeday('01-Jan-2001 12:00::03-Jan-2001 11:00')
ans \(=\)
```

desc: My first FINTS
freq: Daily (1)

dates: (4)'	'times:	(4) ${ }^{\prime}$	'Data1: (4)'
'01-Jan-2001'	'12:00'		2]
'02-Jan-2001'	'11:00'		$3]$
" '	'12:00'		4]
'03-Jan-2001'	'11:00'		5]

```

Treat timeday as a MATLAB structure if you want to obtain the contents of a specific field. For example, to find the times of day included in this object, enter
datestr(timeday.times)
ans =

11:00 AM
12:00 PM
11:00 AM
12:00 PM
11:00 AM
12:00 PM

\section*{Financial Time Series Operations}

Several MATLAB functions have been overloaded to work with financial time series objects. The overloaded functions include basic arithmetic functions such as addition, subtraction, multiplication, and division and other functions such as arithmetic average, filter, and difference. Also, specific methods have been designed to work with the financial time series object. For a list of functions grouped by type, enter
help ftseries
at the MATLAB command prompt.

\section*{Basic Arithmetic}

Financial time series objects permit you to do addition, subtraction, multiplication, and division, either on the entire object or on specific object
fields. This is a feature that MATLAB structures do not allow. You cannot do arithmetic operations on entire MATLAB structures, only on specific fields of a structure.

You can perform arithmetic operations on two financial time series objects as long as they are compatible. (All contents are the same except for the description and the values associated with the data series.)

Note Compatible time series are not the same as equal time series. Two time series objects are equal when everything but the description fields is the same.

Here are some examples of arithmetic operations on financial time series objects.

Load a MAT-file that contains some sample financial time series objects:
load dji30short
One of the objects in dji30short is called myfts1:
```

myfts1 =
desc: DJI30MAR94.dat
freq: Daily (1)

| 'dates: (20)' | 'Open: (20)' | 'High: (20) ' | 'Low: (20)' | 'Close: (20)' |
| :--- | :--- | :--- | :--- | :--- | :--- |
| '04-Mar-1994' | $[3830.90]$ | $[3868.04]$ | $[3800.50]$ | $[3832.30]$ |
| '07-Mar-1994' | $[3851.72]$ | $[3882.40]$ | $[3824.71]$ | $[3856.22]$ |
| '08-Mar-1994' | $[3858.48]$ | $[3881.55]$ | $[3822.45]$ | $[3851.72]$ |
| '09-Mar-1994' | $[3853.97]$ | $[3874.52]$ | $[3817.95]$ | $[3853.41]$ |
| '10-Mar-1994' | $[3852.57]$ | $[3865.51]$ | $[3801.63]$ | $[3830.62] \ldots$ |

```

Create another financial time series object that is identical to myfts1:
```

newfts = fints(myfts1.dates, fts2mat(myfts1)/100,...
{'Open','High','Low', 'Close'}, 1, 'New FTS')
newfts =

```
```

desc: New FTS
freq: Daily (1)
'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close:(20)'
'04-Mar-1994' [38.31] [38.68] [38.01] [38.32]
'07-Mar-1994' [38.52] [38.82] [38.25] [38.56]
'08-Mar-1994' [38.58] [38.82] [38.22] [38.52]
'09-Mar-1994' [38.54] [38.75] [38.18] [38.53]
'10-Mar-1994' [38.53] [38.66] [38.02] [38.31]...

```

Perform an addition operation on both time series objects:
```

addup = myfts1 + newfts
addup =
desc: DJI30MAR94.dat
freq: Daily (1)
'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'
'04-Mar-1994' [3869.21] [3906.72] [3838.51] [3870.62]
07-Mar-1994' [3890.24] [3921.22] [3862.96] [3894.78]
'08-Mar-1994' [3897.06] [3920.37] [3860.67] [3890.24]
'09-Mar-1994' [3892.51] [3913.27] [3856.13] [3891.94]
'10-Mar-1994' [3891.10] [3904.17] [3839.65] [3868.93]...

```

Now, perform a subtraction operation on both time series objects:
```

subout = myfts1 - newfts
subout =
desc: DJI30MAR94.dat
freq: Daily (1)
'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'
04-Mar-1994' [3792.59] [3829.36] [3762.49] [3793.98]
'07-Mar-1994' [3813.20] [3843.58] [3786.46] [3817.66]
'08-Mar-1994' [3819.90] [3842.73] [3784.23] [3813.20]
'09-Mar-1994' [3815.43] [3835.77] [3779.77] [3814.88]
'10-Mar-1994' [3814.04] [3826.85] [3763.61] [3792.31]...

```

\section*{Operations with Objects and Matrices}

You can also perform operations involving a financial time series object and a matrix or scalar:
```

addscalar = myfts1 + 10000
addscalar =
desc: DJI30MAR94.dat
freq: Daily (1)
'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)
'04-Mar-1994' [13830.90] [13868.04] [13800.50] [13832.30]
'07-Mar-1994' [13851.72] [13882.40] [13824.71] [13856.22]
'08-Mar-1994' [13858.48] [13881.55] [13822.45] [13851.72]
'09-Mar-1994' [13853.97] [13874.52] [13817.95] [13853.41]
'10-Mar-1994' [13852.57] [13865.51] [13801.63] [13862.70]...

```

For operations with both an object and a matrix, the size of the matrix must match the size of the object. For example, a matrix to be subtracted from myfts 1 must be 20 -by- 4 , since myfts 1 has 20 dates and four data series:
```

submtx = myfts1 - randn(20, 4)
submtx =
desc: DJI30MAR94.dat
freq: Daily (1)

s: (20)'	'Open: (20)	'High: (20)	'Low: (20)	(20)
04-Mar-1994'	$3831.33]$	[3867.75]	$3802.10]$	$3832.63]$
07-Mar-1994'	[3853.39]	[3883.74]	$3824.45]$	$3857.06]$
08-Mar-1994'	[3858.35]	[3880.84]	[3823.51]	3851.22]
09-Mar-1994'	[3853.68]	[3872.90]	[3816.53]	3851.92]
10-Mar-1994'	3853.72]	3866.20]	$3802.44]$	3831.17]

```

\section*{Arithmetic Operations with Differing Data Series Names}

Arithmetic operations on two objects that have the same size but contain different data series names require the function fts2mat. This function extracts the values in an object and puts them into a matrix or vector, whichever is appropriate.

To see an example, create another financial time series object the same size as myfts1 but with different values and data series names:
```

newfts2 = fints(myfts1.dates, fts2mat(myfts1/10000),...
{'Rat1','Rat2', 'Rat3','Rat4'}, 1, 'New FTS')

```

If you attempt to add (or subtract, and so on) this new object to myfts1, an error indicates that the objects are not identical. Although they contain the same dates, number of dates, number of data series, and frequency, the two time series objects do not have the same data series names. Use fts2mat to bypass this problem:
```

addother = myfts1 + fts2mat(newfts2);

```

This operation adds the matrix that contains the contents of the data series in the object newfts2 to myfts1. You should carefully consider the effects on your data before deciding to combine financial time series objects in this manner.

\section*{Other Arithmetic Operations}

In addition to the basic arithmetic operations, several other mathematical functions operate directly on financial time series objects. These functions include exponential (exp), natural logarithm (log), common logarithm ( \(\log 10\) ), and many more.

\section*{Data Transformation and Frequency Conversion}

The data transformation and the frequency conversion functions convert a data series into a different format.

\section*{Data Transformation Functions}
\begin{tabular}{ll}
\hline Function & Purpose \\
boxcox & Box-Cox transformation \\
diff & Differencing \\
fillts & Fill missing values \\
filter & Filter \\
lagts & Lag time series object \\
leadts & Lead time series object \\
peravg & Periodic average \\
smoothts & Smooth data \\
tsmovavg & Moving average \\
\hline
\end{tabular}

\section*{Frequency Conversion Functions}
\begin{tabular}{ll}
\hline Function & New Frequency \\
\hline convertto & As specified \\
resamplets & As specified \\
toannual & Annual \\
todaily & Daily \\
tomonthly & Monthly \\
toquarterly & Quarterly \\
tosemi & Semiannually \\
toweekly & Weekly \\
\hline
\end{tabular}

As an example look at boxcox, the Box-Cox transformation function. This function transforms the data series contained in a financial time series object into another set of data series with relatively normal distributions.

First create a financial time series object from the supplied whirlpool.dat data file.
whrl = ascii2fts('whirlpool.dat', 1, 2, []);
Fill any missing values denoted with NaNs in whrl with values calculated using the linear method:
f_whrl = fillts(whrl);
Transform the nonnormally distributed filled data series f_whrl into a normally distributed one using Box-Cox transformation:
bc_whrl = boxcox(f_whrl);
Compare the result of the Close data series with a normal (Gaussian) probability distribution function and the nonnormally distributed f_whrl:
subplot(2, 1, 1);
hist(f_whrl.Close);
grid; title('Nonnormally Distributed Data');
subplot(2, 1, 2);
hist(bc_whrl.Close);
grid; title('Box-Cox Transformed Data');


\section*{Box-Cox Transformation}

The bar chart on the top represents the probability distribution function of the filled data series, f_whrl, which is the original data series whrl with the missing values interpolated using the linear method. The distribution is skewed toward the left (not normally distributed). The bar chart on the bottom is less skewed to the left. If you plot a Gaussian probability distribution function (PDF) with similar mean and standard deviation, the distribution of the transformed data is very close to normal (Gaussian).

When you examine the contents of the resulting object bc_whrl, you find an identical object to the original object whrl but the contents are the transformed data series. If you have the Statistics Toolbox software, you can generate a Gaussian PDF with mean and standard deviation equal to those of the transformed data series and plot it as an overlay to the second bar chart. In the next figure, you can see that it is an approximately normal distribution.


\section*{Overlay of Gaussian PDF}

The next example uses the smoothts function to smooth a time series.
To begin, transform ibm9599.dat, a supplied data file, into a financial time series object:
```

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

```

Fill the missing data for holidays with data interpolated using the fillts function and the Spline fill method:
```

f_ibm = fillts(ibm, 'Spline');

```

Smooth the filled data series using the default Box (rectangular window) method:
```

sm_ibm = smoothts(f_ibm);

```

Now, plot the original and smoothed closing price series for IBM stock:
```

plot(f_ibm.CLOSE('11/01/97::02/28/98'), 'r')
datetick('x', 'mmmyy')
hold on
plot(sm_ibm.CLOSE('11/01/97::02/28/98'), 'b')
hold off
datetick('x', 'mmmyy')
legend('Filled', 'Smoothed')

```
```

title('Filled IBM Close Price vs. Smoothed Series')

```


\section*{Smoothed Data Series}

These examples give you an idea of what you can do with a financial time series object. This toolbox provides some MATLAB functions that have been overloaded to work directly with the these objects. The overloaded functions are those most commonly needed to work with time series data.

\section*{Using Time Series to Predict Equity Return}

\author{
In this section... \\ "Overview" on page 12-25 \\ "Load the Data" on page 12-26 \\ "Create Financial Time Series Objects" on page 12-26 \\ "Create Closing Prices Adjustment Series" on page 12-27 \\ "Adjust Closing Prices and Make Them Spot Prices" on page 12-28 \\ "Create Return Series" on page 12-28 \\ "Regress Return Series Against Metric Data" on page 12-28 \\ "Plot the Results" on page 12-29 \\ "Calculate the Dividend Rate" on page 12-30
}

\section*{Overview}

This example demonstrates a practical use of financial time series objects, predicting the return of a stock from a given set of data. The data is a series of closing stock prices, a series of dividend payments from the stock, and an explanatory series (in this case a market index). Additionally, the example calculates the dividend rate from the stock data provided.

Note You can find a file for this demonstration program in the directory matlabroot/toolbox/finance/ftsdemos on your MATLAB path. The file is named predict_ret.m.

To perform these computations:
1 Load the data.
2 Create financial time series objects from the loaded data.
3 Create the series from dividend payment for adjusting the closing prices.
4 Adjust the closing prices and make them the spot prices.

5 Create the return series.
6 Regress the return series against the metric data (for example, a market index) using the MATLAB \operator.

7 Plot the results.
8 Calculate the dividend rate.

\section*{Load the Data}

The data for this demonstration is found in the MAT-file predict_ret_data.mat:
load predict_ret_data.mat
The MAT-file contains six vectors:
- Dates corresponding to the closing stock prices, sdates
- Closing stock prices, sdata
- Dividend dates, divdates
- Dividend paid, divdata
- Dates corresponding to the metric data, expdates
- Metric data, expdata

Use the whos command to see the variables in your MATLAB workspace.

\section*{Create Financial Time Series Objects}

It is useful to work with financial time series objects rather than with the vectors now in the workspace. By using objects, you can easily keep track of the dates. Also, you can easily manipulate the data series based on dates because the object keeps track of the administration of time series for you.

Use the object constructor fints to construct three financial time series objects.
```

t0 = fints(sdates, sdata, {'Close'}, 'd', 'Inc');
dO = fints(divdates, divdata, {'Dividends'}, 'u', 'Inc');

```
```

x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index');

```

The variables t 0 , d 0 , and x 0 are financial time series objects containing the stock closing prices, dividend payments, and the explanatory data, respectively. To see the contents of an object, type its name at the MATLAB command prompt and press Enter. For example:
```

d0
d0 =
'desc:' 'Inc'
'freq:' 'Unknown (0)
'dates: (4)' 'Dividends: (4)
'04/15/99' '0.2000'
'06/30/99' '0.3500'
'10/02/99' '0.2000'
'12/30/99' '0.1500'

```

\section*{Create Closing Prices Adjustment Series}

The price of a stock is affected by the dividend payment. On the day before the dividend payment date, the stock price reflects the amount of dividend to be paid the next day. On the dividend payment date, the stock price is decreased by the amount of dividend paid. Create a time series that reflects this adjustment factor:
```

dadj1 = d0;
dadj1.dates = dadj1.dates-1;

```

Now create the series that adjust the prices at the day of dividend payment; this is an adjustment of 0 . You also need to add the previous dividend payment date since the stock price data reflect the period subsequent to that day; the previous dividend date was December 31, 1998 :
```

dadj2 = d0;
dadj2.Dividends = 0;
dadj2 = fillts(dadj2,'linear','12/31/98');
dadj2('12/31/98') = 0;

```

Combining the two objects above gives the data needed to adjust the prices. However, since the stock price data is daily data and the effect of the dividend is linearly divided during the period, use the fillts function to make a daily time series from the adjustment data. Use the dates from the stock price data to make the dates of the adjustment the same:
```

dadj3 = [dadj1; dadj2];
dadj3 = fillts(dadj3, 'linear', t0.dates);

```

\section*{Adjust Closing Prices and Make Them Spot Prices}

The stock price recorded already reflects the dividend effect. To obtain the "correct" price, subtract the dividend amount from the closing prices. Put the result inside the same object to with the data series name Spot.

To make sure that adjustments correspond, index into the adjustment series using the dates from the stock price series to. Use the datestr command because to.dates returns the dates in serial date format. Also, since the data series name in the adjustment series dadj3 does not match the one in to, use the function fts2mat:
```

t0.Spot = t0.Close - fts2mat(dadj3(datestr(t0.dates)));

```

\section*{Create Return Series}

Now calculate the return series from the stock price data. A stock return is calculated by dividing the difference between the current closing price and the previous closing price by the previous closing price.
```

tret = (t0.Spot - lagts(t0.Spot, 1)) ./ lagts(t0.Spot, 1);
tret = chfield(tret, 'Spot', 'Return');

```

Ignore any warnings you receive during this sequence. Since the operation on the first line above preserves the data series name Spot, it has to be changed with the chfield command to reflect the contents correctly.

\section*{Regress Return Series Against Metric Data}

The explanatory (metric) data set is a weekly data set while the stock price data is a daily data set. The frequency needs to be the same. Use todaily
to convert the weekly series into a daily series. The constant needs to be included here to get the constant factor from the regression:
```

x1 = todaily(x0);
x1.Const = 1;

```

Get all the dates common to the return series calculated above and the explanatory (metric) data. Then combine the contents of the two series that have dates in common into a new time series:
```

dcommon = intersect(tret.dates, x1.dates);
regts0 = [tret(datestr(dcommon)), x1(datestr(dcommon))];

```

Remove the contents of the new time series that are not finite:
```

finite_regts0 = find(all(isfinite(fts2mat(regts0)), 2));
regts1 = regts0(finite_regts0);

```

Now, place the data to be regressed into a matrix using the function fts2mat. The first column of the matrix corresponds to the values of the first data series in the object, the second column to the second data series, and so on. In this case, the first column is regressed against the second and third column:
```

DataMatrix = fts2mat(regts1);
XCoeff = DataMatrix(:, 2:3) \ DataMatrix(:, 1);

```

Using the regression coefficients, calculate the predicted return from the stock price data. Put the result into the return time series tret as the data series PredReturn:

RetPred \(=\) DataMatrix(:,2:3) * XCoeff;
tret. PredReturn(datestr(regts1.dates)) = RetPred;

\section*{Plot the Results}

Plot the results in a single figure window. The top plot in the window has the actual closing stock prices and the dividend-adjusted stock prices (spot prices). The bottom plot shows the actual return of the stock and the predicted stock return through regression:
subplot(2, 1, 1);
plot(t0);
```

title('Spot and Closing Prices of Stock');
subplot(2, 1, 2);
plot(tret);
title('Actual and Predicted Return of Stock');

```


\section*{Closing Prices and Returns}

\section*{Calculate the Dividend Rate}

The last part of the task is to calculate the dividend rate from the stock price data. Calculate the dividend rate by dividing the dividend payments by the corresponding closing stock prices.

First check to see if you have the stock price data on all the dividend dates:
```

datestr(d0.dates, 2)
ans =

```

04/15/99
06/30/99
10/02/99
12/30/99
```

t0(datestr(d0.dates))
ans =
'desc:' 'Inc'
'freq:' 'Daily (1)
'dates: (3)' 'Close: (3)' 'Spot: (3)'
'04/15/99' '10.3369' '10.3369'
'06/30/99' '11.4707' '11.4707'
'12/30/99' '11.2244' '11.2244'

```

Note that stock price data for October 2, 1999 does not exist. The fillts function can overcome this situation; fillts allows you to insert a date and interpolate a value for the date from the existing values in the series. There are a number of interpolation methods. For more information, see fillts.

Use fillts to create a new time series containing the missing date from the original data series. Then set the frequency indicator to daily:
```

t1 = fillts(t0,'nearest',d0.dates);
t1.freq = 'd';

```

Calculate the dividend rate:
```

tdr = d0./fts2mat(t1.Close(datestr(d0.dates)))
tdr =
'desc:' 'Inc'
'freq:' 'Unknown (0)
'dates: (4)' 'Dividends: (4)
'04/15/99' '0.0193'
'06/30/99' '0.0305'
'10/02/99' '0.0166'
'12/30/99' '0.0134'

```

\section*{Financial Time Series App}
- "What Is the Financial Time Series App?" on page 13-2
- "Getting Started with the Financial Time Series App " on page 13-4
- "Loading Data with the Financial Time Series App" on page 13-6
- "Using the Financial Time Series App" on page 13-12
- "Using the Financial Time Series App with GUIs" on page 13-20

\section*{What Is the Financial Time Series App?}

The Financial Time Series app enables you to create and manage financial time series (fints) objects. The Financial Time Series app interoperates with the Financial Time Series Graphical User Interface (ftsgui) and Interactive Chart (chartfts). In addition, you can use Datafeed Toolbox \({ }^{\text {TM }}\) or Database Toolbox \({ }^{\text {TM }}\) software to connect to external data sources.

A financial time series object minimally consists of:
- Desc, which is the description field.
- Freq, which is a frequency indicator field.
- Dates, which is a date vector field. If the date vector incorporates time-of-day information, the object contains an additional field named times.
- In addition, you can have at least one data series vector. You can specify names for any data series vectors. If you do not specify names, the object uses the default names series1, series2, series3, and so on.

In general, the workflow for using the Financial Time Series app is:
1 Acquire data.
2 Create a variable.
3 Convert the variable to fints.
4 Convert fints to a MATLAB double object.
To obtain the data for the Financial Time Series app, you need to use a MATLAB double object or a financial time series (fints) object. You can use previously stored internal data on your computer or you can connect to external data sources using Datafeed Toolbox or Database Toolbox software.

Note You must obtain a license for these products from MathWorks before you can use either of these toolboxes.

After creating a financial time series object, you can use the Financial Time Series app to change the characteristics of the time series object, including merging with other financial time series objects, removing rows or columns, and changing the frequency. You can also use the Financial Time Series app to generate various forms of plotted output and you can reconvert a fints object to a MATLAB double-precision matrix.

\section*{Getting Started with the Financial Time Series App}

To start the Financial Time Series app:
1 On the MATLAB desktop toolstrip, click the Apps tab and in the apps gallery, under Computational Finance, click Financial Time Series.

The Financial Time Series app opens. For an overview of the Financial Time Series app, see "What Is the Financial Time Series App?" on page 13-2.

2 To load data with the Financial Time Series app, see "Loading Data with the Financial Time Series App" on page 13-6.

If you plan to load data from Database Toolbox or Datafeed Toolbox software, ensure you have a license. For more information on using these toolboxes, see the Database Toolbox and Datafeed Toolbox documentation.

3 For more information on the tasks supported by the Financial Time Series app, see "Using the Financial Time Series App" on page 13-12 and "Using the Financial Time Series App with GUIs" on page 13-20.


\section*{Loading Data with the Financial Time Series App}

\author{
In this section... \\ "Overview" on page 13-6 \\ "Obtaining External Data" on page 13-6 \\ "Obtaining Internal Data" on page 13-8 \\ "Viewing the MATLAB Workspace" on page 13-10
}

\section*{Overview}

The Data source pane in the Financial Time Series app lets you do the following:
- Obtain live data from various external data servers using either Datafeed Toolbox or Database Toolbox software.
- Load data you previously obtained and stored in a file.
- View data contained within the MATLAB workspace.

\section*{Obtaining External Data}

You can obtain external data using Datafeed Toolbox or Database Toolbox software. Datafeed Toolbox software lets you obtain data from several financial data servers, including:
- Bloomberg \({ }^{\circledR}\)
- eSignal \({ }^{\circledR}\)
- FactSet \({ }^{\circledR}\)
- Federal Reserve Economic Data (FRED \({ }^{\circledR}\) )
- Haver Analytics \({ }^{\circledR}\) financial data
- Interactive Data \({ }^{\text {TM }}\)
- IQFEED \({ }^{\circledR}\)
- Kx Systems \({ }^{\circledR}\), Inc. kdb+ database
- Thomson Reuters \({ }^{\text {TM }}\)
- SIX Financial Information
- Yahoo! \({ }^{\circledR}\)

Except for Federal Reserve Economic Data (FRED) and Yahoo!, these data servers require that you obtain a license from the vendor before you can access their data.

Tip If you open Datafeed Toolbox or Database Toolbox software before starting the Financial Time Series app, the Financial Time Series app is unable to recognize the toolboxes. When working with the Financial Time Series app, select File \(>\) Load to open these toolboxes.

\section*{Obtaining External Data with Datafeed Toolbox Software}

1 From the Financial Time Series app, select File > Load > Datafeed Toolbox to open the toolbox.

2 Click the Connection tab in Datafeed Toolbox software to select the data source you want to load into the Financial Time Series app.

3 Click the Data tab in Datafeed Toolbox software to select the security and the associated data that you want to load into the Financial Time Series app.

4 After using Datafeed Toolbox software to define the connection, security, data, and MATLAB variable name, click Get Data and then, using the Financial Time Series app, click Refresh variable list. The Data source field in the Financial Time Series app displays the name of the security you selected from the Data tab in Datafeed Toolbox software. The Financial Time Series app Active variable field indicates the name of the MATLAB workspace variable you chose for this security.

5 Click Close to exit Datafeed Toolbox software. The Financial Time Series app clears the Data source and Active variable fields.

\section*{Obtaining External Data with Database Toolbox Software}

1 From the Financial Time Series app, select File > Load > Database Toolbox to open the toolbox.

2 From the Visual Query Builder window, select the data you want to load into the Financial Time Series app.

3 After using Database Toolbox software to select data and name the MATLAB workspace variable, click Execute and then, using the Financial Time Series app, click Refresh variable list. The Data source field in the Financial Time Series app displays the name of the highlighted data source that you selected from the Data list box in the Visual Query Builder window. The Financial Time Series app Active variable field indicates the name of the MATLAB workspace variable you chose for the security in the Visual Query Builder window.

4 From the Database Toolbox software, select Query > Close Visual Query Builder, the Financial Time Series app clears the Data source and Active variable fields.

\section*{Obtaining Internal Data}

You can use the Financial Time Series app to load data from files previously stored on your computer. The types of data files you can load are as follows:
- MATLAB .mat files, with or without fints objects
- ASCII text files (.dat or .txt suffixes)
- Excel .xls files

To obtain internal data:
1 From the Financial Time Series app, select File \(>\) Load \(>\) File to open the Load a MAT, ASCII, .XLS File dialog box.

2 Select the data you want to load into the Financial Time Series app.
- If you load a MATLAB MAT-file, the variables in the file are placed into the MATLAB workspace. The MATLAB Workspace Variables list box shows the variables that have been added to the workspace. For example, if you load the file disney.mat, which is distributed with the toolbox, the MATLAB Workspace Variables list box displays the variables in that MAT-file.

Note The Financial Time Series app automatically generates a line plot for each workspace variables unless you disable this feature by resetting the default action under File > Preferences > Generate line plot on load.
- If you load a .dat or an ASCII .txt file, the ASCII File Parameters dialog box opens. Use this dialog box to transform a text data file into a MATLAB financial time series fints object. The format for the ascii data must be:
- Dates must be in a valid date string format:
```

'ddmmmyy' or 'ddmmmyyyy'
'mm/dd/yy' or 'mm/dd/yyyy'
'dd-mmm-yy' or'dd-mmm-yyyy'
'mmm.dd,yy' or 'mmm.dd,yyyy'

```
- Time information must be in 'hh:mm' format.
- Each column must be separated either by spaces or a tab.

For more information on converting ascii data to a fints object, see ascii2fts.
- If you load an Excel .xls file, the Excel File Parameters dialog box opens. Use this dialog box to transform Excel worksheet data into a MATLAB financial time series (fints) object.

3 From the Financial Time Series app, select File > Save to save the data you loaded from an internal file.

\section*{Viewing the MATLAB Workspace}

The MATLAB Workspace Variables list box displays all existing MATLAB workspace variables. Double-click any variable to display the data in the Data Table. You can only display financial time series (fints) objects, MATLAB doubles, and cell arrays of double data in the Data Table.


In addition, you can click Refresh variable list to refresh the MATLAB Workspace Variables list box. You need to refresh this list periodically
because it is refreshed automatically only for operations performed with the Financial Time Series app, not for operations performed within MATLAB itself.

Click Remove variable(s) to remove variable from the MATLAB Workspace Variables list and from the MATLAB workspace.

\title{
Using the Financial Time Series App
}

\author{
In this section... \\ "Creating a Financial Time Series Object" on page 13-12 \\ "Merge Financial Time Series Objects" on page 13-13 \\ "Converting a Financial Time Series Object to a MATLAB Double-Precision Matrix" on page 13-14 \\ "Plotting the Output in Several Formats" on page 13-14 \\ "Viewing Data for a Financial Time Series Object in the Data Table" on page 13-15 \\ "Modifying Data for a Financial Time Series Object in the Data Table" on page 13-17 \\ "Viewing and Modifying the Properties for a FINTS Object" on page 13-19
}

\section*{Creating a Financial Time Series Object}

Using the Create tab in the FINTS Objects and Outputs pane for the Financial Time Series app, you can create a financial time series (fints) object from one or more selected variables.

Note When you first start the Financial Time Series app, the Create tab appears on top, unless you reset the default using File > Preferences > Show Create tab when ftstool starts.

To create a financial time series (fints) object from one or more selected variables:

1 Load data into the Financial Time Series app from either an external data source using Datafeed Toolbox or Database Toolbox software or an internal data source using File \(>\) Load \(>\) File.

2 Select one or more variables from the MATLAB Workspace Variables list.

3 Click the Create tab and then click Active variable.
When combining multiple variables, you can type a new variable name for the combined variables in the MATLAB workspace variable box. The new variable name is added to the MATLAB Workspace Variables list. (If you do not choose a name for the MATLAB workspace variable, the Financial Time Series app uses the default name myFts.)

4 Click Create FINTS object to display the result in the Data Table.

\section*{Merge Financial Time Series Objects}

Using the Create tab in the FINTS Objects and Outputs pane for the Financial Time Series app, you can create a new financial time series object by merging (joining) multiple existing financial time series objects.

Note When you first start the Financial Time Series app, the Create tab appears on top, unless you reset the default using File > Preferences.

To create a financial time series (fints) object by merging multiple existing financial time series objects:

1 Load data into the Financial Time Series app from either an external data source using Datafeed Toolbox or Database Toolbox software or an internal data source using File \(>\) Load \(>\) File.

2 To merge multiple existing financial time series objects, click the Create tab, click Components, and then select a value for the Time vector source and one or more items from the Data sources list.

Note You can merge at once multiple financial time series objects. For more information on merging fints objects, see merge.

3 Click Create FINTS object to display the result in the Data Table.

\section*{Converting a Financial Time Series Object to a MATLAB Double-Precision Matrix}

Using the Convert tab in the FINTS Objects and Outputs pane for the Financial Time Series app, you can convert a financial time series (fints) object to a MATLAB double-precision matrix.

To create a financial time series object from one or more selected variables:
1 Load data into the Financial Time Series app from either an external data source using Datafeed Toolbox or Database Toolbox software or an internal data source using File \(>\) Load \(>\) File.

2 Select a variable from the MATLAB Workspace Variables list box.
3 Click the Convert tab and then determine whether to include or exclude dates in the conversion by clicking Include dates or Exclude dates.

4 Type a variable name in the Output variable name box. (If you do not choose a variable name, the Financial Time Series app uses the default name myDbl.)

5 Click Convert FINTS to double matrix. (This operation is equivalent to performing fts2mat on a financial time series object.)

\section*{Plotting the Output in Several Formats}

Using the Plot tab in the FINTS Objects and Outputs pane for the Financial Time Series app, you can create several forms of plotted output by using a selection list. You can create four types of bar charts, candle plots, high-low plots, line plots, and interactive charts (the latter is created by using the interoperation of the Financial Time Series app with the function chartfts).

The set of plots supported by the Financial Time Series app are identical to the set provided by the Graphs menu of the Financial Time Series GUI. (See "Graphs Menu" on page 14-15.) You can find more detailed information for the supported plots by consulting the reference page for each individual type of plot.

To create a plotted output:

1 Load data into the Financial Time Series app from either an external data source using Datafeed Toolbox or Database Toolbox software or an internal data source using File \(>\) Load \(>\) File.

2 Select a variable from the MATLAB Workspace Variables list box or select data from the Data Table.

3 Click the Plot tab and indicate whether you are plotting based on a workspace variable or data from the Data Table.

4 From the Type drop-down list, select the type of plot.
5 Click Plot. The plot is displayed.

Note If the selected workspace variable that you are plotting is not a fints object, a fints object is created when you click Plot. The new fints object uses the name designated by the MATLAB workspace variable box on the Create tab.

\section*{Viewing Data for a Financial Time Series Object in the Data Table}

Once a financial time series (fints) object is created, the Financial Time Series app Data Table displays user-designated data, including financial time series objects, MATLAB double-precision variables, and cell arrays of doubles. (Cell arrays of doubles is often the resulting format when using Database Toolbox software.)

When displaying double variables (or a cell array of doubles) in the Data Table, the column headings for a double variable or cell array of doubles displayed in the Data Table are labeled A, B, C, and so on.

\section*{Overwriting Data in the Data Table Display}

If you use the command line to overwrite data previously retrieved using Datafeed Toolbox or Database Toolbox software, two events could occur:
- If the new data contains the same number of columns as before, the headers remain unchanged when you attempt to create a financial time series (fints) object using the modified data.
- If the data contains a different number of columns, a warning dialog box appears.

For example, assume that you use Datafeed Toolbox software to obtain Close, Date, High, Low, Open, and Volume data for the equity GOOG. You store the data in the MATLAB workspace with the variable name cur1. From the command line, if you redefine the variable cur1, eliminating the second column (Close)
cur1(:,2) = [ ]
and then return to the Financial Time Series app and attempt to create a financial time series object, a warning dialog box appears.
Financial Time Series Warning
Incompatible series name(s) exist in memory for the
variable 'cur1'.
There are:
Too many DATANAMES for the number of data series.
Incompatible series name(s): Close, Date, High, Low,
Open, Volume
A FINTS object will be constructed with default series
name(s).
Mismatched series names will be removed from memory.
Inform me of future FINTS object creation errors?
No, do not ask me again. © Yes, ask me each time.
OK

\section*{Modifying Data for a Financial Time Series Object in the Data Table}

The Financial Time Series app lets you update your data displayed in the Data Table by adding or removing rows or columns.

Note Modifying data in the Data Table will not update the MATLAB workspace variable. To update the workspace variable after modifying the Data Table, click Update workspace variable.

\section*{Adding and Removing Rows}

To add a row of data displayed in the Data Table:
1 Select a row from the Data Table display where you want to add a row. Click Additional options to open the Data Table Options dialog box.

2 Click Add row. The default is to add the row up. To add a row down, select Insertion option and then click Add down. In addition, you can select the Insertion option of Date to designate a specific date. (If a date is not specified, the added row will contain a date that is chronologically in order with respect to the initial row.)

When you add rows, the Data Table display is immediately updated.
To remove a row of data from the Data Table:
1 Select one or more rows in the Data Table display that you want to remove. Click Additional options to open the Data Table Options dialog box.

2 Click Remove row(s). The default is to remove the selected rows. In addition, to remove selected rows, select Removal options and then select other options for row removal from the Remove rows list box. You can specify a Start and End date or you can click the Non-uniform range setting option to designate a range.

When you remove rows, the Data Table display is updated immediately.

\section*{Adding and Removing Columns}

To add a column of data displayed in the Data Table:
1 Select a column from the Data Table display where you want to add a column. Click Additional options to open the Data Table Options dialog box.

2 Click Add column. The default is to add the column to the left of the selected column.

Note For time series objects, you cannot add a column to the left of the Date/Times column; there is no restriction for double data.

To add a column to the right, select Insertion option and then click Add right. In addition, you can use the Insertion option of New Column Name to designate a specific column name. (If a New Column Name is not specified, an added column will contain a column name of series1, series2, and so on.)

When you add columns, the Data Table display is updated immediately.
To remove a column of data displayed in the Data Table:
1 Select one or more columns in the Data Table display that you want to remove. Click Additional options to open the Data Table Options dialog box.

2 Click Remove column(s). The default is to remove the selected rows. In addition, to remove selected columns, select Removal options and then select columns for removal from the Remove columns list box.

When you remove columns, the Data Table display is updated immediately.

\section*{Viewing and Modifying the Properties for a FINTS Object}

The FINTS Object Properties pane in the Financial Time Series app lets you modify financial time series (fints) object properties. This area becomes active whenever the Data Table displays a financial time series object.

To modify the properties for a fints object:
1 After you create a fints object, double-click the object name in the MATLAB Workspace Variables list box to open the Data Table and display the fints object properties.

2 Click to modify the Description, Frequency, or Series Names fields.
The Frequency drop-down list supports the following conversion functions:
\begin{tabular}{ll}
\hline Function & New Frequency \\
\hline toannual & Annual \\
todaily & Daily \\
tomonthy & Monthly \\
toquarterly & Quarterly \\
tosemi & Semiannually \\
toweekly & Weekly \\
\hline
\end{tabular}

3 Click Update properties to save the changes. This action also updates the associated workspace variable.

\section*{Using the Financial Time Series App with GUls}

The Financial Time Series app works with Datafeed Toolbox and Database Toolbox software to load data. In addition, the Financial Time Series app interoperates with chartfts to display an interactive plot and ftsgui to perform further time series data analysis.

The workflow for using the Financial Time Series app with chartfts is:
1 After loading data from either Datafeed Toolbox or Database Toolbox software or an internal file, select a variable from the MATLAB Workspace Variables list box.

2 Click the Plot tab, click Type, and then select Interactive Chart.
3 Click Plot. The interactive plot is displayed in chartfts. You can then use chartfts menu items for further display options.

For more information on chartfts, select Help > Graphics Help.
The workflow for using the Financial Time Series app with the Financial Time Series GUI (ftsgui) is:

1 After loading data from either Datafeed Toolbox or Database Toolbox software or an internal file, select a variable from the MATLAB Workspace Variables list box.

2 Select Tools > FTSGUI to open the Financial Time Series GUI window.
3 Select a variable from the MATLAB Workspace Variables list box. Click the Plot tab and then select one of the following from the Type drop-down list: Line Plot, High-Low Plot, or Candlestick Plot.

4 Click Plot. The plot is displayed in a MATLAB graphic window. In addition, the Financial Time Series GUI window displays an entry for the plotted fints object. You can then use the menu items in the Financial Time Series GUI window to perform further analysis.

For more information on ftsgui, select Help > Help on Financial Time Series GUI.

\footnotetext{
Note If the selected workspace variable that you are plotting is not a fints object, a fints object is created when you click Plot. The new fints object uses the name designated by the MATLAB workspace variable box on the Create tab.
}

13 Financial Time Series App

\title{
Financial Time Series Graphical User Interface
}
- "Financial Time Series Graphical User Interface" on page 14-2
- "Using the Financial Time Series GUI" on page 14-7

\section*{Financial Time Series Graphical User Interface}

Use the Financial Time Series GUI to analyze your time series data and display the results graphically without resorting to the command line. The Financial Time Series GUI lets you visualize the data and the results at the same time.
"Using the Financial Time Series GUI" on page 14-7 discusses how to use this GUI.

\section*{Main Window}

Start the financial time series GUI with the command
```

ftsgui

```

The Financial Time Series GUI window opens.


The title bar acts as an active time series object indicator (indicates the currently active financial time series object). For example, if you load the file disney.mat and want to use the time series data in the file dis, the title bar on the main GUI would read as shown.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{- Financial Time Series GUI, Active: Walt Disney Company (DIS)} & - 回区 \\
\hline File Data Analysis Graphs Window H & Help & \\
\hline \begin{tabular}{l}
Started: Main FTS GUI Window \\
Loaded file: J: \disney.mat \\
Displaying: Walt Disney Company (DIS) \\
Displaying: TOQUARTERLY: Walt Disney Company (DIS) \\
Displaying: Walt Disney Company (DIS) - No VOLUME
\end{tabular} & & \(\wedge\) \\
\hline
\end{tabular}

The menu bar consists of six menu items: File, Data, Analysis, Graphs, Window, and Help. Under the menu bar is a status box that displays the steps you are doing.

\section*{File Menu}


The File menu contains the commands for input and output. You can read and save (Load, Save, and Save As) MATLAB MAT-files, ASCII (text) data files. To load MATLAB MAT-files, the MAT-file must contain a fints object. You can also import (Import) Excel XLS files. MATLAB software does not support the export of Excel XLS files at this time.

The File menu also contains the printing suite (Page Setup, Print Preview, and Print). Lastly, from this menu you can close the GUI itself (Close FTS GUI) and quit MATLAB (Exit MATLAB).

\section*{Data Menu}


The Data menu provides a collection of data manipulation functions and data conversion functions.
\begin{tabular}{|l|l|}
\hline Resample data & \\
\hline ConvertData Frequency To & To Daily \\
\hline & To Weekly \\
& To Monthly \\
& To Quarterly \\
& To Semi-annual \\
& To Annual \\
\hline
\end{tabular}

To use any of the functions here, make sure that the correct financial time series object is displayed in the title bar of the main GUI window.

Analysis Menu


\section*{The Analysis menu provides}
- A set of exponentiation and logarithmic functions.
- Statistical tools (Basic Statistics), which calculate and display the minimum, maximum, average (mean), standard deviation, and variance of the current (active) time series object; these basic statistics numbers are displayed in a dialog window.
- Data difference (Difference) and periodic average (Periodic Average) calculations. Data difference generates a vector of data that is the difference between the first data point and the second, the second and the third, and so on. The periodic average function calculates the average per defined length period, for example, averages of every five days.
- Technical analysis functions. See "Chart Technical Indicators" for a list of the technical analysis functions.

As with the Data menu, to use any of the Analysis menu functions, make sure that the correct financial time series object is displayed in the title bar of the main GUI window.

\section*{Graphs Menu}


The Graphs menu contains functions that graphically display the current (active) financial time series object. You can also start up the interactive charting function (chartfts) from this menu.

\section*{Window Menu}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{-) Financial Time Series GUI, Active: Walt Disney Company (DIS)} \\
\hline File Data Analysis Graphs & Window Help \\
\hline \multirow[t]{2}{*}{Started: Main FTS GUI Window
Loaded file: J:Vdisney.mat
Displaying: Walt Disney Company (DIS)
Displaying: TOQUARTERLY: Walt Disney C
Displaying: Walt Disney Company (DIS) - Ne} & \begin{tabular}{l}
\(\underline{2}\) TOQUARTERLY: Walt Disney Company (DIS) \\
3 Walt Disney Company (DIS) \\
4 Walt Disney Company (DIS) - No VOLUME
\end{tabular} \\
\hline & 1 Financial Time Series GUI, Active: Walt Disney Company (DIS) @ MATLAB Command Window \\
\hline
\end{tabular}

The Window menu lists open windows under the current MATLAB session.

\section*{Help Menu}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{- Financial Time Series GUI, Active: Walt Disney Company (DIS)} & - \(\square^{\text {a }}\) \\
\hline File Data Analysis Graphs Window & Help & \\
\hline \multirow[t]{4}{*}{Started: Main FTS GUI Window
Loaded file: J:\disney.mat
Displaying: Walt Disney Company (DIS)
Displaying: TOQUARTERLY: Walt Disney Company (DIS
Displaying: Walt Disney Company (DIS) - No VOLUME} & Help on Financial Time Series GUI & - \\
\hline & Help on Financial Time Series Toolbox & \\
\hline & Help on MATLAB & \\
\hline & MATLAB Demos & \(\nabla\) \\
\hline & About Financial Time Series GUI & \\
\hline & About MATLAB & \\
\hline
\end{tabular}

The Help menu provides a standard set of Help menu links.

\section*{Using the Financial Time Series GUI}

\author{
In this section... \\ "Getting Started" on page 14-7 \\ "Data Menu" on page 14-9 \\ "Analysis Menu" on page 14-13 \\ "Graphs Menu" on page 14-15 \\ "Saving Time Series Data" on page 14-19
}

\section*{Getting Started}

To use the Financial Time Series GUI, first start the financial time series GUI with the command ftsgui. Then load (or import) the time series data.

For example, if your data is in a MATLAB MAT-file, select Load from the File menu.



For illustration purposes, choose the file ftsdata.mat from the dialog presented.

If you don't see the MAT-file, look in the directory matlabroot \(\backslash\) toolbox \finance \(\backslash\) findemos, where matlabroot is the MATLAB root directory (the directory where MATLAB is installed).

Note Data loaded through the Financial Time Series GUI is not available in the MATLAB workspace. You can access this data only through the GUI itself, not with any MATLAB command-line functions.

Each financial time series object inside the MAT-file is presented as a line plot in a separate window. The status window is updated accordingly.


Whirlpool (WHR) is the last plot displayed, as indicated on the title bar of the main window.

\section*{Data Menu}

The Data menu provides functions that manipulate time series data.


Here are some example tasks that illustrate the use of the functions on this menu.

\section*{Fill Missing Data}

First, look at filling missing data. The Fill Missing Data item uses the toolbox function fillts. With the data loaded from the file ftsdata, you have three time series: IBM Corp. (IBM), Walt Disney Co. (DIS), and Whirlpool (WHR). Click on the window that shows the time series data for Walt Disney Co. (DIS).


To view any missing data in this time series data set, zoom into the plot using the Zoom tool (the magnifying glass icon with the plus sign) from the toolbar and select a region.


The gaps represent the missing data in the series. To fill these gaps, select Data > Fill Missing Data. This selection automatically fills the gaps and generates a new plot that displays the filled time series data.


You cannot see the filled gaps when you display the entire data set. However, when you zoom into the plot, you see that the gaps have been eliminated.
Note that the title bar has changed; the title has been prefixed with the word Filled to reflect the filled time series data.

\section*{Frequency Conversion}

The Data menu also provides access to frequency conversion functions.
\begin{tabular}{|l|l|}
\hline Resample data & \\
\hline Convert Data Frequency To \(\quad\) To Daily \\
\hline & To Weekly \\
& To Monthly \\
& To Quarterly \\
& To Semi-annual \\
& To Annual \\
\hline
\end{tabular}

This example changes the DIS time series data frequency from daily to monthly. Close the Filled Walt Disney Company (DIS) window, and click the Walt Disney Company (DIS) window to make it active (current) again. Then, from the Data menu, select Convert Data Frequency To and To Monthly.

A new figure window displays the result of this conversion.


The title reflects that the data displayed had its frequency changed to monthly.

\section*{Analysis Menu}

The Analysis menu provides functions that analyze time series data, including the technical analysis functions. (See "Chart Technical Indicators" for a complete list of the technical analysis functions and several usage examples.)

For example, you can use the Analysis menu to calculate the natural logarithm (log) of the data contained within the data set ftsdata.mat. This data file provides time series data for IBM (IBM), Walt Disney (DIS), and Whirlpool (WHR). Click the window displaying the data for IBM Corporation (IBM) to make it active (current). Then select the Analysis menu, followed by \(\log (\ldots\) ). The result appears in its own window.


Close the above window and click again on the IBM data window to make it active (current).

Note Before proceeding with any time series analysis, make certain that the title bar confirms that the active data series is the correct one.

From the Analysis menu on the main window, select Technical Analysis and MACD. The result, again, is displayed in its own window.


Other analysis functions work similarly.

\section*{Graphs Menu}

The Graphs menu displays time series data using the provided graphics functions. Included in the Graphs menu are several types of bar charts (bar, barh and bar3, bar3h), line plot (plot), candle plot (candle), and High-Low plot (highlow). The Graphs menu also provides access to the interactive charting function, chartfts.

\section*{Candle Plot}

For example, you can display the candle plot of a set of time series data and start up the interactive chart on the same data set.

Load the ftsdata.mat data set, and click the window that displays the Whirlpool (WHR) time series data to make it active (current). From the main window, select the Graphs menu and then Candle Plot.


The result is shown below.


This does not look much like a candle plot because there are too many data points in the data set. All the candles are too compressed for effective
viewing. However, when you zoom into a region of this plot, the candles become apparent.


\section*{Interactive Chart}

To create an interactive chart (chartfts) on the Whirlpool data, click the window that displays the Whirlpool (WHR) data to make it active (current). Then, go to the Graphs menu and select Interactive Chart.


The chart that results is shown below.


You can use this interactive chart as if you had invoked it with the chartfts command from the MATLAB command line. For a tutorial on the use of chartfts, see "Visualizing Financial Time Series Objects" on page 11-18.

\section*{Saving Time Series Data}

The Save and Save As items on the main window File menu let you save the time series data that results from your analyses and computations. These items save all time series data that has been loaded or processed during the current session, even if the window displaying the results of a computation has previously been dismissed.

Note The Save and Save As items on the File menu of the individual plot windows will not save the time series data, but will save the actual plot.

You can save your time series data in two ways:
- Into the latest MAT-file loaded (Save)
- Into a MAT-file chosen (or named) from the window (Save As)

To illustrate this, start by loading the data file testftsdata.mat (located in matlabroot/toolbox/finance/findemos). Then, convert the Disney (DIS) data from daily (the original frequency) to monthly data. Next, run the MACD analysis on the Whirlpool (WHR) data. You now have a set of five open figure windows.


\section*{Saving into the Original File (Save)}

To save the data back into the original file (testftsdata.mat), select Save from the File menu.

A confirmation window appears. It confirms that the data has been saved in the latest MAT-file loaded (testftsdata.mat in this example).


\section*{Saving into a New File (Save As)}

To save the data in a different file, choose Save As from the File menu.
The dialog box that appears lets you choose an existing MAT-file from a list or type in the name of a new MAT-file you want to create.


After you click the Save button, another confirmation window appears.


This confirmation window indicates that the data has been saved in a new file named myftstestdata.mat.

\section*{Trading Date Utilities}
- "Trading Calendars Graphical User Interface" on page 15-2
- "UICalendar Graphical User Interface" on page 15-4

\section*{Trading Calendars Graphical User Interface}

Use the createholidays function to open the Trading Calendars graphical user interface.


The createholidays function supports http://www.FinancialCalendar.com trading calendars. This function can be used from the command line or from the Trading Calendars graphical user interface. To use createholidays or the Trading Calendars graphical user interface, you must obtain data, codes, and info files from http://www. FinancialCalendar.com trading calendars. For more information on using the command line to programmatically generate the market specific holidays.m files without displaying the interface, see createholidays.

To use the Trading Calendars graphical user interface:

1 From the command line, type the following command to open the Trading Calendars graphical user interface.
```

createholidays

```

2 Click Choose data file to select the data file.
3 Click Choose codes file to select the codes file.
4 Click Choose info file to select the info file.
5 Click Choose directory for writing holiday files to select the output directory.

6 Select Include weekends to include weekends in the holiday list and click Prompt for target directory to be prompted for the file location for each holidays.m file that is created.

7 Click Create holiday files to convert FinancialCalendar .com financial center holiday data into market-specific holidays.m files.

The market-specific holidays.m files can be used in place of the standard holidays.m that ships with Financial Toolbox software.

\section*{UICalendar Graphical User Interface}

\section*{In this section... \\ "Using UICalendar in Standalone Mode" on page 15-4 \\ "Using UICalendar with an Application" on page 15-5}

\section*{Using UICalendar in Standalone Mode}

You can use the UICalendar graphical user interface in standalone mode to look up any date. To use the standalone mode:

1 Type the following command to open the UICalendar GUI:
uicalendar
The UICalendar interface is displayed:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{- uiCalendar} & \multicolumn{2}{|l|}{\(\underline{-\square}\)} \\
\hline \multicolumn{7}{|l|}{4 May} \\
\hline Su & Mo & & ave & Th & Fr & Sa \\
\hline 29 & 30 & 1 & 2 & 3 & 4 & 5 \\
\hline 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\hline 20 & 21 & 22 & 23 & 24 & 25 & 26 \\
\hline 27 & 28 & 29 & 30 & 31 & & 2 \\
\hline & 4 & 5 & 6 & 7 & & 9 \\
\hline \multicolumn{3}{|l|}{Clear all} & & OK & & acel \\
\hline
\end{tabular}

2 Click the date and year controls to locate any date.

\section*{Using UICalendar with an Application}

You can use the UICalendar graphical user interface with an application to look up any date. To use the UICalendar graphical interface with an application, use the following command:
```

uicalendar('PARAM1', VALUE1, 'PARAM2', VALUE2', ...)

```

For more information, see uicalendar.

\section*{Example of Using UICalendar with an Application}

The UICalendar example creates a function that displays a graphical user interface that lets you select a date from the UICalendar graphical user interface and fill in a text field with that date.

1 Create a figure.
```

function uicalendarGUIExample

```
f = figure('Name', 'uicalendarGUIExample');

2 Add a text control field.
```

dateTextHandle = uicontrol(f, 'Style', 'Text', ...
'String', 'Date:', ...
'Horizontalalignment', 'left', ...
'Position', [100 200 50 20]);

```

3 Add a uicontrol editable text field to display the selected date.
```

dateEditBoxHandle = uicontrol(f, 'Style', 'Edit', ...
'Position', [140 200 100 20], ...
'BackgroundColor', 'w');

```

4 Create a push button that startups the UICalendar.
calendarButtonHandle = uicontrol(f, 'Style', 'PushButton', ... 'String', 'Select a single date', ...
'Position', [275 200200 20], ...
'callback', @pushbutton_cb);
5 To startup UICalendar, create a nested function (callback function) for the push button.
```

function pushbutton_cb(hcbo, eventStruct)
% Create a UICALENDAR with the following properties:
% 1) Highlight weekend dates.
% 2) Only allow a single date to be selected at a time.
% 3) Send the selected date to the edit box uicontrol.
uicalendar('Weekend', [1 0 0 0 0 0 1], ...
'SelectionType', 1, ...
'DestinationUI', dateEditBoxHandle);
end
end

```

6 Run the function uicalendarGUIExample to display the application interface:
\begin{tabular}{l}
\hline - Figure 1: uicalendarGUIExample \\
File Edit View Insert Tools Desktop Window Help \\
Date: \(\quad\) Select a single date \\
\\
\end{tabular}

7 Click Select a single date to display the UICalendar graphical user interface:


8 Select a date and click OK to display the date in the text field:


\section*{Technical Analysis}
- "Technical Indicators" on page 16-2
- "Examples" on page 16-4

\section*{Technical Indicators}

Technical analysis (or charting) is used by some investment managers to help manage portfolios. Technical analysis relies heavily on the availability of historical data. Investment managers calculate different indicators from available data and plot them as charts. Observations of price, direction, and volume on the charts assist managers in making decisions on their investment portfolios.

The technical analysis functions in this toolbox are tools to help analyze your investments. The functions in themselves will not make any suggestions or perform any qualitative analysis of your investment.

\section*{Technical Analysis: Oscillators}
\begin{tabular}{ll}
\hline Function & Type \\
\hline adosc & Accumulation/distribution oscillator \\
chaikosc & Chaikin oscillator \\
macd & Moving Average \\
& Convergence/Divergence \\
stochosc & Stochastic oscillator \\
tsaccel & Acceleration \\
tsmom & Momentum \\
\hline
\end{tabular}

\section*{Technical Analysis: Stochastics}
\begin{tabular}{ll}
\hline Function & Type \\
\hline chaikvolat & Chaikin volatility \\
fpctkd & Fast stochastics \\
spctkd & Slow stochastics \\
willpctr & Williams \%R \\
\hline
\end{tabular}

\section*{Technical Analysis: Indexes}
\begin{tabular}{|ll|}
\hline Function & Type \\
\hline negvolidx & Negative volume index \\
posvolidx & Positive volume index \\
rsindex & Relative strength index \\
\hline
\end{tabular}

\section*{Technical Analysis: Indicators}
\begin{tabular}{ll}
\hline Function & Type \\
\hline adline & Accumulation/distribution line \\
bollinger & Bollinger band \\
hhigh & Highest high \\
llow & Lowest low \\
medprice & Median price \\
onbalvol & On balance volume \\
prcroc & Price rate of change \\
pvtrend & Price-volume trend \\
typprice & Typical price \\
volroc & Volume rate of change \\
wclose & Weighted close \\
willad & Williams accumulation/distribution \\
\hline
\end{tabular}

\section*{Examples}
```

In this section...
"Overview" on page 16-4
"Moving Average Convergence/Divergence (MACD)" on page 16-4
"Williams %R" on page 16-6
"Relative Strength Index (RSI)" on page 16-7
"Relative Strength Index (RSI))" on page 16-8

```

\section*{Overview}

To illustrate some the technical analysis functions, this section uses the IBM stock price data contained in the supplied file ibm9599.dat. First create a financial time series object from the data using ascii2fts:
ibm = ascii2fts('ibm9599.dat', 1, 3, 2);
The time series data contains the open, close, high, and low prices, as well as the volume traded on each day. The time series dates start on January 3, 1995, and end on April 1, 1999, with some values missing for weekday holidays; weekend dates are not included.

\section*{Moving Average Convergence/Divergence (MACD)}

Moving Average Convergence/Divergence (MACD) is an oscillator function used by technical analysts to spot overbought and oversold conditions. Look at the portion of the time series covering the 3 -month period between October 1, 1995 and December 31, 1995. At the same time fill any missing values due to holidays within the time period specified:
```

part_ibm = fillts(ibm('10/01/95::12/31/95'));

```

Now calculate the MACD, which when plotted produces two lines; the first line is the MACD line itself and the second is the nine-period moving average line:
macd_ibm = macd(part_ibm);

Note When you call macd without giving it a second input argument to specify a particular data series name, it searches for a closing price series named Close (in all combinations of letter cases).

Plot the MACD lines and the High-Low plot of the IBM stock prices in two separate plots in one window.
```

subplot(2, 1, 1);
plot(macd_ibm);
title('MACD of IBM Close Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');
subplot(2, 1, 2);
highlow(part_ibm);
title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy')

```

The following figure shows the result.


\section*{Williams \%R}

Williams \%R is an indicator that measures overbought and oversold levels. The function willpctr is from the stochastics category. All the technical analysis functions can accept a different name for a required data series. If, for example, a function needs the high, low, and closing price series but your time series object does not have the data series names exactly as High, Low, and Close, you can specify the correct names as follows.
```

wpr = willpctr(tsobj, 14, 'HighName', 'Hi', 'LowName', 'Lo',...
'CloseName', 'Closing')

```

The function willpctr now assumes that your high price series is named Hi , low price series is named Lo, and closing price series is named Closing.

Since the time series object part_ibm has its data series names identical to the required names, name adjustments are not needed. The input argument to the function is only the name of the time series object itself.

Calculate and plot the Williams \%R indicator for IBM stock along with the price range using these commands:
```

wpctr_ibm = willpctr(part_ibm);
subplot(2, 1, 1);
plot(wpctr_ibm);
title('Williams %R of IBM stock, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');
hold on;
plot(wpctr_ibm.dates, -80*ones(1, length(wpctr_ibm)),...
'color', [0.5 0 0], 'linewidth', 2)
plot(wpctr_ibm.dates, -20*ones(1, length(wpctr_ibm)),...
'color', [0 0.5 0], 'linewidth', 2)
subplot(2, 1, 2);
highlow(part_ibm);
title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');

```

The next figure shows the results. The top plot has the Williams \%R line plus two lines at \(-20 \%\) and \(-80 \%\). The bottom plot is the High-Low plot of the IBM stock price for the corresponding time period.


\section*{Relative Strength Index (RSI)}

The Relative Strength Index (RSI) is a momentum indicator that measures an equity's price relative to itself and its past performance. The function name is rsindex.

The rsindex function needs a series that contains the closing price of a stock. The default period length for the RSI calculation is 14 periods. This length can be changed by providing a second input argument to the function. Similar to the previous commands, if your closing price series is not named Close, you can provide the correct name.

Calculate and plot the RSI for IBM stock along with the price range using these commands:
```

rsi_ibm = rsindex(part_ibm);
subplot(2, 1, 1);
plot(rsi_ibm);
title('RSI of IBM stock, 10/01/95-12/31/95');

```
```

datetick('x', 'mm/dd/yy');
hold on;
plot(rsi_ibm.dates, 30*ones(1, length(wpctr_ibm)),...
'color', [0.5 0 0], 'linewidth', 2)
plot(rsi_ibm.dates, 70*ones(1, length(wpctr_ibm)),...
'color',[0 0.5 0], 'linewidth', 2)
subplot(2, 1, 2);
highlow(part_ibm);
title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');

```

The next figure shows the result.


\section*{Relative Strength Index (RSI))}

On-Balance Volume (OBV) relates volume to price change. The function onbalvol requires you to have the closing price (Close) series as well as the volume traded (Volume) series.

Calculate and plot the OBV for IBM stock along with the price range using these commands:
```

obv_ibm = onbalvol(part_ibm);
subplot(2, 1, 1);
plot(obv_ibm);
title('On-Balance Volume of IBM Stock, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');
subplot(2, 1, 2);
highlow(part_ibm);
title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');

```

The next figure shows the result.


16 Technical Analysis

\title{
Stochastic Differential Equations
}
- "SDEs" on page 17-2
- "SDE Class Hierarchy" on page 17-5
- "SDE Models" on page 17-7
- "Base SDE Models" on page 17-16
- "Drift and Diffusion Models" on page 17-19
- "Linear Drift Models" on page 17-23
- "Parametric Models" on page 17-25
- "Simulating Equity Prices" on page 17-35
- "Simulating Interest Rates" on page 17-65
- "Stratified Sampling" on page 17-77
- "Performance Considerations" on page 17-83
- "Pricing American Basket Options by Monte Carlo Simulation" on page 17-92

\section*{SDEs}

\section*{In this section...}
"SDE Modeling" on page 17-2
"Trials vs. Paths" on page 17-3
"NTRIALS, NPERIODS, and NSTEPS" on page 17-4

\section*{SDE Modeling}

Econometrics Toolbox software enables you to model dependent financial and economic variables, such as interest rates and equity prices, by performing Monte Carlo simulation of stochastic differential equations (SDEs). The flexible architecture of the SDE engine provides efficient simulation methods that allow you to create new simulation and derivative pricing methods.

The following table lists tasks you can perform using the SDE functionality.
\begin{tabular}{|c|c|}
\hline To perform this task ... & Use these types of models \\
\hline "Simulating Equity Prices" on page 17-35 & \begin{tabular}{l}
- Geometric Brownian Motion (GBM) \\
- Constant Elasticity of Variance (CEV) \\
- Stochastic Differential Equation (SDE) \\
- Stochastic Differential Equations from Drift and Diffusion Objects (SDEDDO) \\
- Stochastic Differential Equations from Linear Drift (SDELD) \\
- Heston Stochastic Volatility (Heston)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline To perform this task ... & Use these types of models ... \\
\hline "Simulating Interest Rates" on page 17-65 & \begin{tabular}{l}
- Hull-White-Vasicek (HWV) \\
- Cox-Ingersoll-Ross (CIR) \\
- Stochastic Differential Equation (SDE) \\
- Stochastic Differential Equations from Drift and Diffusion Objects (SDEDDO) \\
- Stochastic Differential Equations from Mean-Reverting Drift (SDEMRD) Models
\end{tabular} \\
\hline "Pricing Equity Options" on page 17-61 & Geometric Brownian Motion (GBM) \\
\hline "Stratified Sampling" on page 17-77 & All supported models \\
\hline "Performance Considerations" on page 17-83 & All supported models \\
\hline
\end{tabular}

\section*{Trials vs. Paths}

Monte Carlo simulation literature often uses different terminology for the evolution of the simulated variables of interest, such as trials and paths. The following sections use the terms trial and path interchangeably.

However, there are situations where you should distinguish between these terms. Specifically, the term trial often implies the result of an independent random experiment (for example, the evolution of the price of a single stock or portfolio of stocks). Such an experiment computes the average or expected value of a variable of interest (for example, the price of a derivative security) and its associated confidence interval.

By contrast, the term path implies the result of a random experiment that is different or unique from other results, but that may or may not be independent.

The distinction between these terms is usually unimportant. It may, however, be useful when applied to variance reduction techniques that attempt to increase the efficiency of Monte Carlo simulation by inducing dependence across sample paths. A classic example involves pairwise dependence induced by antithetic sampling, and applies to more sophisticated variance reduction techniques, such as stratified sampling.

\section*{NTRIALS, NPERIODS, and NSTEPS}

SDE methods in the Econometrics Toolbox software use the parameters NTRIALS, NPERIODS, and NSTEPS as follows:
- The input argument NTRIALS specifies the number of simulated trials or sample paths to generate. This argument always determines the size of the third dimension (the number of pages) of the output three-dimensional time series array Paths. Indeed, in a traditional Monte Carlo simulation of one or more variables, each sample path is independent and represents an independent trial.
- The parameters NPERIODS and NSTEPS represent the number of simulation periods and time steps, respectively. Both periods and time steps are related to time increments that determine the exact sequence of observed sample times. The distinction between these terms applies only to issues of accuracy and memory management. For more information, see "Optimizing Accuracy: About Solution Precision and Error" on page 17-85 and "Managing Memory" on page 17-83.

\section*{SDE Class Hierarchy}

The Econometrics Toolbox SDE class structure represents a generalization and specialization hierarchy. The top-level class provides the most general model interface and offers the default Monte Carlo simulation and interpolation methods. In turn, derived classes offer restricted interfaces that simplify model creation and manipulation while providing detail regarding model structure.

The following table lists the SDE classes. The introductory examples in "Available Models" on page 17-14 show how to use these classes to create objects associated with univariate models. Although the Econometrics Toolbox SDE engine supports multivariate models, univariate models facilitate object creation and display, and allow you to easily associate inputs with object parameters.

\section*{SDE Classes}
\begin{tabular}{l|l}
\hline Class Name & For More Information, See ... \\
\hline SDE & "Base SDE Models" on page 17-16 \\
\hline Drift, Diffusion & "Overview" on page 17-19 \\
\hline SDEDDO & "Drift and Diffusion Models" on page \\
& \(17-19\)
\end{tabular} \begin{tabular}{ll}
\hline "Linear Drift Models" on page 17-23 \\
\hline CEV & "Creating Constant Elasticity of Variance \\
& (CEV) Models" on page 17-26 \\
\hline BM & \begin{tabular}{l} 
"Creating Brownian Motion (BM) \\
Models" on page 17-25
\end{tabular} \\
\hline SDEMRD & \begin{tabular}{l} 
"Creating Stochastic Differential \\
Equations from Mean-Reverting Drift \\
(SDEMRD) Models" on page 17-29
\end{tabular} \\
\hline GBM & \begin{tabular}{l} 
"Creating Geometric Brownian Motion \\
(GBM) Models" on page 17-27
\end{tabular} \\
\hline
\end{tabular}

\section*{SDE Classes (Continued)}
\begin{tabular}{l|l}
\hline Class Name & For More Information, See ... \\
\hline HWV & "Creating Hull-White/Vasicek (HWV) \\
& Gaussian Diffusion Models" on page \\
& \(17-31\) \\
\hline CIR & "Creating Cox-Ingersoll-Ross (CIR) \\
& \begin{tabular}{l} 
Square Root Diffusion Models" on page \\
\(17-30\)
\end{tabular} \\
\hline Heston & \begin{tabular}{l} 
"Creating Heston Stochastic Volatility \\
\\
\end{tabular} \\
\hline
\end{tabular}

The following figure illustrates the inheritance relationships among SDE classes.


\section*{SDE Models}

\section*{In this section...}
"Introduction" on page 17-7
"Creating SDE Objects" on page 17-7
"Drift and Diffusion" on page 17-13
"Available Models" on page 17-14
"SDE Methods" on page 17-15

\section*{Introduction}

Most models and utilities available with Monte Carlo Simulation of SDEs are represented as MATLAB objects. Therefore, this documentation often uses the terms model and object interchangeably.

However, although all models are represented as objects, not all objects represent models. In particular, drift and diffusion objects are used in model specification, but neither of these types of objects in and of themselves makes up a complete model. In most cases, you do not need to create drift and diffusion objects directly, so you do not need to differentiate between objects and models. It is important, however, to understand the distinction between these terms.

In many of the following examples, most model parameters are evaluated or invoked like any MATLAB function. Although it is helpful to examine and access model parameters as you would data structures, think of these parameters as functions that perform actions.

For more information about MATLAB objects, see "Working with Objects in Functions" in the MATLAB documentation.

\section*{Creating SDE Objects}
- "Constructing Objects" on page 17-8
- "Displaying Objects" on page 17-8
- "Assigning and Referencing Object Parameters" on page 17-8
- "Constructing and Evaluating Models" on page 17-9
- "Specifying SDE Simulation Parameters" on page 17-9

\section*{Constructing Objects}

You use constructors to create SDE objects.
For examples and more information, see:
- "Available Models" on page 17-14
- "Simulating Equity Prices" on page 17-35
- "Simulating Interest Rates" on page 17-65

\section*{Displaying Objects}
- Objects display like traditional MATLAB data structures.
- Displayed object parameters appear as nouns that begin with capital letters. In contrast, parameters such as simulate and interpolate appear as verbs that begin with lowercase letters, which indicate tasks to perform.

\section*{Assigning and Referencing Object Parameters}
- Objects support referencing similar to data structures. For example, statements like the following are generally valid:
\[
A=o b j . A
\]
- Objects support complete parameter assignment similar to data structures. For example, statements like the following are generally valid:
```

obj.A = 3

```
- Objects do not support partial parameter assignment as data structures do. Therefore, statements like the following are generally invalid:
```

obj.A(i,j) = 0.3

```

\section*{Constructing and Evaluating Models}
- You can construct objects of any model class only if enough information is available to determine unambiguously the dimensionality of the model. Because various class constructors offer unique input interfaces, some models require additional information to resolve model dimensionality.
- You need only enter required input parameters in placeholder format, where a given input argument is associated with a specific position in an argument list. You can enter optional inputs in any order as parameter name-value pairs, where the name of a given parameter appears in single quotation marks and precedes its corresponding value.
- Association of dynamic (time-variable) behavior with function evaluation, where time and state ( \(t, X_{t}\) ) are passed to a common, published interface, is pervasive throughout the SDE class system. You can use this function evaluation approach to model or construct powerful analytics. For a simple example, see "Example: Univariate GBM Models" on page 17-28.

\section*{Specifying SDE Simulation Parameters}

The SDE engine allows the simulation of generalized multivariate stochastic processes, and provides a flexible and powerful simulation architecture. The framework also provides you with utilities and model classes that offer a variety of parametric specifications and interfaces. The architecture is fully multidimensional in both the state vector and the Brownian motion, and offers both linear and mean-reverting drift-rate specifications.

You can specify most parameters as MATLAB arrays or as functions accessible by a common interface, that support general dynamic/nonlinear relationships common in SDE simulation. Specifically, you can simulate correlated paths of any number of state variables driven by a vector-valued Brownian motion of arbitrary dimensionality. This simulation approximates the underlying multivariate continuous-time process using a vector-valued stochastic difference equation.

Consider the following general stochastic differential equation:
\[
\begin{equation*}
d X_{t}=F\left(t, X_{t}\right) d t+G\left(t, X_{t}\right) d W_{t} \tag{17-1}
\end{equation*}
\]
where:
- \(X\) is an NVARS-by- 1 state vector of process variables (for example, short rates or equity prices) to simulate.
- \(W\) is an NBROWNS-by-1 Brownian motion vector.
- \(F\) is an \(N V A R S\)-by- 1 vector-valued drift-rate function.
- \(G\) is an \(N V A R S\)-by-NBROWNS matrix-valued diffusion-rate function.

The drift and diffusion rates, \(F\) and \(G\), respectively, are general functions of a real-valued scalar sample time \(t\) and state vector \(X_{t}\). Also, static (non-time-variable) coefficients are simply a special case of the more general dynamic (time-variable) situation, just as a function can be a trivial constant; for example, \(f\left(t, X_{t}\right)=4\). The SDE in Equation 17-1 is useful in implementing derived classes that impose additional structure on the drift and diffusion-rate functions.

Specifying User-defined Functions as Model Parameters. Several examples in this documentation emphasize the evaluation of object parameters as functions accessible by a common interface. In fact, you can evaluate object parameters by passing to them time and state, regardless of whether the underlying user-specified parameter is a function. However, it is helpful to compare the behavior of object parameters that are specified as functions to that of user-specified noise and end-of-period processing functions.

Model parameters that are specified as functions are evaluated in the same way as user-specified random number (noise) generation functions. (For more information, see Evaluating Different Types of Functions on page 11.) Model parameters that are specified as functions are inputs to remove object constructors. User-specified noise and processing functions are optional inputs to simulation methods.

Because class constructors offer unique interfaces, and simulation methods of any given model have different implementation details, models often call parameter functions for validation purposes a different number of times, or in a different order, during object creation, simulation, and interpolation.

Therefore, although parameter functions, user-specified noise generation functions, and end-of-period processing functions all share the same interface and are validated at the same initial time and state (obj.StartTime and obj.StartState), parameter functions are not guaranteed to be invoked
only once before simulation as noise generation and end-of-period processing functions are. In fact, parameter functions might not even be invoked the same number of times during a given Monte Carlo simulation process.

In most applications in which you specify parameters as functions, they are simple, deterministic functions of time and/or state. There is no need to count periods, count trials, or otherwise accumulate information or synchronize time.

However, if parameter functions require more sophisticated bookkeeping, the correct way to determine when a simulation has begun (or equivalently, to determine when model validation is complete) is to determine when the input time and/or state differs from the initial time and state (obj. StartTime and obj.StartState, respectively). Because the input time is a known scalar, detecting a change from the initial time is likely the best choice in most situations. This is a general mechanism that you can apply to any type of user-defined function.

\section*{Evaluating Different Types of Functions}

It is useful to compare the evaluation rules of user-specified noise generation functions to those of end-of-period processing functions. These functions have the following in common:
- They both share the same general interface, returning a column vector of appropriate length when evaluated at the current time and state:
\[
\begin{aligned}
& X_{t}=f\left(t, X_{t}\right) \\
& z_{t}=Z\left(t, X_{t}\right)
\end{aligned}
\]
- Before simulation, the simulation method itself calls each function once to validate the size of the output at the initial time and state, obj. StartTime and obj.StartState, respectively.
- During simulation, the simulation method calls each function the same number of times: NPERIODS * NSTEPS.

However, there is an important distinction regarding the timing between these two types of functions. It is most clearly drawn directly from the generic SDE model:
\[
d X_{t}=F\left(t, X_{t}\right) d t+G\left(t, X_{t}\right) d W_{t}
\]

This equation is expressed in continuous time, but the simulation methods approximate the model in discrete time as:
\[
X_{t+\Delta t}=X_{t}+F\left(t, X_{t}\right) \Delta t+G\left(t, X_{t}\right) \sqrt{\Delta t} Z\left(t, X_{t}\right)
\]
where \(\Delta t>0\) is a small (and not necessarily equal) period or time increment into the future. This equation is often referred to as an Euler approximation. All functions on the right-hand side are evaluated at the current time and state \(\left(t, X_{t}\right)\).

In other words, over the next small time increment, the simulation evolves the state vector based only on information available at the current time and state. In this sense, you can think of the noise function as a beginning-of-period function, or as a function evaluated from the left. This is also true for any user-supplied drift or diffusion function.

In contrast, user-specified end-of-period processing functions are applied only at the end of each simulation period or time increment. For more information about processing functions, see "Pricing Equity Options" on page 17-61.

Therefore, all simulation methods evaluate noise generation functions as:
\[
z_{t}=Z\left(t, X_{t}\right)
\]
for \(t=t_{0}, t_{0}+\Delta t, t_{0}+2 \Delta t, \ldots, T-\Delta t\).
Yet simulation methods evaluate end-of-period processing functions as:
\[
\begin{aligned}
X_{t} & =f\left(t, X_{t}\right) \\
\text { for } t & =t_{0}+\Delta t, t_{0}+2 \Delta t, \ldots, T .
\end{aligned}
\]
where \(t_{0}\) and \(T\) are the initial time (taken from the object) and the terminal time (derived from inputs to the simulation method), respectively. These evaluations occur on all sample paths. Therefore, during simulation, noise
functions are never evaluated at the final (terminal) time, and end-of-period processing functions are never evaluated at the initial (starting) time.

\section*{Drift and Diffusion}

For example, an SDE with a linear drift rate has the form:
\[
\begin{equation*}
F\left(t, X_{t}\right)=A(t)+B(t) X_{t} \tag{17-2}
\end{equation*}
\]
where \(A\) is an NVARS-by- 1 vector-valued function and \(B\) is an \(N V A R S\)-by-NVARS matrix-valued function.

As an alternative, consider a drift-rate specification expressed in mean-reverting form:
\[
\begin{equation*}
F\left(t, X_{t}\right)=S(t)\left[L(t)-X_{t}\right] \tag{17-3}
\end{equation*}
\]
where \(S\) is an NVARS-by-NVARS matrix-valued function of mean reversion speeds (that is, rates of mean reversion), and \(L\) is an NVARS-by- 1 vector-valued function of mean reversion levels (that is, long run average level).

Similarly, consider the following diffusion-rate specification:
\[
\begin{equation*}
G\left(t, X_{t}\right)=D\left(t, X_{t}^{\alpha(t)}\right) V(t) \tag{17-4}
\end{equation*}
\]
where \(D\) is an \(N V A R S\)-by-NVARS diagonal matrix-valued function. Each diagonal element of \(D\) is the corresponding element of the state vector raised to the corresponding element of an exponent Alpha, which is also an \(N V A R S\)-by- 1 vector-valued function. \(V\) is an \(N V A R S\)-by- \(N B R O W N S\) matrix-valued function of instantaneous volatility rates. Each row of \(V\) corresponds to a particular state variable, and each column corresponds to a particular Brownian source of uncertainty. \(V\) associates the exposure of state variables with sources of risk.

The parametric specifications for the drift and diffusion-rate functions associate parametric restrictions with familiar models derived from the general SDE class, and provide coverage for many popular models.

As discussed in the following sections, the class system and hierarchy of the SDE engine use industry-standard terminology to provide simplified interfaces for many models by placing user-transparent restrictions on drift and diffusion specifications. This design allows you to mix and match existing models, and customize drift or diffusion-rate functions.

\section*{Available Models}

For example, the following models are special cases of the general SDE model.

\section*{SDE Models}
\begin{tabular}{l|l}
\hline Model Name & Specification \\
\hline Brownian Motion (BM) & \\
& \\
\hline Geometric Brownian Motion (GBM) & \(d X_{t}=B(t) d t+V(t) d W_{t}\) \\
\hline Constant Elasticity of Variance (CEV) & \(d X_{t}=B(t) X_{t} d t+V(t) X_{t}^{\alpha(t)} d W_{t}\) \\
\hline Cox-Ingersoll-Ross (CIR) & \(d X_{t}=S(t)\left(L(t)-X_{t}\right) d t+V(t) X_{t}\) \\
\hline
\end{tabular}

\section*{SDE Models (Continued)}
\begin{tabular}{l|l}
\hline Model Name & Specification \\
\hline Hull-White/Vasicek (HWV) & \(d X_{t}=S(t)\left(L(t)-X_{t}\right) d t+V(t) d W_{t}\) \\
\hline Heston & \(d X_{1 t}=B(t) X_{1 t} d t+\sqrt{X_{2 t}} X_{1 t} d W_{1 t}\) \\
& \(d X_{2 t}=S(t)\left[L(t)-X_{2 t}\right] d t+V(t) \sqrt{X_{2 t}} d W_{2 t}\) \\
\hline
\end{tabular}

\section*{SDE Methods}

The SDE class provides default simulation and interpolation methods for all derived classes:
- simulate: High-level wrapper around the user-specified simulation method stored in the Simulation property
- simByEuler: Default Euler approximation simulation method
- interpolate: Stochastic interpolation method (that is, Brownian bridge)

The HWV and GBM classes feature an additional method, simBySolution, that simulates approximate solutions of diagonal-drift processes.

\section*{Base SDE Models}
```

In this section...
"Overview" on page 17-16
"Example: Base SDE Models" on page 17-17

```

\section*{Overview}

The base SDE class:
\[
d X_{t}=F\left(t, X_{t}\right) d t+G\left(t, X_{t}\right) d W_{t}
\]
represents the most general model.

Tip The SDE class is not an abstract class. You can instantiate SDE objects directly to extend the set of core models.

Constructing an SDE object requires the following inputs:
- A drift-rate function F. This function returns an NVARS-by-1 drift-rate vector when run with the following inputs:
- A real-valued scalar observation time \(t\).
- An NVARS-by-1 state vector \(X_{t}\).
- A diffusion-rate function G. This function returns an NVARS-by-NBROWNS diffusion-rate matrix when run with the inputs \(t\) and \(X_{t}\).

Evaluating object parameters by passing \(\left(t, X_{t}\right)\) to a common, published interface allows most parameters to be referenced by a common input argument list that reinforces common method programming. You can use this simple function evaluation approach to model or construct powerful analytics, as in the following example.

\section*{Example: Base SDE Models}

Construct an SDE object obj to represent a univariate geometric Brownian Motion model of the form:
\[
d X_{t}=0.1 X_{t} d t+0.3 X_{t} d W_{t}
\]

1 Create drift and diffusion functions that are accessible by the common \(\left(t, X_{t}\right)\) interface:
```

F = @(t,X) 0.1 * X;
G = a(t,X) 0.3 * X;

```

2 Pass the functions to the SDE constructor to create an object obj of class SDE:
```

obj = sde(F,G) % dX = F(t,X)dt + G(t,X)dW
obj =
Class SDE: Stochastic Differential Equation
Dimensions: State = 1, Brownian = 1
StartTime: 0
StartState: 1
Correlation: 1
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

```
obj displays like a MATLAB structure, with the following information:
- The object's class
- A brief description of the object
- A summary of the dimensionality of the model

The object's displayed parameters are as follows:
- StartTime: The initial observation time (real-valued scalar)
- StartState: The initial state vector (NVARS-by-1 column vector)
- Correlation: The correlation structure between Brownian process
- Drift: The drift-rate function \(F\left(t, X_{t}\right)\)
- Diffusion: The diffusion-rate function \(G\left(t, X_{t}\right)\)
- Simulation: The simulation method or function.

Of these displayed parameters, only Drift and Diffusion are required inputs.

The only exception to the \(\left(t, X_{t}\right)\) evaluation interface is Correlation. Specifically, when you enter Correlation as a function, the SDE engine assumes that it is a deterministic function of time, \(C(t)\). This restriction on Correlation as a deterministic function of time allows Cholesky factors to be computed and stored before the formal simulation. This inconsistency dramatically improves run time performance for dynamic correlation structures. If Correlation is stochastic, you can also include it within the simulation architecture as part of a more general random number generation function.

\section*{Drift and Diffusion Models}

\author{
In this section... \\ "Overview" on page 17-19 \\ "Example: Drift and Diffusion Rates" on page 17-20 \\ "Example: SDEDDO Models" on page 17-21
}

\section*{Overview}

Because base-level SDE objects accept drift and diffusion objects in lieu of functions accessible by \(\left(t, X_{t}\right)\), you can create SDE objects with combinations of customized drift or diffusion functions and objects. The drift and diffusion rate classes encapsulate the details of input parameters to optimize run time efficiency for any given combination of input parameters.

Although drift and diffusion objects differ in the details of their representation, they are identical in their basic implementation and interface. They look, feel like, and are evaluated as functions:
- The drift class allows you to create drift-rate objects of the form:
\[
F\left(t, X_{t}\right)=A(t)+B(t) X_{t}
\]
where:
- A is an NVARS-by-1 vector-valued function accessible using the ( \(t, X_{t}\) ) interface.
- B is an NVARS-by-NVARS matrix-valued function accessible using the ( \(t\), \(X_{t}\) ) interface.
- Similarly, the diffusion class allows you to create diffusion-rate objects:
\[
G\left(t, X_{t}\right)=D\left(t, X_{t}^{\alpha(t)}\right) V(t)
\]
where:
- \(D\) is an NVARS-by-NVARS diagonal matrix-valued function.
- Each diagonal element of \(D\) is the corresponding element of the state vector raised to the corresponding element of an exponent Alpha, which is an NVARS-by-1 vector-valued function.
- \(V\) is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.
- Alpha and Sigma are also accessible using the \(\left(t, X_{t}\right)\) interface.

Note You can express drift and diffusion classes in the most general form to emphasize the functional \(\left(t, X_{t}\right)\) interface. However, you can specify the components A and B as functions that adhere to the common \(\left(t, X_{t}\right)\) interface, or as MATLAB arrays of appropriate dimension.

\section*{Example: Drift and Diffusion Rates}

In this example, you create drift and diffusion rate objects to create the same model as in "Example: Base SDE Models" on page 17-17.

Create a drift-rate function \(F\) and a diffusion-rate function \(G\) :
```

F = drift(0, 0.1) % Drift rate function F(t,X)
G = diffusion(1, 0.3) % Diffusion rate function G(t,X)

```
F =
    Class DRIFT: Drift Rate Specification
        Rate: drift rate function \(\mathrm{F}(\mathrm{t}, \mathrm{X}(\mathrm{t}))\)
            A: 0
            B: 0.1
\(G=\)
    Class DIFFUSION: Diffusion Rate Specification
    Rate: diffusion rate function \(G(t, X(t))\)
        Alpha: 1
        Sigma: 0.3

Each object displays like a MATLAB structure and contains supplemental information, namely, the object's class and a brief description. However, in contrast to the SDE representation, a summary of the dimensionality of the model does not appear, because drift and diffusion classes create model components rather than models. Neither F nor G contains enough information to characterize the dimensionality of a problem.

The drift object's displayed parameters are:
- Rate: The drift-rate function, \(F\left(t, X_{t}\right)\)
- A: The intercept term, \(A\left(t, X_{t}\right)\), of \(F\left(t, X_{t}\right)\)
- B: The first order term, \(B\left(t, X_{t}\right)\), of \(F\left(t, X_{t}\right)\)
\(A\) and \(B\) enable you to query the original inputs. The function stored in Rate fully encapsulates the combined effect of A and B.

The diffusion object's displayed parameters are:
- Rate: The diffusion-rate function, \(G\left(t, X_{t}\right)\).
- Alpha: The state vector exponent, which determines the format of \(D\left(t, X_{t}\right)\) of \(G\left(t, X_{t}\right)\).
- Sigma: The volatility rate, \(V\left(t, X_{t}\right)\), of \(G\left(t, X_{t}\right)\).

Again, Alpha and Sigma enable you to query the original inputs. (The combined effect of the individual Alpha and Sigma parameters is fully encapsulated by the function stored in Rate.) The Rate functions are the calculation engines for the drift and diffusion objects, and are the only parameters required for simulation.

\section*{Example: SDEDDO Models}

The SDEDDO class derives from the base SDE class. To use this class, you must pass drift and diffusion-rate objects to the SDEDDO constructor.

1 Create drift and diffusion rate objects:
```

F = drift(0, 0.1); % Drift rate function F(t,X)
G = diffusion(1, 0.3); % Diffusion rate function G(t,X)

```

2 Pass these objects to the SDEDDO constructor:
```

obj = sdeddo(F,G) % dX = F(t,X)dt + G(t,X)dW
obj =
Class SDEDDO: SDE from Drift and Diffusion Objects
Dimensions: State = 1, Brownian = 1
StartTime: 0
StartState: 1
Correlation: 1
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler
A: O
B: 0.1
Alpha: 1
Sigma: 0.3

```

In this example, the object displays the additional parameters associated with input drift and diffusion objects.

\section*{Linear Drift Models}
```

In this section...
"Overview" on page 17-23
"Example: SDELD Models" on page 17-23

```

\section*{Overview}

The SDELD class derives from the SDEDDO class. These objects allow you to simulate correlated paths of NVARS state variables expressed in linear drift-rate form:
\[
d X_{t}=\left(A(t)+B(t) X_{t}\right) d t+D\left(t, X_{t}^{\alpha(t)}\right) V(t) d W_{t}
\]

SDELD objects provide a parametric alternative to the mean-reverting drift form, as discussed in "Example: SDEMRD Models" on page 17-29. They also provide an alternative interface to the SDEDDO parent class, because you can create an object without first having to create its drift and diffusion-rate components.

\section*{Example: SDELD Models}

Create the same model as in "Example: Base SDE Models" on page 17-17:
```

obj = sdeld(0, 0.1, 1, 0.3) % (A, B, Alpha, Sigma)
obj =
Class SDELD: SDE with Linear Drift
Dimensions: State = 1, Brownian = 1
StartTime: 0
StartState: 1
Correlation: 1
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))

```
```

Simulation: simulation method/function simByEuler
A: 0
B: 0.1
Alpha: 1
Sigma: 0.3

```

\section*{Parametric Models}

\section*{In this section...}
"Creating Brownian Motion (BM) Models" on page 17-25
"Example: BM Models" on page 17-25
"Creating Constant Elasticity of Variance (CEV) Models" on page 17-26
"Creating Geometric Brownian Motion (GBM) Models" on page 17-27
"Creating Stochastic Differential Equations from Mean-Reverting Drift (SDEMRD) Models" on page 17-29
"Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion Models" on page 17-30
"Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models" on page 17-31
"Creating Heston Stochastic Volatility Models" on page 17-33

\section*{Creating Brownian Motion (BM) Models}

The Brownian Motion (BM) model derives directly from the linear drift (SDELD) class:
\[
d X_{t}=\mu(t) d t+V(t) d W_{t}
\]

\section*{Example: BM Models}

Create a univariate Brownian motion (BM) object to represent the model:
```

 dX = 0.3dWt.
 obj = bm(0, 0.3) % (A = Mu, Sigma)
obj =
Class BM: Brownian Motion

```
```

Dimensions: State = 1, Brownian = 1
StartTime: 0
StartState: 0
Correlation: 1
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler
Mu: O
Sigma: 0.3

```
\(B M\) objects display the parameter A as the more familiar Mu.
The BM class also provides an overloaded Euler simulation method that improves run time performance in certain common situations. This specialized method is invoked automatically only if all of the following conditions are met:
- The expected drift, or trend, rate Mu is a column vector.
- The volatility rate, Sigma, is a matrix.
- No end-of-period adjustments and/or processes are made.
- If specified, the random noise process \(Z\) is a three-dimensional array.
- If \(Z\) is unspecified, the assumed Gaussian correlation structure is a double matrix.

\section*{Creating Constant Elasticity of Variance (CEV) Models}

The Constant Elasticity of Variance (CEV) model also derives directly from the linear drift (SDELD) class:
\[
d X_{t}=\mu(t) X_{t} d t+D\left(t, X_{t}^{\alpha(t)}\right) V(t) d W_{t}
\]

The CEV class constrains \(A\) to an NVARS-by- 1 vector of zeros. \(D\) is a diagonal matrix whose elements are the corresponding element of the state vector \(X\), raised to an exponent \(\alpha(t)\).

\section*{Example: Univariate CEV Models}

Create a univariate CEV object to represent the model:
```

 1
 dX t}=0.25\mp@subsup{X}{t}{}+0.3\mp@subsup{X}{t}{2}d\mp@subsup{W}{t}{}
 obj = cev(0.25, 0.5, 0.3) % (B = Return, Alpha, Sigma)
obj =
Class CEV: Constant Elasticity of Variance
Dimensions: State = 1, Brownian = 1
StartTime: 0
StartState: 1
Correlation: 1
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler
Return: 0.25
Alpha: 0.5
Sigma: 0.3

```

CEV and GBM objects display the parameter B as the more familiar Return.

\section*{Creating Geometric Brownian Motion (GBM) Models}

The Geometric Brownian Motion (GBM) model derives directly from the CEV model:
\[
d X_{t}=\mu(t) X_{t} d t+D\left(t, X_{t}\right) V(t) d W_{t}
\]

Compared to CEV, GBM constrains all elements of the alpha exponent vector to one such that \(D\) is now a diagonal matrix with the state vector \(X\) along the main diagonal.

The GBM class also provides two simulation methods that can be used by separable models:
- An overloaded Euler simulation method that improves run time performance in certain common situations. This specialized method is invoked automatically only if all of the following conditions are true:
- The expected rate of return (Return) is a diagonal matrix.
- The volatility rate (Sigma) is a matrix.
- No end-of-period adjustments/processes are made.
- If specified, the random noise process \(Z\) is a three-dimensional array.
- If \(Z\) is unspecified, the assumed Gaussian correlation structure is a double matrix.
- An approximate analytic solution (simBySolution) obtained by applying an Euler approach to the transformed (using Ito's formula) logarithmic process. In general, this is not the exact solution to this GBM model, as the probability distributions of the simulated and true state vectors are identical only for piecewise constant parameters. If the model parameters are piecewise constant over each observation period, the state vector \(X_{t}\) is lognormally distributed and the simulated process is exact for the observation times at which \(X_{t}\) is sampled.

\section*{Example: Univariate GBM Models}

Create a univariate GBM object to represent the model:
```

 dX 位 = 0.25X 和dt+0.3\mp@subsup{X}{t}{}d\mp@subsup{W}{t}{}
 obj = gbm(0.25, 0.3) % (B = Return, Sigma)
obj =
Class GBM: Generalized Geometric Brownian Motion
Dimensions: State = 1, Brownian = 1
StartTime: O
StartState: 1
Correlation: 1

```
```

 Drift: drift rate function F(t,X(t))
 Diffusion: diffusion rate function G(t,X(t))
 Simulation: simulation method/function simByEuler
Return: 0.25
Sigma: 0.3

```

\section*{Creating Stochastic Differential Equations from Mean-Reverting Drift (SDEMRD) Models}

The SDEMRD class derives directly from the SDEDDO class. It provides an interface in which the drift-rate function is expressed in mean-reverting drift form:
\[
d X_{t}=S(t)\left[L(t)-X_{t}\right] d t+D\left(t, X_{t}^{\alpha(t)}\right) V(t) d W_{t}
\]

SDEMRD objects provide a parametric alternative to the linear drift form by reparameterizing the general linear drift such that:
\[
A(t)=S(t) L(t), B(t)=-S(t)
\]

\section*{Example: SDEMRD Models}

Create an SDEMRD object obj with a square root exponent to represent the model:
```

 dX 傽 0.2(0.1- X
 obj = sdemrd(0.2, 0.1, 0.5, 0.05)
% (Speed, Level, Alpha, Sigma)
obj =
Class SDEMRD: SDE with Mean-Reverting Drift
Dimensions: State = 1, Brownian = 1
StartTime: 0

```
```

 StartState: 1
 Correlation: 1
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler
Alpha: 0.5
Sigma: 0.05
Level: 0.1
Speed: 0.2

```

SDEMRD objects display the familiar Speed and Level parameters instead of \(A\) and \(B\).

\section*{Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion Models}

The Cox-Ingersoll-Ross (CIR) short rate class derives directly from SDE with mean-reverting drift (SDEMRD):
\[
d X_{t}=S(t)\left[L(t)-X_{t}\right] d t+D\left(t, X_{t}^{\frac{1}{2}}\right) V(t) d W_{t}
\]
where \(D\) is a diagonal matrix whose elements are the square root of the corresponding element of the state vector.

\section*{Example: CIR Models}

Create a CIR object to represent the same model as in "Example: SDEMRD Models" on page 17-29:
```

obj = cir(0.2, 0.1, 0.05) % (Speed, Level, Sigma)
obj =
Class CIR: Cox-Ingersoll-Ross
Dimensions: State = 1, Brownian = 1

```
```

 StartTime: 0
 StartState: 1
Correlation: 1
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler
Sigma: 0.05
Level: 0.1
Speed: 0.2

```

Although the last two objects are of different classes, they represent the same mathematical model. They differ in that you create the CIR object by specifying only three input arguments. This distinction is reinforced by the fact that the Alpha parameter does not display - it is defined to be 1/2.

\section*{Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models}

The Hull-White/Vasicek(HWV) short rate class derives directly from SDE with mean-reverting drift (that is, SDEMRD):
\[
d X_{t}=S(t)\left[L(t)-X_{t}\right] d t+V(t) d W_{t}
\]

\section*{Example: HWV Models}

Using the same parameters as in the previous example, create an HWV object to represent the model:
```

 dXt}=0.2(0.1-\mp@subsup{X}{t}{})dt+0.05d\mp@subsup{W}{t}{}
 obj = hwv(0.2, 0.1, 0.05) % (Speed, Level, Sigma)
obj =
Class HWV: Hull-White/Vasicek
Dimensions: State = 1, Brownian = 1

```
```

 StartTime: O
 StartState: 1
Correlation: 1
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler
Sigma: 0.05
Level: 0.1
Speed: 0.2

```

CIR and HWV constructors share the same interface and display methods. The only distinction is that CIR and HWV models constrain Alpha exponents to 1/2 and 0 , respectively. Furthermore, the HWV class also provides an additional method that simulates approximate analytic solutions (simBySolution) of separable models. This method simulates the state vector \(X_{t}\) using an approximation of the closed-form solution of diagonal drift HWV models. Each element of the state vector \(X_{t}\) is expressed as the sum of NBROWNS correlated Gaussian random draws added to a deterministic time-variable drift.

When evaluating expressions, all model parameters are assumed piecewise constant over each simulation period. In general, this is not the exact solution to this HWV model, because the probability distributions of the simulated and true state vectors are identical only for piecewise constant parameters. If \(S\left(t, X_{t}\right), L\left(t, X_{t}\right)\), and \(V\left(t, X_{t}\right)\) are piecewise constant over each observation period, the state vector \(X_{t}\) is normally distributed, and the simulated process is exact for the observation times at which \(X_{t}\) is sampled.

\section*{Hull-White vs. Vasicek Models}

Many references differentiate between Vasicek models and Hull-White models. Where such distinctions are made, Vasicek parameters are constrained to be constants, while Hull-White parameters vary deterministically with time. Think of Vasicek models in this context as constant-coefficient Hull-White models and equivalently, Hull-White models as time-varying Vasicek models. However, from an architectural perspective, the distinction between static and dynamic parameters is trivial. Since both models share the same general parametric specification as previously described, a single HWV class encompasses the models.

\section*{Creating Heston Stochastic Volatility Models}

The Heston (heston) class derives directly from SDE from Drift and Diffusion (SDEDDO). Each Heston model is a bivariate composite model, consisting of two coupled univariate models:
\[
\begin{align*}
& d X_{1 t}=B(t) X_{1 t} d t+\sqrt{X_{2 t}} X_{1 t} d W_{1 t}  \tag{17-5}\\
& d X_{2 t}=S(t)\left[L(t)-X_{2 t}\right] d t+V(t) \sqrt{X_{2 t}} d W_{2 t} \tag{17-6}
\end{align*}
\]

Equation \(17-5\) is typically associated with a price process. Equation 17-6 represents the evolution of the price process' variance. Models of type heston are typically used to price equity options.

\section*{Example: Heston Models}

Create a heston object to represent the model:
```

 d\mp@subsup{X}{1t}{}=0.1\mp@subsup{X}{1t}{}dt+\sqrt{}{\mp@subsup{X}{2t}{}}\mp@subsup{X}{1t}{}d\mp@subsup{W}{1t}{}
 dX 2t
 obj = heston (0.1, 0.2, 0.1, 0.05)
obj =
Class HESTON: Heston Bivariate Stochastic Volatility
Dimensions: State = 2, Brownian = 2
StartTime: O
StartState: 1 (2x1 double array)
Correlation: 2x2 diagonal double array
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler
Return: 0.1
Speed: 0.2
Level: 0.1

```
```

Volatility: 0.05

```

\section*{Simulating Equity Prices}

\author{
In this section... \\ "Simulating Multidimensional Market Models" on page 17-35 \\ "Inducing Dependence and Correlation" on page 17-52 \\ "Dynamic Behavior of Market Parameters" on page 17-55 \\ "Pricing Equity Options" on page 17-61
}

\section*{Simulating Multidimensional Market Models}

This example compares alternative implementations of a separable multivariate geometric Brownian motion process that is often referred to as a multidimensional market model. It simulates sample paths of an equity index portfolio using SDE, SDEDDO, SDELD, CEV, and GBM objects.

The market model to simulate is:
\[
\begin{equation*}
d X_{t}=\mu X_{t} d t+D\left(X_{t}\right) \sigma d W_{t} \tag{17-7}
\end{equation*}
\]
where:
- \(\mu\) is a diagonal matrix of expected index returns.
- \(D\) is a diagonal matrix with \(X_{t}\) along the diagonal.
- \(\sigma\) is a diagonal matrix of standard deviations of index returns.

\section*{Representing Market Models Using SDE Objects}

Create an SDE object to represent the equity market model.
1 Load the Data_GlobalIdx2 data set:
load Data_GlobalIdx2
prices = [Dataset.TSX Dataset.CAC Dataset.DAX ...
Dataset.NIK Dataset.FTSE Dataset.SP];
2 Convert daily prices to returns:
```

returns = price2ret(prices);

```

3 Compute data statistics to input to simulation methods:
```

nVariables = size(returns, 2);
expReturn = mean(returns);
sigma = std(returns);
correlation = corrcoef(returns);
t = 0;
X = 100;
X = X(ones(nVariables,1));

```

4 Create simple anonymous drift and diffusion functions accessible by \(\left(t, X_{t}\right)\) :
```

F = @(t,X) diag(expReturn) * X;
G = @(t,X) diag(X) * diag(sigma);

```

5 Use these functions to create an SDE object to represent the market model in Equation 17-7:
```

SDE = sde(F, G, 'Correlation', correlation, 'StartState', X)

```

SDE =
```

Class SDE: Stochastic Differential Equation
Dimensions: State = 6, Brownian = 6
StartTime: 0
StartState: 100 (6x1 double array)
Correlation: 6x6 double array
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

```

The SDE constructor requires additional information to determine the dimensionality of the model, because the functions passed to the SDE constructor are known only by their ( \(t, X_{t}\) ) interface. In other words, the SDE constructor requires only two inputs: a drift-rate function and a
diffusion-rate function, both accessible by passing the sample time and the corresponding state vector \(\left(t, X_{t}\right)\).

In this case, this information is insufficient to determine unambiguously the dimensionality of the state vector and Brownian motion. You resolve the dimensionality by specifying an initial state vector, StartState. Note that the SDE engine has assigned the default simulation method, simByEuler, to the Simulation parameter.

\section*{Representing Market Models Using SDEDDO Objects}

Create an SDEDDO object to represent the market model in Equation 17-7:
1 Load the Data_GlobalIdx2 data set:
load Data_GlobalIdx2
prices = [Dataset.TSX Dataset.CAC Dataset.DAX ...
Dataset.NIK Dataset.FTSE Dataset.SP];
2 Convert daily prices to returns:
```

returns = price2ret(prices);

```

3 Compute data statistics to input to simulation methods:
```

nVariables = size(returns, 2);
expReturn = mean(returns);
sigma = std(returns);
correlation = corrcoef(returns);

```

4 Create drift and diffusion objects:
```

F = drift(zeros(nVariables,1), diag(expReturn))
G = diffusion(ones(nVariables,1), diag(sigma))

```

F =
Class DRIFT: Drift Rate Specification
Rate: drift rate function \(\mathrm{F}(\mathrm{t}, \mathrm{X}(\mathrm{t}))\)
```

 A: 6x1 double array
 B: 6x6 diagonal double array
 G =
Class DIFFUSION: Diffusion Rate Specification
Rate: diffusion rate function G(t,X(t))
Alpha: 6x1 double array
Sigma: 6x6 diagonal double array

```

5 Pass the drift and diffusion objects to the SDEDDO constructor:
```

SDEDDO = sdeddo(F, G, 'Correlation', correlation, ...
'StartState', 100)

```

SDEDDO =
```

Class SDEDDO: SDE from Drift and Diffusion Objects
Dimensions: State = 6, Brownian = 6
StartTime: 0
StartState: 100 (6x1 double array)
Correlation: 6x6 double array
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler
A: 6x1 double array
B: 6x6 diagonal double array
Alpha: 6x1 double array
Sigma: 6x6 diagonal double array

```

The SDEDDO constructor requires two input objects that provide more information than the two functions from step 4 of "Representing Market Models Using SDE Objects" on page 17-35. Thus, the dimensionality is more easily resolved. In fact, the initial price of each index is as a scalar (StartState \(=100\) ). This is in contrast to the SDE constructor, which
required an explicit state vector to uniquely determine the dimensionality of the problem.

Once again, the class of each object is clearly identified, and parameters display like fields of a structure. In particular, the Rate parameter of drift and diffusion objects is identified as a callable function of time and state, \(F\left(t, X_{t}\right)\) and \(G\left(t, X_{t}\right)\), respectively. The additional parameters, A, B, Alpha, and Sigma, are arrays of appropriate dimension, indicating static (non-time-varying) parameters. In other words, \(A\left(t, X_{t}\right), B\left(t, X_{t}\right), \operatorname{Alph} \alpha\left(t, X_{t}\right)\), and \(\operatorname{Sigma}\left(t, X_{t}\right)\) are constant functions of time and state.

\section*{Representing Market Models Using SDELD, CEV, and GBM Objects}

Create SDELD, CEV, and GBM objects to represent the market model in Equation 17-7.

1 Load the Data_GlobalIdx2 data set:
```

load Data_GlobalIdx2
prices = [Dataset.TSX Dataset.CAC Dataset.DAX ...
Dataset.NIK Dataset.FTSE Dataset.SP];

```

2 Convert daily prices to returns:
```

returns = price2ret(prices);

```

3 Compute data statistics to input to simulation methods:
```

nVariables = size(returns, 2);
expReturn = mean(returns);
sigma = std(returns);
correlation = corrcoef(returns);
t = 0;
X = 100;
X = X(ones(nVariables,1));

```

4 Create an SDELD object:
```

SDELD = sdeld(zeros(nVariables,1), diag(expReturn), ...
ones(nVariables,1), diag(sigma),'Correlation', ...

```
```

correlation, 'StartState', X)
SDELD =
Class SDELD: SDE with Linear Drift
Dimensions: State = 6, Brownian = 6
StartTime: O
StartState: 100 (6x1 double array)
Correlation: 6x6 double array
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler
A: 6x1 double array
B: 6x6 diagonal double array
Alpha: 6x1 double array
Sigma: 6x6 diagonal double array

```

5 Create a CEV object:
CEV \(=\operatorname{cev}(\) diag (expReturn), ones(nVariables,1), ...
    diag(sigma), 'Correlation', correlation, ...
    'StartState', X)
CEV =
    Class CEV: Constant Elasticity of Variance
    Dimensions: State \(=6\), Brownian \(=6\)
            StartTime: 0
            StartState: 100 (6x1 double array)
            Correlation: 6x6 double array
            Drift: drift rate function \(F(t, X(t))\)
            Diffusion: diffusion rate function \(G(t, X(t))\)
            Simulation: simulation method/function simByEuler
                    Return: 6x6 diagonal double array
```

Alpha: 6x1 double array
Sigma: 6x6 diagonal double array

```

6 Create a GBM object:
```

GBM = gbm(diag(expReturn), diag(sigma), 'Correlation', ...
correlation, 'StartState', X)

```
GBM =
    Class GBM: Generalized Geometric Brownian Motion
        Dimensions: State \(=6\), Brownian \(=6\)
        StartTime: 0
        StartState: 100 (6x1 double array)
    Correlation: 6x6 double array
            Drift: drift rate function \(F(t, X(t))\)
        Diffusion: diffusion rate function \(G(t, X(t))\)
        Simulation: simulation method/function simByEuler
            Return: 6x6 diagonal double array
            Sigma: 6x6 diagonal double array

Note the succession of interface restrictions:
- SDELD objects require you to specify A, B, Alpha, and Sigma.
- CEV objects require you to specify Return, Alpha, and Sigma.
- GBM objects require you to specify only Return and Sigma.

However, all three objects represent the same multidimensional market model.

Also, CEV and GBM objects display the underlying parameter B derived from the SDELD class as Return. This is an intuitive name commonly associated with equity models.

\section*{Simulating Equity Markets Using the Default Simulate Method}

1 Load the Data_GlobalIdx2 data set and specify the SDE model as in "Representing Market Models Using SDE Objects" on page 17-35.
```

load Data_GlobalIdx2
prices = [Dataset.TSX Dataset.CAC Dataset.DAX ...
Dataset.NIK Dataset.FTSE Dataset.SP];
returns = price2ret(prices);
nVariables = size(returns,2);
expReturn = mean(returns);
sigma = std(returns);
correlation = corrcoef(returns);
t = 0;
X = 100;
X = X(ones(nVariables,1));
F = @(t,X) diag(expReturn)* X;
G = @(t,X) diag(X) * diag(sigma);
SDE = sde(F, G, 'Correlation', ...
correlation, 'StartState', X);

```

2 Simulate a single path of correlated equity index prices over one calendar year (defined as approximately 250 trading days) using the default simulate method:
```

nPeriods = 249; % \# of simulated observations
dt = 1; % time increment = 1 day
rng(142857,'twister')
[S,T] = SDE.simulate(nPeriods, 'DeltaTime', dt);

```
whos S
Name Size Bytes Class Attributes
S 250x6 12000 double

The output array \(S\) is a 250 -by- \(6=(\) NPERIODS +1 )-by-nVariables-by- 1 array with the same initial value, 100 , for all indices. Each row of \(S\) is an observation of the state vector \(X_{t}\) at time \(t\).

3 Plot the simulated paths.
```

plot(T, S), xlabel('Trading Day'), ylabel('Price')
title('Single Path of Multi-Dimensional Market Model')
legend({'Canada' 'France' 'Germany' 'Japan' 'UK' 'US'}, ...
'Location', 'Best')

```

Single Path of Multi-Dimensional Market Model


\section*{Simulating Equity Markets Using the SimByEuler Method}

Because simByEuler is a valid simulation method, you can call it directly, overriding the Simulation parameter's current method or function (which in this case is simByEuler). The following statements produce the same price paths as generated in "Simulating Equity Markets Using the Default Simulate Method" on page 17-42:

1 Load the Data_GlobalIdx2 data set and specify the SDE model as in "Representing Market Models Using SDE Objects" on page 17-35.
```

load Data_GlobalIdx2
prices = [Dataset.TSX Dataset.CAC Dataset.DAX ...
Dataset.NIK Dataset.FTSE Dataset.SP];
returns = price2ret(prices);
nVariables = size(returns,2);
expReturn = mean(returns);
sigma = std(returns);
correlation = corrcoef(returns);
t = 0;
X = 100;
X = X(ones(nVariables,1));
F = @(t,X) diag(expReturn)* X;
G = @(t,X) diag(X) * diag(sigma);
SDE = sde(F, G, 'Correlation', ...
correlation, 'StartState', X);

```

2 Simulate a single path using simByEuler.
```

nPeriods = 249; % \# of simulated observations
dt = 1; % time increment = 1 day
rng(142857,'twister')
[S,T] = SDE.simByEuler(nPeriods, 'DeltaTime', dt);

```

3 Simulate 10 trials with the same initial conditions, and examine S :
```

rng(142857,'twister')

```
```

[S,T] = SDE.simulate(nPeriods, 'DeltaTime', dt, 'nTrials', 10);

```
whos S
\begin{tabular}{lcrl} 
Name & Size & Bytes Class & Attributes \\
S & \(250 \times 6 \times 10\) & 120000 & double
\end{tabular}

Now the output array \(S\) is an (NPERIODS + 1)-by-nVariables-by-nTrials time series array.

4 Plot the first paths.
```

plot(T, S(:,:,1)), xlabel('Trading Day'), ylabel('Price')
title('First Path of Multi-Dimensional Market Model')
legend({'Canada' 'France' 'Germany' 'Japan' 'UK' 'US'},...
'Location', 'Best')

```


The first realization of \(S\) is identical to the paths in the plot.

\section*{Simulating Equity Markets Using GBM Simulation Methods}

Finally, consider simulation using GBM simulation methods. Separable GBM models have two specific simulation methods:
- An overloaded Euler simulation method, designed for optimal performance
- A method that provides an approximate solution of the underlying stochastic differential equation, designed for accuracy
```

1 Load the Data_GlobalIdx2 data set and specify the SDE model as in
"Representing Market Models Using SDE Objects" on page 17-35, and
the GBM model as in "Representing Market Models Using SDELD, CEV,
and GBM Objects" on page 17-39.
load Data_GlobalIdx2
prices = [Dataset.TSX Dataset.CAC Dataset.DAX ...
Dataset.NIK Dataset.FTSE Dataset.SP];
returns = price2ret(prices);
nVariables = size(returns,2);
expReturn = mean(returns);
sigma = std(returns);
correlation = corrcoef(returns);
t = 0;
X = 100;
X = X(ones(nVariables,1));
F = @(t,X) diag(expReturn)* X;
G = @(t,X) diag(X) * diag(sigma);
SDE = sde(F, G, 'Correlation', ...
correlation, 'StartState', X);
GBM = gbm(diag(expReturn),diag(sigma), 'Correlation', ...
correlation, 'StartState', X);

```

2 To illustrate the performance benefit of the overloaded Euler approximation method, increase the number of trials to 10000.
```

nPeriods = 249; % \# of simulated observations
dt = 1; % time increment = 1 day
rng(142857,'twister')
[X,T] = GBM.simulate(nPeriods, 'DeltaTime', dt, ...
'nTrials', 10000);
whos X

```

The output X is a much larger time series array.
3 Using this sample size, examine the terminal distribution of Canada's TSX Composite to verify qualitatively the lognormal character of the data.
hist(squeeze(X(end,1,:)), 30), xlabel('Price'), ylabel('Frequency') title('Histogram of Prices after One Year: Canada (TSX Composite)')


4 Simulate 10 trials of the solution and plot the first trial:
```

rng(142857,'twister')
[S,T] = SDE.simulate(nPeriods, 'DeltaTime', dt, 'nTrials', 10);
rng(142857,'twister')
[X,T] = GBM.simBySolution(nPeriods,...
'DeltaTime', dt, 'nTrials', 10);
subplot(2,1,1)
plot(T, S(:,:,1)), xlabel('Trading Day'),ylabel('Price')
title('1st Path of Multi-Dim Market Model:Euler Approximation')
subplot(2,1,2)
plot(T, X(:,:,1)), xlabel('Trading Day'),ylabel('Price')
title('1st Path of Multi-Dim Market Model:Analytic Solution')

```


In this example, all parameters are constants, and simBySolution does indeed sample the exact solution. The details of a single index for any given trial show that the price paths of the Euler approximation and the exact solution are close, but not identical.

5 The following plot illustrates the difference between the two methods:
```

subplot(1,1,1)
plot(T, S(:,1,1) - X(:,1,1), 'blue'), grid('on')
xlabel('Trading Day'), ylabel('Price Difference')
title('Euler Approx Minus Exact Solution:Canada(TSX Composite)')

```


The simByEuler Euler approximation literally evaluates the stochastic differential equation directly from the equation of motion, for some suitable value of the \(d t\) time increment. This simple approximation suffers from discretization error. This error can be attributed to the discrepancy between the choice of the \(d t\) time increment and what in theory is a continuous-time parameter.

The discrete-time approximation improves as DeltaTime approaches zero. The Euler method is often the least accurate and most general method available. All models shipped in the simulation suite have this method.

In contrast, the simBySolution method provides a more accurate description of the underlying model. This method simulates the price paths by an approximation of the closed-form solution of separable models. Specifically, it applies an Euler approach to a transformed process, which in general is not the exact solution to this GBM model. This is because the probability distributions of the simulated and true state vectors are identical only for piecewise constant parameters.

When all model parameters are piecewise constant over each observation period, the simulated process is exact for the observation times at which the state vector is sampled. Since all parameters are constants in this example, simBySolution does indeed sample the exact solution.

For an example of how to use simBySolution to optimize the accuracy of solutions, see "Optimizing Accuracy: About Solution Precision and Error" on page 17-85.

\section*{Inducing Dependence and Correlation}

This example illustrates two techniques that induce dependence between individual elements of a state vector. It also illustrates the interaction between Sigma and Correlation.

The first technique generates correlated Gaussian variates to form a Brownian motion process with dependent components. These components are then weighted by a diagonal volatility or exposure matrix Sigma.

The second technique generates independent Gaussian variates to form a standard Brownian motion process, which are then weighted by the lower Cholesky factor of the desired covariance matrix. Although these techniques can be used on many models, the relationship between them is most easily illustrated by working with a separable GBM model (see Simulating Equity Prices Using GBM Simulation Methods). The market model to simulate is:
\[
d X_{t}=\mu X_{t} d t+\sigma X_{t} d W_{t}
\]
where \(\mu\) is a diagonal matrix.
1 Load the data set:
```

load Data_GlobalIdx2
prices = [Dataset.TSX Dataset.CAC Dataset.DAX ...
Dataset.NIK Dataset.FTSE Dataset.SP];

```

2 Convert the daily prices to returns:
```

returns = price2ret(prices);

```

3 Specify Sigma and Correlation using the first technique:
a Using the first technique, specify Sigma as a diagonal matrix of asset return standard deviations:
```

expReturn = diag(mean(returns)); % expected return vector
sigma = diag(std(returns)); % volatility of returns

```
b Specify Correlation as the sample correlation matrix of those returns. In this case, the components of the Brownian motion are dependent:
```

correlation = corrcoef(returns);
GBM1 = gbm(expReturn, sigma, 'Correlation',...
correlation);

```

4 Specify Sigma and Correlation using the second technique:
a Using the second technique, specify Sigma as the lower Cholesky factor of the asset return covariance matrix:
covariance \(=\) cov(returns);
sigma \(\quad=\) cholcov(covariance)';
b Set Correlation to an identity matrix:
GBM2 \(\quad=\) gbm (expReturn, sigma);
Here, sigma captures both the correlation and magnitude of the asset return uncertainty. In contrast to the first technique, the components of the Brownian motion are independent. Also, this technique accepts
the default assignment of an identity matrix to Correlation, and is more straightforward.

5 Simulate a single trial of 1000 observations (roughly four years of daily data) using both techniques. By default, all state variables start at 1:
```

rng(22814,'twister')
[X1,T] = GBM1.simByEuler(1000); % correlated Brownian motion
rng(22814,'twister')
[X2,T] = GBM2.simByEuler(1000); % standard Brownian motion

```

When based on the same initial random number state, each technique generates identical asset price paths:
```

subplot(2,1,1), plot(T, X1)
title('Sample Paths from Correlated Brownian Motion')
ylabel('Asset Price')
subplot(2,1,2), plot(T, X2)
title('Sample Paths from Standard Brownian Motion')
xlabel('Trading Day'), ylabel('Asset Price')

```


\section*{Dynamic Behavior of Market Parameters}

As discussed in "Creating SDE Objects" on page 17-7, object parameters may be evaluated as if they are MATLAB functions accessible by a common interface. This accessibility provides the impression of dynamic behavior regardless of whether the underlying parameters are truly time-varying. Furthermore, because parameters are accessible by a common interface, seemingly simple linear constructs may in fact represent complex, nonlinear designs.

For example, consider a univariate geometric Brownian motion (GBM) model of the form:
\[
d X_{t}=\mu(t) X_{t} d t+\sigma(t) X_{t} d W_{t}
\]

In this model, the return, \(\mu(t)\), and volatility, \(\sigma(t)\), are generally dynamic parameters of time alone. However, when creating a GBM object to represent the underlying model, such dynamic behavior must be accessible by the common ( \(t, X_{t}\) ) interface. This reflects the fact that GBM models (and others) are restricted parameterizations that derive from the general SDE class.

As a convenience, you can specify parameters of restricted models, such as GBM models, as traditional MATLAB arrays of appropriate dimension. In this case, such arrays represent a static special case of the more general dynamic situation accessible by the \(\left(t, X_{t}\right)\) interface.

Moreover, when you enter parameters as functions, object constructors can verify that they return arrays of correct size by evaluating them at the initial time and state. Otherwise, object constructors have no knowledge of any particular functional form.

The following example illustrates a technique that includes dynamic behavior by mapping a traditional MATLAB time series array to a callable function with a \(\left(t, X_{t}\right)\) interface. It also compares the function with an otherwise identical model with constant parameters.

Because time series arrays represent dynamic behavior that must be captured by functions accessible by the \(\left(t, X_{t}\right)\) interface, you need utilities to convert traditional time series arrays into callable functions of time and state. The following example shows how to do this using the conversion function ts2func (time series to function).

1 Load the data. Load a daily historical data set containing 3-month Euribor rates and closing index levels of France's CAC 40 spanning the time interval February 7, 2001 to April 24, 2006:
load Data_GlobalIdx2
2 Simulate risk-neutral sample paths. Simulate risk-neutral sample paths of the CAC 40 index using a geometric Brownian motion (GBM) model:
\[
d X_{t}=r(t) X_{t} d t+\sigma X_{t} d W_{t}
\]
where \(r(t)\) represents evolution of the risk-free rate of return.
Furthermore, assume that you need to annualize the relevant information derived from the daily data (annualizing the data is optional, but is useful for comparison to other examples), and that each calendar year comprises 250 trading days:
```

dt = 1 / 250;
returns = price2ret(Dataset.CAC);
sigma = std(returns) * sqrt(250);
yields = Dataset.EB3M;
yields = 360 * log(1 + yields);

```

3 Compare the sample paths from two risk-neutral historical simulation approaches. Compare the resulting sample paths obtained from two risk-neutral historical simulation approaches, where the daily Euribor yields serve as a proxy for the risk-free rate of return.
a The first approach specifies the risk-neutral return as the sample average of Euribor yields, and therefore assumes a constant (non-dynamic) risk-free return:
```

nPeriods = length(yields); % Simulated observations
rng(5713,'twister')
obj = gbm(mean(yields), diag(sigma), 'StartState', 100)
[X1,T] = obj.simulate(nPeriods, 'DeltaTime', dt);

```
obj =
Class GBM: Generalized Geometric Brownian Motion
    Dimensions: State = 1, Brownian = 1
            StartTime: 0
    StartState: 100
    Correlation: 1
            Drift: drift rate function \(\mathrm{F}(\mathrm{t}, \mathrm{X}(\mathrm{t}))\)
        Diffusion: diffusion rate function \(G(t, X(t))\)
```

Simulation: simulation method/function simByEuler
Return: 0.0278117
Sigma: 0.231875

```
b In contrast, the second approach specifies the risk-neutral return as the historical time series of Euribor yields. It therefore assumes a dynamic, yet deterministic, rate of return; this example does not illustrate stochastic interest rates. To illustrate this dynamic effect, use the ts2func utility:
```

r = ts2func(yields, 'Times', (0:nPeriods - 1)');

```
ts2func packages a specified time series array inside a callable function of time and state, and synchronizes it with an optional time vector. For instance:
\(r(0,100)\)
ans \(=\)
0.0470
evaluates the function at ( \(t=0, X_{t}=100\) ) and returns the first observed Euribor yield. However, you can also evaluate the resulting function at any intermediate time \(t\) and state \(X_{t}\) :
\(r(7.5,200)\)
ans \(=\)
0.0472

Furthermore, the following command produces the same result when called with time alone:
\(r(7.5)\)

The equivalence of these last two commands highlights some important features.

When you specify parameters as functions, they must evaluate properly when passed a scalar, real-valued sample time ( \(t\) ), and a \(N V A R S\)-by- 1 state vector \(\left(X_{t}\right)\). They must also generate an array of appropriate dimensions, which in the first case is a scalar constant, and in the second case is a scalar, piecewise constant function of time alone.

You are not required to use either time \((t)\) or state \(\left(X_{t}\right)\). In the current example, the function evaluates properly when passed time followed by state, thereby satisfying the minimal requirements. The fact that it also evaluates correctly when passed only time simply indicates that the function does not require the state vector \(X_{t}\). The important point to make is that it works when you pass it \(\left(t, X_{t}\right)\).

Furthermore, the ts2func function performs a zero-order-hold (ZOH) piecewise constant interpolation. The notion of piecewise constant parameters is pervasive throughout the SDE architecture, and is discussed in more detail in "Optimizing Accuracy: About Solution Precision and Error" on page 17-85.

\section*{4 Perform a second simulation using the same initial random} number state. Complete the comparison by performing the second simulation using the same initial random number state:
```

rng(5713,'twister')
obj = gbm(r, diag(sigma), 'StartState', 100)
X2 = obj.simulate(nPeriods, 'DeltaTime', dt);
obj =

```
    Class GBM: Generalized Geometric Brownian Motion
```

 Dimensions: State = 1, Brownian = 1
 StartTime: 0
 StartState: 100
 Correlation: 1
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler
Return: function ts2func/vector2Function
Sigma: 0.231875

```

5 Compare the two simulation trials. Plot the series of risk-free reference rates to compare the two simulation trials:
```

subplot(2,1,1)
plot(dates, 100 * yields)
datetick('x'), xlabel('Date'), ...
ylabel('Annualized Yield (%)')
title('Risk Free Rate(3-Mo Euribor Continuously-Compounded)')
subplot(2,1,2)
plot(T, X1, 'red', T, X2, 'blue')
xlabel('Time (Years)'), ylabel('Index Level')
title('Constant vs. Dynamic Rate of Return: CAC 40')
legend({'Constant Interest Rates' 'Dynamic Interest Rates'},...
'Location', 'Best')

```


The paths are close but not exact. The blue line in the last plot uses all the historical Euribor data, and illustrates a single trial of a historical simulation.

\section*{Pricing Equity Options}

As discussed in "Ensuring Positive Interest Rates" on page 17-73, all simulation and interpolation methods allow you to specify one or more functions of the form:
\[
X_{t}=f\left(t, X_{t}\right)
\]
to evaluate at the end of every sample time.
The related example illustrates a simple, common end-of-period processing function to ensure nonnegative interest rates. This example illustrates a processing function that allows you to avoid simulation outputs altogether.

Consider pricing European stock options by Monte Carlo simulation within a Black-Scholes-Merton framework. Assume that the stock has the following characteristics:
- The stock currently trades at 100 .
- The stock pays no dividends.
- The stock's volatility is \(50 \%\) per annum.
- The option strike price is 95 .
- The option expires in three months.
- The risk-free rate is constant at \(10 \%\) per annum.

To solve this problem, model the evolution of the underlying stock by a univariate geometric Brownian motion (GBM) model with constant parameters:
\[
d X_{t}=0.1 X_{t} d t+0.5 X_{t} d W_{t}
\]

Furthermore, assume that the stock price is simulated daily, and that each calendar month comprises 21 trading days:
```

strike = 95;
rate = 0.1;
sigma = 0.5;
dt = 1 / 252;
nPeriods = 63;
T = nPeriods * dt;
obj = gbm(rate, sigma, 'StartState', 100);

```

The goal is to simulate independent paths of daily stock prices, and calculate the price of European options as the risk-neutral sample average of the discounted terminal option payoff at expiration 63 days from now. This example calculates option prices by two approaches:
- A Monte Carlo simulation that explicitly requests the simulated stock paths as an output. The output paths are then used to price the options.
- An end-of-period processing function, accessible by time and state, that records the terminal stock price of each sample path. This processing function is implemented as a nested function with access to shared information. For more information, see Example_BlackScholes.m.

1 Before simulation, invoke the example file to access the end-of-period processing function:
```

nTrials = 10000; % Number of independent trials (i.e., paths)
f = Example_BlackScholes(nPeriods, nTrials)

```
\(f=\)

BlackScholes: @Example_BlackScholes/saveTerminalStockPrice CallPrice: @Example_BlackScholes/getCallPrice PutPrice: @Example_BlackScholes/getPutPrice

2 Simulate 10000 independent trials (sample paths). Request the simulated stock price paths as an output, and specify an end-of-period processing function:
```

rng(88161,'twister')
X = obj.simBySolution(nPeriods, 'DeltaTime', dt, ...
'nTrials', nTrials, 'Processes', f.BlackScholes);

```

3 Calculate the option prices directly from the simulated stock price paths.
Because these are European options, ignore all intermediate stock prices:
```

call = mean(exp(-rate * T) * max(squeeze(X(end,:,:)) ...
- strike, 0))
put = mean(exp(-rate * T) * max(strike - ...
squeeze(X(end,:,:)), 0))

```
call =
13.9342
put =
6.4166

4 Price the options indirectly by invoking the nested functions:
```

f.CallPrice(strike, rate)
f.PutPrice (strike, rate)

```
ans =
13.9342
ans =
6.4166

For reference, the theoretical call and put prices computed from the Black-Scholes option formulas are 13.6953 and 6.3497 , respectively.

5 Although steps 3 and 4 produce the same option prices, the latter approach works directly with the terminal stock prices of each sample path. Therefore, it is much more memory efficient. In this example, there is no compelling reason to request an output.

\section*{Simulating Interest Rates}

\author{
In this section... \\ "Simulating Interest Rates" on page 17-65 \\ "Ensuring Positive Interest Rates" on page 17-73
}

\section*{Simulating Interest Rates}

All simulation methods require that you specify a time grid by specifying the number of periods (NPERIODS). You can also optionally specify a scalar or vector of strictly positive time increments (DeltaTime) and intermediate time steps (NSTEPS). These parameters, along with an initial sample time associated with the object (StartTime), uniquely determine the sequence of times at which the state vector is sampled. Thus, simulation methods allow you to traverse the time grid from beginning to end (that is, from left to right).

In contrast, interpolation methods allow you to traverse the time grid in any order, allowing both forward and backward movements in time. They allow you to specify a vector of interpolation times whose elements do not have to be unique.

Many references define the Brownian Bridge as a conditional simulation combined with a scheme for traversing the time grid, effectively merging two distinct algorithms. In contrast, the interpolation method offered here provides additional flexibility by intentionally separating the algorithms. In this method for moving about a time grid, you perform an initial Monte Carlo simulation to sample the state at the terminal time, and then successively sample intermediate states by stochastic interpolation. The first few samples determine the overall behavior of the paths, while later samples progressively refine the structure. Such algorithms are often called variance reduction techniques. This algorithm is particularly simple when the number of interpolation times is a power of 2 . In this case, each interpolation falls midway between two known states, refining the interpolation using a method like bisection. This example highlights the flexibility of refined interpolation by implementing this power-of-two algorithm.

1 Load the data. Load a historical data set of three-month Euribor rates, observed daily, and corresponding trading dates spanning the time interval from February 7, 2001 through April 24, 2006:
```

load Data_GlobalIdx2
plot(dates, 100 * Dataset.EB3M)
datetick('x'), xlabel('Date'), ylabel('Daily Yield (%)')
title('3-Month Euribor as a Daily Effective Yield')

```


2 Fit a model to the data. Now fit a simple univariate Vasicek model to the daily equivalent yields of the three-month Euribor data:
\[
d X_{t}=S\left(L-X_{t}\right) d t+\sigma d W_{t}
\]

Given initial conditions, the distribution of the short rate at some time \(T\) in the future is Gaussian with mean:
\[
E\left(X_{T}\right)=X_{0} e^{-S T}+L\left(1-e^{-S T}\right)
\]
and variance:
\[
\operatorname{Var}\left(X_{T}\right)=\sigma^{2}\left(1-e^{-S T}\right) / 2 S
\]

To calibrate this simple short rate model, rewrite it in more familiar regression format:
\[
y_{t}=\alpha+\beta x_{t}+\varepsilon_{t}
\]
where:
\[
y_{t}=d X_{t}, \alpha=S L d t, \beta=-S d t
\]
perform an ordinary linear regression where the model volatility is proportional to the standard error of the residuals:
\[
\sigma=\sqrt{\operatorname{Var}\left(\varepsilon_{t}\right) / d t}
\]
```

yields = Dataset.EB3M;

```
regressors = [ones(length(yields) - 1, 1) yields(1:end-1)];
[coefficients, intervals, residuals] = ...
    regress(diff(yields), regressors);
\(\mathrm{dt} \quad=1\); \% time increment \(=1\) day
speed = -coefficients(2)/dt;
level = -coefficients(1)/coefficients(2);
sigma \(=\) std(residuals)/sqrt(dt);

3 Create an object and set its initial StartState. Create an HWV object with an initial StartState set to the most recently observed short rate:
```

obj = hwv(speed, level, sigma, 'StartState', yields(end))

```
```

obj =
Class HWV: Hull-White/Vasicek
Dimensions: State = 1, Brownian = 1
StartTime: 0
StartState: 7.70408e-05
Correlation: 1
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler
Sigma: 4.77637e-07
Level: 6.00424e-05
Speed: 0.00228854

```

4 Simulate the fitted model. Assume, for example, that you simulate the fitted model over \(64\left(2^{6}\right)\) trading days, using a refined Brownian bridge with the power-of-two algorithm instead of the usual beginning-to-end Monte Carlo simulation approach. Furthermore, assume that the initial time and state coincide with those of the last available observation of the historical data, and that the terminal state is the expected value of the Vasicek model 64 days into the future. In this case, you can assess the behavior of various paths that all share the same initial and terminal states, perhaps to support pricing path-dependent interest rate options over a three-month interval.

Create a vector of interpolation times to traverse the time grid by moving both forward and backward in time. Specifically, the first interpolation time is set to the most recent short rate observation time, the second interpolation time is set to the terminal time, and subsequent interpolation times successively sample intermediate states:
```

T = 64;
times = (1:T)';
t = NaN(length(times) + 1, 1);
t(1) = obj.StartTime;
t(2) = T;
delta = T;

```
```

jMax = 1;
iCount = 3;
for k = 1:log2(T)
i = delta / 2;
for j = 1:jMax
t(iCount) = times(i);
i = i + delta;
iCount = iCount + 1;
end
jMax = 2 * jMax;
delta = delta / 2;
end

```

5 Plot the interpolation times. Examine the sequence of interpolation times generated by this algorithm:
```

stem(1:length(t), t, 'filled')
xlabel('Index'), ylabel('Interpolation Time (Days)')
title ('Sampling Scheme for the Power-of-Two Algorithm')

```


The first few samples are widely separated in time and determine the course structure of the paths. Later samples are closely spaced and progressively refine the detailed structure.

6 Initialize the time series grid. Now that you have generated the sequence of interpolation times, initialize a course time series grid to begin the interpolation. The sampling process begins at the last observed time and state taken from the historical short rate series, and ends 64 days into the future at the expected value of the Vasicek model derived from the calibrated parameters:
```

average = obj.StartState * exp(-speed * T) + level * ...
(1 - exp(-speed * T));
X = [obj.StartState ; average];

```

7 Generate five sample paths. Generate 5 sample paths, setting the Refine input flag to TRUE to insert each new interpolated state into the time series grid as it becomes available. Perform interpolation on a trial-by-trial basis. Because the input time series X has five trials (where each page of the three-dimensional time series represents an independent trial), the interpolated output series Y also has five pages:
```

nTrials = 5;
rng(63349,'twister')
Y = obj.interpolate(t, X(:,:,ones(nTrials,1)), ...
'Times',[obj.StartTime T], 'Refine', true);

```

8 Plot the resulting sample paths. Because the interpolation times do not monotonically increase, sort the times and reorder the corresponding short rates:
```

[t,i] = sort(t);
Y = squeeze(Y);
Y = Y(i,:);
plot(t, 100 * Y), hold('on')
plot(t([1 end]), 100 * Y([1 end],1),'. black','MarkerSize', 20)
xlabel('Interpolation Time (Days into the Future)')
ylabel('Yield (%)'), hold('off')
title ('Euribor Yields from Brownian Bridge Interpolation')

```


The short rates in this plot represent alternative sample paths that share the same initial and terminal values. They illustrate a special, though simplistic, case of a broader sampling technique known as stratified sampling. For a more sophisticated example of stratified sampling, see "Stratified Sampling" on page 17-77.

Although this simple example simulated a univariate Vasicek interest rate model, it applies to problems of any dimensionality.

Tip Brownian-bridge methods also apply more general variance-reduction techniques. For more information, see "Stratified Sampling" on page 17-77.

\section*{Ensuring Positive Interest Rates}

All simulation and interpolation methods allow you to specify a sequence of functions, or background processes, to evaluate at the end of every sample time period. This period includes any intermediate time steps determined by the optional NSTEPS input, as discussed in "Optimizing Accuracy: About Solution Precision and Error" on page 17-85. These functions are specified as callable functions of time and state, and must return an updated state vector \(X_{t}\) :
\[
X_{t}=f\left(t, X_{t}\right)
\]

You must specify multiple processing functions as a cell array of functions. These functions are invoked in the order in which they appear in the cell array.

Processing functions are not required to use time \((t)\) or state \(\left(X_{t}\right)\). They are also not required to update or change the input state vector. In fact, simulation and interpolation methods have no knowledge of any implementation details, and in this respect, they only adhere to a published interface.

Such processing functions provide a powerful modeling tool that can solve a variety of problems. Such functions allow you to, for example, specify boundary conditions, accumulate statistics, plot graphs, and price path-dependent options.

Except for Brownian motion (BM) models, the individual components of the simulated state vector typically represent variables whose real-world counterparts are inherently positive quantities, such as asset prices or interest rates. However, by default, most of the simulation and interpolation methods provided here model the transition between successive sample times as a scaled (possibly multivariate) Gaussian draw. Consequently, when approximating a continuous-time process in discrete time, the state vector may not remain positive. The only exception is the simBySolution logarithmic transform of separable geometric Brownian motion models. Moreover, by default, none of the simulation and interpolation methods make
adjustments to the state vector. Therefore, you are responsible for ensuring that all components of the state vector remain positive as appropriate.

Fortunately, specifying nonnegative states ensures a simple end-of-period processing adjustment. Although this adjustment is widely applicable, it is revealing when applied to a univariate CIR square-root diffusion model:
\[
d X_{t}=0.25\left(0.1-X_{t}\right) d t+0.2 X_{t}^{\frac{1}{2}} d W_{t}=S\left(L-X_{t}\right) d t+\sigma X_{t}^{\frac{1}{2}} d W_{t}
\]

Perhaps the primary appeal of univariate CIR models where:
\[
2 S L \geq \sigma^{2}
\]
is that the short rate remains positive. However, the positivity of short rates only holds for the underlying continuous-time model.

1 Simulate daily short rates of the CIR model. To illustrate the latter statement, simulate daily short rates of the CIR model over one calendar year (approximately 250 trading days):
```

rng(14151617,'twister')
ans =
0.7760 0.0003+i0.0000
0.7800 0.0004+i0.0000
0.7840 0.0002+i0.0000
0.7880 -0.0000+i0.0000
0.7920 0.0001+i0.0000
0.7960 0.0002+i0.0000
0.8000 0.0002+i0.0000
0.8040 0.0008+i0.0001
0.8080 0.0004+i0.0001

```
obj = cir(0.25, @(t,X) 0.1, 0.2, 'StartState', 0.02);
[X,T] = obj.simByEuler(250, 'DeltaTime',1/250,'nTrials', 5);
sprintf('\%0.4f\t\%0.4f+i\%0.4f\n',[T(195:205)'; ...
        real(X(195:205,1,4))'; imag(X(195:205,1,4))'])
```

0.8120 0.0008+i0.0001
0.8160 0.0008+i0.0001

```

Interest rates can become negative if the resulting paths are simulated in discrete time. Moreover, since CIR models incorporate a square root diffusion term, the short rates might even become complex.

2 Repeat the simulation with a processing function. Repeat the simulation, this time specifying a processing function that takes the absolute magnitude of the short rate at the end of each period. You can access the processing function by time and state \(\left(t, X_{t}\right)\), but it only uses the state vector of short rates \(X_{t}\) :
```

rng(14151617,'twister')
[Y,T] = obj.simByEuler(250, 'DeltaTime', 1/250, ...
'nTrials', 5, 'Processes', @(t,X) abs(X));

```

3 Compare the adjusted and non-adjusted paths. Graphically compare the magnitude of the unadjusted path (with negative and complex numbers!) to the corresponding path kept positive by using an end-of-period processing function over the time span of interest:
```

clf
plot(T, 100 * abs(X(:,1,4)), 'red', T, ...
100 * Y(:,1,4), 'blue')
axis([0.75 1 0 0.4])
xlabel('Time (Years)'), ylabel('Short Rate (%)')
title('Univariate CIR Short Rates')
legend({'Negative/Complex Rates' 'Positive Rates'}, ...
'Location', 'Best')

```


Tip You can use this method to obtain more accurate SDE solutions. For more information, see "Performance Considerations" on page 17-83.

\section*{Stratified Sampling}

Simulation methods allow you to specify a noise process directly, as a callable function of time and state:
\[
z_{t}=Z\left(t, X_{t}\right)
\]

Stratified sampling is a variance reduction technique that constrains a proportion of sample paths to specific subsets (or strata) of the sample space.

This example specifies a noise function to stratify the terminal value of a univariate equity price series. Starting from known initial conditions, the function first stratifies the terminal value of a standard Brownian motion, and then samples the process from beginning to end by drawing conditional Gaussian samples using a Brownian bridge.

The stratification process assumes that each path is associated with a single stratified terminal value such that the number of paths is equal to the number of strata. This technique is called proportional sampling. This example is similar to, yet more sophisticated than, the one discussed in. Since stratified sampling requires knowledge of the future, it also requires more sophisticated time synchronization; specifically, the function in this example requires knowledge of the entire sequence of sample times. For more information, see the example stratifiedExample.m.

The function implements proportional sampling by partitioning the unit interval into bins of equal probability by first drawing a random number uniformly distributed in each bin. The inverse cumulative distribution function of a standard \(N(0,1)\) Gaussian distribution then transforms these stratified uniform draws. Finally, the resulting stratified Gaussian draws are scaled by the square root of the terminal time to stratify the terminal value of the Brownian motion.

The noise function does not return the actual Brownian paths, but rather the Gaussian draws \(Z\left(t, X_{t}\right)\) that drive it.

This example first stratifies the terminal value of a univariate, zero-drift, unit-variance-rate Brownian motion (BM) model:
\[
d X_{t}=d W_{t}
\]

1 Assume that 10 paths of the process are simulated daily over a three-month period. Also assume that each calendar month and year consist of 21 and 252 trading days, respectively:
```

rng(10203,'twister')
dt = 1 / 252; % 1 day = 1/252 years
nPeriods = 63; % 3 months = 63 trading days
T = nPeriods * dt; % 3 months = 0.25 years
nPaths = 10; % \# of simulated paths
obj = bm(0, 1, 'StartState', 0);
sampleTimes = cumsum([obj.StartTime; ...
dt(ones(nPeriods,1))]);
z = Example_StratifiedRNG(nPaths, sampleTimes);

```

2 Simulate the standard Brownian paths by explicitly passing the stratified sampling function to the simulation method:
```

X = obj.simulate(nPeriods, 'DeltaTime', dt, ...
'nTrials', nPaths, 'Z', z);

```

3 For convenience, reorder the output sample paths by reordering the three-dimensional output to a 2 -dimensional equivalent array:

X = squeeze(X);
4 Verify the stratification:
a Recreate the uniform draws with proportional sampling:
```

rng(10203,'twister')
U = ((1:nPaths)' - 1 + rand(nPaths,1))/nPaths;

```
b Transform them to obtain the terminal values of standard Brownian motion:

WT = norminv(U) * sqrt(T); \% Stratified Brownian motion.
c Plot the terminal values and output paths on the same figure:
```

plot(sampleTimes, X), hold('on')
xlabel('Time (Years)'), ylabel('Brownian State')
title('Terminal Stratification: Standard Brownian Motion')
plot(T, WT, '. black', T, WT, 'o black')
hold('off')

```

Terminal Stratification: Standard Brownian Motion


The last value of each sample path (the last row of the output array X) coincides with the corresponding element of the stratified terminal value of the Brownian motion. This occurs because the simulated model and the noise generation function both represent the same standard Brownian motion.

However, you can use the same stratified sampling function to stratify the terminal price of constant-parameter geometric Brownian motion models. In fact, you can use the stratified sampling function to stratify the terminal value of any constant-parameter model driven by Brownian motion if the model's terminal value is a monotonic transformation of the terminal value of the Brownian motion.

To illustrate this, load the data set and simulate risk-neutral sample paths of the FTSE 100 index using a geometric Brownian motion (GBM) model with constant parameters:
\[
d X_{t}=r X_{t} d t+\sigma X_{t} d W_{t}
\]
where the average Euribor yield represents the risk-free rate of return.
1 Assume that the relevant information derived from the daily data is annualized, and that each calendar year comprises 252 trading days:
```

load Data_GlobalIdx2
returns = price2ret(Dataset.FTSE);
sigma = std(returns) * sqrt(252);
rate = Dataset.EB3M;
rate = mean(360 * log(1 + rate));

```

2 Create the GBM model, assuming the FTSE 100 starts at 100:
```

obj = gbm(rate, sigma, 'StartState', 100);

```

3 Determine the sample time and simulate the price paths.
In what follows, NSTEPS specifies the number of intermediate time steps within each time increment DeltaTime. Each increment DeltaTime is partitioned into NSTEPS subintervals of length DeltaTime/nSteps each, refining the simulation by evaluating the simulated state vector at NSTEPS-1 intermediate points. This refinement improves accuracy by allowing the simulation to more closely approximate the underlying continuous-time process without storing the intermediate information:
```

nSteps = 1;
sampleTimes = cumsum([obj.StartTime ; ...

```
```

dt(ones(nPeriods * nSteps,1))/nSteps]);
z = Example_StratifiedRNG(nPaths, sampleTimes);
rng(10203,'twister')
[Y, Times] = obj.simBySolution(nPeriods, 'nTrials', nPaths,...
'DeltaTime', dt, 'nSteps', nSteps, 'Z', z);
Y = squeeze(Y); % Reorder to a 2-D array
plot(Times, Y)
xlabel('Time (Years)'), ylabel('Index Level')
title('FTSE 100 Terminal Stratification:Geometric Brownian Motion')

```


Although the terminal value of the Brownian motion shown in the latter plot is normally distributed, and the terminal price in the previous plot is lognormally distributed, the corresponding paths of each graph are similar.

Tip For another example of variance reduction techniques, see "Simulating Interest Rates" on page 17-65.

\section*{Performance Considerations}

\author{
In this section... \\ "Managing Memory" on page 17-83 \\ "Enhancing Performance" on page 17-84 \\ "Optimizing Accuracy: About Solution Precision and Error" on page 17-85
}

\section*{Managing Memory}

There are two general approaches for managing memory when solving most problems supported by the SDE engine:
- "Managing Memory with Outputs" on page 17-83
- "Managing Memory Using End-of-Period Processing Functions" on page 17-84

\section*{Managing Memory with Outputs}

Perform a traditional simulation to simulate the underlying variables of interest, specifically requesting and then manipulating the output arrays.

This approach is straightforward and the best choice for small or medium-sized problems. Since its outputs are arrays, it is convenient to manipulate simulated results in the MATLAB matrix-based language. However, as the scale of the problem increases, the benefit of this approach decreases, because the output arrays must store large quantities of possibly extraneous information.

For example, consider pricing a European option in which the terminal price of the underlying asset is the only value of interest. To ease the memory burden of the traditional approach, reduce the number of simulated periods specified by the required input NPERIODS and specify the optional input NSTEPS. This enables you to manage memory without sacrificing accuracy (see "Optimizing Accuracy: About Solution Precision and Error" on page 17-85).

In addition, simulation methods can determine the number of output arguments and allocate memory accordingly. Specifically, all simulation methods support the same output argument list:

\section*{[Paths,Times, Z]}
where Paths and \(Z\) can be large, three-dimensional time series arrays. However, the underlying noise array is typically unnecessary, and is only stored if requested as an output. In other words, \(Z\) is stored only at your request; do not request it if you do not need it.

If you need the output noise array Z, but do not need the Paths time series array, then you can avoid storing Paths two ways:
- It is best practice to use the ~output argument placeholder. For example, use the following output argument list to store \(Z\) and Times, but not Paths:
[~,Times, Z]
- Use the optional input flag StorePaths, which all simulation methods support. By default, Paths is stored (StorePaths = true). However, setting StorePaths to false returns Paths as an empty matrix.

\section*{Managing Memory Using End-of-Period Processing Functions}

Specify one or more end-of-period processing functions to manage and store only the information of interest, avoiding simulation outputs altogether.

This approach requires you to specify one or more end-of-period processing functions, and is often the preferred approach for large-scale problems. This approach allows you to avoid simulation outputs altogether. Since no outputs are requested, the three-dimensional time series arrays Paths and \(Z\) are not stored.

This approach often requires more effort, but is far more elegant and allows you to customize tasks and dramatically reduce memory usage. See "Pricing Equity Options" on page 17-61.

\section*{Enhancing Performance}

The following approaches improve performance when solving SDE problems:
- Specifying model parameters as traditional MATLAB arrays and functions, in various combinations. This provides a flexible interface that can support virtually any general nonlinear relationship.

However, while functions offer a convenient and elegant solution for many problems, simulations typically run faster when you specify parameters as double-precision vectors or matrices. Thus, it is a good practice to specify model parameters as arrays when possible.
- Use models that have overloaded Euler simulation methods, when possible. Using Brownian motion (BM) and geometric Brownian motion (GBM) models that provide overloaded Euler simulation methods take advantage of separable, constant-parameter models. These specialized methods are exceptionally fast, but are only available to models with constant parameters that are simulated without specifying end-of-period processing and noise generation functions.
- Replace the simulation of a constant-parameter, univariate model derived from the SDEDDO class with that of a diagonal multivariate model. Treat the multivariate model as a portfolio of univariate models. This increases the dimensionality of the model and enhances performance by decreasing the effective number of simulation trials.

Note This technique is applicable only to constant-parameter univariate models without specifying end-of-period processing and noise generation functions.
- Take advantage of the fact that simulation methods are designed to detect the presence of NaN (not a number) conditions returned from end-of-period processing functions. A NaN represents the result of an undefined numerical calculation, and any subsequent calculation based on a NaN produces another NaN. This helps improve performance in certain situations. For example, consider simulating paths of the underlier of a knock-out barrier option (that is, an option that becomes worthless as soon as the price of the underlying asset crosses some prescribed barrier). Your end-of-period function could detect a barrier crossing and return a NaN to signal early termination of the current trial.

\section*{Optimizing Accuracy: About Solution Precision and Error}

The simulation architecture does not, in general, simulate exact solutions to any SDE. Instead, the simulation architecture provides a discrete-time
approximation of the underlying continuous-time process, a simulation technique often known as an Euler approximation.

In the most general case, a given simulation derives directly from an SDE. Therefore, the simulated discrete-time process approaches the underlying continuous-time process only in the limit as the time increment \(d t\) approaches zero. In other words, the simulation architecture places more importance on ensuring that the probability distributions of the discrete-time and continuous-time processes are close, than on the pathwise proximity of the processes.

Before illustrating techniques to improve the approximation of solutions, it is helpful to understand the source of error. Throughout this architecture, all simulation methods assume that model parameters are piecewise constant over any time interval of length \(d t\). In fact, the methods even evaluate dynamic parameters at the beginning of each time interval and hold them fixed for the duration of the interval. This sampling approach introduces discretization error.

However, there are certain models for which the piecewise constant approach provides exact solutions:
- "Creating Brownian Motion (BM) Models" on page 17-25 with constant parameters, simulated by Euler approximation (simByEuler).
- "Creating Geometric Brownian Motion (GBM) Models" on page 17-27 with constant parameters, simulated by closed-form solution (simBySolution).
- "Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models" on page 17-31 with constant parameters, simulated by closed-form solution (simBySolution)

More generally, you can simulate the exact solutions for these models even if the parameters vary with time, if they vary in a piecewise constant way such that parameter changes coincide with the specified sampling times. However, such exact coincidence is unlikely; therefore, the previously discussed constant parameter condition is commonly used in practice.

One obvious way to improve accuracy involves sampling the discrete-time process more frequently. This decreases the time increment ( \(d t\) ), causing the sampled process to more closely approximate the underlying continuous-time
process. Although decreasing the time increment is universally applicable, however, there is a tradeoff among accuracy, run-time performance, and memory usage.

To manage this tradeoff, specify an optional input argument, NSTEPS, for all simulation methods. NSTEPS indicates the number of intermediate time steps within each time increment \(d t\), at which the process is sampled but not reported.

It is important and convenient at this point to emphasize the relationship of the inputs NSTEPS, NPERIODS, and DeltaTime to the output vector Times, which represents the actual observation times at which the simulated paths are reported.
- NPERIODS, a required input, indicates the number of simulation periods of length DeltaTime, and determines the number of rows in the simulated three-dimensional Paths time series array (if an output is requested).
- DeltaTime is optional, and indicates the corresponding NPERIODS-length vector of positive time increments between successive samples. It represents the familiar \(d t\) found in stochastic differential equations. If DeltaTime is unspecified, the default value of 1 is used.
- NSTEPS is also optional, and is only loosely related to NPERIODS and DeltaTime. NSTEPS specifies the number of intermediate time steps within each time increment DeltaTime.

Specifically, each time increment DeltaTime is partitioned into NSTEPS subintervals of length DeltaTime/NSTEPS each, and refines the simulation by evaluating the simulated state vector at (NSTEPS - 1) intermediate times. Although the output state vector (if requested) is not reported at these intermediate times, this refinement improves accuracy by causing the simulation to more closely approximate the underlying continuous-time process. If NSTEPS is unspecified, the default is 1 (to indicate no intermediate evaluation).
- The output Times is an NPERIODS + 1-length column vector of observation times associated with the simulated paths. Each element of Times is associated with a corresponding row of Paths.

The following example illustrates this intermediate sampling by comparing the difference between a closed-form solution and a sequence of Euler approximations derived from various values of NSTEPS.

\section*{Example: Improving Solution Accuracy}

Consider a univariate geometric Brownian motion (GBM) model with constant parameters:
\[
d X_{t}=0.1 X_{t} d t+0.4 X_{t} d W_{t}
\]

Assume that the expected rate of return and volatility parameters are annualized, and that a calendar year comprises 250 trading days.

1 Simulate approximately 4 years of univariate prices for both the exact solution and the Euler approximation for various values of NSTEPS:
```

nPeriods = 1000;
dt = 1 / 250;
obj = gbm(0.1, 0.4, 'StartState', 100);
rng(575,'twister')
[X1,T1] = obj.simBySolution(nPeriods, 'DeltaTime', dt);
rng(575,'twister')
[Y1,T1] = obj.simByEuler(nPeriods, 'DeltaTime', dt);
rng(575,'twister')
[X2,T2] = obj.simBySolution(nPeriods, 'DeltaTime',...
dt, 'nSteps', 2);
rng(575,'twister')
[Y2,T2] = obj.simByEuler(nPeriods, 'DeltaTime',...
dt, 'nSteps', 2);
rng(575,'twister')
[X3,T3] = obj.simBySolution(nPeriods, 'DeltaTime', ...
dt, 'nSteps', 10);
rng(575,'twister')
[Y3,T3] = obj.simByEuler(nPeriods, 'DeltaTime', ...
dt, 'nSteps', 10);
rng(575,'twister')
[X4,T4] = obj.simBySolution(nPeriods, 'DeltaTime', ...
dt, 'nSteps', 100);
rng(575,'twister')
[Y4,T4] = obj.simByEuler(nPeriods, 'DeltaTime', ...

```
```

dt, 'nSteps', 100);

```

2 Compare the error (the difference between the exact solution and the Euler approximation) graphically:
```

clf;

```
plot(T1, X1 - Y1, 'red'), hold('on');
plot(T2, X2 - Y2, 'blue')
plot(T3, X3 - Y3, 'green')
plot(T4, X4 - Y4, 'black'), hold('off')
xlabel('Time (Years)'), ylabel('Price Difference')
title('Exact Solution Minus Euler Approximation')
legend(\{'\# of Steps \(=1\) ' '\# of Steps = 2'. .
            '\# of Steps = 10' '\# of Steps = 100'\},...
            'Location', 'Best')
hold('off')
whos T X Y


As expected, the simulation error decreases as the number of intermediate time steps increases. Because the intermediate states are not reported, all simulated time series have the same number of observations regardless of the actual value of NSTEPS.

Furthermore, since the previously simulated exact solutions are correct for any number of intermediate time steps, additional computations are not needed for this example. In fact, this assessment is generally correct. The exact solutions are sampled at intermediate times to ensure that the simulation uses the same sequence of Gaussian random variates in the same
order. Without this assurance, there is no way to compare simulated prices on a pathwise basis. However, there might be valid reasons for sampling exact solutions at closely spaced intervals, such as pricing path-dependent options.

\section*{Pricing American Basket Options by Monte Carlo Simulation}

This example shows how to model the fat-tailed behavior of asset returns and assess the impact of alternative joint distributions on basket option prices. Using various implementations of a separable multivariate Geometric Brownian Motion (GBM) process, often referred to as a multi-dimensional market model, the example simulates risk-neutral sample paths of an equity index portfolio and prices basket put options using the technique of Longstaff \& Schwartz.

In addition, this example also illustrates salient features of the Stochastic Differential Equation (SDE) architecture, including
- Customized random number generation functions that compare Brownian motion and Brownian copulas
- End-of-period processing functions that form an equity index basket and price American options on the underlying basket based on the least squares method of Longstaff \& Schwartz
- Piecewise probability distributions and Extreme Value Theory (EVT)

This example also highlights important issues of volatility and interest rate scaling. It illustrates how equivalent results can be achieved by working with daily or annualized data. For more information about EVT and copulas, see Using Extreme Value Theory and Copulas to Evaluate Market Risk.

\section*{Overview of the Modeling Framework}

The ultimate objective of this example is to compare basket option prices derived from different noise processes. The first noise process is a traditional Brownian motion model whose index portfolio price process is driven by correlated Gaussian random draws. As alternatives, the Brownian motion benchmark is compared to noise processes driven by Gaussian and Student's t copulas, referred to collectively as a Brownian copula.

A copula is a multivariate cumulative distribution function (CDF) with uniformly-distributed margins. Although the theoretical foundations were established decades ago, copulas have experienced a tremendous surge in
popularity over the last few years, primarily as a technique for modeling non-Gaussian portfolio risks.

Although numerous families exist, all copulas represent a statistical device for modeling the dependence structure between 2 or more random variables. In addition, important statistics, such as rank correlation and tail dependence, are properties of a given copula and are unchanged by monotonic transforms of its margins.

These copula draws produce dependent random variables, which are subsequently transformed to individual variables (margins). This transformation is achieved with a semi-parametric probability distribution with generalized Pareto tails.

The risk-neutral market model to simulate is
where the risk-free rate, \(r\), is assumed constant over the life of the option. Because this is a separable multivariate model, the risk-free return is a diagonal matrix in which the same riskless return is applied to all indices. Dividend yields are ignored to simplify the model its associated data collection.

In contrast, the specification of the exposure matrix, sigma, depends on how the driving source of uncertainty is modeled. You can model it directly as a Brownian motion (correlated Gaussian random numbers implicitly mapped to Gaussian margins) or model it as a Brownian copula (correlated Gaussian or t random numbers explicitly mapped to semi-parametric margins).

Because the CDF and inverse CDF (quantile function) of univariate distributions are both monotonic transforms, a copula provides a convenient way to simulate dependent random variables whose margins are dissimilar and arbitrarily distributed. Moreover, because a copula defines a given dependence structure regardless of its margins, copula parameter calibration is typically easier than estimation of the joint distribution function.

Once you have simulated sample paths, options are priced by the least squares regression method of Longstaff \& Schwartz (see Valuing American Options by Simulation: A Simple Least-Squares Approach, The Review of Financial Studies, Spring 2001). This approach uses least squares to estimate
the expected payoff of an option if it is not immediately exercised. It does so by regressing the discounted option cash flows received in the future on the current price of the underlier associated with all in-the-money sample paths. The continuation function is estimated by a simple third-order polynomial, in which all cash flows and prices in the regression are normalized by the option strike price, improving numerical stability.

\section*{Import the Supporting Historical Dataset}

Load a daily historical dataset of 3-month Euribor, the trading dates spanning the interval 07-Feb-2001 to 24-Apr-2006, and the closing index levels of the following representative large-cap equity indices:
- TSX Composite (Canada)
- CAC 40 (France)
- DAX (Germany)
- Nikkei 225 (Japan)
- FTSE 100 (UK)
- S\&P 500 (US)
clear
load Data_GlobalIdx2
The following plots illustrate this data. Specifically, the plots show the relative price movements of each index and the Euribor risk-free rate proxy. The initial level of each index has been normalized to unity to facilitate the comparison of relative performance over the historical record.
```

nIndices = size(Data,2)-1; % \# of indices
prices = Data(:,1:end-1);
yields = Data(:,end); % daily effective yields
yields = 360 * log(1 + yields); % continuously-compounded, annualized yie
plot(dates, ret2tick(tick2ret(prices,[],'continuous'),[],[],[],'continuous'
xlabel('Date'), ylabel('Index Value'), title ('Normalized Daily Index Closi

```
```

legend(series{1:end-1}, 'Location', 'NorthWest')
plot(dates, 100 * yields)
datetick('x'), xlabel('Date'), ylabel('Annualized Yield (%)')
title('Risk Free Rate (3-Month Euribor Continuously-Compounded)')

```

\section*{Extreme Value Theory \& Piecewise Probability Distributions}

To prepare for copula modeling, characterize individually the distribution of returns of each index. Although the distribution of each return series may be characterized parametrically, it is useful to fit a semi-parametric model using a piecewise distribution with generalized Pareto tails. This uses Extreme Value Theory to better characterize the behavior in each tail.

The Statistics Toolbox \({ }^{\text {TM }}\) software currently supports two univariate probability distributions related to EVT, a statistical tool for modeling the fat-tailed behavior of financial data such as asset returns and insurance losses:
- Generalized Extreme Value (GEV) distribution, which uses a modeling technique known as the block maxima or minima method. This approach, divides a historical dataset into a set of sub-intervals, or blocks, and the largest or smallest observation in each block is recorded and fitted to a GEV distribution.
- Generalized Pareto (GP) distribution, uses a modeling technique known as the distribution of exceedances or peaks over threshold method. This approach sorts a historical dataset, and fits the amount by which those observations that exceed a specified threshold to a GP distribution.

The following analysis highlights the Pareto distribution, which is more widely used in risk management applications.

Suppose we wish to create a complete statistical description of the probability distribution of daily asset returns of any one of the equity indices. Assume that this description is provided by a piecewise semi-parametric distribution,
where the asymptotic behavior in each tail is characterized by a generalized Pareto distribution.

Ultimately, a copula will be used to generate random numbers to drive the simulations. The CDF and inverse CDF transforms will capture the volatility of simulated returns as part of the diffusion term of the SDE. The mean return of each index is governed by the riskless rate and incorporated in the drift term of the SDE. The following code segment centers the returns (that is, extracts the mean) of each index.

Because the following analysis uses extreme value theory to characterize the distribution of each equity index return series, it is helpful to examine details for a particular country:
```

returns = tick2ret(prices,[],'continuous'); % convert prices to retu
returns = bsxfun(@minus, returns, mean(returns)); % center the returns
index = 3; % Germany stored in colu
plot(dates(2:end), returns(:,index)), datetick('x')
xlabel('Date'), ylabel('Return')
title(['Daily Logarithmic Centered Returns: ' series{index}])

```

Note that this code segment can be changed to examine details for any country.

Using these centered returns, estimate the empirical, or non-parametric, CDF of each index with a Gaussian kernel. This smoothes the CDF estimates, eliminating the staircase pattern of unsmoothed sample CDFs. Although non-parametric kernel CDF estimates are well-suited for the interior of the distribution, where most of the data is found, they tend to perform poorly when applied to the upper and lower tails. To better estimate the tails of the distribution, apply EVT to the returns that fall in each tail.

Specifically, find upper and lower thresholds such that \(10 \%\) of the returns is reserved for each tail. Then fit the amount by which the extreme returns in each tail fall beyond the associated threshold to a Pareto distribution by maximum likelihood.

The following code segment creates one object of type paretotails for each index return series. These Pareto tail objects encapsulate the estimates of the parametric Pareto lower tail, the non-parametric kernel-smoothed interior, and the parametric Pareto upper tail to construct a composite semi-parametric CDF for each index.
```

tailFraction = 0.1; % decimal fraction allocated to each tail
OBJ = cell(nIndices,1); % cell array of Pareto tail objects
for i = 1:nIndices
OBJ{i} = paretotails(returns(:,i), tailFraction, 1 - tailFraction, 'ker
end

```

The resulting piecewise distribution object allows interpolation within the interior of the CDF and extrapolation (function evaluation) in each tail. Extrapolation allows estimation of quantiles outside the historical record, which is invaluable for risk management applications.

Pareto tail objects also provide methods to evaluate the CDF and inverse CDF (quantile function), and to query the cumulative probabilities and quantiles of the boundaries between each segment of the piecewise distribution.

Now that three distinct regions of the piecewise distribution have been estimated, graphically concatenate and display the result.

The following code calls the CDF and inverse CDF methods of the Pareto tails object of interest with data other than that upon which the fit is based. The referenced methods have access to the fitted state. They are now invoked to select and analyze specific regions of the probability curve, acting as a powerful data filtering mechanism.

For reference, the plot also includes a zero-mean Gaussian CDF of the same standard deviation. To a degree, the variation in options prices reflect the extent to which the distribution of each asset differs from this normal curve.
```

minProbability = OBJ{index}.cdf((min(returns(:,index))));
maxProbability = OBJ{index}.cdf((max(returns(:,index))));
pLowerTail = linspace(minProbability , tailFraction , 200); % lower tai
pUpperTail = linspace(1 - tailFraction, maxProbability , 200); % upper tai

```
```

pInterior = linspace(tailFraction , 1 - tailFraction, 200); % interior
plot(OBJ{index}.icdf(pLowerTail), pLowerTail, 'red' , 'LineWidth', 2)
hold('on'), grid('on')
plot(OBJ{index}.icdf(pInterior) , pInterior , 'black', 'LineWidth', 2)
plot(OBJ{index}.icdf(pUpperTail), pUpperTail, 'blue', 'LineWidth', 2)
limits = axis; x = linspace(limits(1), limits(2));
plot(x, normcdf(x, 0, std(returns(:,index))), 'green', 'LineWidth', 2)
set(gcf, 'Color', [$$
\begin{array}{lll}{1}&{1}&{1}\end{array}
$$]); hold('off')
xlabel('Centered Return'), ylabel('Probability')
title (['Semi-Parametric/Piecewise CDF: ' series{index}])
legend({'Pareto Lower Tail' 'Kernel Smoothed Interior' ...
'Pareto Upper Tail' 'Gaussian with Same \sigma'}, 'Location', 'Nort

```

The lower and upper tail regions, displayed in red and blue, respectively, are suitable for extrapolation, while the kernel-smoothed interior, in black, is suitable for interpolation.

\section*{Copula Calibration}

The Statistics Toolbox software includes functionality that calibrates and simulates Gaussian and t copulas.

Using the daily index returns, estimate the parameters of the Gaussian and \(t\) copulas using the function copulafit. Since a t copula becomes a Gaussian copula as the scalar degrees of freedom parameter (DoF) becomes infinitely large, the two copulas are really of the same family, and therefore share a linear correlation matrix as a fundamental parameter.

Although calibration of the linear correlation matrix of a Gaussian copula is straightforward, the calibration of a \(t\) copula is not. For this reason, the Statistics Toolbox software offers two techniques to calibrate a t copula:
- The first technique performs maximum likelihood estimation (MLE) in a two-step process. The inner step maximizes the log-likelihood with respect to the linear correlation matrix, given a fixed value for the
degrees of freedom. This conditional maximization is placed within a 1-D maximization with respect to the degrees of freedom, thus maximizing the log-likelihood over all parameters. The function being maximized in this outer step is known as the profile log-likelihood for the degrees of freedom.
- The second technique is derived by differentiating the log-likelihood function with respect to the linear correlation matrix, assuming the degrees of freedom is a fixed constant. The resulting expression is a non-linear equation that can be solved iteratively for the correlation matrix. This technique approximates the profile log-likelihood for the degrees of freedom parameter for large sample sizes. This technique is usually significantly faster than the true maximum likelihood technique outlined above; however, you should not use it with small or moderate sample sizes as the estimates and confidence limits may not be accurate.

When the uniform variates are transformed by the empirical CDF of each margin, the calibration method is often known as canonical maximum likelihood (CML). The following code segment first transforms the daily centered returns to uniform variates by the piecewise, semi-parametric CDFs derived above. It then fits the Gaussian and \(t\) copulas to the transformed data:
```

U = zeros(size(returns));
for i = 1:nIndices
U(:,i) = OBJ{i}.cdf(returns(:,i)); % transform each margin to unifor
end
options = statset('Display', 'off', 'TolX', 1e-4);
[rhoT, DoF] = copulafit('t', U, 'Method', 'ApproximateML', 'Options', optio
rhoG = copulafit('Gaussian', U);

```

The estimated correlation matrices are quite similar but not identical.
```

corrcoef(returns) % linear correlation matrix of daily returns
ans =

1.0000	0.4813	0.5058	0.1854	0.4573	0.6526
0.4813	1.0000	0.8485	0.2261	0.8575	0.5102

```
\begin{tabular}{llllll}
0.5058 & 0.8485 & 1.0000 & 0.2001 & 0.7650 & 0.6136 \\
0.1854 & 0.2261 & 0.2001 & 1.0000 & 0.2295 & 0.1439 \\
0.4573 & 0.8575 & 0.7650 & 0.2295 & 1.0000 & 0.4617 \\
0.6526 & 0.5102 & 0.6136 & 0.1439 & 0.4617 & 1.0000
\end{tabular}
```

rhoG % linear correlation matrix of the optimized Gaussian co
rhoG =

1.0000	0.4745	0.5018	0.1857	0.4721	0.6622
0.4745	1.0000	0.8606	0.2393	0.8459	0.4912
0.5018	0.8606	1.0000	0.2126	0.7608	0.5811
0.1857	0.2393	0.2126	1.0000	0.2396	0.1494
0.4721	0.8459	0.7608	0.2396	1.0000	0.4518
0.6622	0.4912	0.5811	0.1494	0.4518	1.0000

rhoT % linear correlation matrix of the optimized t copula
rhoT =

1.0000	0.4671	0.4858	0.1907	0.4734	0.6521
0.4671	1.0000	0.8871	0.2567	0.8500	0.5122
0.4858	0.8871	1.0000	0.2326	0.7723	0.5877
0.1907	0.2567	0.2326	1.0000	0.2503	0.1539
0.4734	0.8500	0.7723	0.2503	1.0000	0.4769
0.6521	0.5122	0.5877	0.1539	0.4769	1.0000

```

Note the relatively low degrees of freedom parameter obtained from the t copula calibration, indicating a significant departure from a Gaussian situation.
```

DoF % scalar degrees of freedom parameter of the optimized

```
DoF =
4.8613

\section*{Copula Simulation}

Now that the copula parameters have been estimated, simulate jointly-dependent uniform variates using the function copularnd.

Then, by extrapolating the Pareto tails and interpolating the smoothed interior, transform the uniform variates derived from copularnd to daily centered returns via the inverse CDF of each index. These simulated centered returns are consistent with those obtained from the historical dataset. The returns are assumed to be independent in time, but at any point in time possess the dependence and rank correlation induced by the given copula.

The following code segment illustrates the dependence structure by simulating centered returns using the t copula. It then plots a 2 -D scatter plot with marginal histograms for the French CAC 40 and German DAX using the Statistics Toolbox scatterhist function. The French and German indices were chosen simply because they have the highest correlation of the available data.
```

nPoints = 10000; % \# of simulated observations
s = RandStream.getGlobalStream();
reset(s)
R = zeros(nPoints, nIndices); % pre-allocate simulated returns
U = copularnd('t', rhoT, DoF, nPoints); % simulate U(0,1) from t copula
for j = 1:nIndices
R(:,j) = OBJ{j}.icdf(U(:,j));
end
h = scatterhist(R(:,2), R(:,3));
set(gcf, 'Color', [11 1 1])
set(findobj(h(1), 'Type', 'line'), 'marker', '.', 'color', 'red', 'markerSi
y1 = get(h(1), 'ylim'); y3 = get(h(3), 'ylim');
set(h(1), 'xlim', [-.1 .1], 'ylim', [-.1 .1])

```
```

set(h(2), 'xlim', [-.1 .1])
set(h(3), 'ylim', [(y3(1) + (-0.1 - y1(1))) (y3(2) + (0.1 - y1(2)))])
xlabel('France'), ylabel('Germany'), title(['t Copula (\nu = ' num2str(DoF,

```

Now simulate and plot centered returns using the Gaussian copula.
```

reset(s)
R = zeros(nPoints, nIndices); % pre-allocate simulated returns
U = copularnd('Gaussian', rhoG, nPoints); % simulate U(0,1) from Gaussian c
for j = 1:nIndices
R(:,j) = OBJ{j}.icdf(U(:,j));
end
h = scatterhist(R(:,2), R(:,3));
set(gcf, 'Color', [$$
\begin{array}{lll}{1}&{1}&{1])}\end{array}
$$)
set(findobj(h(1), 'Type', 'line'), 'marker', '.', 'color', 'red', 'markerSi
y1 = get(h(1), 'ylim'); y3 = get(h(3), 'ylim');
set(h(1), 'xlim', [-.1 .1], 'ylim', [-.1 .1])
set(h(2), 'xlim', [-.1 .1])
set(h(3), 'ylim', [(y3(1) + (-0.1 - y1(1))) (y3(2) + (0.1 - y1(2)))])
xlabel('France'), ylabel('Germany'), title('Gaussian Copula')

```

Examine these two figures. There is a strong similarity between the miniature histograms on the corresponding axes of each figure. This similarity is not coincidental.

Both copulas simulate uniform random variables, which are then transformed to daily centered returns by the inverse CDF of the piecewise distribution of each index. Therefore, the simulated returns of any given index are identically distributed regardless of the copula.

However, the scatter graph of each figure indicates the dependence structure associated with the given copula, and in contrast to the univariate margins shown in the histograms, the scatter graphs are distinct.

Once again, the copula defines a dependence structure regardless of its margins, and therefore offers many features not limited to calibration alone.

For reference, simulate and plot centered returns using the Gaussian distribution, which underlies the traditional Brownian motion model.
```

reset(s)
R = mvnrnd(zeros(1,nIndices), cov(returns), nPoints);
h = scatterhist(R(:,2), R(:,3));
set(gcf, 'Color', [$$
\begin{array}{lll}{1}&{1}&{1}\end{array}
$$])
set(findobj(h(1), 'Type', 'line'), 'marker', '.', 'color', 'red', 'markerSi
y1 = get(h(1), 'ylim'); y3 = get(h(3), 'ylim');
set(h(1), 'xlim', [-.1 .1], 'ylim', [-.1 .1])
set(h(2), 'xlim', [-.1 .1])
set(h(3), 'ylim', [(y3(1) + (-0.1 - y1(1))) (y3(2) + (0.1 - y1(2)))])
xlabel('France'), ylabel('Germany'), title('Gaussian Distribution')

```

\section*{American Option Pricing Using the Longstaff \& Schwartz Approach}

Now that the copulas have been calibrated, compare the prices of at-the-money American basket options derived from various approaches. To simply the analysis, assume that:
- All indices begin at 100 .
- The portfolio holds a single unit, or share, of each index such that the value of the portfolio at any time is the sum of the values of the individual indices.
- The option expires in 3 months.
- The information derived from the daily data is annualized.
- Each calendar year is composed of 252 trading days.
- Index levels are simulated daily.
- The option may be exercised at the end of every trading day and approximates the American option as a Bermudan option.

Now compute the parameters common to all simulation methods:
```

dt = 1 252; % time increment = 1 day = 1/252 years
yields = Data(:,end); % daily effective yields
yields = 360 * log(1 + yields); % continuously-compounded, annualized
r = mean(yields); % historical 3M Euribor average
X = repmat(100, nIndices, 1); % initial state vector
strike = sum(X); % initialize an at-the-money basket
nTrials = 100; % \# of independent trials
nPeriods = 63; % \# of simulation periods: 63/252 = 0.25 years = 3 months

```

Now create two separable multi-dimensional market models in which the riskless return and volatility exposure matrices are both diagonal.

While both are diagonal GBM models with identical risk-neutral returns, the first is driven by a correlated Brownian motion and explicitly specifies the sample linear correlation matrix of centered returns. This correlated Brownian motion process is then weighted by a diagonal matrix of annualized index volatilities or standard deviations.

As an alternative, the same model could be driven by an uncorrelated Brownian motion (standard Brownian motion) by specifying correlation as an identity matrix, or by simply accepting the default value. In this case, the exposure matrix sigma is specified as the lower Cholesky factor of the index return covariance matrix. Because the copula-based approaches simulate dependent random numbers, the diagonal exposure form is chosen for consistency. For further details, see Alternatives for Inducing Dependence \& Correlation.
```

sigma = std(returns) * sqrt(252); % annualized volatility
correlation = corrcoef(returns); % correlated Gaussian disturbanc
GBM1 = gbm(diag(r(ones(1,nIndices))), diag(sigma), 'StartState', X,
'Correlation' , correlation);

```

Now create the second model driven by the Brownian copula with an identity matrix sigma.

GBM2 = gbm(diag(r(ones(1,nIndices))), eye(nIndices), 'StartState', X);
The newly created model may seem unusual, but it highlights the flexibility of the SDE architecture.

When working with copulas, it is often convenient to allow the random number generator function \(\mathrm{Z}(\mathrm{t}, \mathrm{X})\) to induce dependence (of which the traditional notion of linear correlation is a special case) with the copula, and to induce magnitude or scale of variation (similar to volatility or standard deviation) with the semi-parametric CDF and inverse CDF transforms. Since the CDF and inverse CDF transforms of each index inherit the characteristics of historical returns, this also explains why the returns are now centered.

In the following sections, statements like:
```

z = Example_CopulaRNG(returns * sqrt(252), nPeriods, 'Gaussian');
or
z = Example_CopulaRNG(returns * sqrt(252), nPeriods, 't');

```
fit the Gaussian and \(t\) copula dependence structures, respectively, and the semi-parametric margins to the centered returns scaled by the square root of the number of trading days per year (252). This scaling does not annualize the daily centered returns. Instead, it scales them such that the volatility remains consistent with the diagonal annualized exposure matrix sigma of the traditional Brownian motion model (GBM1) created previously.

In this example, you also specify an end-of-period processing function that accepts time followed by state ( \(\mathrm{t}, \mathrm{X}\) ), and records the sample times and value of the portfolio as the single-unit weighted average of all indices. This function also shares this information with other functions designed to price American options with a constant riskless rate using the least squares regression approach of Longstaff \& Schwartz.
```

f = Example_LongstaffSchwartz(nPeriods, nTrials)
f =

```

LongstaffSchwartz: @Example_LongstaffSchwartz/saveBasketPrices CallPrice: @Example_LongstaffSchwartz/getCallPrice PutPrice: @Example_LongstaffSchwartz/getPutPrice Prices: @Example_LongstaffSchwartz/getBasketPrices

Now simulate independent trials of equity index prices over 3 calendar months using the default simByEuler method. No outputs are requested from the simulation methods; in fact the simulated prices of the individual indices which comprise the basket are unnecessary. Call option prices are reported for convenience:
```

reset(s)

```
```

GBM1.simByEuler(nPeriods, 'nTrials' , nTrials, 'DeltaTime', dt, ...

```
    'Processes', f.LongstaffSchwartz);
BrownianMotionCallPrice = f.CallPrice(strike, r);
BrownianMotionPutPrice = f.PutPrice (strike, r);
reset(s)
z = Example_CopulaRNG(returns * sqrt(252), nPeriods, 'Gaussian');
f = Example_LongstaffSchwartz(nPeriods, nTrials);
GBM2.simByEuler(nPeriods, 'nTrials' , nTrials, 'DeltaTime', dt, ...
    'Processes', f.LongstaffSchwartz, 'Z', z);
GaussianCopulaCallPrice = f.CallPrice(strike, r);
GaussianCopulaPutPrice = f.PutPrice (strike, r);

Now repeat the copula simulation with the t copula dependence structure. You use the same model object for both copulas; only the random number generator and option pricing functions need to be re-initialized.
```

reset(s)
z = Example_CopulaRNG(returns * sqrt(252), nPeriods, 't');
f = Example_LongstaffSchwartz(nPeriods, nTrials);
GBM2.simByEuler(nPeriods, 'nTrials' , nTrials, 'DeltaTime', dt, ...
'Processes', f.LongstaffSchwartz, 'Z', z);
tCopulaCallPrice = f.CallPrice(strike, r);
tCopulaPutPrice = f.PutPrice (strike, r);

```

Finally, compare the American put and call option prices obtained from all models.
```

disp(' ')
fprintf(' \# of Monte Carlo Trials: %8d\n' , nTrials)
fprintf(' \# of Time Periods/Trial: %8d\n\n' , nPeriods)
fprintf(' Brownian Motion American Call Basket Price: %8.4f\n' , BrownianM
fprintf(' Brownian Motion American Put Basket Price: %8.4f\n\n', BrownianM
fprintf(' Gaussian Copula American Call Basket Price: %8.4f\n' , GaussianC
fprintf(' Gaussian Copula American Put Basket Price: %8.4f\n\n', GaussianC
fprintf(' t Copula American Call Basket Price: %8.4f\n' , tCopulaCa
fprintf(' t Copula American Put Basket Price: %8.4f\n' , tCopulaPu

of Monte Carlo Trials: 100

of Time Periods/Trial: 63

Brownian Motion American Call Basket Price: 25.9456
Brownian Motion American Put Basket Price: 16.4132
Gaussian Copula American Call Basket Price: 24.5711
Gaussian Copula American Put Basket Price: 17.4229
t Copula American Call Basket Price: 22.6220
t Copula American Put Basket Price: 20.9983

```

This analysis represents only a small-scale simulation. If the simulation is repeated with 100,000 trials, the following results are obtained:
\[
\text { \# of Monte Carlo Trials: } 100000
\]
\# of Time Periods/Trial: 63
\begin{tabular}{lll} 
Brownian Motion American Call Basket Price: & 20.2214 \\
Brownian Motion American Put Basket Price: & 16.5355
\end{tabular}

Gaussian Copula American Call Basket Price: 20.6097
Gaussian Copula American Put Basket Price: 16.5539
t Copula American Call Basket Price: 21.1273
t Copula American Put Basket Price: 16.6873

Interestingly, the results agree closely. Put option prices obtained from copulas exceed those of Brownian motion by less than \(1 \%\).

\section*{A Note on Volatility and Interest Rate Scaling}

The same option prices could also be obtained by working with unannualized (in this case, daily) centered returns and riskless rates, where the time increment \(d t=1\) day rather than \(1 / 252\) years. In other words, portfolio prices would still be simulated every trading day; the data is simply scaled differently.

Although not executed, and by first resetting the random stream to its initial internal state, the following code segments work with daily centered returns and riskless rates and produce the same option prices.

\section*{Gaussian Distribution/Brownian Motion \& Daily Data:}
```

reset(s)

```
f = Example_LongstaffSchwartz(nPeriods, nTrials);
GBM1 = gbm(diag(r(ones(1,nIndices))/252), diag(std(returns)), 'StartState',
    'Correlation', correlation);
GBM1.simByEuler(nPeriods, 'nTrials' , nTrials, 'DeltaTime', 1, ...
                        'Processes', f.LongstaffSchwartz);
BrownianMotionCallPrice = f.CallPrice(strike, r/252)
BrownianMotionPutPrice = f.PutPrice (strike, r/252)

\section*{Gaussian Copula \& Daily Data:}
```

reset(s)

```
z = Example_CopulaRNG(returns, nPeriods, 'Gaussian');
f = Example_LongstaffSchwartz(nPeriods, nTrials);
GBM2 \(=\operatorname{gbm}(\operatorname{diag}(r(\) ones \((1, n I n d i c e s)) / 252), \quad\) eye(nIndices), 'StartState', X)
GBM2.simByEuler(nPeriods, 'nTrials' , nTrials, 'DeltaTime', 1, ...
    'Processes', f.LongstaffSchwartz , 'Z', z);
```

GaussianCopulaCallPrice = f.CallPrice(strike, r/252)
GaussianCopulaPutPrice = f.PutPrice (strike, r/252)
t Copula \& Daily Data:
reset(s)
z = Example_CopulaRNG(returns, nPeriods, 't');
f = Example_LongstaffSchwartz(nPeriods, nTrials);
GBM2.simByEuler(nPeriods, 'nTrials' , nTrials, 'DeltaTime', 1, ...
'Processes', f.LongstaffSchwartz , 'Z', z);
tCopulaCallPrice = f.CallPrice(strike, r/252)
tCopulaPutPrice = f.PutPrice (strike, r/252)

```

Functions - Alphabetical
List

\section*{abs2active}

\title{
Purpose Convert constraints from absolute to active format
}

Syntax ActiveConSet = abs2active (AbsConSet, Index)
Description
ActiveConSet = abs2active(AbsConSet, Index) transforms a constraint matrix to an equivalent matrix expressed in active weight format (relative to the index).

\section*{Input \\ Arguments}

\section*{Output Arguments}

\section*{Definitions}
\[
A w_{\text {absolute }}=A\left(w_{\text {active }}+w_{\text {index }}\right) \leq b_{\text {absolute }} .
\]

Therefore
\[
A w_{\text {active }} \leq b_{\text {absolute }}-A w_{\text {index }}=b_{\text {active }}
\]

The initial constraint matrix consists of NCONSTRAINTS portfolio linear inequality constraints expressed in absolute weight format. The index portfolio vector contains NASSETS assets.

\section*{Examples}

Set up constraints for a portfolio optimization for portfolio wo with constraints in the form \(A^{*} w<=b\), where \(w\) is absolute portfolio weights. (Absolute weights do not depend on the tracking portfolio.) Use abs2active to convert constraints in terms of absolute weights into constraints in terms of active portfolio weights, defined relative to the tracking portfolio w0. Assume three assets with the following mean and covariance of asset returns:
```

m = [0.14; 0.10; 0.05];
C = [0.29^2 0.4*0.29*0.17 0.1*0.29*0.08; 0.4*0.29*0.17 0.17^2 0.3*0.17*0.08;...
0.1*0.29*0.08 0.3*0.17*0.08 0.08^2];

```

Absolute portfolio constraints are the typical ones (weights sum to 1 and fall from 0 through 1 ), create the \(A\) and \(b\) matrices using portcons:
```

AbsCons = portcons('PortValue',1,3,'AssetLims', [0; 0; 0], [1; 1; 1;]);

```

The efficient frontier is:
```

portopt(m, C, [], [], AbsCons);

```

The tracking portfolio wo is:
```

wO = [0.1; 0.55; 0.35];

```

Use abs2active to compute the constraints for active portfolio weights:
```

ActCons = abs2active(AbsCons, wO)

```

This returns:

ActCons =
\begin{tabular}{rrrr}
1.0000 & 1.0000 & 1.0000 & 0 \\
-1.0000 & -1.0000 & -1.0000 & 0 \\
1.0000 & 0 & 0 & 0.9000 \\
0 & 1.0000 & 0 & 0.4500 \\
0 & 0 & 1.0000 & 0.6500 \\
-1.0000 & 0 & 0 & 0.1000 \\
0 & -1.0000 & 0 & 0.5500 \\
0 & 0 & -1.0000 & 0.3500
\end{tabular}

The efficient frontier demonstrates expected returns and risk relative to the tracking portfolio wo:
portopt(m, C, [], [], ActCons);
This returns:


See Also
active2abs | pcalims | pcgcomp | pcglims | pcpval | portcons

\section*{AbstractPortfolio}

\section*{Purpose Abstract portfolio object for portfolio optimization and analysis}

Description The mean-variance portfolio object (see Portfolio), the conditional value-at-risk portfolio object (see PortfolioCVaR), and the mean-absolute deviation object (PortfolioMAD ) derive from the abstract class AbstractPortfolio.

Construction There is no constructor for the abstract class. To construct a mean-variance portfolio object, see the Portfolio class, to construct a conditional value-at-risk (CVaR) portfolio object, see PortfolioCVaR, and to construct a mean-absolute deviation (MAD) portfolio object, see the PortfolioMAD class.

\section*{Properties}

\section*{Name}

Name for instance of the Portfolio or PortfolioCVaR object ([ ] or [string]).

Attributes:
\begin{tabular}{ll} 
SetAccess & public \\
GetAccess & public
\end{tabular}

\section*{NumAssets}

Number of assets in the universe ([ ] or [integer scalar]).
Attributes:
\begin{tabular}{ll} 
SetAccess & public \\
GetAccess & public
\end{tabular}

\section*{AssetList}

Names or symbols of assets in the universe ([ ] or [ vector cell of strings]).
Attributes:

\section*{AbstractPortfolio}
```

SetAccess
public
GetAccess
public

```

\section*{InitPort}

Initial portfolio ([ ] or vector).
Attributes:
\begin{tabular}{ll} 
SetAccess & public \\
GetAccess & public
\end{tabular}

\section*{Alnequality}

Linear inequality constraint matrix ([ ] or [matrix ]).
Attributes:
\begin{tabular}{ll} 
SetAccess & public \\
GetAccess & public
\end{tabular}

\section*{blnequality}

Linear inequality constraint vector ([ ] or [vector ]).
Attributes:

SetAccess public
GetAccess public

\section*{AEquality}

Linear equality constraint matrix ([ ] or [matrix]).
Attributes:

\section*{AbstractPortfolio}
\begin{tabular}{ll} 
SetAccess & public \\
GetAccess & public
\end{tabular}

\section*{bEquality}

Linear equality constraint vector ([] or [vector ]).
Attributes:
SetAccess public
GetAccess public

\section*{LowerBound}

Lower-bound constraint ([] or [vector]).
Attributes:
\begin{tabular}{ll} 
SetAccess & public \\
GetAccess & public
\end{tabular}

\section*{UpperBound}

Upper-bound constraint ([] or [vector]).
Attributes:
SetAccess public
GetAccess public

\section*{LowerBudget}

Lower-bound budget constraint ([ ] or [scalar]).
Attributes:

SetAccess public
GetAccess public

\section*{UpperBudget}

Upper-bound budget constraint ([ ] or [scalar ]).
Attributes:
\begin{tabular}{ll} 
SetAccess & public \\
GetAccess & public
\end{tabular}

\section*{GroupMatrix}

Group membership matrix ([] or [matrix]).
Attributes:

SetAccess public
GetAccess public

\section*{LowerGroup}

Lower-bound group constraint ([] or [vector]).
Attributes:
SetAccess public
GetAccess public

\section*{UpperGroup}

Upper-bound group constraint ([] or [vector ]).
Attributes:

SetAccess public
GetAccess public

\section*{GroupA}

Group A weights to be bounded by weights in group B ([] or [matrix]).

\section*{AbstractPortfolio}
```

Attributes:
SetAccess public
GetAccess public

```

\section*{GroupB}

Group B weights ([ ] or [matrix ]).
Attributes:
SetAccess public
GetAccess public

\section*{LowerRatio}

Minimum ratio of allocations between groups A and B ([ ] or [vector]).

Attributes:
SetAccess public

GetAccess public

\section*{UpperRatio}

Maximum ratio of allocations between groups A and B ([] or [vector]).

Attributes:
\begin{tabular}{ll} 
SetAccess & public \\
GetAccess & public
\end{tabular}

The AbstractPortfolio class has three subclasses, Portfolio, PortfolioCVaR, and PortfolioMAD that inherit properties and methods from theAbstractPortfolio class.

\section*{AbstractPortfolio}

\section*{Attributes}
\begin{tabular}{ll} 
Copy & Value. To learn how value classes affect copy operations, see Copying \\
Semantics & Objects in the MATLAB documentation.
\end{tabular}

Alternatives You can perform portfolio optimization using a collection of special-purpose functions in Financial Toolbox. For more information, see "Portfolio Optimization Functions" on page 3-3.

\author{
See Also Portfolio | PortfolioCVaR | PortfolioMAD \\ How To \\ - Class Attributes \\ - Property Attributes
}

\section*{accrfrac}

Purpose Fraction of coupon period before settlement
```

Syntax Fraction = accrfrac(Settle, Maturity)
Fraction = accrfrac(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate)

```

\section*{Description}

\section*{Input Arguments}

Fraction = accrfrac(Settle, Maturity) returns the fraction of the coupon period before settlement.

Fraction = accrfrac(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate) returns the fraction of the coupon period before settlement with optional inputs.

Use accrfrac for computing accrued interest. accrfrac calculates accrued interest for bonds with regular or odd first or last coupon periods.

\section*{Settle}

Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity.

\section*{Maturity}

Maturity date. A vector of serial date numbers or date strings.

\section*{Period}

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2, \(3,4,6\), and 12.

Default: 2

\section*{Basis}

Day-count basis of the instrument. A vector of integers.
- 0 = actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0

\section*{EndMonthRule}

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month. \(1=\) set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

Default: 1

\section*{IssueDate}

Issue date for a bond.

\section*{FirstCouponDate}

\section*{accrfrac}

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

\section*{LastCouponDate}

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

\section*{StartDate}

Future implementation.

\section*{Output \\ Arguments}

\section*{Examples}

\section*{Fraction}

NBONDS-by-1 vector of accrued interest fractions.

\section*{Find Accrued Interest for a Bond}

This example shows how to find the accrued interest for given bond data.
```

Settle = '14-Mar-1997';
Maturity = ['30-Nov-2000'
'31-Dec-2000'
'31-Jan-2001'];
Period = 2;
Basis = 0;
EndMonthRule = 1;

```

Fraction = accrfrac(Settle, Maturity, Period, Basis,... EndMonthRule)

Fraction =
0.5714
0.4033
0.2320

See Also cfdates | cfamounts | cpncount | cpndaten | cpndatenq | cpndatep | cpndatepq | cpndaysn | cpndaysp | cpnpersz

Purpose Accrued interest of security with periodic interest payments
```

Syntax AccruInterest = acrubond(IssueDate, Settle, FirstCouponDate, Face,
CouponRate, Period, Basis)

```

\section*{Arguments}

IssueDate Enter as serial date number or date string.
Settle Enter as serial date number or date string.
FirstCouponDate Enter as serial date number or date string.
Face Redemption (par, face) value.
CouponRate Enter as decimal fraction.
Period
(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual \(/ 365\)
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
```

Description AccruInterest = acrubond(IssueDate, Settle, FirstCouponDate, Face, CouponRate, Period, Basis) returns the accrued interest for a security with periodic interest payments. This function computes the accrued interest for securities with standard, short, and long first coupon periods.

```

Note cfamounts or accrfrac is recommended when calculating accrued interest beyond the first period.

\section*{Examples Find Accrued Interest of a Bond with Periodic Interest Payments}

This example shows how to find the accrued interest for a bond with semiannual interest payments.
```

AccruInterest = acrubond('31-jan-1983', '1-mar-1993', ...
'31-jul-1983', 100, 0.1, 2, 0)

```

\section*{AccruInterest \(=\)}
0.8011

See Also accrfrac | acrudisc | bndprice | bndyield | cfamounts | datenum

Purpose Accrued interest of discount security paying at maturity
```

Syntax AccruInterest = acrudisc(Settle, Maturity, Face, Discount, Period,
Basis)

```

\section*{Arguments}
\begin{tabular}{ll} 
Settle & \begin{tabular}{l} 
Enter as serial date number or date string. \\
Settle must be earlier than Maturity.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
Enter as serial date number or date string.
\end{tabular} \\
Face & \begin{tabular}{l} 
Redemption (par, face) value.
\end{tabular} \\
Discount & \begin{tabular}{l} 
Discount rate of the security. Enter as decimal \\
fraction.
\end{tabular} \\
Period & \begin{tabular}{l} 
(Optional) Coupons per year of the bond. A vector \\
of integers. Allowed values are 0, 1, 2 (default), 3,
\end{tabular} \\
4, 6, and 12.
\end{tabular}\(\quad\)\begin{tabular}{l} 
(Optional) Day-count basis of the instrument. A \\
Bector of integers.
\end{tabular}
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- \(12=\) actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

\section*{Description}

\section*{Examples}

AccruInterest = acrudisc(Settle, Maturity, Face, Discount, Period, Basis) returns the accrued interest of a discount security paid at maturity.

Find Accrued Interest of a Discount Security Paid at Maturity
This example shows how to find the accrued interest of a discount security paid at maturity.
\(\begin{aligned} \text { AccruInterest }= & \text { acrudisc('05/01/1992', } \quad \text { '07/15/1992', } \ldots \\ & 100,0.1,2,0)\end{aligned}\)

\section*{AccruInterest =}
2.0604

\section*{References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition. Formula D.}

See Also acrubond | prdisc | prmat | ylddisc | yldmat

\section*{active2abs}

Purpose Convert constraints from active to absolute format
```

Syntax AbsConSet = active2abs(ActiveConSet, Index)

```

\section*{Arguments}

ActiveConSet Portfolio linear inequality constraint matrix expressed in active weight format. ActiveConSet is formatted as [A b] such that \(A^{*} w<=b\), where \(A\) is a number of constraints (NCONSTRAINTS) by number of assets (NASSETS) weight coefficient matrix, and b and \(w\) are column vectors of length NASSETS. The value w represents a vector of active asset weights (relative to the index portfolio) whose elements sum to 0 .

See the output ConSet from portcons for additional details about constraint matrices.

Index NASSETS-by-1 vector of index portfolio weights. The sum of the index weights must equal the total portfolio value (for example, a standard portfolio optimization imposes a sum-to-one budget constraint).

\section*{Description}

AbsConSet = active2abs(ActiveConSet, Index) transforms a constraint matrix to an equivalent matrix expressed in absolute weight format. The transformation equation is
\[
A w_{\text {active }}=A\left(w_{\text {absolute }}-w_{\text {index }}\right) \leq b_{\text {active }} .
\]

Therefore
\[
A w_{\text {absolute }} \leq b_{\text {active }}+A w_{\text {index }}=b_{\text {absolute }} .
\]

The initial constraint matrix consists of NCONSTRAINTS portfolio linear inequality constraints expressed in active weight format (relative to the index portfolio). The index portfolio vector contains NASSETS assets.
AbsConSet is the transformed portfolio linear inequality constraint matrix expressed in absolute weight format, also of the form [A b] such that \(A^{*} w<=b\). The value \(w\) represents a vector of active asset weights (relative to the index portfolio) whose elements sum to the total portfolio value.

\section*{See Also \\ abs2active | pcalims | pcgcomp | pcglims | pcpval | portcons}

\section*{Portfolio.addEquality}

Superclasses AbstractPortfolio

Purpose

Syntax
Description

Tips

Input
Arguments

Add linear equality constraints for portfolio weights to existing constraints
obj = addEquality(obj,AEquality, bEquality)
obj = addEquality(obj,AEquality,bEquality) adds linear equality constraints for portfolio weights to existing constraints.

Given a linear equality constraint matrix AEquality and vector bEquality, every weight in a portfolio Port must satisfy the following:

AEquality * Port = bEquality
This method "stacks" additional linear equality constraints onto any existing linear equality constraints that already exist in the input Portfolio object. If no constraints already exist, this method is the same as setEquality.
- Use dot notation to add the linear equality constraints for portfolio weights.
obj = obj.addEquality (AEquality, bEquality)
- To remove linear equality constraints from a Portfolio object.
obj = obj.setEquality([ ], [ ])
obj
Portfolio object [Portfolio].

\section*{AEquality}

Matrix to form linear equality constraints [matrix].

\section*{bEquality}

Vector to form linear equality constraints [vector].

Note It is an error if AEquality is empty and bEquality is non-empty or if AEquality is non-empty and bEquality is empty.

\section*{Output obi \\ Arguments \\ Updated Portfolio object [Portfolio].}

\section*{Attributes}

\section*{Examples Add a Linear Equality Constraint}

Use the addEquality method to create linear equality constraints. Add another linear equality constraint to ensure that the last three assets constitute \(50 \%\) of a portfolio.
```

p = Portfolio;
A = [1 1 1 0 0]; % First equality constraint
b = 0.5;
p = p.setEquality(A, b);
A = [0 0 1 1 1]; % Second equality constraint
b = 0.5;
p = p.addEquality(A, b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);

```

\section*{Portfolio.addEquality}
5
\begin{tabular}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1
\end{tabular}
0.5000
0.5000
See Also setEquality | Portfolio
Related - "Working with Linear Equality Constraints" on page 4-73 Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 4-8
Superclasses ..... AbstractPortfolio
PurposeAdd linear equality constraints for portfolio weights to existingconstraints in PortfolioCVaR object
Syntax obj = addEquality(obj,AEquality,bEquality)
Description obj = addEquality(obj,AEquality, bEquality) adds linear equalityconstraints for portfolio weights to existing constraints.
Given a linear equality constraint matrix AEquality and vector bEquality, every weight in a portfolio Port must satisfy the following:
```

AEquality * Port = bEquality

```
This method "stacks" additional linear equality constraints onto any existing linear equality constraints that already exist in the input PortfolioCVaR object. If no constraints already exist, this method is the same as setEquality.
Tips
- Use dot notation to add the linear equality constraints for portfolio weights.
obj = obj.addEquality(AEquality, bEquality)
- To remove linear equality constraints from a CVaR portfolio object.
```

obj = obj.setEquality([], [])

```

\section*{Input \\ obj}
Arguments
CVaR portfolio object [PortfolioCVaR].

\section*{AEquality}
Matrix to form linear equality constraints [matrix].

\section*{bEquality}
Vector to form linear equality constraints [vector].

\section*{PortfolioCVaR.addEquality}

Note An error results if AEquality is empty and bEquality is nonempty or if AEquality is nonempty and bEquality is empty.

\section*{Output}

Arguments

\section*{Attributes}

\section*{Examples}

\section*{Add a Linear Equality Constraint}

Use the addEquality method to create linear equality constraints. Add another linear equality constraint to ensure that the last three assets constitute \(50 \%\) of a portfolio.
```

p = PortfolioCVaR;
A = [1 1 1 0 0]; % First equality constraint
b = 0.5;
p = p.setEquality(A, b);
A = [0 0 1 1 1 1]; % Second equality constraint
b = 0.5;
p = p.addEquality(A, b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);

```
\begin{tabular}{llllll}
5 & & & \\
& 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0.5000 & & & \\
0.5000 & &
\end{tabular}

See Also setEquality | PortfolioCVaR
Related - "Working with Linear Equality Constraints" on page 5-75
Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 5-8

\section*{PortfolioMAD.addEquality}

Superclasses
Purpose

Syntax
Description

Tips

Input
Arguments

AbstractPortfolio
Add linear equality constraints for portfolio weights to existing constraints in PortfolioMAD object
obj = addEquality(obj,AEquality, bEquality)
obj = addEquality(obj,AEquality,bEquality) adds linear equality constraints for portfolio weights to existing constraints.

Given a linear equality constraint matrix AEquality and vector bEquality, every weight in a portfolio Port must satisfy the following:

AEquality * Port = bEquality
This method "stacks" additional linear equality constraints onto any existing linear equality constraints that already exist in the input PortfolioMAD object. If no constraints already exist, this method is the same as setEquality.
- Use dot notation to add the linear equality constraints for portfolio weights.
```

obj = obj.addEquality(AEquality, bEquality)

```
- To remove linear equality constraints from a MAD portfolio object.
```

obj = obj.setEquality([], [])

```
obj
MAD portfolio object [PortfolioMAD].

\section*{AEquality}

Matrix to form linear equality constraints [matrix].

\section*{bEquality}

Vector to form linear equality constraints [vector].

Note An error results if AEquality is empty and bEquality is nonempty or if AEquality is nonempty and bEquality is empty.

\section*{Output obi}

Arguments
Updated MAD portfolio object [PortfolioMAD].

\section*{Attributes}

\section*{Examples Add a Linear Equality Constraint}

Use the addEquality method to create linear equality constraints. Add another linear equality constraint to ensure that the last three assets constitute \(50 \%\) of a portfolio.
```

p = PortfolioMAD;
A = [1 1 1 0 0]; % First equality constraint
b = 0.5;
p = p.setEquality(A, b);
A = [0 0 0 1 1 1]; % Second equality constraint
b = 0.5;
p = p.addEquality(A, b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);

```

\section*{PortfolioMAD.addEquality}
5
\begin{tabular}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1
\end{tabular}
0.5000
0.5000

\section*{See Also}
setEquality | PortfolioMAD
\begin{tabular}{ll} 
Related & - "Setting Linear Inequality Constraints Using the setInequality and \\
Examples & addInequality Methods" on page 6-78 \\
Concepts & - "Portfolio Set for Portfolio Optimization" on page 6-8
\end{tabular}

\section*{Portfolio.addGroupRatio}

\section*{Superclasses AbstractPortfolio \\ Purpose \\ Syntax \\ Description \\ Add group ratio constraints for portfolio weights to existing group ratio constraints \\ obj = addGroupRatio(obj,GroupA, GroupB, LowerRatio) \\ obj = addGroupRatio(obj,GroupA, GroupB, LowerRatio, UpperRatio) \\ obj = addGroupRatio(obj,GroupA, GroupB, LowerRatio) adds group ratio constraints for the portfolio weights to existing group ratio constraints with just a lower bound on the ratio between groups. \\ obj = addGroupRatio(obj,GroupA, GroupB, LowerRatio, UpperRatio) adds group ratio constraints for the portfolio weights to existing group ratio constraints with an additional option for UpperRatio. \\ Given base and comparison group matrices GroupA and GroupB and, either LowerRatio, or UpperRatio bounds, group ratio constraints require any portfolio in Port to satisfy the following: \\ ```
(GroupB * Port) .* LowerRatio <= GroupA * Port <= (GroupB * Port) .* UpperRatio
```}

\section*{Caution}

This collection of constraints usually requires that portfolio weights be nonnegative and that the products GroupA * Port and GroupB * Port are always nonnegative. Although negative portfolio weights and non-Boolean group ratio matrices are supported, use with caution.

Tips
- Use dot notation to add group ratio constraints for the portfolio weights to existing group ratio constraints.
```

obj = obj.addGroupRatio(GroupA, GroupB, LowerRatio, UpperRatio)

```

\section*{Portfolio.addGroupRatio}
- To remove group ratio constraints from a Portfolio object, enter empty arrays for the corresponding arrays.

Input
Arguments

\section*{obj}

Portfolio object [Portfolio].

\section*{GroupA}

Matrix that forms base groups for comparison [matrix].

\section*{GroupB}

Matrix that forms comparison groups [matrix].

Note The group matrices GroupA and GroupB are usually indicators of membership in groups, which means that their elements are usually either 0 or 1 . Because of this interpretation, the GroupA and GroupB matrices can be logical or numerical arrays.

\section*{LowerGroup}

Lower-bound for ratio of GroupB groups to GroupA groups [vector].

Note If input is scalar, LowerGroup undergoes scalar expansion to be conformable with the group matrices.

\section*{UpperRatio}
(Optional) Upper-bound for ratio of GroupB groups to GroupA groups [vector].

\section*{Portfolio.addGroupRatio}

Note If input is scalar, UpperRatio undergoes scalar expansion to be conformable with the group matrices.

\section*{Output obi \\ Arguments \\ Updated Portfolio object [Portfolio].}

\section*{Attributes}

\section*{Examples Add Group Ratio Constraints}

Set a group ratio constraint to ensure that the weight in financial assets does not exceed \(50 \%\) of the weight in nonfinancial assets. Then add another group ratio constraint to ensure that the weight in financial assets constitute at least \(20 \%\) of the weight in nonfinancial assets of the portfolio.
```

p = Portfolio;
GA = [ true true true false false false ]; % financial companies
GB = [ false false false true true true ]; % nonfinancial companies
p = p.setGroupRatio(GA, GB, [], 0.5);
GA = [ true false true false true false ]; % odd-numbered companies
GB = [ false false false true true true ]; % nonfinancial companies
p = p.addGroupRatio(GA, GB, 0.2);
disp(p.NumAssets);
disp(p.GroupA);

```

\section*{Portfolio.addGroupRatio}
```

disp(p.GroupB);
disp(p.LowerRatio);
disp(p.UpperRatio);

```

6
\begin{tabular}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{tabular}
```

        -Inf
    0.2000
0.5000
Inf

```

See Also
Related Examples

\section*{Concepts}
setGroupRatio | Portfolio
- "Working with Group Ratio Constraints" on page 4-69
- "Portfolio Set for Portfolio Optimization" on page 4-8

\section*{PortfolioCVaR.addGroupRatio}

\section*{Superclasses AbstractPortfolio}

Purpose

Syntax

\section*{Description}

Add group ratio constraints for portfolio weights to existing group ratio constraints for PortfolioCVaR object
obj = addGroupRatio(obj,GroupA, GroupB, LowerRatio)
obj = addGroupRatio(obj,GroupA, GroupB, LowerRatio, UpperRatio)
obj \(=\) addGroupRatio(obj,GroupA,GroupB, LowerRatio) adds group ratio constraints for the portfolio weights to existing group ratio constraints with just a lower bound on the ratio between groups.
obj = addGroupRatio(obj,GroupA, GroupB, LowerRatio, UpperRatio) adds group ratio constraints for the portfolio weights to existing group ratio constraints with an additional option for UpperRatio.

Given base and comparison group matrices GroupA and GroupB and, either LowerRatio, or UpperRatio bounds, group ratio constraints require any portfolio in Port to satisfy the following:
```

(GroupB * Port) .* LowerRatio <= GroupA * Port <= (GroupB * Port) .* UpperRatio

```

\section*{Caution}

This collection of constraints usually requires that portfolio weights be nonnegative and that the products GroupA * Port and GroupB * Port are always nonnegative. Although negative portfolio weights and non-Boolean group ratio matrices are supported, use with caution.

\section*{Tips}
- Use dot notation to add group ratio constraints for the portfolio weights to existing group ratio constraints.
```

obj = obj.addGroupRatio(GroupA, GroupB, LowerRatio, UpperRatio)

```

\section*{PortfolioCVaR.addGroupRatio}
- To remove group ratio constraints from a CVaR portfolio object, enter empty arrays for the corresponding arrays.

\section*{Input}

Arguments
obj
CVaR portfolio object [PortfolioCVaR].

\section*{GroupA}

Matrix that forms base groups for comparison [matrix].

\section*{GroupB}

Matrix that forms comparison groups [matrix].

Note The group matrices GroupA and GroupB often indicate membership in groups, which means that their elements are usually either 0 or 1 . Because of this interpretation, the GroupA and GroupB matrices can be logical or numerical arrays.

\section*{LowerGroup}

Lower bound for ratio of GroupB groups to GroupA groups [vector].

Note If input is scalar, LowerGroup undergoes scalar expansion to conform with the group matrices.

\section*{UpperRatio}
(Optional) Upper bound for ratio of GroupB groups to GroupA groups [vector].

Note If input is scalar, UpperRatio undergoes scalar expansion to conform with the group matrices.

\section*{PortfolioCVaR.addGroupRatio}

\section*{Output obj \\ Arguments}

\section*{Attributes}

\section*{Examples Add Group Ratio Constraints}

Set a group ratio constraint to ensure that the weight in financial assets does not exceed \(50 \%\) of the weight in nonfinancial assets. Then add another group ratio constraint to ensure that the weight in financial assets constitute at least \(20 \%\) of the weight in nonfinancial assets of the portfolio.
```

p = PortfolioCVaR;
GA = [ true true true false false false ]; % financial companies
GB = [ false false false true true true ]; % nonfinancial companies
p = p.setGroupRatio(GA, GB, [], 0.5);
GA = [ true false true false true false ]; % odd-numbered companies
GB = [ false false false true true true ]; % nonfinancial companies
p = p.addGroupRatio(GA, GB, 0.2);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.LowerRatio);
disp(p.UpperRatio);

```

\section*{PortfolioCVaR.addGroupRatio}
\begin{tabular}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
- Inf & & & & & \\
0.2000 & & & & \\
0.5000 & & & & \\
Inf
\end{tabular}
See Also setGroupRatio | PortfolioCVaR
Related Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 5-8

\section*{PortfolioMAD.addGroupRatio}

\section*{Superclasses AbstractPortfolio}

Purpose

Syntax

\section*{Description}

Add group ratio constraints for portfolio weights to existing group ratio constraints for PortfolioMAD object
obj = addGroupRatio(obj,GroupA, GroupB, LowerRatio)
obj = addGroupRatio(obj,GroupA, GroupB, LowerRatio, UpperRatio)
obj \(=\) addGroupRatio(obj,GroupA, GroupB, LowerRatio) adds group ratio constraints for the portfolio weights to existing group ratio constraints with just a lower bound on the ratio between groups.
obj = addGroupRatio(obj,GroupA, GroupB, LowerRatio, UpperRatio) adds group ratio constraints for the portfolio weights to existing group ratio constraints with an additional option for UpperRatio.

Given base and comparison group matrices GroupA and GroupB and, either LowerRatio, or UpperRatio bounds, group ratio constraints require any portfolio in Port to satisfy the following:
```

(GroupB * Port) .* LowerRatio <= GroupA * Port <= (GroupB * Port) .* UpperRatio

```

\section*{Caution}

This collection of constraints usually requires that portfolio weights be nonnegative and that the products GroupA * Port and GroupB * Port are always nonnegative. Although negative portfolio weights and non-Boolean group ratio matrices are supported, use with caution.

\section*{Tips}
- Use dot notation to add group ratio constraints for the portfolio weights to existing group ratio constraints.
```

obj = obj.addGroupRatio(GroupA, GroupB, LowerRatio, UpperRatio)

```

\section*{PortfolioMAD.addGroupRatio}
- To remove group ratio constraints from a MAD portfolio object, enter empty arrays for the corresponding arrays.

\section*{Input}

Arguments

\section*{obj}

MAD portfolio object [PortfolioMAD].

\section*{GroupA}

Matrix that forms base groups for comparison [matrix].

\section*{GroupB}

Matrix that forms comparison groups [matrix].

Note The group matrices GroupA and GroupB often indicate membership in groups, which means that their elements are usually either 0 or 1 . Because of this interpretation, the GroupA and GroupB matrices can be logical or numerical arrays.

\section*{LowerGroup}

Lower bound for ratio of GroupB groups to GroupA groups [vector].

Note If input is scalar, LowerGroup undergoes scalar expansion to conform with the group matrices.

\section*{UpperRatio}
(Optional) Upper bound for ratio of GroupB groups to GroupA groups [vector].

Note If input is scalar, UpperRatio undergoes scalar expansion to conform with the group matrices.

\section*{PortfolioMAD.addGroupRatio}

\section*{Output obi \\ Arguments}

\section*{Attributes}

\section*{Examples Add Group Ratio Constraints}

Set a group ratio constraint to ensure that the weight in financial assets does not exceed \(50 \%\) of the weight in nonfinancial assets. Then add another group ratio constraint to ensure that the weight in financial assets constitute at least \(20 \%\) of the weight in nonfinancial assets of the portfolio.
```

p = PortfolioMAD;
GA = [ true true true false false false ]; % financial companies
GB = [ false false false true true true ]; % nonfinancial companies
p = p.setGroupRatio(GA, GB, [], 0.5);
GA = [ true false true false true false ]; % odd-numbered companies
GB = [ false false false true true true ]; % nonfinancial companies
p = p.addGroupRatio(GA, GB, 0.2);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.LowerRatio);
disp(p.UpperRatio);

```

\section*{PortfolioMAD.addGroupRatio}
\begin{tabular}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
- Inf & & & & & \\
0.2000 & & & \\
0.5000 & & &
\end{tabular}
See Also setGroupRatio | PortfolioMAD
Related Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 6-8

\section*{Portfolio.addGroups}

\section*{Superclasses AbstractPortfolio}

Purpose
Syntax

Description

Tips

Input
Arguments

Add group constraints for portfolio weights to existing group constraints
obj = addGroups(obj,GroupMatrix,LowerGroup)
obj = addGroups(obj,GroupMatrix, LowerGroup,UpperGroup)
obj = addGroups(obj,GroupMatrix,LowerGroup) adds group constraints for portfolio weights to existing group constraints subject to a lower bound on groups.
obj = addGroups(obj,GroupMatrix,LowerGroup,UpperGroup) adds the group constraints for portfolio weights to existing group constraints with an additional option for UpperGroup.

Given GroupMatrix and either LowerGroup or UpperGroup, a portfolio Port must satisfy the following:

LowerGroup <= GroupMatrix * Port <= UpperGroup
- Use dot notation to add group constraints for portfolio weights.
obj = obj.addGroups(GroupMatrix, LowerGroup, UpperGroup)
- To remove group constraints from a Portfolio object, enter empty arrays for the corresponding arrays.

\section*{obi}

Portfolio object [Portfolio].

\section*{GroupMatrix}

Group constraint matrix [matrix].

\section*{Portfolio.addGroups}

> Note The group matrix GroupMatrix often indicates membership in groups, which means that its elements are usually either 0 or 1. Because of this interpretation, GroupMatrix can be a logical or numerical matrix.

\section*{LowerGroup}

Lower bound for group constraints [vector].

Note If input is scalar, LowerGroup undergoes scalar expansion to be conformable with GroupMatrix.

\section*{UpperGroup}
(Optional) Upper bound for group constraints [vector].

Note If input is scalar, UpperGroup undergoes scalar expansion to be conformable with GroupMatrix.

\section*{Output obi}

Arguments

\section*{Attributes}
\begin{tabular}{ll}
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Portfolio.addGroups}

\section*{Examples Add Group Constraints}

Set a group constraint to ensure that the first three assets constitute at most \(30 \%\) of a portfolio. Then add another group constraint to ensure that the odd-numbered assets constitute at least \(20 \%\) of a portfolio.
```

p = Portfolio;
G = [ true true true false false ]; % group matrix for first group
p = p.setGroups(G, [], 0.3);
G = [ true false true false true ]; % group matrix for second group
p = p.addGroups(G, 0.2);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.LowerGroup);
disp(p.UpperGroup);

```
 5
 \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
 \(\begin{array}{lllll}1 & 0 & 1 & 0 & 1\end{array}\)
 - Inf
 0.2000
 0.3000
 Inf
See Also setGroups | Portfolio
Related Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 4-8

\section*{PortfolioCVaR.addGroups}

Superclasses AbstractPortfolio
Purpose Add group constraints for portfolio weights to existing group constraints for PortfolioCVaR object

Syntax
Description

Tips

Input
Arguments
obj = addGroups(obj,GroupMatrix,LowerGroup)
obj = addGroups(obj,GroupMatrix, LowerGroup,UpperGroup)
obj = addGroups(obj,GroupMatrix,LowerGroup) adds group constraints for portfolio weights to existing group constraints subject to a lower bound on groups.
obj = addGroups(obj, GroupMatrix, LowerGroup, UpperGroup) adds the group constraints for portfolio weights to existing group constraints with an additional option for UpperGroup.

Given GroupMatrix and either LowerGroup or UpperGroup, a portfolio Port must satisfy the following:

LowerGroup <= GroupMatrix * Port <= UpperGroup
- Use dot notation to add group constraints for portfolio weights.
obj = obj.addGroups(GroupMatrix, LowerGroup, UpperGroup)
- To remove group constraints from a CVaR portfolio object, enter empty arrays for the corresponding arrays.

\section*{obj}

CVaR portfolio object [PortfolioCVaR].

\section*{GroupMatrix}

Group constraint matrix [matrix].

\section*{PortfolioCVaR.addGroups}

Note The group matrix GroupMatrix often indicates membership in groups, which means that its elements are usually either 0 or 1. Because of this interpretation, GroupMatrix can be a logical or numerical matrix.

\section*{LowerGroup}

Lower bound for group constraints [vector].

Note If input is scalar, LowerGroup undergoes scalar expansion to conform with GroupMatrix.

\section*{UpperGroup}
(Optional) Upper bound for group constraints [vector].

Note If input is scalar, UpperGroup undergoes scalar expansion to conform with GroupMatrix.

\section*{Output obi}

Arguments
Updated CVaR portfolio object [PortfolioCVaR].

\section*{Attributes}
\begin{tabular}{ll}
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{PortfolioCVaR.addGroups}

\section*{Examples Add Group Constraints}

Set a group constraint to ensure that the first three assets constitute at most \(30 \%\) of a portfolio. Then add another group constraint to ensure that the odd-numbered assets constitute at least \(20 \%\) of a portfolio.
```

p = PortfolioCVaR;
G = [ true true true false false ]; % group matrix for first group cor
p = p.setGroups(G, [], 0.3);
G = [ true false true false true ]; % group matrix for second group co
p = p.addGroups(G, 0.2);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.LowerGroup);
disp(p.UpperGroup);

```
 5
 \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1\end{array}\)
 - Inf
 0.2000
 0.3000
 Inf
See Also setGroupRatio | PortfolioCVaR
Related - "Working with Group Constraints" on page 5-68
Examples

\section*{Concepts \\ - "Portfolio Set for Portfolio Optimization" on page 5-8}

\section*{Superclasses AbstractPortfolio}

Purpose

Syntax

Description

Tips

Input
Arguments

Add group constraints for portfolio weights to existing group constraints for PortfolioMAD object
obj = addGroups(obj,GroupMatrix, LowerGroup)
obj = addGroups(obj,GroupMatrix,LowerGroup,UpperGroup)
obj = addGroups(obj,GroupMatrix,LowerGroup) adds group constraints for portfolio weights to existing group constraints subject to a lower bound on groups.
obj = addGroups(obj,GroupMatrix,LowerGroup,UpperGroup) adds group constraints for portfolio weights to existing group constraints with an additional option for UpperGroup.
Given GroupMatrix and either LowerGroup or UpperGroup, a portfolio Port must satisfy the following:
```

LowerGroup <= GroupMatrix * Port <= UpperGroup

```
- Use dot notation to add group constraints for portfolio weights.
obj = obj.addGroups(GroupMatrix, LowerGroup, UpperGroup)
- To remove group constraints from a MAD portfolio object, enter empty arrays for the corresponding arrays.

\section*{obj}

MAD portfolio object [PortfolioMAD].

\section*{GroupMatrix}

Group constraint matrix [matrix].

\section*{PortfolioMAD.addGroups}

> Note The group matrix GroupMatrix often indicates membership in groups, which means that its elements are usually either 0 or 1. Because of this interpretation, GroupMatrix can be a logical or numerical matrix.

\section*{LowerGroup}

Lower bound for group constraints [vector].

Note If input is scalar, LowerGroup undergoes scalar expansion to conform with GroupMatrix.

\section*{UpperGroup}
(Optional) Upper bound for group constraints [vector].

Note If input is scalar, UpperGroup undergoes scalar expansion to conform with GroupMatrix.

\section*{Output obi}

Arguments

\section*{Attributes}
\begin{tabular}{ll}
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{PortfolioMAD.addGroups}

\section*{Examples Add Group Constraints}

Set a group constraint to ensure that the first three assets constitute at most \(30 \%\) of a portfolio. Then add another group constraint to ensure that the odd-numbered assets constitute at least \(20 \%\) of a portfolio.
```

p = PortfolioMAD;
G = [ true true true false false ]; % group matrix for first group
p = p.setGroups(G, [], 0.3);
G = [ true false true false true ]; % group matrix for second group
p = p.addGroups(G, 0.2);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.LowerGroup);
disp(p.UpperGroup);

```
 5
 \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
 \(\begin{array}{lllll}1 & 0 & 1 & 0 & 1\end{array}\)
 - Inf
 0.2000
 0.3000
 Inf
See Also setGroupRatio | PortfolioMAD
Related Examples
- "Working with Group Constraints" on page 6-68
Concepts - "Portfolio Set for Portfolio Optimization" on page 6-8

\section*{Portfolio.addInequality}

Superclasses AbstractPortfolio

Purpose

Syntax
Description

Tips

Input
Arguments

Add linear inequality constraints for portfolio weights to existing constraints
obj = addInequality(obj,AInequality,bInequality)
obj = addInequality(obj,AInequality,bInequality) adds linear inequality constraints for portfolio weights to existing constraints.

Given linear inequality constraint matrix AInequality and vector bInequality, every weight in a portfolio Port must satisfy the following:

AInequality * Port <= bInequality
- Use dot notation to add linear inequality constraints for portfolio weights to existing constraints.
obj = obj.addInequality(AInequality, bInequality)
- To remove linear inequality constraints for portfolio weights from a Portfolio object.
```

obj = obj.setInequality([ ], [ ])

```
obj
Portfolio object [Portfolio].

\section*{Alnequality}

Matrix to form linear inequality constraints [matrix].

\section*{blnequality}

Vector to form linear inequality constraints [vector].

Note An error results if AInequality is empty and bInequality is nonempty, or if AInequality is nonempty and bInequality is empty.

\section*{Output obi}

Arguments
Updated Portfolio object [Portfolio].

\section*{Attributes}

\section*{Examples Add Linear Inequality Constraint}

Set a linear inequality constraint to ensure that the first three assets constitute at most \(50 \%\) of a portfolio. Then add another linear inequality constraint to ensure that the last three assets constitute at least \(50 \%\) of a portfolio.
```

p = Portfolio;
A = [ 1 1 1 0 0 ]; % first inequality constraint
b = 0.5;
p = p.setInequality(A, b);
A = [ 0 0 -1 -1 -1 ]; % second inequality constraint
b = -0.5;
p = p.addInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

```

\section*{Portfolio.addInequality}
\begin{tabular}{llrrr}
5 & & & & \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & -1
\end{tabular}

\author{
See Also setInequality | Portfolio \\ Related - "Working with Linear Inequality Constraints" on page 4-75 Examples \\ Concepts - "Portfolio Set for Portfolio Optimization" on page 4-8
}

\section*{PortfolioCVaR.addInequality}

\section*{Superclasses AbstractPortfolio}

Purpose

Syntax
Description

Tips

Input
Arguments

Add linear inequality constraints for portfolio weights to existing constraints for PortfolioCVaR object
```

obj = addInequality(obj,AInequality,bInequality)

```
obj = addInequality(obj,AInequality,bInequality) adds linear inequality constraints for portfolio weights to existing constraints.

Given linear inequality constraint matrix AInequality and vector bInequality, every weight in portfolio Port must satisfy the following:

AInequality * Port <= bInequality
- Use dot notation to add linear inequality constraints for portfolio weights to existing constraints.
```

obj = obj.addInequality(AInequality, bInequality)

```
- To remove linear inequality constraints for portfolio weights from a CVaR portfolio object.
obj = obj.setInequality([], [])

\section*{obi}

CVaR portfolio object [PortfolioCVaR].

\section*{Alnequality}

Matrix to form linear inequality constraints [matrix].

\section*{bInequality}

Vector to form linear inequality constraints [vector].

\section*{PortfolioCVaR.addInequality}

Note An error results if AInequality is empty and bInequality is nonempty, or if AInequality is nonempty and bInequality is empty.

\section*{Output} Arguments

\section*{Attributes}

\section*{Examples}

\section*{Add Linear Inequality Constraint}

Set a linear inequality constraint to ensure that the first three assets constitute at most \(50 \%\) of a portfolio. Then add another linear inequality constraint to ensure that the last three assets constitute at least \(50 \%\) of a portfolio.
```

p = PortfolioCVaR;
A = [ 1 1 1 0 0 ]; % first inequality constraint
b = 0.5;
p = p.setInequality(A, b);
A = [ 0 0 -1 -1 -1 ]; % second inequality constraint
b = -0.5;
p = p.addInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

```
\begin{tabular}{llrrr}
5 & & & & \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 \\
0.5000 & & & & \\
-0.5000 & & & &
\end{tabular}
See Also setInequality | PortfolioCVaR
Related Examples
- "Working with Linear Inequality Constraints" on page 5-77
Concepts - "Portfolio Set for Portfolio Optimization" on page 5-8

\section*{PortfolioMAD.addInequality}

Superclasses
Purpose

Syntax
Description

Tips

\section*{Input Arguments}
- Use dot notation to add linear inequality constraints for portfolio weights to existing constraints.
```

obj = obj.addInequality(AInequality, bInequality) obj = obj.addInequality(AInequality, bInequality)

```
- To remove linear inequality constraints for portfolio weights from a MAD portfolio object.
```

```
obj = obj.setInequality([], [])
```

```
```

```
obj = obj.setInequality([], [])
```

```

AbstractPortfolio
Add linear inequality constraints for portfolio weights to existing constraints for PortfolioMAD object
obj = addInequality(obj,AInequality,bInequality)
obj = addInequality(obj,AInequality,bInequality) adds linear inequality constraints for portfolio weights to existing constraints.

Given linear inequality constraint matrix AInequality and vector bInequality, every weight in portfolio Port must satisfy the following:
```

AInequality * Port <= bInequality

```
addInequality "stacks" additional linear inequality constraints onto any existing linear inequality constraints that already exist in the input PortfolioMAD object. If no constraints already exist, this method is the same as setInequality.

\section*{obj}

MAD portfolio object [PortfolioMAD].

\section*{Alnequality}

Matrix to form linear inequality constraints [matrix].

\section*{bInequality}

Vector to form linear inequality constraints [vector].

Note An error results if AInequality is empty and bInequality is nonempty, or if AInequality is nonempty and bInequality is empty.

\section*{Output obi}

Arguments

\section*{Attributes}

\section*{Examples}

Access
public
Static
false
Hidden
false
To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Add Linear Inequality Constraint}

Set a linear inequality constraint to ensure that the first three assets constitute at most \(50 \%\) of a portfolio. Then add another linear inequality constraint to ensure that the last three assets constitute at least \(50 \%\) of a portfolio.
```

p = PortfolioMAD;
A = [ 1 1 1 0 0 ]; % first inequality constraint
b = 0.5;
p = p.setInequality(A, b);
A = [ 0 0 -1 -1 -1 ]; % second inequality constraint
b = -0.5;
p = p.addInequality(A, b);
disp(p.NumAssets);

```

\section*{PortfolioMAD.addInequality}
```

disp(p.AInequality);
disp(p.bInequality);
5

1	1	1	0	0
0	0	-1	-1	-1

0.5000
$-0.5000$

```

\section*{See Also setInequality | PortfolioMAD}

\section*{Related Examples}

\footnotetext{
Concepts
- "Portfolio Set for Portfolio Optimization" on page 6-8
}

\section*{Purpose Accumulation/Distribution line}

Syntax adln = adline(highp, lowp, closep, tvolume)
adln = adline([highp lowp closep tvolume])
adlnts = adline(tsobj)
adlnts = adline(tsobj, ParameterName, ParameterValue, ...)

\section*{Arguments}
\begin{tabular}{ll}
highp & High price (vector) \\
lowp & Low price (vector) \\
closep & Closing price (vector) \\
& \\
tvolume & Volume traded (vector) \\
tsobj & Time series object
\end{tabular}

\section*{Description}
adln = adline(highp, lowp, closep, tvolume) computes the Accumulation/Distribution line for a set of stock price and volume traded data. The prices required for this function are the high (highp), low (lowp), and closing (closep) prices.
adln = adline([highp lowp closep tvolume]) accepts a four-column matrix as input. The first column contains the high prices, the second contains the low prices, the third contains the closing prices, and the fourth contains the volume traded.
adlnts = adline(tsobj) computes the Williams
Accumulation/Distribution line for a set of stock price data contained in the financial time series object tsobj. The object must contain the high, low, and closing prices plus the volume traded. The function assumes that the series are named High, Low, Close, and Volume. All are required. adlnts is a financial time series object with the same dates as tsobj but with a single series named ADLine.
adlnts \(=\) adline(tsobj, ParameterName, ParameterValue, ...) accepts parameter name/parameter value pairs as input. These pairs specify the name(s) for the required data series if it is different from the expected default name(s). Valid parameter names are
- HighName: high prices series name
- LowName: low prices series name
- CloseName: closing prices series name
- VolumeName: volume traded series name

Parameter values are the strings that represent the valid parameter names.

\section*{Examples}

\section*{Calculate the Accumulation/Distribution Line for a Stock}

This example shows how to compute the Accumulation/Distribution line for Disney stock and plot the results.
```

load disney.mat
dis_ADLine = adline(dis)
plot(dis_ADLine)
title('Accumulation/Distribution Line for Disney')

```
dis_ADLine =
 desc: ADLine: Walt Disney Company (DIS)
 freq: Unknown (0)
 'dates: (782)' 'ADLine: (782)
 '29-Mar-1996' [-3373800]
 '01-Apr-1996' [-629700]
 '02-Apr-1996' [1.9825e+06]
 '03-Apr-1996' [4.8430e+06]
 '04-Apr-1996' [4.4395e+06]
 '05-Apr-1996' [NaN]
 '08-Apr-1996' [4.9130e+06]
\begin{tabular}{|c|c|}
\hline 09-Apr-1996 ' & \(1.4141 \mathrm{e}+06\)] \\
\hline '10-Apr-1996' & -6.7552e+06] \\
\hline '11-Apr-1996' & -1.3967e+07] \\
\hline '12-Apr-1996' & -1.0087e+07] \\
\hline '15-Apr-1996' & -9.1831e+06] \\
\hline '16-Apr-1996' & -7.1834e+06] \\
\hline '17-Apr-1996' & -7.9135e+06] \\
\hline '18-Apr-1996' & -6.9595e+06] \\
\hline '19-Apr-1996' & -6.9595e+06] \\
\hline '22-Apr-1996' & -8.5670e+06] \\
\hline '23-Apr-1996' & -1.0457e+07] \\
\hline '24-Apr-1996' & -1.1587e+07] \\
\hline '25-Apr-1996' & -1.0697e+07] \\
\hline '26-Apr-1996' & -1.2847e+07] \\
\hline '29-Apr-1996' & -1.2847e+07] \\
\hline '30-Apr-1996' & -1.1363e+07] \\
\hline '01-May-1996' & -1.8209e+07] \\
\hline '02-May-1996' & -2.0156e+07] \\
\hline '03-May-1996' & -2.4315e+07] \\
\hline '06-May-1996' & -1.9446e+07] \\
\hline '07-May-1996' & -2.2273e+07] \\
\hline '08-May-1996' & -1.6567e+07] \\
\hline '09-May-1996' & -1.9791e+07] \\
\hline '10-May-1996' & -1.8011e+07] \\
\hline '13-May-1996' & -1.3355e+07] \\
\hline '14-May-1996' & -1.4068e+07] \\
\hline '15-May-1996' & -1.6700e+07] \\
\hline '16-May-1996' & -1.5169e+07] \\
\hline '17-May-1996' & -1.6115e+07] \\
\hline '20-May-1996' & -1.2873e+07] \\
\hline '21-May-1996' & -9.5616e+06] \\
\hline '22-May-1996' & -7.5790e+06] \\
\hline '23-May-1996' & -1.0910e+07] \\
\hline '24-May-1996' & -1.0910e+07] \\
\hline '27-May-1996' & NaN] \\
\hline '28-May-1996' & -1.1860e+07] \\
\hline '29-May-1996' & -1.6107e+07] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 30-May-1996 \({ }^{\text {' }}\) & [& -1.2848e+07] \\
\hline '31-May-1996' & [& -1.5409e+07] \\
\hline '03-Jun-1996' & & -1.7004e+07] \\
\hline '04-Jun-1996' & & -1.6128e+07] \\
\hline '05-Jun-1996' & & -1.2238e+07] \\
\hline 06-Jun-1996' & & -1.4080e+07] \\
\hline '07-Jun-1996' & & -7.7068e+06] \\
\hline 10-Jun-1996' & & -1.0779e+07] \\
\hline '11-Jun-1996' & & -1.2266e+07] \\
\hline '12-Jun-1996' & & -1.3198e+07] \\
\hline '13-Jun-1996' & & -1.5329e+07] \\
\hline '14-Jun-1996' & & -1.3887e+07] \\
\hline '17-Jun-1996' & & -1.2432e+07] \\
\hline '18-Jun-1996' & [& -1.5242e+07] \\
\hline '19-Jun-1996' & & -1.5242e+07] \\
\hline 20-Jun-1996' & [& -1.2412e+07] \\
\hline '21-Jun-1996' & & -5.0001e+06] \\
\hline 24-Jun-1996' & [& -7.3148e+06] \\
\hline 25-Jun-1996' & & -4.0179e+06] \\
\hline 26-Jun-1996' & & -4.0071e+06] \\
\hline '27-Jun-1996' & & -1.7657e+06] \\
\hline '28-Jun-1996' & & -4.3509e+06] \\
\hline '01-Jul-1996' & & -4.8160e+06] \\
\hline '02-Jul-1996' & & -8.5405e+06] \\
\hline '03-Jul-1996' & & -5.5009e+06] \\
\hline '04-Jul-1996' & & \(\mathrm{NaN}]\) \\
\hline '05-Jul-1996' & [& -8.9206e+06] \\
\hline '08-Jul-1996' & & -1.2981e+07] \\
\hline '09-Jul-1996' & [& -1.9449e+07] \\
\hline '10-Jul-1996' & & -1.4994e+07] \\
\hline '11-Jul-1996' & & -2.1704e+07] \\
\hline '12-Jul-1996' & & -2.1188e+07] \\
\hline '15-Jul-1996' & [& -2.8475e+07] \\
\hline '16-Jul-1996' & [& -1.9332e+07] \\
\hline '17-Jul-1996' & [& -2.4926e+07] \\
\hline '18-Jul-1996' & [& -2.1547e+07] \\
\hline '19-Jul-1996' & [& -2.0155e+07] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 22-Jul-1996' & -2.4564e+07] \\
\hline '23-Jul-1996' & -2.7990e+07] \\
\hline '24-Jul-1996' & -3.0874e+07] \\
\hline '25-Jul-1996' & -3.3612e+07] \\
\hline '26-Jul-1996' & -3.3589e+07] \\
\hline '29-Jul-1996' & -3.8434e+07] \\
\hline '30-Jul-1996' & -3.3647e+07] \\
\hline '31-Jul-1996' & -3.0289e+07] \\
\hline '01-Aug-1996' & -2.6481e+07] \\
\hline '02-Aug-1996' & -2.9697e+07] \\
\hline '05-Aug-1996' & -3.0295e+07] \\
\hline '06-Aug-1996' & -2.7455e+07] \\
\hline '07-Aug-1996' & -2.8378e+07] \\
\hline '08-Aug-1996' & -3.1315e+07] \\
\hline '09-Aug-1996' & -3.1872e+07] \\
\hline '12-Aug-1996' & -2.8926e+07] \\
\hline '13-Aug-1996' & -2.9286e+07] \\
\hline '14-Aug-1996' & -2.6542e+07] \\
\hline '15-Aug-1996' & -2.7470e+07] \\
\hline '16-Aug-1996' & -2.4847e+07] \\
\hline '19-Aug-1996' & -2.5799e+07] \\
\hline '20-Aug-1996' & -2.8277e+07] \\
\hline '21-Aug-1996' & -2.6357e+07] \\
\hline '22-Aug-1996' & -2.7206e+07] \\
\hline '23-Aug-1996' & -2.4872e+07] \\
\hline '26-Aug-1996' & -2.1661e+07] \\
\hline '27-Aug-1996' & -2.2973e+07] \\
\hline '28-Aug-1996' & -2.3785e+07] \\
\hline '29-Aug-1996' & -2.3136e+07] \\
\hline '30-Aug-1996' & -2.3136e+07] \\
\hline '02-Sep-1996' & NaN] \\
\hline '03-Sep-1996' & -2.0673e+07] \\
\hline '04-Sep-1996' & -2.0224e+07] \\
\hline '05-Sep-1996' & -2.3204e+07] \\
\hline '06-Sep-1996' & -2.0429e+07] \\
\hline '09-Sep-1996' & -1.7677e+07] \\
\hline '10-Sep-1996' & -1.7104e+07] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline '11-Sep-1996' & -1.4256e+07] \\
\hline '12-Sep-1996' & -8.5233e+06] \\
\hline '13-Sep-1996' & -8.5233e+06] \\
\hline '16-Sep-1996' & -1.2451e+07] \\
\hline '17-Sep-1996' & -1.0321e+07] \\
\hline '18-Sep-1996' & -9.4135e+06] \\
\hline '19-Sep-1996' & -2.5699e+06] \\
\hline '20-Sep-1996' & \(1.4158 \mathrm{e}+06\)] \\
\hline '23-Sep-1996' & \(4.1221 \mathrm{e}+06\)] \\
\hline '24-Sep-1996' & \(1.4330 \mathrm{e}+06\)] \\
\hline '25-Sep-1996' & -1.5001e+06] \\
\hline '26-Sep-1996' & -4.2078e+06] \\
\hline '27-Sep-1996' & -2.2770e+06] \\
\hline '30-Sep-1996' & -2.6856e+06] \\
\hline '01-Oct-1996' & -5.3949e+06] \\
\hline 02-Oct-1996' & -6.1910e+06] \\
\hline '03-0ct-1996' & -5.6119e+06] \\
\hline -04-Oct-1996' & -5.1713e+06] \\
\hline -07-Oct-1996' & -5.1713e+06] \\
\hline 08-Oct-1996' & -7.0310e+06] \\
\hline -09-Oct-1996' & -5.5632e+06] \\
\hline '10-0ct-1996' & -4.2102e+06] \\
\hline '11-0ct-1996' & -4.2102e+06] \\
\hline '14-0ct-1996' & -5.9373e+06] \\
\hline '15-0ct-1996' & -4.4805e+06] \\
\hline '16-0ct-1996' & -1.1563e+06] \\
\hline '17-0ct-1996' & -3.2890e+06] \\
\hline '18-0ct-1996' & -2.5777e+05] \\
\hline 21-0ct-1996' & \(1.2866 \mathrm{e}+06\)] \\
\hline 22-0ct-1996' & \(4.1966 \mathrm{e}+06\)] \\
\hline 23-0ct-1996' & \(4.1966 \mathrm{e}+06\)] \\
\hline '24-0ct-1996' & \(2.9866 \mathrm{e}+06\)] \\
\hline 25-0ct-1996' & \(5.3893 \mathrm{e}+06\)] \\
\hline '28-0ct-1996' & \(4.1386 \mathrm{e}+06\)] \\
\hline '29-0ct-1996' & \(1.7941 \mathrm{e}+06\)] \\
\hline '30-0ct-1996' & \(1.0212 \mathrm{e}+05]\) \\
\hline '31-0ct-1996' & \(2.1474 \mathrm{e}+06\)] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 01-Nov-1996' & [& 9.5199e+05] \\
\hline '04-Nov-1996' & [& \(3.8002 \mathrm{e}+06]\) \\
\hline '05-Nov-1996' & [& \(7.4503 \mathrm{e}+06\)] \\
\hline '06-Nov-1996' & [& \(9.4800 \mathrm{e}+06]\) \\
\hline '07-Nov-1996' & [& 1.4129e+07] \\
\hline '08-Nov-1996' & [& 1.5715e+07] \\
\hline '11-Nov-1996' & [& \(2.0764 \mathrm{e}+07 \mathrm{]}\) \\
\hline '12-Nov-1996' & [& 2.2122e+07] \\
\hline '13-Nov-1996' & [& \(2.1718 \mathrm{e}+07 \mathrm{]}\) \\
\hline '14-Nov-1996' & [& \(2.3862 e+07]\) \\
\hline '15-Nov-1996' & [& \(2.7082 \mathrm{e}+07\)] \\
\hline '18-Nov-1996' & [& \(2.6276 \mathrm{e}+07 \mathrm{]}\) \\
\hline '19-Nov-1996' & [& \(2.4473 e^{+07]}\) \\
\hline '20-Nov-1996' & [& \(2.9297 \mathrm{e}+07 \mathrm{]}\) \\
\hline '21-Nov-1996' & [& \(3.1543 \mathrm{e}+07\)] \\
\hline '22-Nov-1996' & [& 2.8135e+07] \\
\hline '25-Nov-1996' & [& \(3.2240 \mathrm{e}+07 \mathrm{]}\) \\
\hline '26-Nov-1996' & [& \(3.4110 \mathrm{e}+07\)] \\
\hline '27-Nov-1996' & [& \(2.9315 \mathrm{e}+07 \mathrm{l}\) \\
\hline '28-Nov-1996' & [& \(\mathrm{NaN}]\) \\
\hline '29-Nov-1996' & [& \(3.0806 \mathrm{e}+07 \mathrm{]}\) \\
\hline '02-Dec-1996' & [& \(3.1666 e+07]\) \\
\hline '03-Dec-1996' & [& \(2.8143 \mathrm{e}+07 \mathrm{]}\) \\
\hline '04-Dec-1996' & [& \(3.2933 \mathrm{e}+07 \mathrm{]}\) \\
\hline '05-Dec-1996' & [& \(3.6240 \mathrm{e}+07 \mathrm{]}\) \\
\hline '06-Dec-1996' & [& 4.0128e+07] \\
\hline '09-Dec-1996' & [& 4.3025e+07] \\
\hline '10-Dec-1996' & [& 4.3035e+07] \\
\hline '11-Dec-1996' & [& \(4.2647 \mathrm{e}+07\)] \\
\hline '12-Dec-1996' & [& 3.8083e+07] \\
\hline '13-Dec-1996' & [& \(3.9528 \mathrm{e}+07\)] \\
\hline '16-Dec-1996' & [& \(3.7682 \mathrm{e}+07\)] \\
\hline '17-Dec-1996' & [& \(4.1407 \mathrm{e}+07\)] \\
\hline '18-Dec-1996' & [& 4.1865e+07] \\
\hline '19-Dec-1996' & [& \(4.5500 \mathrm{e}+07\)] \\
\hline '20-Dec-1996' & [& 4.0049e+07] \\
\hline '23-Dec-1996' & [& 4.0869e+07] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 24-Dec-1996' & [& 4.0639e+07] \\
\hline '25-Dec-1996' & [& \(\mathrm{NaN}]\) \\
\hline '26-Dec-1996' & [& 4.0645e+07] \\
\hline '27-Dec-1996' & [& \(3.9847 \mathrm{e}+07\)] \\
\hline '30-Dec-1996' & [& \(3.7408 \mathrm{e}+07\)] \\
\hline '31-Dec-1996' & [& \(3.6514 \mathrm{e}+07\)] \\
\hline '01-Jan-1997' & [& \(\mathrm{NaN}]\) \\
\hline '02-Jan-1997' & [& \(3.1706 \mathrm{e}+07\)] \\
\hline '03-Jan-1997' & [& \(3.5368 \mathrm{e}+07\)] \\
\hline '06-Jan-1997' & [& \(3.4176 \mathrm{e}+07 \mathrm{]}\) \\
\hline '07-Jan-1997' & [& \(3.6538 \mathrm{e}+07\)] \\
\hline '08-Jan-1997' & [& \(3.4629 \mathrm{e}+07\)] \\
\hline '09-Jan-1997' & [& \(3.1595 \mathrm{e}+07\)] \\
\hline '10-Jan-1997' & [& \(3.6801 \mathrm{e}+07\)] \\
\hline '13-Jan-1997' & [& \(3.4065 \mathrm{e}+07\)] \\
\hline '14-Jan-1997' & [& \(3.7182 \mathrm{e}+07 \mathrm{]}\) \\
\hline '15-Jan-1997' & [& \(3.7672 \mathrm{e}+07\)] \\
\hline '16-Jan-1997' & [& \(3.7032 \mathrm{e}+07\)] \\
\hline '17-Jan-1997' & [& \(4.1422 \mathrm{e}+07\)] \\
\hline '20-Jan-1997' & [& \(4.0534 \mathrm{e}+07\)] \\
\hline '21-Jan-1997' & [& \(4.3476 \mathrm{e}+07\)] \\
\hline '22-Jan-1997' & [& \(4.7815 \mathrm{e}+07\)] \\
\hline '23-Jan-1997' & [& \(3.9779 \mathrm{e}+07\)] \\
\hline '24-Jan-1997' & [& \(4.3235 \mathrm{e}+07\)] \\
\hline '27-Jan-1997' & [& \(4.6165 \mathrm{e}+07\)] \\
\hline '28-Jan-1997' & [& \(3.9828 \mathrm{e}+07\)] \\
\hline '29-Jan-1997' & [& \(4.5960 \mathrm{e}+07\)] \\
\hline '30-Jan-1997' & [& \(4.2785 \mathrm{e}+07 \mathrm{]}\) \\
\hline '31-Jan-1997' & [& \(4.1877 \mathrm{e}+07\)] \\
\hline '03-Feb-1997' & [& \(4.5259 \mathrm{e}+07\)] \\
\hline ' 04-Feb-1997' & [& \(4.4119 \mathrm{e}+07\)] \\
\hline '05-Feb-1997' & [& \(4.2111 \mathrm{e}+07\)] \\
\hline ' 06-Feb-1997' & [& \(4.6232 \mathrm{e}+07 \mathrm{]}\) \\
\hline '07-Feb-1997' & [& \(4.7710 \mathrm{e}+07\)] \\
\hline '10-Feb-1997' & [& \(4.1858 \mathrm{e}+07 \mathrm{]}\) \\
\hline '11-Feb-1997' & [& \(4.0199 \mathrm{e}+07\)] \\
\hline '12-Feb-1997' & [& \(4.2563 \mathrm{e}+07\)] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline '13-Feb-1997' & \(4.1041 \mathrm{e}+07\)] \\
\hline '14-Feb-1997' & \(3.8864 \mathrm{e}+07\)] \\
\hline '17-Feb-1997' & \(\mathrm{NaN}]\) \\
\hline '18-Feb-1997' & \(3.9684 \mathrm{e}+07\)] \\
\hline '19-Feb-1997' & \(3.6827 \mathrm{e}+07\)] \\
\hline '20-Feb-1997' & \(3.4572 \mathrm{e}+07\)] \\
\hline '21-Feb-1997' & \(3.3326 e+07]\) \\
\hline '24-Feb-1997' & \(3.4438 \mathrm{e}+07\)] \\
\hline '25-Feb-1997' & \(3.5064 \mathrm{e}+07\)] \\
\hline '26-Feb-1997' & \(3.6788 \mathrm{e}+07 \mathrm{]}\) \\
\hline '27-Feb-1997' & \(3.7417 \mathrm{e}+07\)] \\
\hline '28-Feb-1997' & \(3.4294 \mathrm{e}+07\)] \\
\hline '03-Mar-1997' & \(3.2426 \mathrm{e}+07\)] \\
\hline '04-Mar-1997' & \(3.0330 \mathrm{e}+07\)] \\
\hline '05-Mar-1997' & \(3.2513 \mathrm{e}+07\)] \\
\hline '06-Mar-1997' & \(3.5491 \mathrm{e}+07\)] \\
\hline '07-Mar-1997' & \(3.6672 \mathrm{e}+07\)] \\
\hline '10-Mar-1997' & \(3.8489 \mathrm{e}+07\)] \\
\hline '11-Mar-1997' & \(3.8056 \mathrm{e}+07\)] \\
\hline '12-Mar-1997' & \(3.5458 \mathrm{e}+07\)] \\
\hline '13-Mar-1997' & \(3.2353 e+07]\) \\
\hline '14-Mar-1997' & \(3.4012 \mathrm{e}+07\)] \\
\hline '17-Mar-1997' & \(3.6593 \mathrm{e}+07\)] \\
\hline '18-Mar-1997' & \(3.5880 \mathrm{e}+07\)] \\
\hline '19-Mar-1997' & \(3.7603 \mathrm{e}+07\)] \\
\hline '20-Mar-1997' & \(3.6962 \mathrm{e}+07 \mathrm{]}\) \\
\hline '21-Mar-1997' & \(3.5207 \mathrm{e}+07\)] \\
\hline '24-Mar-1997' & \(3.8214 \mathrm{e}+07\)] \\
\hline '25-Mar-1997' & \(3.6331 \mathrm{e}+07\)] \\
\hline '26-Mar-1997' & \(3.7102 \mathrm{e}+07\)] \\
\hline '27-Mar-1997' & \(3.8982 \mathrm{e}+07\)] \\
\hline '28-Mar-1997' & NaN] \\
\hline '31-Mar-1997' & \(3.7552 \mathrm{e}+07\)] \\
\hline '01-Apr-1997' & \(3.7977 \mathrm{e}+07 \mathrm{]}\) \\
\hline '02-Apr-1997' & \(3.7598 \mathrm{e}+07\)] \\
\hline '03-Apr-1997' & \(4.0390 \mathrm{e}+07\)] \\
\hline '04-Apr-1997' & \(4.3924 \mathrm{e}+07\)] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 07-Apr-1997' & \(4.3924 \mathrm{e}+07\)] \\
\hline '08-Apr-1997' & \(4.6060 \mathrm{e}+07\)] \\
\hline '09-Apr-1997' & \(4.6060 \mathrm{e}+07\)] \\
\hline '10-Apr-1997' & \(4.2858 \mathrm{e}+07\)] \\
\hline '11-Apr-1997' & \(3.7690 \mathrm{e}+07\)] \\
\hline '14-Apr-1997' & \(3.7073 \mathrm{e}+07\)] \\
\hline '15-Apr-1997' & \(4.0050 \mathrm{e}+07\)] \\
\hline '16-Apr-1997' & \(4.5354 \mathrm{e}+07\)] \\
\hline '17-Apr-1997' & \(4.4989 \mathrm{e}+07\)] \\
\hline '18-Apr-1997' & \(4.7229 \mathrm{e}+07\)] \\
\hline '21-Apr-1997' & \(4.6251 \mathrm{e}+07\)] \\
\hline '22-Apr-1997' & \(4.9471 \mathrm{e}+07\)] \\
\hline '23-Apr-1997' & \(5.1304 \mathrm{e}+07\)] \\
\hline '24-Apr-1997' & \(4.9092 \mathrm{e}+07\)] \\
\hline '25-Apr-1997' & \(4.7219 \mathrm{e}+07\)] \\
\hline '28-Apr-1997' & \(4.6457 \mathrm{e}+07\)] \\
\hline '29-Apr-1997' & \(5.2501 \mathrm{e}+07\)] \\
\hline '30-Apr-1997' & \(5.5292 \mathrm{e}+07\)] \\
\hline '01-May-1997' & \(5.4811 \mathrm{e}+07\)] \\
\hline '02-May-1997' & \(5.1305 \mathrm{e}+07\)] \\
\hline '05-May-1997' & \(5.5135 \mathrm{e}+07\)] \\
\hline '06-May-1997' & \(5.8440 \mathrm{e}+07\)] \\
\hline '07-May-1997' & \(5.5853 \mathrm{e}+07\)] \\
\hline '08-May-1997' & \(5.7800 \mathrm{e}+07\)] \\
\hline '09-May-1997' & \(6.1277 \mathrm{e}+07\)] \\
\hline '12-May-1997' & \(6.3836 \mathrm{e}+07\)] \\
\hline '13-May-1997' & \(6.3836 \mathrm{e}+07\)] \\
\hline '14-May-1997' & \(6.2071 \mathrm{e}+07\)] \\
\hline '15-May-1997' & \(6.1207 \mathrm{e}+07\)] \\
\hline '16-May-1997' & \(5.5680 \mathrm{e}+07\)] \\
\hline '19-May-1997' & \(5.8255 \mathrm{e}+07\)] \\
\hline '20-May-1997' & \(6.1724 \mathrm{e}+07\)] \\
\hline '21-May-1997' & \(5.9424 \mathrm{e}+07\)] \\
\hline '22-May-1997' & \(5.8741 \mathrm{e}+07\)] \\
\hline '23-May-1997' & \(5.9330 \mathrm{e}+07\)] \\
\hline '26-May-1997' & NaN] \\
\hline '27-May-1997' & \(6.1604 \mathrm{e}+07\)] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '28-May-1997' & [& \(6.3203 \mathrm{e}+07\)] \\
\hline '29-May-1997' & [& \(6.2195 \mathrm{e}+07\)] \\
\hline '30-May-1997' & [& \(6.4662 \mathrm{e}+07 \mathrm{]}\) \\
\hline '02-Jun-1997' & [& \(6.2523 \mathrm{e}+07\)] \\
\hline '03-Jun-1997' & [& \(6.1993 e^{+07]}\) \\
\hline '04-Jun-1997' & [& \(5.9329 \mathrm{e}+07\)] \\
\hline '05-Jun-1997' & [& \(5.9334 \mathrm{e}+07\)] \\
\hline '06-Jun-1997' & [& \(6.2456 \mathrm{e}+07\)] \\
\hline '09-Jun-1997' & [& \(5.9976 \mathrm{e}+07\)] \\
\hline '10-Jun-1997' & [& \(6.2724 \mathrm{e}+07\)] \\
\hline '11-Jun-1997' & [& \(6.2724 \mathrm{e}+07\)] \\
\hline '12-Jun-1997' & [& \(6.3699 \mathrm{e}+07\)] \\
\hline '13-Jun-1997' & [& \(6.6703 \mathrm{e}+07\)] \\
\hline '16-Jun-1997' & [& \(7.0647 \mathrm{e}+07\)] \\
\hline '17-Jun-1997' & [& \(7.3021 \mathrm{e}+07\)] \\
\hline '18-Jun-1997' & [& \(6.9747 \mathrm{e}+07\)] \\
\hline '19-Jun-1997' & [& \(7.3498 \mathrm{e}+07\)] \\
\hline '20-Jun-1997' & [& \(7.0069 \mathrm{e}+07\)] \\
\hline '23-Jun-1997' & [& \(6.7722 \mathrm{e}+07 \mathrm{]}\) \\
\hline '24-Jun-1997' & [& \(7.2037 \mathrm{e}+07 \mathrm{]}\) \\
\hline '25-Jun-1997' & [& \(7.1967 \mathrm{e}+07 \mathrm{]}\) \\
\hline '26-Jun-1997' & [& \(7.1568 \mathrm{e}+07 \mathrm{]}\) \\
\hline '27-Jun-1997' & [& \(6.6476 \mathrm{e}+07\)] \\
\hline '30-Jun-1997' & [& \(7.2290 e^{+07]}\) \\
\hline '01-Jul-1997' & [& \(7.0622 \mathrm{e}+07\)] \\
\hline '02-Jul-1997' & [& \(6.7654 \mathrm{e}+07\)] \\
\hline '03-Jul-1997' & [& \(6.3296 e^{+07]}\) \\
\hline '04-Jul-1997' & [& \(\mathrm{NaN}]\) \\
\hline '07-Jul-1997' & [& \(5.9100 \mathrm{e}+07\)] \\
\hline '08-Jul-1997' & [& \(6.4136 \mathrm{e}+07\)] \\
\hline '09-Jul-1997' & [& \(5.9567 \mathrm{e}+07\)] \\
\hline '10-Jul-1997' & [& \(5.6451 \mathrm{e}+07\)] \\
\hline '11-Jul-1997' & [& \(5.6997 \mathrm{e}+07\)] \\
\hline '14-Jul-1997' & [& \(6.0714 \mathrm{e}+07\)] \\
\hline '15-Jul-1997' & [& \(6.5584 \mathrm{e}+07\)] \\
\hline '16-Jul-1997' & [& \(6.6404 \mathrm{e}+07\)] \\
\hline '17-Jul-1997' & [& \(6.7002 \mathrm{e}+07\)] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '18-Jul-1997' & [& \(6.4977 e+07]\) \\
\hline '21-Jul-1997' & [& \(6.6387 e+07]\) \\
\hline '22-Jul-1997' & [& \(7.2490 \mathrm{e}+07 \mathrm{]}\) \\
\hline '23-Jul-1997' & [& \(6.7400 \mathrm{e}+07\)] \\
\hline '24-Jul-1997' & [& \(7.1584 \mathrm{e}+07\)] \\
\hline '25-Jul-1997' & [& \(7.3660 e+07]\) \\
\hline '28-Jul-1997' & [& \(7.5303 \mathrm{e}+07 \mathrm{]}\) \\
\hline '29-Jul-1997' & [& \(7.6782 \mathrm{e}+07 \mathrm{]}\) \\
\hline '30-Jul-1997' & [& \(7.7873 \mathrm{e}+07 \mathrm{]}\) \\
\hline '31-Jul-1997' & [& \(7.4112 e+07]\) \\
\hline '01-Aug-1997' & [& \(7.2380 \mathrm{e}+07 \mathrm{]}\) \\
\hline '04-Aug-1997' & [& 7.4032e+07] \\
\hline '05-Aug-1997' & [& \(7.1121 \mathrm{e}+07 \mathrm{]}\) \\
\hline '06-Aug-1997' & [& \(7.3640 \mathrm{e}+07 \mathrm{]}\) \\
\hline '07-Aug-1997' & [& 7.0723e+07] \\
\hline '08-Aug-1997' & [& \(7.3139 \mathrm{e}+07 \mathrm{]}\) \\
\hline '11-Aug-1997' & [& \(7.5346 \mathrm{e}+07 \mathrm{]}\) \\
\hline '12-Aug-1997' & [& \(7.0532 \mathrm{e}+07 \mathrm{]}\) \\
\hline '13-Aug-1997' & [& \(7.1984 \mathrm{e}+07 \mathrm{]}\) \\
\hline '14-Aug-1997' & [& \(7.2103 e+07]\) \\
\hline '15-Aug-1997' & [& \(6.7680 \mathrm{e}+07\)] \\
\hline '18-Aug-1997' & [& \(7.2701 \mathrm{e}+07 \mathrm{]}\) \\
\hline '19-Aug-1997' & [& 8.0037e+07] \\
\hline '20-Aug-1997' & [& \(8.2583 e+07]\) \\
\hline '21-Aug-1997' & [& 8.0895e+07] \\
\hline '22-Aug-1997' & [& 8.3303e+07] \\
\hline '25-Aug-1997' & [& 8.2601e+07] \\
\hline '26-Aug-1997' & [& \(7.9679 \mathrm{e}+07\)] \\
\hline '27-Aug-1997' & [& 8.1496e+07] \\
\hline '28-Aug-1997' & [& 8.0313e+07] \\
\hline '29-Aug-1997' & [& 7.7545e+07] \\
\hline '01-Sep-1997' & [& \(\mathrm{NaN}]\) \\
\hline '02-Sep-1997' & [& 8.0247e+07] \\
\hline '03-Sep-1997' & [& 8.0255e+07] \\
\hline '04-Sep-1997' & [& \(7.6850 \mathrm{e}+07 \mathrm{]}\) \\
\hline '05-Sep-1997' & [& \(7.7627 e+07]\) \\
\hline '08-Sep-1997' & [& \(7.5364 \mathrm{e}+07\)] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 09-Sep-1997 \({ }^{\text {' }}\) & [& 7.6083e+07] \\
\hline '10-Sep-1997' & [& 7.4252e+07] \\
\hline '11-Sep-1997' & [& 7.4800e+07] \\
\hline '12-Sep-1997' & & \(7.8231 \mathrm{e}+07 \mathrm{]}\) \\
\hline '15-Sep-1997' & [& \(7.8414 \mathrm{e}+07 \mathrm{]}\) \\
\hline '16-Sep-1997' & & 8.0925e+07] \\
\hline '17-Sep-1997' & & 7.8840e+07] \\
\hline '18-Sep-1997' & & 8.1559e+07] \\
\hline '19-Sep-1997' & & 8.5500e+07] \\
\hline '22-Sep-1997' & [& 8.3143e+07] \\
\hline '23-Sep-1997' & & 8.2349e+07] \\
\hline '24-Sep-1997' & [& \(7.9337 \mathrm{e}+07\)] \\
\hline '25-Sep-1997' & & \(8.2430 \mathrm{e}+07\)] \\
\hline '26-Sep-1997' & [& 8.1191e+07] \\
\hline '29-Sep-1997' & & \(8.0984 \mathrm{e}+07\)] \\
\hline '30-Sep-1997' & [& 8.1123e+07] \\
\hline '01-Oct-1997' & & \(8.3302 \mathrm{e}+07\)] \\
\hline '02-Oct-1997' & [& \(8.7665 \mathrm{e}+07\)] \\
\hline '03-Oct-1997' & [& 8.4404e+07] \\
\hline '06-0ct-1997' & [& 8.2527e+07] \\
\hline '07-Oct-1997' & [& 8.5063e+07] \\
\hline '08-Oct-1997' & [& 8.4912e+07] \\
\hline '09-0ct-1997' & & 8.6229e+07] \\
\hline '10-Oct-1997' & [& 8.6444e+07] \\
\hline '13-0ct-1997' & & 8.6930e+07] \\
\hline '14-Oct-1997' & & 8.9017e+07] \\
\hline '15-Oct-1997' & & 8.9490e+07] \\
\hline '16-0ct-1997' & & 8.8950e+07] \\
\hline '17-Oct-1997' & & 8.7917e+07] \\
\hline '20-Oct-1997' & & 9.0746e+07] \\
\hline '21-Oct-1997' & & \(9.1244 \mathrm{e}+07 \mathrm{]}\) \\
\hline '22-Oct-1997' & & 8.8411e+07] \\
\hline '23-0ct-1997' & & 8.8609e+07] \\
\hline '24-Oct-1997' & & 8.3239e+07] \\
\hline '27-0ct-1997' & [& 7.7889e+07] \\
\hline '28-0ct-1997' & & 8.5894e+07] \\
\hline '29-0ct-1997' & [& 8.7646e+07] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '30-Oct-1997' & [& 8.4349e+07] \\
\hline '31-0ct-1997' & [& \(8.3929 \mathrm{e}+07\)] \\
\hline '03-Nov-1997' & [& \(8.7558 \mathrm{e}+07\)] \\
\hline '04-Nov-1997' & [& \(9.0627 \mathrm{e}+07\)] \\
\hline '05-Nov-1997' & [& \(8.7705 \mathrm{e}+07\)] \\
\hline '06-Nov-1997' & [& \(9.0486 \mathrm{e}+07\)] \\
\hline '07-Nov-1997' & [& \(9.1383 \mathrm{e}+07\)] \\
\hline '10-Nov-1997' & [& \(8.9420 \mathrm{e}+07\)] \\
\hline '11-Nov-1997' & [& \(8.9147 \mathrm{e}+07\)] \\
\hline '12-Nov-1997' & [& \(8.4818 \mathrm{e}+07\)] \\
\hline '13-Nov-1997' & [& \(8.5530 \mathrm{e}+07\)] \\
\hline '14-Nov-1997' & [& \(8.7043 \mathrm{e}+07\)] \\
\hline '17-Nov-1997' & [& \(8.8041 \mathrm{e}+07\)] \\
\hline '18-Nov-1997' & [& \(8.9123 \mathrm{e}+07\)] \\
\hline '19-Nov-1997' & [& \(9.4003 \mathrm{e}+07\)] \\
\hline '20-Nov-1997' & [& \(8.9281 \mathrm{e}+07\)] \\
\hline '21-Nov-1997' & [& \(9.6782 \mathrm{e}+07\)] \\
\hline '24-Nov-1997' & [& \(9.8953 \mathrm{e}+07\)] \\
\hline '25-Nov-1997' & [& \(9.9324 \mathrm{e}+07\)] \\
\hline '26-Nov-1997' & [& \(9.8463 \mathrm{e}+07\)] \\
\hline '27-Nov-1997' & [& \(\mathrm{NaN}]\) \\
\hline '28-Nov-1997' & [& \(9.8312 \mathrm{e}+07 \mathrm{]}\) \\
\hline '01-Dec-1997' & [& \(1.0141 \mathrm{e}+08\)] \\
\hline '02-Dec-1997' & [& \(1.0075 \mathrm{e}+08\)] \\
\hline '03-Dec-1997' & [& \(9.9977 \mathrm{e}+07\)] \\
\hline '04-Dec-1997' & [& \(9.9364 \mathrm{e}+07 \mathrm{]}\) \\
\hline '05-Dec-1997' & [& \(1.0147 \mathrm{e}+08\)] \\
\hline '08-Dec-1997' & [& \(1.0200 \mathrm{e}+08\)] \\
\hline '09-Dec-1997' & [& \(1.0176 \mathrm{e}+08\)] \\
\hline '10-Dec-1997' & [& \(1.0319 \mathrm{e}+08\)] \\
\hline '11-Dec-1997' & [& \(1.0409 \mathrm{e}+08\)] \\
\hline '12-Dec-1997' & [& \(1.0367 \mathrm{e}+08\)] \\
\hline '15-Dec-1997' & [& \(1.0865 \mathrm{e}+08\)] \\
\hline '16-Dec-1997' & [& \(1.0624 \mathrm{e}+08\)] \\
\hline '17-Dec-1997' & [& \(1.0791 \mathrm{e}+08\)] \\
\hline '18-Dec-1997' & [& \(1.0941 \mathrm{e}+08\)] \\
\hline '19-Dec-1997' & [& \(1.1443 \mathrm{e}+08\)] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 22-Dec-1997 \({ }^{\prime}\) & & 1.1603e+08] \\
\hline '23-Dec-1997' & [& 1.1236e+08] \\
\hline '24-Dec-1997' & & 1.1093e+08] \\
\hline '25-Dec-1997' & & NaN] \\
\hline '26-Dec-1997' & & 1.1047e+08] \\
\hline '29-Dec-1997' & & \(1.1172 \mathrm{e}+08\)] \\
\hline '30-Dec-1997' & & \(1.1105 \mathrm{e}+08\)] \\
\hline '31-Dec-1997' & & \(1.0862 \mathrm{e}+08\)] \\
\hline '01-Jan-1998' & & NaN] \\
\hline '02-Jan-1998' & & \(1.1061 \mathrm{e}+08\)] \\
\hline '05-Jan-1998' & & \(1.0751 \mathrm{e}+08]\) \\
\hline '06-Jan-1998' & & \(1.0868 e^{+08]}\) \\
\hline '07-Jan-1998' & & \(1.1309 \mathrm{e}+08\)] \\
\hline '08-Jan-1998' & & \(1.1309 \mathrm{e}+08\)] \\
\hline '09-Jan-1998' & & \(1.0773 \mathrm{e}+08\)] \\
\hline '12-Jan-1998' & & \(1.0580 \mathrm{e}+08\)] \\
\hline '13-Jan-1998' & & \(1.0796 e^{+08]}\) \\
\hline '14-Jan-1998' & & \(1.0990 \mathrm{e}+08\)] \\
\hline '15-Jan-1998' & & \(1.1126 \mathrm{e}+08\)] \\
\hline '16-Jan-1998' & & 1.1273e+08] \\
\hline '19-Jan-1998' & & NaN] \\
\hline '20-Jan-1998' & & \(1.1574 \mathrm{e}+08\)] \\
\hline '21-Jan-1998' & & 1.1619e+08] \\
\hline '22-Jan-1998' & & 1.1396e+08] \\
\hline '23-Jan-1998' & & \(1.1683 \mathrm{e}+08\)] \\
\hline '26-Jan-1998' & & \(1.1477 \mathrm{e}+08\)] \\
\hline '27-Jan-1998' & & 1.1939e+08] \\
\hline '28-Jan-1998' & & \(1.1871 \mathrm{e}+08\)] \\
\hline '29-Jan-1998' & & \(1.1798 \mathrm{e}+08\)] \\
\hline '30-Jan-1998' & & 1.1892e+08] \\
\hline '02-Feb-1998' & & \(1.2245 \mathrm{e}+08\)] \\
\hline '03-Feb-1998' & & \(1.2524 \mathrm{e}+08\)] \\
\hline ' 04-Feb-1998' & & \(1.2657 \mathrm{e}+08\)] \\
\hline '05-Feb-1998' & & \(1.2623 e+08]\) \\
\hline '06-Feb-1998' & & \(1.2610 \mathrm{e}+08\)] \\
\hline '09-Feb-1998' & & \(1.2384 \mathrm{e}+08\)] \\
\hline '10-Feb-1998' & [& 1.2559e+08] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 11-Feb-1998 \({ }^{\text {' }}\) & [& \(1.2947 \mathrm{e}+08\)] \\
\hline '12-Feb-1998' & [& \(1.3192 \mathrm{e}+08\)] \\
\hline '13-Feb-1998' & & \(1.3434 \mathrm{e}+08\)] \\
\hline 16-Feb-1998' & & NaN] \\
\hline '17-Feb-1998' & & 1.3876e+08] \\
\hline '18-Feb-1998' & & \(1.4150 \mathrm{e}+08\)] \\
\hline '19-Feb-1998' & & \(1.4035 \mathrm{e}+08\)] \\
\hline '20-Feb-1998' & & \(1.4195 \mathrm{e}+08\)] \\
\hline '23-Feb-1998' & & \(1.3970 \mathrm{e}+08\)] \\
\hline '24-Feb-1998' & & \(1.3627 e+08\)] \\
\hline '25-Feb-1998' & & \(1.3396 e+08]\) \\
\hline '26-Feb-1998' & [& \(1.3371 \mathrm{e}+08\)] \\
\hline '27-Feb-1998' & & \(1.3651 \mathrm{e}+08\)] \\
\hline 02-Mar-1998' & [& \(1.3377 \mathrm{e}+08\)] \\
\hline '03-Mar-1998' & & \(1.3435 \mathrm{e}+08\)] \\
\hline '04-Mar-1998' & [& \(1.4520 \mathrm{e}+08\)] \\
\hline '05-Mar-1998' & [& \(1.4376 \mathrm{e}+08\)] \\
\hline '06-Mar-1998' & [& \(1.4280 \mathrm{e}+08\)] \\
\hline '09-Mar-1998' & [& \(1.4263 \mathrm{e}+08\)] \\
\hline '10-Mar-1998' & [& \(1.4291 \mathrm{e}+08\)] \\
\hline '11-Mar-1998' & [& \(1.4199 \mathrm{e}+08\)] \\
\hline '12-Mar-1998' & [& \(1.4385 \mathrm{e}+08\)] \\
\hline 13-Mar-1998' & [& \(1.4285 \mathrm{e}+08\)] \\
\hline '16-Mar-1998' & [& \(1.4589 \mathrm{e}+08\)] \\
\hline '17-Mar-1998' & [& \(1.4579 \mathrm{e}+08\)] \\
\hline '18-Mar-1998' & [& \(1.4805 \mathrm{e}+08\)] \\
\hline '19-Mar-1998' & [& \(1.4669 \mathrm{e}+08\)] \\
\hline '20-Mar-1998' & [& \(1.5174 \mathrm{e}+08\)] \\
\hline '23-Mar-1998' & [& \(1.4532 \mathrm{e}+08\)] \\
\hline '24-Mar-1998' & [& \(1.5103 \mathrm{e}+08\)] \\
\hline '25-Mar-1998' & [& \(1.5223 e+08\)] \\
\hline '26-Mar-1998' & [& \(1.5403 \mathrm{e}+08\)] \\
\hline '27-Mar-1998' & [& \(1.5219 \mathrm{e}+08\)] \\
\hline '30-Mar-1998' & [& \(1.4961 \mathrm{e}+08\)] \\
\hline '31-Mar-1998' & [& \(1.5054 \mathrm{e}+08\)] \\
\hline '01-Apr-1998' & [& \(1.5067 \mathrm{e}+08\)] \\
\hline '02-Apr-1998' & [& \(1.5511 \mathrm{e}+08\)] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 03-Apr-1998' & [& \(1.5939 \mathrm{e}+08\)] \\
\hline '06-Apr-1998' & [& \(1.5659 \mathrm{e}+08\)] \\
\hline '07-Apr-1998' & [& 1.5702e+08] \\
\hline '08-Apr-1998' & [& \(1.5746 \mathrm{e}+08\)] \\
\hline '09-Apr-1998' & [& \(1.6022 \mathrm{e}+08\)] \\
\hline '10-Apr-1998' & [& NaN] \\
\hline '13-Apr-1998' & [& \(1.6325 \mathrm{e}+08\)] \\
\hline '14-Apr-1998' & [& \(1.6771 \mathrm{e}+08\)] \\
\hline '15-Apr-1998' & [& \(1.6722 \mathrm{e}+08\)] \\
\hline '16-Apr-1998' & [& \(1.6360 \mathrm{e}+08\)] \\
\hline '17-Apr-1998' & [& \(1.6731 \mathrm{e}+08\)] \\
\hline '20-Apr-1998' & [& \(1.7044 \mathrm{e}+08\)] \\
\hline '21-Apr-1998' & [& \(1.7443 \mathrm{e}+08\)] \\
\hline '22-Apr-1998' & [& \(1.7821 \mathrm{e}+08\)] \\
\hline '23-Apr-1998' & [& \(1.5432 \mathrm{e}+08\)] \\
\hline '24-Apr-1998' & [& \(1.5731 \mathrm{e}+08\)] \\
\hline '27-Apr-1998' & [& \(1.6129 \mathrm{e}+08\)] \\
\hline '28-Apr-1998' & [& \(1.6382 \mathrm{e}+08\)] \\
\hline '29-Apr-1998' & [& \(1.6455 \mathrm{e}+08\)] \\
\hline '30-Apr-1998' & [& \(1.6274 \mathrm{e}+08\)] \\
\hline '01-May-1998' & [& \(1.6645 \mathrm{e}+08\)] \\
\hline '04-May-1998' & [& \(1.6551 \mathrm{e}+08\)] \\
\hline ' 05-May-1998' & [& \(1.6654 \mathrm{e}+08\)] \\
\hline '06-May-1998' & [& \(1.6395 \mathrm{e}+08\)] \\
\hline ' 07-May-1998' & [& \(1.5632 \mathrm{e}+08\)] \\
\hline '08-May-1998' & [& \(1.5739 \mathrm{e}+08\)] \\
\hline '11-May-1998' & [& \(1.5948 \mathrm{e}+08\)] \\
\hline '12-May-1998' & [& \(1.5608 \mathrm{e}+08\)] \\
\hline '13-May-1998' & [& \(1.5447 \mathrm{e}+08\)] \\
\hline '14-May-1998' & [& \(1.5162 \mathrm{e}+08\)] \\
\hline '15-May-1998' & [& \(1.3702 \mathrm{e}+08\)] \\
\hline '18-May-1998' & [& \(1.3126 \mathrm{e}+08\)] \\
\hline '19-May-1998' & [& \(1.3100 \mathrm{e}+08\)] \\
\hline '20-May-1998' & [& \(1.3573 \mathrm{e}+08\)] \\
\hline '21-May-1998' & [& \(1.3706 \mathrm{e}+08\)] \\
\hline '22-May-1998' & [& \(1.3823 \mathrm{e}+08\)] \\
\hline '25-May-1998' & [& NaN] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 26-May-1998' & [& \(1.3379 \mathrm{e}+08\)] \\
\hline '27-May-1998' & [& \(1.3900 \mathrm{e}+08\)] \\
\hline '28-May-1998' & [& \(1.3957 \mathrm{e}+08\)] \\
\hline '29-May-1998' & [& \(1.3714 \mathrm{e}+08\)] \\
\hline '01-Jun-1998' & [& \(1.3411 \mathrm{e}+08\)] \\
\hline '02-Jun-1998' & [& \(1.3073 \mathrm{e}+08\)] \\
\hline '03-Jun-1998' & [& \(1.2852 \mathrm{e}+08\)] \\
\hline 04-Jun-1998' & [& \(1.3103 \mathrm{e}+08\)] \\
\hline '05-Jun-1998' & [& \(1.3831 \mathrm{e}+08\)] \\
\hline 08-Jun-1998' & [& \(1.4408 \mathrm{e}+08\)] \\
\hline '09-Jun-1998' & [& \(1.4815 \mathrm{e}+08\)] \\
\hline '10-Jun-1998' & [& \(1.4799 \mathrm{e}+08\)] \\
\hline '11-Jun-1998' & [& \(1.4380 \mathrm{e}+08\)] \\
\hline '12-Jun-1998' & [& \(1.4446 \mathrm{e}+08\)] \\
\hline '15-Jun-1998' & [& \(1.3979 \mathrm{e}+08\)] \\
\hline '16-Jun-1998' & [& \(1.3777 \mathrm{e}+08\)] \\
\hline '17-Jun-1998' & [& \(1.3652 e+08]\) \\
\hline '18-Jun-1998' & [& 1.2966e+08] \\
\hline '19-Jun-1998' & - & \(1.1837 \mathrm{e}+08\)] \\
\hline 22-Jun-1998' & [& 1.3223e+08] \\
\hline '23-Jun-1998' & , & \(1.3399 \mathrm{e}+08\)] \\
\hline '24-Jun-1998' & [& \(1.3803 \mathrm{e}+08\)] \\
\hline '25-Jun-1998' & , & \(1.3673 \mathrm{e}+08\)] \\
\hline '26-Jun-1998' & [& \(1.3274 \mathrm{e}+08\)] \\
\hline '29-Jun-1998' & & \(1.3486 \mathrm{e}+08\)] \\
\hline '30-Jun-1998' & [& \(1.1281 \mathrm{e}+08\)] \\
\hline '01-Jul-1998' & & \(1.0233 \mathrm{e}+08\)] \\
\hline '02-Jul-1998' & [& \(1.1043 \mathrm{e}+08\)] \\
\hline '03-Jul-1998' & [& \(\mathrm{NaN}]\) \\
\hline '06-Jul-1998' & [& \(1.1301 \mathrm{e}+08\)] \\
\hline '07-Jul-1998' & [& \(1.1412 \mathrm{e}+08\)] \\
\hline '08-Jul-1998' & [& \(1.1861 \mathrm{e}+08\)] \\
\hline '09-Jul-1998' & [& \(1.2762 \mathrm{e}+08\)] \\
\hline '10-Jul-1998' & [& \(1.3739 \mathrm{e}+08\)] \\
\hline '13-Jul-1998' & [& \(1.4771 \mathrm{e}+08\)] \\
\hline '14-Jul-1998' & [& \(1.4519 \mathrm{e}+08\)] \\
\hline '15-Jul-1998' & [& 1.3946e+08] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 16-Jul-1998' & [& \(1.4764 \mathrm{e}+08\)] \\
\hline '17-Jul-1998' & [& \(1.5053 \mathrm{e}+08\)] \\
\hline '20-Jul-1998' & [& \(1.4485 \mathrm{e}+08\)] \\
\hline '21-Jul-1998' & & \(1.4202 \mathrm{e}+08\)] \\
\hline 22-Jul-1998' & [& \(1.3889 \mathrm{e}+08\)] \\
\hline '23-Jul-1998' & [& \(1.3551 \mathrm{e}+08\)] \\
\hline 24-Jul-1998' & [& \(1.3804 \mathrm{e}+08\)] \\
\hline 27-Jul-1998' & & \(1.4119 \mathrm{e}+08\)] \\
\hline 28-Jul-1998' & & \(1.3756 \mathrm{e}+08\)] \\
\hline 29-Jul-1998' & & \(1.3719 \mathrm{e}+08\)] \\
\hline 30-Jul-1998' & [& \(1.4133 \mathrm{e}+08\)] \\
\hline 31-Jul-1998' & & \(1.3867 \mathrm{e}+08\)] \\
\hline 03-Aug-1998' & [& \(1.3764 \mathrm{e}+08\)] \\
\hline 04-Aug-1998' & [& \(1.3039 \mathrm{e}+08\)] \\
\hline 05-Aug-1998' & [& \(1.3385 \mathrm{e}+08\)] \\
\hline 06-Aug-1998' & [& \(1.3131 \mathrm{e}+08\)] \\
\hline 07-Aug-1998' & [& \(1.3351 \mathrm{e}+08\)] \\
\hline 10-Aug-1998' & [& \(1.3167 \mathrm{e}+08\)] \\
\hline 11-Aug-1998' & [& \(1.3417 \mathrm{e}+08\)] \\
\hline 12-Aug-1998' & [& \(1.3371 \mathrm{e}+08\)] \\
\hline '13-Aug-1998' & [& \(1.3016 \mathrm{e}+08\)] \\
\hline 14-Aug-1998' & [& 1.2945e+08] \\
\hline '17-Aug-1998' & [& \(1.3335 \mathrm{e}+08\)] \\
\hline '18-Aug-1998' & [& \(1.3820 \mathrm{e}+08\)] \\
\hline '19-Aug-1998' & [& \(1.3748 \mathrm{e}+08\)] \\
\hline '20-Aug-1998' & [& \(1.3925 \mathrm{e}+08\)] \\
\hline '21-Aug-1998' & [& \(1.4275 \mathrm{e}+08\)] \\
\hline 24-Aug-1998' & [& \(1.4275 \mathrm{e}+08\)] \\
\hline 25-Aug-1998' & [& \(1.4200 \mathrm{e}+08\)] \\
\hline 26-Aug-1998' & [& \(1.4140 \mathrm{e}+08\)] \\
\hline '27-Aug-1998' & [& \(1.4169 \mathrm{e}+08\)] \\
\hline '28-Aug-1998' & [& \(1.3954 \mathrm{e}+08\)] \\
\hline '31-Aug-1998' & [& \(1.3440 \mathrm{e}+08\)] \\
\hline '01-Sep-1998' & [& \(1.4822 \mathrm{e}+08\)] \\
\hline '02-Sep-1998' & [& \(1.4225 \mathrm{e}+08\)] \\
\hline '03-Sep-1998' & [& \(1.3760 \mathrm{e}+08\)] \\
\hline 04-Sep-1998' & [& \(1.3912 \mathrm{e}+08\)] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline '07-Sep-1998 ' & NaN] \\
\hline '08-Sep-1998' & 1.3885e+08] \\
\hline '09-Sep-1998' & 1.3327e+08] \\
\hline '10-Sep-1998' & \(1.3144 e+08]\) \\
\hline '11-Sep-1998' & 1.2467e+08] \\
\hline '14-Sep-1998' & 1.2038e+08] \\
\hline '15-Sep-1998' & 1.3129e+08] \\
\hline '16-Sep-1998' & \(1.3501 \mathrm{e}+08\)] \\
\hline '17-Sep-1998' & \(1.4020 \mathrm{e}+08\)] \\
\hline '18-Sep-1998' & 1.4153e+08] \\
\hline '21-Sep-1998' & \(1.4153 e+08]\) \\
\hline '22-Sep-1998' & 1.4085e+08] \\
\hline '23-Sep-1998' & \(1.4682 \mathrm{e}+08\)] \\
\hline '24-Sep-1998' & 1.4172e+08] \\
\hline '25-Sep-1998' & 1.3954e+08] \\
\hline '28-Sep-1998' & 1.4274e+08] \\
\hline '29-Sep-1998' & \(1.4104 \mathrm{e}+08\)] \\
\hline ' 30-Sep-1998' & 1.3877e+08] \\
\hline '01-0ct-1998' & 1.3993e+08] \\
\hline '02-0ct-1998' & 1.4098e+08] \\
\hline '05-0ct-1998' & 1.4028e+08] \\
\hline '06-0ct-1998' & 1.3946e+08] \\
\hline '07-0ct-1998' & 1.3735e+08] \\
\hline '08-0ct-1998' & 1.3540e+08] \\
\hline '09-0ct-1998' & 1.4037e+08] \\
\hline '12-0ct-1998' & 1.3855e+08] \\
\hline '13-0ct-1998' & 1.4257e+08] \\
\hline '14-0ct-1998' & 1.3828e+08] \\
\hline '15-0ct-1998' & \(1.4277 e+08]\) \\
\hline '16-0ct-1998' & 1.4186e+08] \\
\hline '19-0ct-1998' & 1.4694e+08] \\
\hline '20-0ct-1998' & 1.4955e+08] \\
\hline '21-0ct-1998' & 1.5230 +08\(]\) \\
\hline '22-0ct-1998' & 1.5591e+08] \\
\hline '23-0ct-1998' & \(1.5913 e+08]\) \\
\hline '26-0ct-1998' & 1.6166e+08] \\
\hline '27-0ct-1998' & 1.5644e+08] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 28-Oct-1998' & [& \(1.5671 \mathrm{e}+08\)] \\
\hline '29-0ct-1998' & [& \(1.5797 \mathrm{e}+08\)] \\
\hline '30-0ct-1998' & [& \(1.5797 \mathrm{e}+08\)] \\
\hline '02-Nov-1998' & [& \(1.6254 \mathrm{e}+08\)] \\
\hline '03-Nov-1998' & [& \(1.6736 \mathrm{e}+08\)] \\
\hline '04-Nov-1998' & [& \(1.5927 \mathrm{e}+08\)] \\
\hline '05-Nov-1998' & [& \(1.6632 \mathrm{e}+08\)] \\
\hline '06-Nov-1998' & [& \(1.6678 \mathrm{e}+08\)] \\
\hline '09-Nov-1998' & [& \(1.6375 \mathrm{e}+08\)] \\
\hline '10-Nov-1998' & [& \(1.6083 \mathrm{e}+08\)] \\
\hline '11-Nov-1998' & [& \(1.5757 \mathrm{e}+08\)] \\
\hline '12-Nov-1998' & [& \(1.5871 \mathrm{e}+08\)] \\
\hline '13-Nov-1998' & [& \(1.6109 \mathrm{e}+08\)] \\
\hline '16-Nov-1998' & [& \(1.5808 \mathrm{e}+08\)] \\
\hline '17-Nov-1998' & [& \(1.6032 \mathrm{e}+08\)] \\
\hline '18-Nov-1998' & [& \(1.6419 \mathrm{e}+08\)] \\
\hline '19-Nov-1998' & [& \(1.6071 \mathrm{e}+08\)] \\
\hline '20-Nov-1998' & [& \(1.6273 \mathrm{e}+08\)] \\
\hline '23-Nov-1998' & [& \(1.6957 \mathrm{e}+08\)] \\
\hline '24-Nov-1998' & [& \(1.6402 \mathrm{e}+08\)] \\
\hline '25-Nov-1998' & [& \(1.7035 \mathrm{e}+08\)] \\
\hline '26-Nov-1998' & [& \(\mathrm{NaN}]\) \\
\hline '27-Nov-1998' & [& \(1.7304 \mathrm{e}+08\)] \\
\hline '30-Nov-1998' & [& \(1.7119 \mathrm{e}+08\)] \\
\hline '01-Dec-1998' & [& \(1.7029 \mathrm{e}+08\)] \\
\hline '02-Dec-1998' & [& \(1.7181 \mathrm{e}+08\)] \\
\hline '03-Dec-1998' & [& \(1.6779 \mathrm{e}+08\)] \\
\hline '04-Dec-1998' & [& \(1.6584 \mathrm{e}+08\)] \\
\hline '07-Dec-1998' & [& \(1.6348 \mathrm{e}+08\)] \\
\hline '08-Dec-1998' & [& \(1.6524 \mathrm{e}+08\)] \\
\hline '09-Dec-1998' & [& \(1.7071 \mathrm{e}+08\)] \\
\hline '10-Dec-1998' & [& \(1.6662 \mathrm{e}+08\)] \\
\hline '11-Dec-1998' & [& \(1.7031 \mathrm{e}+08\)] \\
\hline '14-Dec-1998' & [& \(1.6884 \mathrm{e}+08\)] \\
\hline '15-Dec-1998' & [& \(1.6445 \mathrm{e}+08\)] \\
\hline '16-Dec-1998' & [& \(1.6202 \mathrm{e}+08\)] \\
\hline '17-Dec-1998' & [& \(1.6047 \mathrm{e}+08\)] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '18-Dec-1998' & [& \(1.6489 \mathrm{e}+08\)] \\
\hline '21-Dec-1998' & [& 1.6659e+08] \\
\hline '22-Dec-1998' & [& \(1.5987 e+08]\) \\
\hline '23-Dec-1998' & [& 1.6483e+08] \\
\hline '24-Dec-1998' & [& \(1.6348 \mathrm{e}+08\)] \\
\hline '25-Dec-1998' & [& \(\mathrm{NaN}]\) \\
\hline '28-Dec-1998' & [& \(1.6119 \mathrm{e}+08\)] \\
\hline '29-Dec-1998' & [& 1.6055e+08] \\
\hline '30-Dec-1998' & [& \(1.5716 e+08]\) \\
\hline '31-Dec-1998' & [& 1.6026e+08] \\
\hline '01-Jan-1999' & [& NaN] \\
\hline '04-Jan-1999' & [& \(1.5624 \mathrm{e}+08 \mathrm{]}\) \\
\hline '05-Jan-1999' & [& \(1.6164 \mathrm{e}+08\)] \\
\hline '06-Jan-1999' & [& \(1.7107 e+08]\) \\
\hline '07-Jan-1999' & [& \(1.8204 \mathrm{e}+08\)] \\
\hline '08-Jan-1999' & [& \(1.8738 \mathrm{e}+08\)] \\
\hline '11-Jan-1999' & [& \(2.0112 \mathrm{e}+081\) \\
\hline '12-Jan-1999' & [& \(2.0288 \mathrm{e}+08\)] \\
\hline '13-Jan-1999' & [& \(2.0548 \mathrm{e}+08\)] \\
\hline '14-Jan-1999' & [& \(2.0058 \mathrm{e}+08\)] \\
\hline '15-Jan-1999' & [& \(1.9866 \mathrm{e}+08\)] \\
\hline '18-Jan-1999' & [& \(\mathrm{NaN}]\) \\
\hline '19-Jan-1999' & [& \(2.0352 \mathrm{e}+08\)] \\
\hline '20-Jan-1999' & [& \(1.9785 \mathrm{e}+08\)] \\
\hline '21-Jan-1999' & [& \(1.9387 e+08]\) \\
\hline '22-Jan-1999' & [& 1.9106e+08] \\
\hline '25-Jan-1999' & [& \(1.9464 \mathrm{e}+08\)] \\
\hline '26-Jan-1999' & [& \(1.9255 e+08]\) \\
\hline '27-Jan-1999' & [& \(1.8437 \mathrm{e}+081\) \\
\hline '28-Jan-1999' & [& 1.7652e+08] \\
\hline '29-Jan-1999' & [& 1.6766e+08] \\
\hline '01-Feb-1999' & [& 1.6935e+08] \\
\hline '02-Feb-1999' & [& 1.7105e+08] \\
\hline '03-Feb-1999' & [& 1.7237e+08] \\
\hline '04-Feb-1999' & [& 1.6792e+08] \\
\hline '05-Feb-1999' & [& 1.6955e+08] \\
\hline '08-Feb-1999' & [& 1.6885e+08] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{2-Fab-1999'} \\
\hline \multicolumn{2}{|l|}{Feb-1999'} \\
\hline \multicolumn{2}{|l|}{'16-Feb} \\
\hline \multicolumn{2}{|l|}{'17-Feb-1999'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{' 19-Feb-1999} \\
\hline \multicolumn{2}{|l|}{' 22-F} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'24-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{25-F} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'01-Mar-199} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'03-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'04-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{8-Mar-1999} \\
\hline \multicolumn{2}{|l|}{'09-Mar} \\
\hline \multicolumn{2}{|l|}{10-Mar-1999} \\
\hline \multicolumn{2}{|l|}{-Ma} \\
\hline \multicolumn{2}{|l|}{'12-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'16-M} \\
\hline \multicolumn{2}{|l|}{'17-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{+} \\
\hline \multicolumn{2}{|l|}{-Ma} \\
\hline \multicolumn{2}{|l|}{'23-Ma} \\
\hline \multicolumn{2}{|l|}{24-Ma} \\
\hline \multicolumn{2}{|l|}{'25-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'26-Mar-1999'} \\
\hline & \\
\hline
\end{tabular}
\(1.6368 e+08]\)
\(1.6801 e+08]\)
\(1.7214 e+08]\)
\(1.7712 e+08]\)
\(\mathrm{NaN}]\)
\(1.7531 \mathrm{e}+08\)]
\(1.7490 \mathrm{e}+08\)]
\(1.7393 e+08]\)
\(1.7235 \mathrm{e}+08\)]
\(1.7507 e+08]\)
\(1.7011 e+08]\)
\(1.6540 e+08]\)
\(1.6399 \mathrm{e}+08\)]
\(1.6621 \mathrm{e}+08\)]
\(1.6495 e+08]\)
\(1.6158 \mathrm{e}+08\)]
\(1.5829 e+08]\)
\(1.6170 \mathrm{e}+08\)]
\(1.6245 e+08]\)
\(1.6447 e+08]\)
\(1.6032 e+08]\)
\(1.5677 \mathrm{e}+08]\)
\(1.5883 \mathrm{e}+08\)]
\(1.5951 \mathrm{e}+08\)]
\(1.5975 \mathrm{e}+08\)]
\(1.5555 \mathrm{e}+08\)]
\(1.5133 \mathrm{e}+08\)]
\(1.5399 e+08]\)
\(1.5065 e+08]\)
\(1.4776 e+08]\)
\(1.4331 e+08]\)
\(1.4814 \mathrm{e}+08\)]
\(1.5079 \mathrm{e}+08\)]
\(1.4857 e+08]\)
\(1.5129 e+08]\)

\author{
References Achelis, Steven B., Technical Analysis from A to Z, Second Edition, McGraw-Hill, 1995, pp. 56-58. \\ See Also adosc | willad | willpctr
}

\section*{Purpose Accumulation/Distribution oscillator}
```

Syntax

```
```

ado = adosc(highp, lowp, openp, closep)

```
ado = adosc(highp, lowp, openp, closep)
ado = adosc([highp lowp openp closep])
ado = adosc([highp lowp openp closep])
adots = adosc(tsobj)
adots = adosc(tsobj)
adots = adosc(tsojb, ParameterName, ParameterValue, ...)
```

adots = adosc(tsojb, ParameterName, ParameterValue, ...)

```

\section*{Arguments}
\begin{tabular}{ll}
highp & High price (vector) \\
lowp & Low price (vector) \\
openp & Opening price (vector) \\
closep & Closing price (vector) \\
tsobj & Time series object
\end{tabular}
ado = adosc(highp, lowp, openp, closep) returns a vector, ado, that represents the Accumulation/Distribution (A/D) oscillator. The A/D oscillator is calculated based on the high, low, opening, and closing prices of each period. Each period is treated individually.
ado = adosc([highp lowp openp closep]) accepts a four-column matrix as input. The order of the columns must be high, low, opening, and closing prices.
adots \(=\) adosc(tsobj) calculates the Accumulation/Distribution (A/D) oscillator, adots, for the set of stock price data contained in the financial time series object tsobj. The object must contain the high, low, opening, and closing prices. The function assumes that the series are named High, Low, Open, and Close. All are required. adots is a financial time series object with similar dates to tsobj and only one series named ADOsc.
adots \(=\) adosc(tsobj, ParameterName, ParameterValue, ...) accepts parameter name-parameter value pairs as input. These pairs

\section*{adosc}
specify the name(s) for the required data series if it is different from the expected default name(s). Valid parameter names are
- HighName: high prices series name
- LowName: low prices series name
- OpenName: opening prices series name
- CloseName: closing prices series name

Parameter values are the strings that represents the valid parameter names.

\section*{Examples}

\section*{Calculate the Accumulation/Distribution Oscillator for a Stock}

This example shows how to find the Accumulation/Distribution oscillator for Disney stock and plot the results.
```

load disney.mat
dis_ADOsc = adosc(dis)
plot(dis_ADOsc)
title('A/D Oscillator for Disney')

```
dis_ADOsc =
 desc: ADOscillator: Walt Disney Company (DIS)
 freq: Unknown (0)
 'dates: (782)' 'ADOsc: (782)
 '29-Mar-1996' [64.7447]
 '01-Apr-1996' [173.3173]
 '02-Apr-1996' [174.1587]
 '03-Apr-1996' [207.9200]
 '04-Apr-1996' [80.3600]
 '05-Apr-1996' [NaN]
 '08-Apr-1996' [105.5229]
 '09-Apr-1996' [58.2485]
 '10-Apr-1996' [25.6434]
\begin{tabular}{|c|c|c|}
\hline '11-Apr-1996' & [& \(54.5961]\) \\
\hline '12-Apr-1996' & [& \(103.9100]\) \\
\hline '15-Apr-1996' & [& \(90.4317]\) \\
\hline '16-Apr-1996' & [& 75.3467] \\
\hline '17-Apr-1996' & [& 121.6029] \\
\hline '18-Apr-1996' & [& \(143.0600]\) \\
\hline '19-Apr-1996' & [& \(118.8600]\) \\
\hline '22-Apr-1996' & [& \(55.4400]\) \\
\hline '23-Apr-1996' & [& \(55.3821]\) \\
\hline '24-Apr-1996' & [& 50.1760] \\
\hline '25-Apr-1996' & [& 110.9467] \\
\hline '26-Apr-1996' & [& \(95.3477]\) \\
\hline '29-Apr-1996' & [& 163.9157] \\
\hline '30-Apr-1996' & [& \(139.5181]\) \\
\hline '01-May-1996' & [& \(45.3365]\) \\
\hline '02-May-1996' & [& \(66.2667]\) \\
\hline '03-May-1996' & [& \(33.2067]\) \\
\hline '06-May-1996' & [& 103.0407] \\
\hline '07-May-1996' & [& \(73.8000]\) \\
\hline '08-May-1996' & [& \(98.5337]\) \\
\hline '09-May-1996' & [& \(49.0665]\) \\
\hline '10-May-1996' & [& \(98.5372]\) \\
\hline '13-May-1996' & [& \(121.7756]\) \\
\hline '14-May-1996' & [& \(100.0239]\) \\
\hline '15-May-1996' & [& \(59.0721]\) \\
\hline '16-May-1996' & [& 119.1847] \\
\hline '17-May-1996' & , & \(149.5455]\) \\
\hline '20-May-1996' & [& 121.7808] \\
\hline '21-May-1996' & [& 87.1397] \\
\hline '22-May-1996' & [& 140.7530] \\
\hline '23-May-1996' & , & \(55.6004]\) \\
\hline '24-May-1996' & [& \(109.8600]\) \\
\hline '27-May-1996' & [& NaN] \\
\hline '28-May-1996' & [& \(60.0764]\) \\
\hline ' 29-May-1996' & [& 31.2569] \\
\hline '30-May-1996' & [& 116.4133] \\
\hline '31-May-1996' & [& \(61.3467]\) \\
\hline
\end{tabular}
'03-Jun-1996'
'04-Jun-1996'
05-Jun-1996'
'06-Jun-1996'
'07-Jun-1996'
'10-Jun-1996'
'11-Jun-1996'
'12-Jun-1996'
'13-Jun-1996'
'14-Jun-1996'
'17-Jun-1996'
'18-Jun-1996'
'19-Jun-1996'
'20-Jun-1996'
'21-Jun-1996'
'24-Jun-1996'
'25-Jun-1996'
'26-Jun-1996'
'27-Jun-1996'
'28-Jun-1996'
'01-Jul-1996'
'02-Jul-1996'
'03-Jul-1996'
'04-Jul-1996'
'05-Jul-1996'
'08-Jul-1996'
'09-Jul-1996'
'10-Jul-1996'
'11-Jul-1996'
'12-Jul-1996'
'15-Jul-1996'
'16-Jul-1996'
'17-Jul-1996'
'18-Jul-1996'
'19-Jul-1996'
'22-Jul-1996'
'23-Jul-1996'
136.2275]
85.1027]
115.8667]
78.5757]
109.6997]
\(51.8619]\)
109.8600]
118.0400]
\(76.2400]\)
100.5498]
\(134.0400]\)
\(60.3606]\)
150.3313]
112.7778]
111.9188]
76.8600]
151.0788]
82.6276]
\(144.3814]\)
68.3200]
87.0377]
45.8273]
72.8275]

NaN]
\(55.5556]\)
76.1329]
34.7170]
98.0988]
\(27.1246]\)
106.6667]
17.3650]
85.8993]
35.9700]
114.1333]
86.8800]
42.2400]
53.1737]
\begin{tabular}{|c|c|c|}
\hline '24-Jul-1996' & [& 76.5745] \\
\hline '25-Jul-1996' & [& \(77.0270]\) \\
\hline '26-Jul-1996' & [& 71.4748] \\
\hline '29-Jul-1996' & [& \(59.3400]\) \\
\hline '30-Jul-1996' & [& 113.1832] \\
\hline '31-Jul-1996' & [& 113.1733] \\
\hline '01-Aug-1996' & [& 117.3105] \\
\hline '02-Aug-1996' & [& \(55.6529]\) \\
\hline '05-Aug-1996' & [& 117.5721] \\
\hline '06-Aug-1996' & [& 131.6000] \\
\hline '07-Aug-1996' & [& \(61.3473]\) \\
\hline '08-Aug-1996' & [& \(54.6847]\) \\
\hline '09-Aug-1996' & [& \(86.4833]\) \\
\hline '12-Aug-1996' & [& \(98.8456]\) \\
\hline '13-Aug-1996' & [& 69.6918] \\
\hline '14-Aug-1996' & [& 178.5200] \\
\hline '15-Aug-1996' & [& 76.0153] \\
\hline '16-Aug-1996' & [& \(178.5200]\) \\
\hline '19-Aug-1996' & [& \(62.6712]\) \\
\hline '20-Aug-1996' & [& \(55.8600]\) \\
\hline '21-Aug-1996' & [& 114.6267] \\
\hline '22-Aug-1996' & [& 104.3994] \\
\hline '23-Aug-1996' & [& 109.3733] \\
\hline '26-Aug-1996' & [& \(126.5333]\) \\
\hline '27-Aug-1996' & [& 68.0389] \\
\hline '28-Aug-1996' & [& \(55.2096]\) \\
\hline '29-Aug-1996' & [& 64.3438] \\
\hline '30-Aug-1996' & [& \(58.3534]\) \\
\hline '02-Sep-1996' & [& \(\mathrm{NaN}]\) \\
\hline '03-Sep-1996' & [& 145.6731] \\
\hline '04-Sep-1996' & [& 105.9856] \\
\hline '05-Sep-1996' & [& 42.7885] \\
\hline '06-Sep-1996' & [& 105.7579] \\
\hline '09-Sep-1996' & [& 125.8133] \\
\hline '10-Sep-1996' & [& \(76.7466]\) \\
\hline '11-Sep-1996' & [& 135.3892] \\
\hline '12-Sep-1996' & [& 117.3070] \\
\hline
\end{tabular}
'13-Sep-1996'
'16-Sep-1996'
'17-Sep-1996'
'18-Sep-1996'
'19-Sep-1996'
'20-Sep-1996'
'23-Sep-1996'
'24-Sep-1996'
'25-Sep-1996'
'26-Sep-1996'
'27-Sep-1996'
'30-Sep-1996'
'01-0ct-1996'
'02-0ct-1996'
'03-0ct-1996'
'04-0ct-1996'
'07-0ct-1996'
'08-0ct-1996'
'09-0ct-1996'
'10-0ct-1996'
'11-0ct-1996'
'14-0ct-1996'
'15-0ct-1996'
'16-0ct-1996'
'17-0ct-1996'
'18-0ct-1996'
'21-0ct-1996'
'22-0ct-1996'
'23-0ct-1996'
'24-0ct-1996'
'25-0ct-1996'
'28-0ct-1996'
'29-0ct-1996'
'30-0ct-1996'
'31-0ct-1996'
'01-Nov-1996'
'04-Nov-1996'
\(100.3600]\)
50.2700]
\(99.9170]\)
117.3400]
109.7486]
95.7508]
144.1400]
68.4800]
115.8084]
54.5283]
114.5415]
112.5067]
46.3333]
113.7725]
103.4856]
101.6812]
155.4819]
95.5842]
102.9429]
\(112.2600]\)
104.3600]
131.6467]
91.9333]
117.4077]
48.3867]
157.4850]
122.7778]
131.6000]
81.6200]
57.9258]
136.8800]
109.6679]
\(48.6254]\)
108.9222]
104.9486]
53.7650]
121.9316]
\begin{tabular}{|c|c|c|}
\hline 05-Nov-1996' & [& 141.5582] \\
\hline '06-Nov-1996' & [& \(99.2702]\) \\
\hline '07-Nov-1996' & [& 122.4454] \\
\hline '08-Nov-1996' & [& \(92.7740]\) \\
\hline '11-Nov-1996' & [& 123.2720] \\
\hline '12-Nov-1996' & [& \(96.8577]\) \\
\hline '13-Nov-1996' & [& \(90.0800]\) \\
\hline '14-Nov-1996' & [& \(120.5755]\) \\
\hline '15-Nov-1996' & [& 100.6267] \\
\hline '18-Nov-1996' & [& \(64.7297]\) \\
\hline '19-Nov-1996' & [& \(69.5197]\) \\
\hline '20-Nov-1996' & [& \(140.0800]\) \\
\hline '21-Nov-1996' & [& \(108.4234]\) \\
\hline '22-Nov-1996' & [& \(70.0437]\) \\
\hline '25-Nov-1996' & [& \(103.9492]\) \\
\hline '26-Nov-1996' & [& \(94.7599]\) \\
\hline '27-Nov-1996' & [& \(38.1304]\) \\
\hline '28-Nov-1996' & [& \(\mathrm{NaN}]\) \\
\hline '29-Nov-1996' & [& \(115.4940]\) \\
\hline '02-Dec-1996' & [& \(77.3000]\) \\
\hline '03-Dec-1996' & [& \(26.4733]\) \\
\hline '04-Dec-1996' & [& \(82.0387]\) \\
\hline '05-Dec-1996' & [& 102.4570] \\
\hline '06-Dec-1996' & [& 100.4944] \\
\hline '09-Dec-1996' & [& 103.4576] \\
\hline '10-Dec-1996' & [& 115.3453] \\
\hline '11-Dec-1996' & , & 74.5749] \\
\hline '12-Dec-1996' & [& 24.6398] \\
\hline '13-Dec-1996' & , & \(109.5852]\) \\
\hline '16-Dec-1996' & [& \(47.5952]\) \\
\hline '17-Dec-1996' & , & 109.5952] \\
\hline '18-Dec-1996' & [& \(117.9200]\) \\
\hline '19-Dec-1996' & , & 123.9333] \\
\hline '20-Dec-1996' & [& \(37.5901]\) \\
\hline '23-Dec-1996' & [& 111.4000] \\
\hline '24-Dec-1996' & [& \(66.7188]\) \\
\hline '25-Dec-1996' & [& NaN] \\
\hline
\end{tabular}
'26-Dec-1996'
\(95.6156]\)
'27-Dec-1996'
'30-Dec-1996'
'31-Dec-1996'
'01-Jan-1997'
'02-Jan-1997'
'03-Jan-1997'
'06-Jan-1997'
'07-Jan-1997'
'08-Jan-1997'
'09-Jan-1997'
'10-Jan-1997'
'13-Jan-1997'
'14-Jan-1997'
'15-Jan-1997'
'16-Jan-1997'
'17-Jan-1997'
'20-Jan-1997'
'21-Jan-1997'
'22-Jan-1997'
'23-Jan-1997'
'24-Jan-1997'
'27-Jan-1997'
'28-Jan-1997'
'29-Jan-1997'
'30-Jan-1997'
'31-Jan-1997'
'03-Feb-1997'
' 04-Feb-1997'
' 05-Feb-1997'
' 06-Feb-1997'
' 07-Feb-1997'
'10-Feb-1997'
'11-Feb-1997'
'12-Feb-1997'
'13-Feb-1997'
'14-Feb-1997'
68.4533]
\(33.1647]\)
78.5733]
\(\mathrm{NaN}]\)
\(26.2284]\)
105.0000]
\(67.1733]\)
100.2800]
40.5680]
\(62.7900]\)
120.6100]
71.3702]
100.4900]
82.6528]
65.6678]
\(120.7554]\)
83.4375]
141.7464]
100.8948]
69.0528]
88.4910]
91.9712]
38.4470]
122.1321]
30.0300]
112.6000]
110.6507]
106.5663]
54.5904]
125.2533]
114.7200]
\(71.6776]\)
49.0175]
116.9125]
\(76.0227]\)
80.6827]
\begin{tabular}{|c|c|c|}
\hline '17-Feb-1997' & [& NaN] \\
\hline '18-Feb-1997' & [& 104.3405] \\
\hline '19-Feb-1997' & [& 88.9448] \\
\hline '20-Feb-1997' & [& \(36.9265]\) \\
\hline '21-Feb-1997' & [& \(98.4267]\) \\
\hline '24-Feb-1997' & [& 102.5646] \\
\hline '25-Feb-1997' & [& \(56.2080]\) \\
\hline '26-Feb-1997' & [& \(49.6451]\) \\
\hline '27-Feb-1997' & [& \(137.8365]\) \\
\hline '28-Feb-1997' & [& \(72.9730]\) \\
\hline '03-Mar-1997' & [& \(83.8277]\) \\
\hline '04-Mar-1997' & [& \(53.5736]\) \\
\hline '05-Mar-1997' & [& \(85.5373]\) \\
\hline '06-Mar-1997' & [& 98.8152] \\
\hline '07-Mar-1997' & [& 111.0210] \\
\hline '10-Mar-1997' & [& \(99.1438]\) \\
\hline '11-Mar-1997' & [& \(77.9795]\) \\
\hline '12-Mar-1997' & [& \(32.9120]\) \\
\hline '13-Mar-1997' & [& \(30.3003]\) \\
\hline '14-Mar-1997' & [& \(106.2292]\) \\
\hline '17-Mar-1997' & [& \(101.9041]\) \\
\hline '18-Mar-1997' & [& 64.5756] \\
\hline '19-Mar-1997' & [& \(93.4856]\) \\
\hline '20-Mar-1997' & [& \(66.8263]\) \\
\hline '21-Mar-1997' & [& \(61.9863]\) \\
\hline '24-Mar-1997' & [& \(123.0216]\) \\
\hline '25-Mar-1997' & [& 73.2335] \\
\hline '26-Mar-1997' & [& \(92.0420]\) \\
\hline '27-Mar-1997' & [& \(59.8483]\) \\
\hline '28-Mar-1997' & [& NaN] \\
\hline '31-Mar-1997' & [& \(41.5240]\) \\
\hline '01-Apr-1997' & [& \(83.4934]\) \\
\hline '02-Apr-1997' & [& 71.4395] \\
\hline '03-Apr-1997' & [& \(101.7400]\) \\
\hline '04-Apr-1997' & [& \(111.5040]\) \\
\hline '07-Apr-1997' & [& \(88.4000]\) \\
\hline '08-Apr-1997' & [& 104.1781] \\
\hline
\end{tabular}
'09-Apr-1997'
87.9200]
'10-Apr-1997'
'11-Apr-1997'
'14-Apr-1997'
'15-Apr-1997'
'16-Apr-1997'
'17-Apr-1997'
'18-Apr-1997'
'21-Apr-1997'
'22-Apr-1997'
'23-Apr-1997'
'24-Apr-1997'
'25-Apr-1997'
'28-Apr-1997'
'29-Apr-1997'
'30-Apr-1997'
' 01 -May-1997'
' 02-May-1997'
' 05 -May-1997'
' 06-May-1997'
' 07 -May-1997'
' 08-May-1997'
' 09-May-1997'
'12-May-1997'
'13-May-1997'
'14-May-1997'
'15-May-1997'
'16-May-1997'
'19-May-1997'
' 20 -May-1997'
'21-May-1997'
'22-May-1997'
' 23 -May-1997'
'26-May-1997'
' 27 -May-1997'
'28-May-1997'
'29-May-1997'
\(72.9137]\)
59.6267]
44.3322]
94.4050]
109.8133]
87.1733]
107.0500]
\(76.0906]\)
91.9065]
\(99.5098]\)
35.2401]
\(65.8800]\)
105.1351]
106.9429]
100.0720]
\(57.6244]\)
50.6267]
109.9820]
113.5586]
25.5772]
97.0522]
115.6115]
102.7263]
55.5800]
56.7067]
\(77.2000]\)
29.2808]
107.3714]
\(88.1634]\)
\(37.5840]\)
\(70.0751]\)
101.0911]
\(\mathrm{NaN}]\)
104.4082]
92.1024]
39.7048]
\begin{tabular}{|c|c|c|}
\hline '30-May-1997' & [& \(85.5924]\) \\
\hline '02-Jun-1997' & [& \(27.6340]\) \\
\hline '03-Jun-1997' & [& 100.8413] \\
\hline '04-Jun-1997' & [& \(67.0800]\) \\
\hline '05-Jun-1997' & [& 85.9005] \\
\hline '06-Jun-1997' & [& 86.7865] \\
\hline '09-Jun-1997' & [& \(67.3600]\) \\
\hline '10-Jun-1997' & , & \(119.5796]\) \\
\hline '11-Jun-1997' & [& \(63.4880]\) \\
\hline '12-Jun-1997' & [& 101.2679] \\
\hline '13-Jun-1997' & [& 103.4463] \\
\hline '16-Jun-1997' & [& \(116.4089]\) \\
\hline '17-Jun-1997' & [& 74.2989] \\
\hline '18-Jun-1997' & [& \(66.0274]\) \\
\hline '19-Jun-1997' & [& \(86.7133]\) \\
\hline '20-Jun-1997' & [& \(46.6558]\) \\
\hline '23-Jun-1997' & [& \(27.2960]\) \\
\hline '24-Jun-1997' & [& 106.5217] \\
\hline '25-Jun-1997' & [& 61.4455] \\
\hline '26-Jun-1997' & [& \(63.4053]\) \\
\hline '27-Jun-1997' & I & 20.2326] \\
\hline '30-Jun-1997' & [& 79.6803] \\
\hline '01-Jul-1997' & & 38.3760] \\
\hline '02-Jul-1997' & [& \(51.5982]\) \\
\hline '03-Jul-1997' & [& \(53.9107]\) \\
\hline '04-Jul-1997' & [& NaN] \\
\hline '07-Jul-1997' & [& \(31.0829]\) \\
\hline '08-Jul-1997' & [& \(109.5800]\) \\
\hline '09-Jul-1997' & [& \(27.2824]\) \\
\hline '10-Jul-1997' & [& \(67.9291]\) \\
\hline '11-Jul-1997' & [& \(68.6331]\) \\
\hline '14-Jul-1997' & [& \(107.9039]\) \\
\hline '15-Jul-1997' & [& 87.6965] \\
\hline '16-Jul-1997' & [& \(97.1399]\) \\
\hline '17-Jul-1997' & [& \(40.9592]\) \\
\hline '18-Jul-1997' & [& \(34.9058]\) \\
\hline '21-Jul-1997' & [& \(47.6587]\) \\
\hline
\end{tabular}
'22-Jul-1997'
'23-Jul-1997'
'24-Jul-1997'
'25-Jul-1997'
'28-Jul-1997'
'29-Jul-1997'
'30-Jul-1997'
'31-Jul-1997'
' 01 -Aug-1997'
'04-Aug-1997'
'05-Aug-1997'
'06-Aug-1997'
' 07-Aug-1997'
'08-Aug-1997'
'11-Aug-1997'
'12-Aug-1997'
'13-Aug-1997'
'14-Aug-1997'
'15-Aug-1997'
'18-Aug-1997'
'19-Aug-1997'
'20-Aug-1997'
'21-Aug-1997'
'22-Aug-1997'
'25-Aug-1997'
'26-Aug-1997'
'27-Aug-1997'
'28-Aug-1997'
'29-Aug-1997'
'01-Sep-1997'
'02-Sep-1997'
'03-Sep-1997'
'04-Sep-1997'
'05-Sep-1997'
'08-Sep-1997'
'09-Sep-1997'
'10-Sep-1997'
83.4460]
\(32.9760]\)
81.6507]
\(68.0389]\)
\(126.0517]\)
109.3450]
103.8889]
53.8832]
\(67.6130]\)
87.8503]
31.6540]
\(108.8974]\)
\(22.9675]\)
99.3822]
\(70.5035]\)
35.0846]
58.2670]
54.8893]
40.6073]
82.8198]
\(97.6554]\)
97.4672]
31.1619]
118.2267]
\(75.4545]\)
38.6237]
84.7458]
45.9418]
60.7763]
\(\mathrm{NaN}]\)
114.9174]
102.1600]
24.0398]
68.6533]
23.3105]
\(86.4146]\)
57.0600]
\begin{tabular}{|c|c|c|}
\hline 11-Sep-1997' & [& \(41.6502]\) \\
\hline '12-Sep-1997' & [& \(103.0689]\) \\
\hline '15-Sep-1997' & [& \(79.0221]\) \\
\hline '16-Sep-1997' & [& \(105.6306]\) \\
\hline '17-Sep-1997' & [& 28.4477] \\
\hline '18-Sep-1997' & [& 78.4498] \\
\hline '19-Sep-1997' & [& 108.5371] \\
\hline 22-Sep-1997' & [& \(63.1878]\) \\
\hline 23-Sep-1997' & [& \(46.5915]\) \\
\hline 24-Sep-1997' & [& \(59.4125]\) \\
\hline '25-Sep-1997' & [& \(103.9107]\) \\
\hline 26-Sep-1997' & [& 86.9670] \\
\hline '29-Sep-1997' & [& \(86.3600]\) \\
\hline 30-Sep-1997' & [& \(94.1474]\) \\
\hline '01-Oct-1997' & [& \(102.0865]\) \\
\hline 02-Oct-1997' & [& \(109.7153]\) \\
\hline 03-0ct-1997' & [& 28.6341] \\
\hline 06-0ct-1997' & [& 29.4007] \\
\hline 07-Oct-1997' & [& \(101.9273]\) \\
\hline 08-Oct-1997' & [& 43.9669] \\
\hline 09-0ct-1997' & [& \(98.2800]\) \\
\hline 10-Oct-1997' & [& 85.9963] \\
\hline 13-0ct-1997' & [& \(122.4800]\) \\
\hline '14-Oct-1997' & [& \(96.2462]\) \\
\hline '15-0ct-1997' & [& \(78.0959]\) \\
\hline '16-0ct-1997' & [& 31.9991] \\
\hline 17-Oct-1997' & [& \(30.7949]\) \\
\hline '20-0ct-1997' & [& 89.6133] \\
\hline 21-Oct-1997' & [& 68.6441] \\
\hline '22-0ct-1997' & [& \(46.2227]\) \\
\hline 23-Oct-1997' & [& 67.1461] \\
\hline '24-Oct-1997' & [& 26.5431] \\
\hline 27-Oct-1997' & [& 14.2798] \\
\hline '28-0ct-1997' & [& \(100.1994]\) \\
\hline '29-0ct-1997' & [& \(72.7158]\) \\
\hline '30-Oct-1997' & [& 38.2457] \\
\hline '31-0ct-1997' & [& 84.2226] \\
\hline
\end{tabular}
' 03-Nov-1997'
04-Nov-1997'
' 05 - Nov-1997'
' 06-Nov-1997'
' 07 -Nov-1997'
' 10 -Nov-1997'
'11-Nov-1997'
'12-Nov-1997'
'13-Nov-1997'
'14-Nov-1997'
'17-Nov-1997'
'18-Nov-1997'
'19-Nov-1997'
' 20 -Nov-1997'
' 21 -Nov-1997'
' 24 -Nov-1997'
'25-Nov-1997'
'26-Nov-1997'
' 27 -Nov-1997'
'28-Nov-1997'
' 01-Dec-1997'
' 02-Dec-1997'
'03-Dec-1997'
'04-Dec-1997'
' 05-Dec-1997'
'08-Dec-1997'
'09-Dec-1997'
'10-Dec-1997'
'11-Dec-1997'
'12-Dec-1997'
'15-Dec-1997'
'16-Dec-1997'
'17-Dec-1997'
'18-Dec-1997'
'19-Dec-1997'
'22-Dec-1997'
'23-Dec-1997'
\begin{tabular}{|c|c|c|}
\hline '24-Dec-1997' & [& \(17.0959]\) \\
\hline '25-Dec-1997' & [& NaN] \\
\hline '26-Dec-1997' & [& \(53.6187]\) \\
\hline '29-Dec-1997' & [& \(94.3653]\) \\
\hline '30-Dec-1997' & [& 82.9867] \\
\hline '31-Dec-1997' & [& \(65.7006]\) \\
\hline '01-Jan-1998' & [& NaN] \\
\hline '02-Jan-1998' & [& \(68.1566]\) \\
\hline '05-Jan-1998' & [& \(32.6520]\) \\
\hline '06-Jan-1998' & [& \(90.0873]\) \\
\hline '07-Jan-1998' & [& \(90.6533]\) \\
\hline '08-Jan-1998' & [& \(45.2000]\) \\
\hline '09-Jan-1998' & [& \(15.3774]\) \\
\hline '12-Jan-1998' & [& \(66.2588]\) \\
\hline '13-Jan-1998' & [& 81.0549] \\
\hline '14-Jan-1998' & [& \(82.3800]\) \\
\hline '15-Jan-1998' & [& \(64.7380]\) \\
\hline '16-Jan-1998' & [& \(63.1393]\) \\
\hline '19-Jan-1998' & [& \(\mathrm{NaN}]\) \\
\hline '20-Jan-1998' & [& \(97.4700]\) \\
\hline '21-Jan-1998' & [& 62.4113] \\
\hline '22-Jan-1998' & [& 14.4812] \\
\hline '23-Jan-1998' & [& 83.6806] \\
\hline '26-Jan-1998' & [& \(27.9767]\) \\
\hline '27-Jan-1998' & [& \(90.9057]\) \\
\hline '28-Jan-1998' & [& 74.1505] \\
\hline '29-Jan-1998' & [& \(76.8240]\) \\
\hline '30-Jan-1998' & [& 75.9485] \\
\hline '02-Feb-1998' & [& \(100.4121]\) \\
\hline '03-Feb-1998' & [& \(75.8500]\) \\
\hline '04-Feb-1998' & [& \(98.6639]\) \\
\hline '05-Feb-1998' & [& \(52.3876]\) \\
\hline '06-Feb-1998' & [& \(86.7090]\) \\
\hline '09-Feb-1998' & [& \(26.5770]\) \\
\hline '10-Feb-1998' & [& \(66.0229]\) \\
\hline '11-Feb-1998' & [& \(106.8165]\) \\
\hline '12-Feb-1998' & [& \(71.1324]\) \\
\hline
\end{tabular}

107.5455]

NaN]
104.3765]
89.8177]
51.5217]
72.8875]
51.3133]
24.8420]
65.7733]
62.6375]
97.8453]
\(27.3214]\)
86.1634]
61.5800]
81.1600]
50.6293]
90.0631]
65.0218]
42.7778]
86.0873]
\(25.9872]\)
98.6192]
43.1368]
69.5300]
\(34.5356]\)
81.3745]
33.4750]
95.5748]
63.2300]
101.9865]
43.2197]
27.1246]
83.2357]
38.3939]
\(98.4576]\)
77.3159]
11.3878]
\begin{tabular}{|c|c|c|}
\hline '07-Apr-1998' & [& 49.8035] \\
\hline '08-Apr-1998' & [& \(36.4008]\) \\
\hline '09-Apr-1998' & [& 86.0368] \\
\hline '10-Apr-1998' & [& \(\mathrm{NaN}]\) \\
\hline '13-Apr-1998' & [& 104.3111] \\
\hline '14-Apr-1998' & [& 87.7702] \\
\hline '15-Apr-1998' & [& \(59.7406]\) \\
\hline '16-Apr-1998' & [& \(15.0000]\) \\
\hline '17-Apr-1998' & [& \(91.6033]\) \\
\hline '20-Apr-1998' & [& \(96.4409]\) \\
\hline '21-Apr-1998' & [& 83.7931] \\
\hline '22-Apr-1998' & [& \(96.2429]\) \\
\hline '23-Apr-1998' & [& \(39.4341]\) \\
\hline '24-Apr-1998' & [& \(35.2827]\) \\
\hline '27-Apr-1998' & [& \(68.0453]\) \\
\hline '28-Apr-1998' & [& \(55.8200]\) \\
\hline '29-Apr-1998' & [& \(62.1000]\) \\
\hline '30-Apr-1998' & [& \(55.6910]\) \\
\hline '01-May-1998' & [& 94.8402] \\
\hline '04-May-1998' & [& 71.1047] \\
\hline '05-May-1998' & [& \(38.7708]\) \\
\hline '06-May-1998' & [& \(13.3743]\) \\
\hline '07-May-1998' & [& \(22.3155]\) \\
\hline '08-May-1998' & [& \(80.9463]\) \\
\hline '11-May-1998' & [& 93.4041] \\
\hline '12-May-1998' & [& 12.6640] \\
\hline '13-May-1998' & [& \(52.8967]\) \\
\hline '14-May-1998' & [& \(50.6720]\) \\
\hline '15-May-1998' & [& 6.4843] \\
\hline '18-May-1998' & [& \(36.4616]\) \\
\hline '19-May-1998' & [& 52.0071] \\
\hline '20-May-1998' & [& \(95.9717]\) \\
\hline '21-May-1998' & [& 84.2313] \\
\hline '22-May-1998' & [& \(63.4532]\) \\
\hline '25-May-1998' & [& NaN] \\
\hline '26-May-1998' & [& 10.1081] \\
\hline '27-May-1998' & [& \(94.8209]\) \\
\hline
\end{tabular}
'28-May-1998'
'29-May-1998'
'01-Jun-1998'
'02-Jun-1998'
'03-Jun-1998'
'04-Jun-1998'
'05-Jun-1998'
'08-Jun-1998'
'09-Jun-1998'
'10-Jun-1998'
'11-Jun-1998'
'12-Jun-1998'
'15-Jun-1998'
'16-Jun-1998'
'17-Jun-1998'
'18-Jun-1998'
'19-Jun-1998'
'22-Jun-1998'
'23-Jun-1998'
'24-Jun-1998'
'25-Jun-1998'
'26-Jun-1998'
'29-Jun-1998'
'30-Jun-1998'
'01-Jul-1998'
'02-Jul-1998'
'03-Jul-1998'
'06-Jul-1998'
'07-Jul-1998'
'08-Jul-1998'
'09-Jul-1998'
'10-Jul-1998'
'13-Jul-1998'
'14-Jul-1998'
'15-Jul-1998'
'16-Jul-1998'
'17-Jul-1998'
\(38.5290]\)
\(34.0133]\)
11.8182]
\(23.2020]\)
\(31.1933]\)
\(67.2434]\)
\(86.3316]\)
\(84.1569]\)
\(77.4014]\)
72.6228]
16.8045]
\(37.8440]\)
\(30.2508]\)
\(56.9840]\)
\(60.8079]\)
\(11.5426]\)
\(22.9100]\)
89.2635]
57.1404]
\(93.1540]\)
\(48.9317]\)
15.7958]
85.2320]
10.6434]
54.0188]
81.0480]

NaN]
\(47.5600]\)
\(71.3323]\)
94.4949]
93.5853]
\(75.0625]\)
71.4015]
\(65.9040]\)
25.5422]
86.6218]
\(63.1400]\)
\begin{tabular}{|c|c|c|}
\hline 20-Jul-1998' & [& \(22.9120]\) \\
\hline '21-Jul-1998' & [& 19.7556] \\
\hline '22-Jul-1998' & [& \(55.8593]\) \\
\hline '23-Jul-1998' & [& \(27.0320]\) \\
\hline '24-Jul-1998' & [& 64.0395] \\
\hline '27-Jul-1998' & [& \(55.4578]\) \\
\hline '28-Jul-1998' & [& \(25.3900]\) \\
\hline '29-Jul-1998' & [& \(46.1936]\) \\
\hline '30-Jul-1998' & [& \(48.2700]\) \\
\hline '31-Jul-1998' & [& \(17.9160]\) \\
\hline '03-Aug-1998' & [& \(69.6300]\) \\
\hline '04-Aug-1998' & [& 7.8979] \\
\hline '05-Aug-1998' & [& \(57.0712]\) \\
\hline '06-Aug-1998' & [& \(33.6980]\) \\
\hline '07-Aug-1998' & [& \(50.4360]\) \\
\hline '10-Aug-1998' & [& \(26.7420]\) \\
\hline '11-Aug-1998' & [& 44.2891] \\
\hline '12-Aug-1998' & [& 70.1919] \\
\hline '13-Aug-1998' & [& \(33.4560]\) \\
\hline '14-Aug-1998' & [& \(26.4857]\) \\
\hline '17-Aug-1998' & [& 80.6756] \\
\hline '18-Aug-1998' & [& 79.3167] \\
\hline '19-Aug-1998' & [& \(26.6077]\) \\
\hline '20-Aug-1998' & [& 80.3042] \\
\hline '21-Aug-1998' & [& \(53.0267]\) \\
\hline '24-Aug-1998' & [& \(28.0889]\) \\
\hline '25-Aug-1998' & [& 65.0423] \\
\hline '26-Aug-1998' & [& \(44.6889]\) \\
\hline '27-Aug-1998' & [& \(44.0973]\) \\
\hline '28-Aug-1998' & [& \(38.4985]\) \\
\hline '31-Aug-1998' & [& 17.8695] \\
\hline '01-Sep-1998' & [& \(85.1527]\) \\
\hline '02-Sep-1998' & [& \(27.0437]\) \\
\hline '03-Sep-1998' & [& 17.8143] \\
\hline '04-Sep-1998' & [& \(37.3480]\) \\
\hline '07-Sep-1998' & [& NaN] \\
\hline '08-Sep-1998' & [& \(36.3306]\) \\
\hline
\end{tabular}
'09-Sep-1998'
10.3367]
'10-Sep-1998'
'11-Sep-1998'
' 14-Sep-1998'
'15-Sep-1998'
'16-Sep-1998'
'17-Sep-1998'
'18-Sep-1998'
'21-Sep-1998'
'22-Sep-1998'
'23-Sep-1998'
'24-Sep-1998'
'25-Sep-1998'
'28-Sep-1998'
'29-Sep-1998'
'30-Sep-1998'
'01-0ct-1998'
'02-0ct-1998'
'05-0ct-1998'
'06-0ct-1998'
'07-0ct-1998'
'08-0ct-1998'
'09-0ct-1998'
'12-0ct-1998'
'13-0ct-1998'
'14-0ct-1998'
'15-0ct-1998'
'16-0ct-1998'
'19-0ct-1998'
'20-0ct-1998'
'21-0ct-1998'
'22-0ct-1998'
'23-0ct-1998'
'26-0ct-1998'
'27-0ct-1998'
'28-0ct-1998'
'29-0ct-1998'
41.4000]
21.2888]
\(22.3527]\)
\(90.1164]\)
\(76.2931]\)
\(99.2800]\)
49.3667]
\(67.6200]\)
60.1868]
\(72.1760]\)
17.9055]
\(67.7300]\)
61.6200]
37.9336]
\(27.3644]\)
49 .2800]
\(64.5440]\)
40.9800]
28.9548]
34.1091]
\(30.0046]\)
47.6390]

40]
84.7947]
22.7273]
89.6661]

25]
100]
\(76.2195]\)
\(76.9704]\)
60.0053]
45.8333]
\(50.0500]\)
\(3.1500]\)
\(28.5986]\)
41.6667]
\begin{tabular}{|c|c|c|}
\hline 30-Oct-1998' & [& \(58.3667]\) \\
\hline 02-Nov-1998' & [& \(88.9152]\) \\
\hline 03-Nov-1998' & [& \(85.7429]\) \\
\hline 04-Nov-1998' & [& \(9.2472]\) \\
\hline 05-Nov-1998' & [& \(88.9000]\) \\
\hline 06-Nov-1998' & [& \(61.5456]\) \\
\hline 09-Nov-1998' & [& 14.2912] \\
\hline 10-Nov-1998' & [& \(27.2562]\) \\
\hline 11-Nov-1998' & [& \(31.2500]\) \\
\hline 12-Nov-1998' & [& 40.9520] \\
\hline 13-Nov-1998' & [& 66.6667] \\
\hline 16-Nov-1998' & [& \(36.7004]\) \\
\hline 17-Nov-1998' & [& \(50.0364]\) \\
\hline 18-Nov-1998' & [& 75] \\
\hline 19-Nov-1998' & [& \(41.7000]\) \\
\hline 20-Nov-1998' & [& \(55.5506]\) \\
\hline 23-Nov-1998' & [& \(96.4286]\) \\
\hline 24-Nov-1998' & [& \(54.5636]\) \\
\hline 25-Nov-1998' & [& \(92.8599]\) \\
\hline 26-Nov-1998' & [& NaN] \\
\hline 27-Nov-1998' & [& 83.3460] \\
\hline \(30-N o v-1998{ }^{\prime}\) & [& \(42.0134]\) \\
\hline 01-Dec-1998' & [& \(28.5714]\) \\
\hline 02-Dec-1998' & [& 41.7000] \\
\hline 03-Dec-1998' & [& 27.7778] \\
\hline 04-Dec-1998' & [& 43.7500] \\
\hline 07-Dec-1998' & [& \(38.2408]\) \\
\hline 08-Dec-1998' & [& \(79.4256]\) \\
\hline 09-Dec-1998' & [& \(90.7676]\) \\
\hline 10-Dec-1998' & [& \(10.9006]\) \\
\hline 11-Dec-1998' & [& \(45.0000]\) \\
\hline 14-Dec-1998' & [& \(25]\) \\
\hline 15-Dec-1998' & [& 31.8049] \\
\hline '16-Dec-1998' & [& \(25]\) \\
\hline '17-Dec-1998' & [& \(64.2694]\) \\
\hline '18-Dec-1998' & [& 46.4571] \\
\hline 21-Dec-1998' & [& \(61.7702]\) \\
\hline
\end{tabular}
'22-Dec-1998'
'23-Dec-1998'
'24-Dec-1998'
'25-Dec-1998'
'28-Dec-1998'
'29-Dec-1998'
'30-Dec-1998'
'31-Dec-1998'
'01-Jan-1999'
'04-Jan-1999'
'05-Jan-1999'
'06-Jan-1999'
'07-Jan-1999'
'08-Jan-1999'
'11-Jan-1999'
'12-Jan-1999'
'13-Jan-1999'
'14-Jan-1999'
'15-Jan-1999'
'18-Jan-1999'
'19-Jan-1999'
'20-Jan-1999'
'21-Jan-1999'
'22-Jan-1999'
'25-Jan-1999'
'26-Jan-1999'
'27-Jan-1999'
'28-Jan-1999'
'29-Jan-1999'
'01-Feb-1999'
'02-Feb-1999'
'03-Feb-1999'
'04-Feb-1999'
'05-Feb-1999'
'08-Feb-1999'
'09-Feb-1999'
'10-Feb-1999'
\(37.5091]\)
80.8190]
18.8000]

NaN]
20.8667]
\(28.6530]\)
8.3333]
61.1210]

NaN]
28.2858]
\(93.3831]\)
65.0200]
98.2143]
62.5250]
93.5987]
\(37.5000]\)
77.0833]
26.0960]
\(23.5419]\)
NaN]
80.7882]
11.7827]
13.3467]

50]
\(90.0480]\)
\(34.2249]\)
11.1144]
29.4021]
15.6250]
40.9520]
42.8571]

70]
26.4817]
\(66.6667]\)
\(21.3959]\)
21.0404]
75.0286]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { '11-Feb-1999 ' } \\
& \hline \text { '12-Feb-1999 ' }
\end{aligned}
\]}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'15-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{'16-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{'17-Feb-1999'} \\
\hline & '18-Feb-1999' \\
\hline \multicolumn{2}{|l|}{'19-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{'22-Feb-1999'} \\
\hline & '23-Feb-1999' \\
\hline \multicolumn{2}{|l|}{'24-Feb-1999'} \\
\hline & 25-Feb-1999 \\
\hline \multicolumn{2}{|l|}{'26-Feb-1999'} \\
\hline & 01-Mar-1999 \\
\hline \multicolumn{2}{|l|}{02-Mar-1999'} \\
\hline & 03-Mar-1999 \\
\hline \multicolumn{2}{|l|}{'04-Mar-1999'} \\
\hline & '05-Mar-1999 \\
\hline \multicolumn{2}{|l|}{'08-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'09-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'10-Mar-1999'} \\
\hline & 11-Mar \\
\hline \multicolumn{2}{|l|}{'12-Mar-1999'} \\
\hline & 5-Ma \\
\hline \multicolumn{2}{|l|}{'16-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'17-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'18-Mar-1999} \\
\hline \multicolumn{2}{|l|}{'19-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'22-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'23-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'24-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{25-Mar-1999'} \\
\hline & -Mar-1999' \\
\hline & \\
\hline
\end{tabular}
85.2104]
50.0250]
\(\mathrm{NaN}]\)
18.2000]
59.0975]

35]
\(37.5000]\)
87.5000]

25]
52.9661]
28.9385]
\(67.3231]\)
18.1951]
5.5778]
45.8333]
87.5333]
\(50.0572]\)
83.3667]
14.6000]
\(36.3735]\)
84.6248]
76.9373]
41.3074]
25.0182]
14.7225]
81.2750]
13.3795]
12.5000]
15.9273]
60.0400]
41.6667]
20.0400]
50.0571]

\section*{adosc}

See Also adline | willad

\section*{Purpose Amortization schedule}

\author{
Syntax \\ [Principal, Interest, Balance, Payment] = amortize(Rate, NumPeriods, PresentValue, FutureValue, Due)
}

\section*{Arguments}

\section*{Rate}

NumPeriods
PresentValue
FutureValue
Due

Interest rate per period, as a decimal fraction. Number of payment periods. Present value of the loan. (Optional) Future value of the loan. Default \(=0\). (Optional) When payments are due: \(0=\) end of period (default), or \(1=\) beginning of period.

\section*{Description}
[Principal, Interest, Balance, Payment] = amortize(Rate, NumPeriods, PresentValue, FutureValue, Due) returns the principal and interest payments of a loan, the remaining balance of the original loan amount, and the periodic payment.
\begin{tabular}{ll}
Principal & \begin{tabular}{l}
Principal paid in each period. A \\
1-by-NumPeriods vector.
\end{tabular} \\
Interest & \begin{tabular}{l}
Interest paid in each period. A 1-by-NumPeriods \\
vector.
\end{tabular} \\
Balance & \begin{tabular}{l}
Remaining balance of the loan in each payment \\
period. A 1-by-NumPeriods vector.
\end{tabular} \\
Payment & \begin{tabular}{l}
Payment per period. A scalar.
\end{tabular}
\end{tabular}

\section*{amortize}

\section*{Examples Compute an Amortization Schedule for a Conventional 30-Year, Fixed-Rate Mortgage With Fixed Monthly Payments}

Compute an amortization schedule for a conventional 30-year, fixed-rate mortgage with fixed monthly payments and assume a fixed rate of \(12 \%\) APR and an initial loan amount of \(\$ 100,000\).
```

Rate = 0.12/12; % 12 percent APR = 1 percent per month
NumPeriods = 30*12; % 30 years = 360 months
PresentValue = 100000;
[Principal, Interest, Balance, Payment] = amortize(Rate, ...
NumPeriods, PresentValue);

```

The output argument Payment contains the fixed monthly payment.
format bank
Payment

Payment =
1028.61

Summarize the amortization schedule graphically by plotting the current outstanding loan balance, the cumulative principal, and the interest payments over the life of the mortgage. In particular, note that total interest paid over the life of the mortgage exceeds \(\$ 270,000\), far in excess of the original loan amount.
```

plot(Balance,'b'), hold('on')
plot(cumsum(Principal),'--k')
plot(cumsum(Interest),':r')
xlabel('Payment Month')
ylabel('Dollars')

```


The solid blue line represents the declining principal over the 30 -year period. The dotted red line indicates the increasing cumulative interest payments. Finally, the dashed black line represents the cumulative principal payments, reaching \(\$ 100,000\) after 30 years.

\section*{amortize}

See Also annurate | annuterm | payadv | payodd | payper

\section*{Purpose Periodic interest rate of annuity}
```

Syntax Rate = annurate(NumPeriods, Payment, PresentValue, FutureValue,
Due)

```

Arguments

\section*{Description Rate = annurate(NumPeriods, Payment, PresentValue, FutureValue, Due) returns the periodic interest rate paid on a loan or annuity.}

\section*{Examples}

\section*{Calculate the Periodic Interest Rate Paid on a Loan or Annuity}

This example shows how to find the periodic interest rate of a four-year, \(\$ 5000\) loan with a \(\$ 130\) monthly payment made at the end of each month.
```

Rate = annurate(4*12, 130, 5000, 0, 0)

```
Rate =

Rate multiplied by 12 gives an annual interest rate of \(11.32 \%\) on the loan.

\section*{See Also \\ amortize | annuterm | bndyield | irr}

\section*{Purpose Number of periods to obtain value}
```

Syntax NumPeriods = annuterm(Rate, Payment, PresentValue, FutureValue,
Due)

```

\section*{Arguments}
\begin{tabular}{ll}
Rate & Interest rate per period, as a decimal fraction. \\
Payment & Payment per period. \\
PresentValue & Present value. \\
FutureValue & (Optional) Future value. Default \(=0\). \\
Due & \begin{tabular}{l}
(Optional) When payments are due: \(0=\) end of \\
period (default), or \(1=\) beginning of period.
\end{tabular}
\end{tabular}

\section*{Description NumPeriods = annuterm(Rate, Payment, PresentValue, FutureValue, Due) calculates the number of periods needed to obtain a future value. To calculate the number of periods needed to pay off a loan, enter the payment or the present value as a negative value.}

\section*{Examples Calculate the Number of Periods Needed to Obtain a Future Value}

This example shows a savings account with a starting balance of \(\$ 1500\). \(\$ 200\) is added at the end of each month and the account pays \(9 \%\) interest, compounded monthly. How many years will it take to save \(\$ 5,000\) ?

NumPeriods \(=\) annuterm(0.09/12, 200, 1500, 5000, 0)

NumPeriods =
15.6752

\author{
See Also annurate | amortize | fvfix | pvfix
}

\section*{Purpose}

Arithmetic to geometric moments of asset returns

\section*{Syntax}

\section*{Arguments}

\section*{Description}

Arithmetic mean of asset-return data (\(n\)-vector).
Arithmetic covariance of asset-return data (n-by-n symmetric, positive-semidefinite matrix.
(Optional) Target period of geometric moments in terms of periodicity of arithmetic moments with default value 1 (scalar).
arith2geom transforms moments associated with a simple Brownian motion into equivalent continuously-compounded moments associated with a geometric Brownian motion with a possible change in periodicity.
[mg, Cg] = arith2geom(ma, Ca, t) returns mg, continuously-compounded or "geometric" mean of asset returns over the target period (n -vector), and Cg , which is a continuously-compounded or "geometric" covariance of asset returns over the target period (\(n\)-by-n matrix).
Arithmetic returns over period \(t_{A}\) are modeled as multivariate normal random variables with moments
\[
E[\mathrm{X}]=\mathrm{m}_{A}
\]
and
\[
\operatorname{cov}(\mathrm{X})=\mathrm{C}_{A}
\]

Geometric returns over period \(t_{G}\) are modeled as multivariate lognormal random variables with moments
\[
\begin{aligned}
& E[\mathrm{Y}]=1+\mathrm{m}_{G} \\
& \operatorname{cov}(\mathrm{Y})=\mathrm{C}_{G}
\end{aligned}
\]

Given \(t=t_{G} / t_{A}\), the transformation from geometric to arithmetic moments is
\[
\begin{aligned}
& 1+\mathrm{m}_{G_{i}}=\exp \left(t \mathrm{~m}_{A_{i}}+\frac{1}{2} t \mathrm{C}_{A_{i i}}\right) \\
& \mathrm{C}_{G_{i j}}=\left(1+\mathrm{m}_{G_{i}}\right)\left(1+\mathrm{m}_{G_{\mathrm{j}}}\right)\left(\exp \left(t \mathrm{C}_{A i j}\right)-1\right)
\end{aligned}
\]

For \(i, j=1, \ldots, n\).

Note If \(t=1\), then \(\mathbf{Y}=\exp (\mathbf{X})\).

This function has no restriction on the input mean ma but requires the input covariance Ca to be a symmetric positive-semidefinite matrix.

The functions arith2geom and geom2arith are complementary so that, given \(m, C\), and \(t\), the sequence
```

[mg, Cg] = arith2geom(m, C, t);
[ma, Ca] = geom2arith(mg, Cg, 1/t);
yields ma = m and Ca= C.

```

\section*{Examples}

Example 1. Given arithmetic mean \(m\) and covariance C of monthly total returns, obtain annual geometric mean mg and covariance Cg . In this case, the output period (1 year) is 12 times the input period (1 month) so that \(\mathrm{t}=12\) with
```

[mg, Cg] = arith2geom(m, C, 12);

```

Example 2. Given annual arithmetic mean \(m\) and covariance \(C\) of asset returns, obtain monthly geometric mean mg and covariance Cg . In this case, the output period (1 month) is \(1 / 12\) times the input period (1 year) so that \(\mathrm{t}=1 / 12\) with
[mg, Cg] = arith2geom(m, C, 1/12);
Example 3. Given arithmetic means m and standard deviations s of daily total returns (derived from 260 business days per year), obtain annualized continuously-compounded mean mg and standard deviations sg with
```

[mg, Cg] = arith2geom(m, diag(s .^2), 260);
sg = sqrt(diag(Cg));

```

Example 4. Given arithmetic mean \(m\) and covariance C of monthly total returns, obtain quarterly continuously-compounded return moments. In this case, the output is 3 of the input periods so that \(t=3\) with
```

[mg, Cg] = arith2geom(m, C, 3);

```

Example 5. Given arithmetic mean \(m\) and covariance C of 1254 observations of daily total returns over a 5 -year period, obtain annualized continuously-compounded return moments. Since the periodicity of the arithmetic data is based on 1254 observations for a 5 -year period, a 1-year period for geometric returns implies a target period of \(t=1254 / 5\) so that
[mg, Cg] = arith2geom(m, C, 1254/5);

\section*{See Also}
geom2arith

Purpose Create financial time series object from ASCII file
```

Syntax tsobj = ascii2fts(filename, descrow, colheadrow, skiprows)
tsobj = ascii2fts(filename, timedata, descrow, colheadrow,
skiprows)

```

\section*{Arguments}
\(\left.\begin{array}{ll}\text { filename } & \begin{array}{l}\text { ASCII data file } \\
\text { (Optional) Row number in the data file that contains }\end{array} \\
\text { descrow } \\
\text { the description to be used for the description field of } \\
\text { the financial time series object }\end{array}\right]\)\begin{tabular}{l}
(Optional) Row number that has the column \\
headers/names \\
colneadrow
\end{tabular}

\section*{Description}
tsobj = ascii2fts(filename, descrow, colheadrow, skiprows) creates a financial time series object tsobj from the ASCII file named filename. This form of the function can only read a data file without time-of-day information and create a financial time series object without time information. If time information is present in the ASCII file, an error message appears.

The general format of the text data file is
- Can contain header text lines.
- Can contain column header information. The column header information must immediately precede the data series columns unless skiprows is specified.
- Leftmost column must be the date column.
- Dates must be in a valid date string format:
- 'ddmmmyy' or 'ddmmmyyyy'
- 'mm/dd/yy' or 'mm/dd/yyyy'
- 'dd-mmm-yy' or 'dd-mmm-yyyy'
- 'mmm.dd,yy' or 'mmm.dd,yyyy'
- Time information must be in 'hh:mm' format.
- Each column must be separated either by spaces or a tab.
tsobj = ascii2fts(filename, timedata, descrow, colheadrow, skiprows) creates a financial time series object containing time-of-day data. Set timedata to ' \(T\) ' to create a financial time series object containing time-of-day data. Note that the ascii time information must be in 'hh:mm' format for ascii2fts.

Example 1. If your data file contains no description or column header rows,
\begin{tabular}{lllllll}
\(1 / 3 / 95\) & 36.75 & 36.9063 & 36.6563 & 36.875 & 1167900 & \\
\(1 / 4 / 95\) & 37 & 37.2813 & 36.625 & 37.1563 & 1994700 & \(\ldots\)
\end{tabular}
you can create a financial time series object from it with the simplest form of the ascii2fts function:
```

myinc = ascii2fts('my_inc.dat');
myinc =
desc: my_inc.dat
freq: Unknown (0)
'dates: (2)' 'series1: (2)' 'series2: (2)' 'series3: (2)'...
'03-Jan-1995' [ 36.7500] [ 36.9063] [ 36.6563]
'04-Jan-1995' [ 37] [ 37.2813] [ 36.6250]

```

Example 2: If your data file contains description and column header information with the data series immediately following the column header row,
\begin{tabular}{llllllll}
International Business Machines & Corporation (IBM) & \\
Daily prices & \((1 / 3 / 95\) & to & \(4 / 5 / 99)\) & & & \\
DATE & OPEN & HIGH & LOW & CLOSE & VOLUME & \\
\(1 / 3 / 95\) & 36.75 & 36.9063 & 36.6563 & 36.875 & 1167900 & \\
\(1 / 4 / 95\) & 37 & 37.2813 & 36.625 & 37.1563 & 1994700 & \(\ldots\)
\end{tabular}
you must specify the row numbers containing the description and column headers:
```

ibm = ascii2fts('ibm9599.dat', 1, 3);
ibm =
desc: International Business Machines Corporation (IBM)
freq: Unknown (0)
'dates: (2)' 'OPEN: (2)' 'HIGH: (2)' 'LOW: (2)' ...
'03-Jan-1995' [ 36.7500] [ 36.9063] [ 36.6563]
'04-Jan-1995' [ 37] [ 37.2813] [ 36.6250]

```

Example 3: If your data file contains rows between the column headers and the data series, for example,

Staples, Inc. (SPLS)
Daily prices
DATE OPEN HIGH LOW CLOSE VOLUME
Starting date: 04/08/1996
Ending date: 04/07/1999
\(\begin{array}{llllll}4 / 8 / 96 & 19.50 & 19.75 & 19.25 & 19.375 & 548500\end{array}\)
4/9/96 \(19.75 \quad 20.125 \quad 19.375 \quad 20 \quad 1135900\)...
you need to indicate to ascii2fts the rows in the file that must be skipped. Assume that you have called the data file containing the Staples data above staples.dat. The command
```

spls = ascii2fts('staples.dat', 1, 3, [4 5]);

```
indicates that the fourth and fifth rows in the file should be skipped in creating the financial time series object:
```

spls =
desc: Staples, Inc. (SPLS)
freq: Unknown (0)

```
\begin{tabular}{|c|c|c|c|}
\hline 'dates: (2)' & 'OPEN: (2)' & 'HIGH: (2)' & 'LOW: (2) \\
\hline '08-Apr-1996' & \(19.5000]\) & [19.7500] & [19.2500] \\
\hline '09-Apr-1996' & \(19.7500]\) & \(20.1250]\) & [19.3750] \\
\hline
\end{tabular}

Example 4: Create a financial time series object containing time-of-day information.

First create a data file with time information:
```

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
serial_dates_times = [datenum(dates), datenum(times)];
data = round(10*rand(6,2));
stat = fts2ascii('myfts_file2.txt',serial_dates_times,data, ...
{'dates';'times';'Data1';'Data2'},'My FTS with Time');

```

Now read the data file back and create a financial time series object:
```

MyFts = ascii2fts('myfts_file2.txt','t',1,2,1)

```
MyFts =
 desc: My FTS with Time
 freq: Unknown (0)
```

'dates: (6)' 'times: (6)' 'Data1: (6)' 'Data2: (6)'
'01-Jan-2001' '11:00' [ 9] [ 4]

```

\section*{ascii2fts}
\begin{tabular}{|c|c|c|c|c|c|}
\hline " & '12:00' & [& 7] & [& 9] \\
\hline '02-Jan-2001 & '11:00' & [& 2] & [& \(1]\) \\
\hline " & '12:00' & [& 4] & [& \(4]\) \\
\hline -03-Jan-2001 & '11:00' & [& \(9]\) & [& 8] \\
\hline " & '12:00' & [& 9] & [& \(0]\) \\
\hline
\end{tabular}

See Also fints | fts2ascii
\begin{tabular}{|c|c|}
\hline Purpose & Bar chart \\
\hline \multirow[t]{6}{*}{Syntax} & bar(tsobj) \\
\hline & bar(tsobj, width) \\
\hline & bar(..., 'style') \\
\hline & hbar = bar(...) \\
\hline & \(\operatorname{barh}(. .\). \\
\hline & hbarh \(=\operatorname{barh}(\ldots)\) \\
\hline
\end{tabular}

\section*{Arguments}

\section*{Description}

\section*{Examples}
tsobj Financial time series object.
width Width of the bars and separation of bars within a group. (Default \(=0.8\).) If width is 1 , the bars within a group touch one another. Values \(>1\) produce overlapping bars.
style 'grouped' (default) or 'stacked'.
bar, barh draw vertical and horizontal bar charts.
bar(tsobj) draws the columns of data series of the object tsobj. The number of data series dictates the number of vertical bars per group. Each group is the data for one particular date.
bar(tsobj, width) specifies the width of the bars.
bar(..., 'style') changes the style of the bar chart.
hbar \(=\) bar(...) returns a vector of bar handles.
Use the MATLAB command shading faceted to put edges on the bars.
Use shading flat to turn edges off.

\section*{Create a Bar Chart for a Stock}

This example shows how to create a bar chart for Disney stock showing high, low, opening, and closing prices.
```

load disney
bar(q_dis)
title('Bar Chart of Disney Prices')

```

Bar Chart of Disney Prices

\section*{Create a Horizontal Bar Chart for a Stock}

This example shows how to create a horizontal bar chart for Disney stock showing high, low, opening, and closing prices.
load disney

\section*{bar3, bar3h}

Purpose 3-D bar chart

Syntax
```

bar3(tsobj)
bar3(tsobj, width)
bar3(..., 'style')
hbar3 = bar3(...)
bar3h(...)
hbar3h = bar3h(...)

```

\section*{Arguments}
\begin{tabular}{ll}
tsobj & Financial time series object. \\
width & \begin{tabular}{l}
Width of the bars and separation of bars within a \\
group. (Default = 0.8.) If width is 1, the bars within \\
a group touch one another. Values > 1 produce \\
overlapping bars.
\end{tabular} \\
style & 'detached' (default), 'grouped', or 'stacked'.
\end{tabular}

Description

\section*{Examples Create a Three-Dimensional Bar Chart}

This example shows how to create a three-dimensional bar chart for Disney stock showing high, low, opening, and closing prices.
```

load disney
bar3(q_dis, 'stacked')
title('Three-Dimensional Bar Chart of Disney Prices')

```

Three-Dimensional Bar Chart of Disney Prices

\section*{Create a Three-Dimensional (Stacked) Bar Chart}

This example shows how to create a three-dimensional, stacked bar chart for Disney stock showing high, low, opening, and closing prices.
```

load disney

```

\section*{bar3, bar3h}
```

bar3(q_dis, 'stacked')
title('Three-Dimensional Bar Chart of Disney Prices (Stacked)')

```


See Also
bar, barh | candle | highlow
\begin{tabular}{ll}
Purpose & \begin{tabular}{l}
Bond equivalent yield for Treasury bill \\
Syntax
\end{tabular} \\
Yield = beytbill(Settle, Maturity, Discount)
\end{tabular}

\section*{binprice}

Purpose
Binomial put and call pricing

\section*{Syntax}
[AssetPrice, OptionValue] = binprice(Price, Strike, Rate, Time, Increment, Volatility, Flag, DividendRate, Dividend, ExDiv)

\section*{Arguments}
\begin{tabular}{ll}
Price & Underlying asset price. A scalar. \\
Strike & \begin{tabular}{l}
Option exercise price. A scalar. \\
Rate \\
Risk-free interest rate. A scalar. Enter as a \\
decimal fraction.
\end{tabular} \\
Time & \begin{tabular}{l}
Option's time until maturity in years. A scalar. \\
Increment \\
Time increment. A scalar. Increment is \\
adjusted so that the length of each interval is \\
consistent with the maturity time of the option. \\
(Increment is adjusted so that Time divided
\end{tabular} \\
& \begin{tabular}{l}
by Increment equals an integer number of \\
increments.)
\end{tabular} \\
Volatility & \begin{tabular}{l}
Asset's volatility. A scalar.
\end{tabular} \\
Flag & \begin{tabular}{l}
Specifies whether the option is a call (Flag = \\
1) or a put (Flag = 0). A scalar.
\end{tabular} \\
DividendRate & \begin{tabular}{l}
(Optional) The dividend rate, as a decimal \\
fraction. A scalar. Default = 0. If you enter \\
a value for DividendRate, set Dividend \\
and ExDiv = o or do not enter them. If you \\
enter values for Dividend and ExDiv, set \\
DividendRate = 0.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
Dividend & \begin{tabular}{l}
(Optional) The dividend payment at an \\
ex-dividend date, ExDiv. A row vector. For \\
each dividend payment, there must be a \\
corresponding ex-dividend date. Default \(=0\). If \\
you enter values for Dividend and ExDiv, set \\
DividendRate \(=0\).
\end{tabular} \\
ExDiv & \begin{tabular}{l}
(Optional) Ex-dividend date, specified in \\
number of periods. A row vector. Default \(=0\).
\end{tabular}
\end{tabular}

\section*{Description}
[AssetPrice, OptionValue] = binprice(Price, Strike, Rate, Time, Increment, Volatility, Flag, DividendRate, Dividend, ExDiv) prices an American option using the Cox-Ross-Rubinstein binomial pricing model.

\section*{Examples Price an American Option Using the Cox-Ross-Rubinstein Binomial Pricing Model}

This example shows how to price an American put option with an exercise price of \(\$ 50\) that matures in 5 months. The current asset price is \(\$ 52\), the risk-free interest rate is \(10 \%\), and the volatility is \(40 \%\). There is one dividend payment of \(\$ 2.06\) in \(3-1 / 2\) months. When specifying the input argument ExDiv in terms of number of periods, divide the ex-dividend date, specified in years, by the time Increment.
```

ExDiv =(3.5/12) / (1/12) = 3.5
[Price, Option] = binprice(52, 50, 0.1, 5/12, 1/12, 0.4, 0, 0, 2.06,

```
Price =
\begin{tabular}{rrrrrr}
52.0000 & 58.1367 & 65.0226 & 72.7494 & 79.3515 & 89.0642 \\
0 & 46.5642 & 52.0336 & 58.1706 & 62.9882 & 70.6980 \\
0 & 0 & 41.7231 & 46.5981 & 49.9992 & 56.1192 \\
0 & 0 & 0 & 37.4120 & 39.6887 & 44.5467
\end{tabular}

\section*{binprice}
\begin{tabular}{rrrrrr}
0 & 0 & 0 & 0 & 31.5044 & 35.3606 \\
0 & 0 & 0 & 0 & 0 & 28.0688 \\
& & & & & \\
Option \(=\) & & & & & \\
4.4404 & 2.1627 & 0.6361 & 0 & 0 & 0 \\
0 & 6.8611 & 3.7715 & 1.3018 & 0 & 0 \\
0 & 0 & 10.1591 & 6.3785 & 2.6645 & 0 \\
0 & 0 & 0 & 14.2245 & 10.3113 & 5.4533 \\
0 & 0 & 0 & 0 & 18.4956 & 14.6394 \\
0 & 0 & 0 & 0 & 0 & 21.9312
\end{tabular}

The output returned is the asset price and American option value at each node of the binary tree.

\section*{References}

Cox, J., S. Ross, and M. Rubenstein, "Option Pricing: A Simplified Approach", Journal of Financial Economics 7, Sept. 1979, pp. 229-263. Hull, John C., Options, Futures, and Other Derivative Securities, 2nd edition, Chapter 14.

See Also blkprice | blsprice

\section*{Purpose}

Implied volatility for futures options from Black model

\section*{Syntax}

Volatility = blkimpv(Price, Strike, Rate, Time, Value, Limit, Tolerance, Class)

\section*{Arguments}
\(\left.\begin{array}{ll}\text { Price } & \begin{array}{l}\text { Current price of the underlying asset (a futures } \\ \text { contract). }\end{array} \\ \text { Strike } & \begin{array}{l}\text { Exercise price of the futures option. }\end{array} \\ \text { Rate } & \begin{array}{l}\text { Annualized, continuously compounded risk-free rate } \\ \text { of return over the life of the option, expressed as a } \\ \text { positive decimal number. }\end{array} \\ \text { Time } & \text { Time to expiration of the option, expressed in years. } \\ \text { Value } & \begin{array}{l}\text { Price of a European futures option from which the } \\ \text { implied volatility of the underlying asset is derived. }\end{array} \\ \text { Limit } & \begin{array}{l}\text { (Optional) Positive scalar representing the upper } \\ \text { bound of the implied volatility search interval. If } \\ \text { Limit is empty or unspecified, the default = 10, or }\end{array} \\ \text { Tolerance } & \begin{array}{l}\text { 1000\% per annum. } \\ \text { (Optional) Implied volatility termination tolerance. }\end{array} \\ \text { Class } & \begin{array}{l}\text { A positive scalar. Default = 1e-6. } \\ \text { (Optional) Option class (call or put) indicating the }\end{array} \\ & \begin{array}{l}\text { option type from which the implied volatility is } \\ \text { derived. May be either a logical indicator or a cell } \\ \text { array of characters. To specify call options, set }\end{array} \\ \text { Class = true or Class = \{'call'\}; to specify put } \\ \text { options, set Class = false or Class = \{ 'put '\}. If }\end{array}\right\}\)

\section*{blkimpv}

Description

\section*{Examples}

Volatility = blkimpv(Price, Strike, Rate, Time, CallPrice, MaxIterations, Tolerance) computes the implied volatility of a futures price from the market value of European futures options using Black's model.

Volatility is the implied volatility of the underlying asset derived from European futures option prices, expressed as a decimal number. If no solution is found, blkimpv returns NaN.

Any input argument may be a scalar, vector, or matrix. When a value is a scalar, that value is used to compute the implied volatility of all the options. If more than one input is a vector or matrix, the dimensions of all nonscalar inputs must be identical.
Rate and Time must be expressed in consistent units of time.

\section*{Find Implied Volatility for Futures Options from Black's Model}

This example shows how to find the implied volatility for a European call futures option that expires in four months, trades at \(\$ 1.1166\), and has an exercise price of \(\$ 20\). Assume that the current underlying futures price is also \(\$ 20\) and that the risk-free rate is \(9 \%\) per annum. Furthermore, assume that you are interested in implied volatilities no greater than 0.5 (\(50 \%\) per annum). Under these conditions, the following commands all return an implied volatility of 0.25 , or \(25 \%\) per annum.
```

Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5);
Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5, [], {'Call'});
Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5, [], true)

```

Volatility =
0.2500

References
Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003, pp. 287-288.

Black, Fischer, "The Pricing of Commodity Contracts," Journal of Financial Economics, March 3, 1976, pp. 167-79.

\author{
See Also \\ blkprice | blsimpv | blsprice
}

\section*{blkprice}

Purpose
Syntax
Arguments
\begin{tabular}{ll}
Price & \begin{tabular}{l}
Current price of the underlying asset (a futures \\
contract).
\end{tabular} \\
Strike & \begin{tabular}{l}
Strike or exercise price of the futures option.
\end{tabular} \\
Rate & \begin{tabular}{l}
Annualized, continuously compounded, risk-free rate \\
of return over the life of the option, expressed as a \\
positive decimal number.
\end{tabular} \\
Time & \begin{tabular}{l}
Time until expiration of the option, expressed in \\
years. Must be greater than 0.
\end{tabular} \\
Volatility & \begin{tabular}{l}
Annualized futures price volatility, expressed as a \\
positive decimal number.
\end{tabular}
\end{tabular}

\section*{Description [Call, Put] = blkprice(ForwardPrice, Strike, Rate, Time, Volatility) uses Black's model to compute European put and call futures option prices.}

Any input argument may be a scalar, vector, or matrix. When a value is a scalar, that value is used to compute the implied volatility from all options. If more than one input is a vector or matrix, the dimensions of all non-scalar inputs must be identical.
Rate, Time, and Volatility must be expressed in consistent units of time.

\section*{Examples \\ Compute European Put and Call Futures Option Prices Using Black's Model}

This example shows how to price European futures options with exercise prices of \(\$ 20\) that expire in four months. Assume that the
current underlying futures price is also \(\$ 20\) with a volatility of \(25 \%\) per annum. The risk-free rate is \(9 \%\) per annum.
```

[Call, Put] = blkprice(20, 20, 0.09, 4/12, 0.25)
Call =

```
 1.1166
Put \(=\)
 1.1166
References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003, pp. 287-288.

Black, Fischer, "The Pricing of Commodity Contracts," Journal of
 Financial Economics, March 3, 1976, pp. 167-179.

See Also binprice | blsprice

\section*{blsdelta}

Purpose
Black-Scholes sensitivity to underlying price change

\section*{Syntax}
[CallDelta, PutDelta] = blsdelta(Price, Strike, Rate, Time, Volatility, Yield)

\section*{Arguments}

Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.

Time Time to expiration of the option, expressed in years.
Volatility Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.

Yield (Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default \(=0\).) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.

\section*{Description}
[CallDelta, PutDelta] = blsdelta(Price, Strike, Rate, Time, Volatility, Yield) returns delta, the sensitivity in option value to change in the underlying asset price. Delta is also known as the hedge ratio. blsdelta uses normcdf, the normal cumulative distribution function in the Statistics Toolbox.
```

Note blsdelta can handle other types of underlies like Futures and Currencies. When pricing Futures (Black model), enter the input argument Yield as:
Yield = Rate

```

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate
where ForeignRate is the continuously compounded, annualized risk free interest rate in the foreign country.

\section*{Examples Find the Sensitivity in Option Value to Change in the Underlying Asset Price}

This example shows how to find the Black-Scholes delta sensitivity for an underlying asset price change.
[CallDelta, PutDelta] = blsdelta(50, 50, 0.1, 0.25, 0.3, 0)

CallDelta =
0.5955

PutDelta =
\(-0.4045\)
\(\begin{array}{ll}\text { References } & \begin{array}{l}\text { Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, } \\ \text { 5th edition, } 2003 .\end{array}\end{array}\)

\section*{blsdelta}

See Also blsgamma | blslambda | blsprice | blsrho | blstheta | blsvega

\section*{blsgamma}

\section*{Purpose}

Black-Scholes sensitivity to underlying delta change
Syntax Gamma = blsgamma(Price, Strike, Rate, Time, Volatility, Yield)

\section*{Arguments}
\begin{tabular}{ll}
Price & Current price of the underlying asset. \\
Strike & \begin{tabular}{l}
Exercise price of the option.
\end{tabular} \\
Rate & \begin{tabular}{l}
Annualized, continuously compounded risk-free rate \\
of return over the life of the option, expressed as a \\
positive decimal number.
\end{tabular} \\
Time & \begin{tabular}{l}
Time to expiration of the option, expressed in years. \\
Volatility \\
Yield \\
Annualized asset price volatility (annualized \\
standard deviation of the continuously compounded \\
asset return), expressed as a positive decimal \\
number.
\end{tabular} \\
& \begin{tabular}{l}
(Optional) Annualized, continuously compounded \\
yield of the underlying asset over the life of the \\
option, expressed as a decimal number. (Default \\
=0.) For example, for options written on stock \\
indices, Yield could represent the dividend yield.
\end{tabular} \\
& \begin{tabular}{l}
For currency options, Yield could be the foreign \\
risk-free interest rate.
\end{tabular}
\end{tabular}

\section*{Description}

Gamma = blsgamma(Price, Strike, Rate, Time, Volatility, Yield) returns gamma, the sensitivity of delta to change in the underlying asset price. blsgamma uses normpdf, the probability density function in the Statistics Toolbox.

\section*{blsgamma}

Note blsgamma can handle other types of underlies like Futures and Currencies. When pricing Futures (Black model), enter the input argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate
where ForeignRate is the continuously compounded, annualized risk free interest rate in the foreign country.

\section*{Examples}

\section*{Find Gamma for a Change in the Underlying Asset Price}

This example shows how to find the gamma, the sensitivity of delta to a change in the underlying asset price.

Gamma \(=\) blsgamma \((50,50,0.12,0.25,0.3,0)\)

Gamma =
\[
0.0512
\]

\section*{References}

See Also
Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003.
blsdelta | blslambda | blsprice | blsrho | blstheta | blsvega

\author{
Purpose Black-Scholes implied volatility \\ Syntax Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit, Yield, Tolerance, Class)
}

\section*{Arguments}
\begin{tabular}{ll}
Price & Current price of the underlying asset. \\
Strike & \begin{tabular}{l}
Exercise price of the option.
\end{tabular} \\
Rate & \begin{tabular}{l}
Annualized, continuously compounded risk-free rate \\
of return over the life of the option, expressed as a \\
positive decimal number.
\end{tabular} \\
Time & \begin{tabular}{l}
Time to expiration of the option, expressed in years.
\end{tabular} \\
Value & \begin{tabular}{l}
Price of a European option from which the implied \\
volatility of the underlying asset is derived.
\end{tabular} \\
Limit & \begin{tabular}{l}
(Optional) Positive scalar representing the upper \\
bound of the implied volatility search interval. If \\
Limit is empty or unspecified, the default = 10, or
\end{tabular} \\
Yield & \begin{tabular}{l}
\(1000 \%\) per annum. \\
(Optional) Annualized, continuously compounded \\
yield of the underlying asset over the life of the \\
option, expressed as a decimal number. (Default \\
\(=0\).\() For example, for options written on stock\) \\
indices, Yield could represent the dividend yield.
\end{tabular} \\
& \begin{tabular}{l}
For currency options, Yield could be the foreign \\
risk-free interest rate.
\end{tabular}
\end{tabular}

\section*{blsimpv}
\begin{tabular}{ll}
Tolerance & \begin{tabular}{l}
(Optional) Implied volatility termination tolerance. \\
A positive scalar. Default \(=1 \mathrm{e}-6\).
\end{tabular} \\
Class & \begin{tabular}{l}
(Optional) Option class (call or put) indicating the \\
option type from which the implied volatility is \\
derived. May be either a logical indicator or a cell \\
array of characters. To specify call options, set \\
Class \(=\) true or Class \(=\{\) call' \(\} ;\) to specify put \\
options, set Class \(=\) false or Class \(=\{' p u t ~ ' ~\)
\end{tabular}. If \\
Class is empty or unspecified, the default is a call \\
option.
\end{tabular}

\section*{Description}

\section*{Examples}

Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit, Yield, Tolerance, Class) using a Black-Scholes model computes the implied volatility of an underlying asset from the market value of European call and put options.

Volatility is the implied volatility of the underlying asset derived from European option prices, expressed as a decimal number. If no solution is found, blsimpv returns NaN.

Any input argument may be a scalar, vector, or matrix. When a value is a scalar, that value is used to price all the options. If more than one input is a vector or matrix, the dimensions of all non-scalar inputs must be identical.

Rate, Time, and Yield must be expressed in consistent units of time.

\section*{Compute the Implied Volatility of an Underlying Asset Using a Black-Scholes Model}

This example shows how to compute the implied volatility for a European call option trading at \(\$ 10\) with an exercise price of \(\$ 95\) and three months until expiration. Assume that the underlying stock pays no dividend and trades at \(\$ 100\). The risk-free rate is \(7.5 \%\) per annum. Furthermore, assume that you are interested in implied volatilities no greater than 0.5 (\(50 \%\) per annum). Under these conditions, the

\section*{blsimpv}
following statements all compute an implied volatility of 0.3130 , or \(31.30 \%\) per annum.
```

Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5);
Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5, 0, [], {'Call'});
Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5, 0, [], true)

```
Volatility =
0.3130

\author{
References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003. \\ Luenberger, David G., Investment Science, Oxford University Press, 1998. \\ See Also \\ blsdelta | blsgamma | blslambda | blsprice | blsrho | blstheta
}

\section*{blslambda}

Purpose
Syntax

Arguments
Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.

Time Time to expiration of the option, expressed in years.
Volatility Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.
Yield (Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default \(=0\).) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.

\section*{Description}
[CallEl, PutEl] = blslambda(Price, Strike, Rate, Time, Volatility, Yield) returns the elasticity of an option. CallEl is the call option elasticity or leverage factor, and PutEl is the put option elasticity or leverage factor. Elasticity (the leverage of an option position) measures the percent change in an option price per one percent change in the underlying asset price. blslambda uses normcdf, the normal cumulative distribution function in the Statistics Toolbox.

\section*{blslambda}
```

Note blslambda can handle other types of underlies like Futures and Currencies. When pricing Futures (Black model), enter the input argument Yield as:
Yield = Rate
When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield as:
Yield = ForeignRate
where ForeignRate is the continuously compounded, annualized risk free interest rate in the foreign country.

```

\section*{Examples \\ Find the Black-Scholes Elasticity (Lambda) for an Option}
```

This example shows how to find the Black-Scholes elasticity, or leverage, of an option positon.

```
```

[CallEl, PutEl] = blslambda(50, 50, 0.12, 0.25, 0.3)

```
[CallEl, PutEl] = blslambda(50, 50, 0.12, 0.25, 0.3)
CallEl =
8.1274
PutEl =
\(-8.6466\)
References Daigler, Advanced Options Trading, Chapter 4.
See Also blsdelta | blsgamma | blsprice | blsrho | blstheta | blsvega
```


## blsprice

Purpose
Syntax
Arguments
\(\left.\left.$$
\begin{array}{ll}\text { Price } & \text { Current price of the underlying asset. } \\
\text { Strike } & \begin{array}{l}\text { Exercise price of the option. } \\
\text { Rate }\end{array} \\
\text { Time } \\
\text { Volatility } \\
\text { of return over the life of the option, expressed as a } \\
\text { positive decimal number. }\end{array}
$$\right\} \begin{array}{l}Time to expiration of the option, expressed in years. <br>
Annualized asset price volatility (annualized <br>
standard deviation of the continuously compounded <br>
asset return), expressed as a positive decimal <br>

number.\end{array}\right\}\)| (Optional) Annualized, continuously compounded |
| :--- |
| Yield |
|  |
| yield of the underlying asset over the life of the <br> option, expressed as a decimal number. (Default <br> = 0.) For example, for options written on stock <br> indices, Yield could represent the dividend yield. |
| For currency options, Yield could be the foreign <br> risk-free interest rate. |

## Description

Black-Scholes put and call option pricing
[Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility, Yield)
[Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility, Yield) computes European put and call option prices using a Black-Scholes model.
Any input argument may be a scalar, vector, or matrix. When a value is a scalar, that value is used to price all the options. If more than one input is a vector or matrix, the dimensions of all non-scalar inputs must be identical.

Rate, Time, Volatility, and Yield must be expressed in consistent units of time.

Note blsprice can handle other types of underlies like Futures and Currencies. When pricing Futures (Black model), enter the input argument Yield as:

Yield $=$ Rate
When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate
where ForeignRate is the continuously compounded, annualized risk free interest rate in the foreign country.

## Examples Compute European Put and Call Option Prices Using a Black-Scholes Model

This example shows how to price European stock options that expire in three months with an exercise price of $\$ 95$. Assume that the underlying stock pays no dividend, trades at $\$ 100$, and has a volatility of $50 \%$ per annum. The risk-free rate is $10 \%$ per annum.
[Call, Put] = blsprice(100, 95, 0.1, 0.25, 0.5)

Call =
13.6953

Put =
6.3497

## blsprice

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003.<br>Luenberger, David G., Investment Science, Oxford University Press, 1998.<br>See Also<br>blkprice | blsdelta | blsgamma | blsimpv | blslambda | blsrho | blstheta | blsvega

## Purpose

Black-Scholes sensitivity to interest rate change

## Syntax

## Arguments

## blsrho

Note blsrho can handle other types of underlies like Futures and Currencies. When pricing Futures (Black model), enter the input argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate
where ForeignRate is the continuously compounded, annualized risk free interest rate in the foreign country.

## Examples Find the Black-Scholes Sensitivity (Rho) to Interest-Rate Change

This example shows how to find the Black-Scholes sensitivity, rho, to interest-rate change.
[CallRho, PutRho] = blsrho(50, 50, 0.12, 0.25, 0.3, 0)

CallRho =
6.6686

PutRho =
$-5.4619$

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003.

See Also
blsdelta | blsgamma | blslambda | blsprice | blstheta | blsvega

## blstheta

Purpose
Black-Scholes sensitivity to time-until-maturity change
Syntax
[CallTheta, PutTheta] = blstheta(Price, Strike, Rate, Time, Volatility, Yield)

Arguments
Price $\quad$ Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.

Time Time to expiration of the option, expressed in years.
Volatility Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.
Yield (Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default $=0$.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.

## Description

[CallTheta, PutTheta] = blstheta(Price, Strike, Rate, Time, Volatility, Yield) returns the call option theta CallTheta, and the put option theta PutTheta. Theta is the sensitivity in option value with respect to time. blstheta uses normcdf, the normal cumulative distribution function in the Statistics Toolbox.

```
Note blstheta can handle other types of underlies like Futures and Currencies. When pricing Futures (Black model), enter the input argument Yield as:
Yield = Rate
```

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate
where ForeignRate is the continuously compounded, annualized risk free interest rate in the foreign country.

## Examples Compute the Black-Scholes Sensitivity to Time-Until-Maturity Change (Theta)

This example shows how to compute theta, the sensitivity in option value with respect to time.
[CallTheta, PutTheta] = blstheta(50, 50, 0.12, 0.25, 0.3, 0)

## CallTheta =

$-8.9630$

## PutTheta $=$

$-3.1404$

[^0]
## blstheta

See Also blsdelta | blsgamma | blslambda | blsprice | blsrho | blsvega

## blsvega

## Purpose

Black-Scholes sensitivity to underlying price volatility
Syntax Vega = blsvega(Price, Strike, Rate, Time, Volatility, Yield)
Arguments

Price	Current price of the underlying asset.
Strike	Exercise price of the option.
Rate	Annualized, continuously compounded risk-free rate   of return over the life of the option, expressed as a   positive decimal number.
Time	Time to expiration of the option, expressed in years.
Volatility	Annualized asset price volatility (annualized   standard deviation of the continuously compounded   asset return), expressed as a positive decimal   number.
Yield	(Optional) Annualized, continuously compounded   yield of the underlying asset over the life of the   option, expressed as a decimal number. (Default   =0.) For example, for options written on stock   indices, Yield could represent the dividend yield.
	For currency options, Yield could be the foreign   risk-free interest rate.

## Description

Vega = blsvega(Price, Strike, Rate, Time, Volatility, Yield) returns Vega, the rate of change of the option value with respect to the volatility of the underlying asset. blsvega uses normpdf, the normal probability density function in the Statistics Toolbox.

## blsvega

Note blsvega can handle other types of underlies like Futures and Currencies. When pricing Futures (Black model), enter the input argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate
where ForeignRate is the continuously compounded, annualized risk free interest rate in the foreign country.

## Examples Compute Black-Scholes Sensitivity to Underlying Price Volatility (Vega)

This example shows how to compute vega, the rate of change of the option value with respect to the volatility of the underlying asset.

```
Vega = blsvega(50, 50, 0.12, 0.25, 0.3, 0)
```


## Vega =

### 9.6035

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003.

[^1]\[

$$
\begin{array}{ll}
\text { Purpose } & \text { Brownian motion models } \\
\text { Syntax } & B M=b m(M u, \text { Sigma) } \\
& B M=b m(M u, \text { Sigma, 'Name1', Value1, 'Name2', Value2, ...) }
\end{array}
$$
\]

## Class <br> BM

Description This constructor creates and displays Brownian motion (sometimes called arithmetic Brownian motion or generalized Wiener process) objects that derive from the SDELD (SDE with drift rate expressed in linear form) class. Use BM objects to simulate sample paths of NVARS state variables driven by NBROWNS sources of risk over NPERIODS consecutive observation periods, approximating continuous-time Brownian motion stochastic processes. This enables you to transform a vector of NBROWNS uncorrelated, zero-drift, unit-variance rate Brownian components into a vector of NVARS Brownian components with arbitrary drift, variance rate, and correlation structure.

The bm method allows you to simulate any vector-valued BM process of the form:

$$
\begin{equation*}
d X_{t}=\mu(t) d t+V(t) d W_{t} \tag{18-1}
\end{equation*}
$$

where:

- $X_{t}$ is an NVARS-by- 1 state vector of process variables.
- $\mu$ is an NVARS-by- 1 drift-rate vector.
- $V$ is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
- $d W_{t}$ is an NBROWNS-by-1 vector of (possibly) correlated zero-drift/unit-variance rate Brownian components.

Specify required input parameters as one of the following types:

- A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric specification. This array fully
captures all implementation details, which are clearly associated with a parametric form.
- A MATLAB function. Specifying a function provides indirect support for virtually any static, dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.

The required input parameters are:
Mu $\quad$ Mu represents $\mu$. If you specify Mu as an array, it must be an NVARS-by- 1 column vector representing the drift rate (the expected instantaneous rate of drift, or time trend). If you specify Mu as a function, it calculates the expected instantaneous rate of drift. This function must generate an NVARS-by- 1 column vector when invoked with two inputs:

- A real-valued scalar observation time $t$.
- An NVARS-by-1 state vector $X_{t}$.

Sigma Sigma represents the parameter $V$. If you specify Sigma as an array, it must be an NVARS-by-NBROWNS matrix of instantaneous volatility rates. In this case, each row of Sigma corresponds to a particular state variable. Each column of Sigma corresponds to a particular Brownian source of uncertainty, and associates the magnitude of the exposure of state variables with sources of uncertainty. If you specify Sigma as a function, it must generate an NVARS-by-NBROWNS matrix of volatility rates when invoked with two inputs:

- A real-valued scalar observation time $t$.
- An NVARS-by- 1 state vector $X_{t}$.

Although the constructor does not enforce restrictions on the sign of this argument, Sigma is usually specified as a positive value.

Optional Input Arguments

Specify optional inputs as matching parameter name/value pairs as follows:

- Specify the parameter name as a character string, followed by its corresponding value.
- You can specify parameter name/value pairs in any order.
- Parameter names are case insensitive.
- You can specify unambiguous partial string matches.

Valid parameter names are:
StartTime Scalar starting time of the first observation, applied to all state variables. If you do not specify a value for StartTime, the default is 0 .

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of initial values of the state variables. If StartState is a scalar, bm applies the same initial value to all state variables on all trials.

If StartState is a column vector, bm applies a unique initial value to each state variable on all trials.

If StartState is a matrix, bm applies a unique initial value to each state variable on each trial.
If you do not specify a value for StartState, all variables start at 1 .

Correlation	Correlation between Gaussian random variates   drawn to generate the Brownian motion vector   (Wiener processes). Specify Correlation as an		
	NBROWNS-by-NBROWNS positive semidefinite matrix,   or as a deterministic function $C(t)$ that accepts the   current time $t$ and returns an NBROWNS-by-NBROWNS   positive semidefinite correlation matrix. A		
	Correlation matrix represents a static condition.	$\quad$	As a deterministic function of time, Correlation
:---			
allows you to specify a dynamic correlation structure.			

## Output BM Arguments

Object of class BM with the following displayed parameters:

- StartTime: Initial observation time
- StartState: Initial state at time StartTime
- Correlation: Access function for the Correlation input argument, callable as a function of time
- Drift: Composite drift-rate function, callable as a function of time and state
- Diffusion: Composite diffusion-rate function, callable as a function of time and state
- Simulation: A simulation function or method
- Mu: Access function for the input argument Mu, callable as a function of time and state
- Sigma: Access function for the input argument Sigma, callable as a function of time and state


## Algorithm

## Examples

References

When you specify the required input parameters as arrays, they are associated with a specific parametric form. By contrast, when you specify either required input parameter as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input specification. Thus, when you invoke these parameters with no inputs, they behave like simple properties and allow you to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of dynamic behavior. The parameters accept the observation time $t$ and a state vector $X_{t}$, and return an array of appropriate dimension. Even if you originally specified an input as an array, bm treats it as a static function of time and state, thereby guaranteeing that all parameters are accessible by the same interface.
"Creating Brownian Motion (BM) Models" on page 17-25
Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426.

Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.

Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.
Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.

See Also
drift | diffusion | sdeld

## bndconvp

## Purpose

Bond convexity given price
Syntax

## Description

## Input Arguments

 Settle, Maturity) Face) CouponRate, Settle, Maturity, securities given a clean price for each bond. Face) CouponRate, Settle, Maturity,
## Price

Clean price (excludes accrued interest).
[YearConvexity, PerConvexity] = bndconvp(Price, CouponRate,
[YearConvexity, PerConvexity] = bndconvp(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate,
[YearConvexity, PerConvexity] = bndconvp(Price, 'ParameterName', 'ParameterValue ...)
[YearConvexity, PerConvexity] = bndconvp(Price, CouponRate, Settle, Maturity) computes the convexity of NUMBONDS fixed income
[YearConvexity, PerConvexity] = bndconvp(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate,
[YearConvexity, PerConvexity] = bndconvp(Price,
'ParameterName', 'ParameterValue ...) accepts optional inputs as one or more comma-separated parameter/value pairs. ParameterName' is the name of the parameter inside single quotes. Parametervalue is the value corresponding to 'ParameterName'. Specify parameter/value pairs in any order. Names are case-insensitive.

## CouponRate

Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.

## bndconvp

## Settle

Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity.

## Maturity

Maturity date. A vector of serial date numbers or date strings.

## Ordered Input or Parameter-Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You cannot mix ordered syntax with parameter/value pairs.

## Period

Coupons per year of the bond. A vector of integers. Values are $0,1,2$, $3,4,6$, and 12 .

Default: 2

## Basis

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- $3=$ actual $/ 365$
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)


## bndconvp

- $10=\mathrm{actual} / 365$ (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0

## EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month. $1=$ set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

Default: 1

## IssueDate

Issue date for a bond.

## FirstCouponDate

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

## LastCouponDate

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon

## bndconvp

structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

## StartDate

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

## Face

Face or par value.
Default: 100

## Parameter-Value Pairs

Enter the following inputs only as parameter/value pairs.

## CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ISMA bases (8-12) use an annual compounding convention.

## DiscountBasis

Basis used to compute the discount factors for computing the yield. The default behavior is for SIA bases to use the actual/actual day count to compute discount factors. If you use ISMA day counts and BUS/252, the specified bases are used.

## Output <br> Arguments

## YearConvexity

NUMBONDS-by-1 vector for the yearly (annualized) convexity.

## bndconvp

## PerConvexity

NUMBONDS-by-1 vector for the periodic convexity reported on a semiannual bond basis (in accordance with SIA convention).

## Definitions

bndconvp determines the convexity for a bond whether the first or last coupon periods in the coupon structure are short or long (that is, whether the coupon structure is synchronized to maturity). This function also determines the convexity of a zero coupon bond.

All specified arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix ([ ]) as a placeholder for an optional argument. Fill in unspecified entries input vectors with NaNs. Dates can be serial date numbers or date strings.

## Examples Find Bond Convexity Given Price

This example shows how to compute the convexity of three bonds given their prices.

```
Price = [106; 100; 98];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;
[YearConvexity, PerConvexity] = bndconvp(Price,...
CouponRate,Settle, Maturity, Period, Basis)
YearConvexity =
 21.4447
 21.0363
 20.8951
```


## bndconvp

PerConvexity =
85.7788
84.1454
83.5803

References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John Wiley \& Sons, 2002.<br>Mayle, Jan, "Standard Securities Calculations Methods: Fixed Income Securities Formulas for Analytic Measures", SIA, Vol 2, Jan 1994.<br>Stigum, Marcia, and Franklin Robinson, Money Market and Bond Calculations, McGraw-Hill, 1996.<br>See Also<br>cfconv | bndconvy | bnddurp | bnddury | cfdur<br>How To . "Yield Conventions" on page 2-31

## Purpose

Bond convexity given yield

## Description

## Input <br> Arguments

[YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate, Settle, Maturity)
[YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)
[YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate, Settle, Maturity, 'ParameterName', 'ParameterValue ...)
[YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate, Settle, Maturity) computes the convexity of NUMBONDS fixed income securities given the yield to maturity for each bond.
[YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)
[YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate, Settle, Maturity, 'ParameterName', 'ParameterValue ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the name of the parameter inside single quotes. Parametervalue is the value corresponding to 'ParameterName'. Specify parameter/value pairs in any order. Names are case-insensitive.

## Yield

Yield to maturity on a semiannual basis.

## CouponRate

Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.

## bndconvy

## Settle

Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity.

## Maturity

Maturity date. A vector of serial date numbers or date strings.

## Ordered Input or Parameter-Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You cannot mix ordered syntax with parameter/value pairs.

## Period

Coupons per year of the bond. A vector of integers. Values are $0,1,2$, $3,4,6$, and 12 .

Default: 2

## Basis

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- $3=$ actual $/ 365$
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=\mathrm{actual} / 365$ (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- $12=\mathrm{actual} / 365$ (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0

## EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month. $1=$ set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

## Default: 1

## IssueDate

Issue date for a bond.

## FirstCouponDate

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

## LastCouponDate

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon

## bndconvy

structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

## StartDate

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

## Face

Face or par value.
Default: 100

## Parameter-Value Pairs

Enter the following inputs only as parameter/value pairs.

## CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ISMA bases (8-12) use an annual compounding convention.

## DiscountBasis

Basis used to compute the discount factors for computing the yield. The default behavior is for SIA bases to use the actual/actual day count to compute discount factors. If you use ISMA day counts and BUS/252, the specified bases are used.

## Output <br> Arguments

## YearConvexity

NUMBONDS-by-1 vector for the yearly (annualized) convexity.

## PerConvexity

NUMBONDS-by-1 vector for the periodic convexity reported on a semiannual bond basis (in accordance with SIA convention).

## Definitions

bndconvy determines the convexity for a bond whether the first or last coupon periods in the coupon structure are short or long (that is, whether the coupon structure is synchronized to maturity). This function also determines the convexity of a zero coupon bond.

All specified arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix ([]) as a placeholder for an optional argument. Fill in unspecified entries input vectors with NaNs. Dates can be serial date numbers or date strings.

## Examples Find Bond Convexity Given Yield

This example shows how to compute the convexity of a bond at three different yield values.

```
Yield = [0.04; 0.055; 0.06];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;
[YearConvexity, PerConvexity]=bndconvy(Yield, CouponRate,...
Settle, Maturity, Period, Basis)
YearConvexity =
```

    21.4825
    21.0358
    20.8885
    
## bndconvy

```
PerConvexity =
 85.9298
 84.1434
 83.5541
```

References	Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John   Wiley \& Sons, 2002.			
	Mayle, Jan, "Standard Securities Calculations Methods: Fixed Income   Securities Formulas for Analytic Measures", SIA, Vol 2, Jan 1994.			
	Stigum, Marcia, and Franklin Robinson, Money Market and Bond   Calculations, McGraw-Hill, 1996.			
See Also	cfconv \| bndconvp	bnddurp	bnddury	cfdur
How To	- "Yield Conventions" on page 2-31			

## Purpose

Syntax

## Description

## Input <br> Arguments

Bond duration given price
[ModDuration, YearDuration, PerDuration] = bnddurp(Price, CouponRate, Settle, Maturity) [ModDuration, YearDuration, PerDuration] = bnddurp(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)
[ModDuration, YearDuration, PerDuration] = bnddurp(Price, CouponRate, Settle, Maturity, 'ParameterName', 'ParameterValue ...)
[ModDuration, YearDuration, PerDuration] = bnddurp(Price, CouponRate, Settle, Maturity) computes the Macaulay and modified duration of NUMBONDS fixed-income securities given a clean price for each bond.
[ModDuration, YearDuration, PerDuration] = bnddurp(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)
[ModDuration, YearDuration, PerDuration] = bnddurp(Price, CouponRate, Settle, Maturity, 'ParameterName', 'ParameterValue ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the name of the parameter inside single quotes. Parametervalue is the value corresponding to 'ParameterName'. Specify parameter/value pairs in any order. Names are case-insensitive.

## Price

Clean price (excludes accrued interest).

## CouponRate

Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.

## bnddurp

## Settle

Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity.

## Maturity

Maturity date. A vector of serial date numbers or date strings.

## Ordered Input or Parameter-Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You cannot mix ordered syntax with parameter/value pairs.

## Period

Coupons per year of the bond. A vector of integers. Values are $0,1,2$, $3,4,6$, and 12 .

Default: 2

## Basis

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=\mathrm{actual} / 365$ (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0

## EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month. $1=$ set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

## Default: 1

## IssueDate

Issue date for a bond.

## FirstCouponDate

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

## LastCouponDate

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon

## bnddurp

structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

## StartDate

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

## Face

Face or par value.
Default: 100

## Parameter-Value Pairs

Enter the following inputs only as parameter/value pairs.

## CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ISMA bases (8-12) use an annual compounding convention.

## DiscountBasis

Basis used to compute the discount factors for computing the yield. The default behavior is for SIA bases to use the actual/actual day count to compute discount factors. If you use ISMA day counts and BUS/252, the specified bases are used.

## Output

 Arguments
## Definitions

## Examples

## ModDuration

NUMBONDS-by-1 vector for the modified duration in years, reported on a semiannual bond basis (in accordance with SIA convention).

## YearDuration

NUMBONDS-by-1 vector for the Macaulay duration in years.

## PerDuration

NUMBONDS-by-1 vector for the periodic Macaulay duration reported on a semiannual bond basis (in accordance with SIA convention).
bnddurp determines the Macaulay and modified duration for a bond whether the first or last coupon periods in the coupon structure are short or long (that is, whether the coupon structure is synchronized to maturity). This function also determines the Macaulay and modified duration for a zero coupon bond.

All specified arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix ([]) as a placeholder for an optional argument. Fill in unspecified entries input vectors with NaNs. Dates can be serial date numbers or date strings.

## Find Bond Duration Given Price

This example shows how to compute the duration of three bonds given their prices.

```
Price = [106; 100; 98];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;
[ModDuration, YearDuration, PerDuration] = bnddurp(Price,...
```


## bnddurp

CouponRate, Settle, Maturity, Period, Basis)
ModDuration =4.24004.19254.1759
YearDuration $=$4.32754.30774.3007
PerDuration =
8.6549
8.6154
8.6014
References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John Wiley \& Sons, 2002.
Mayle, Jan, "Standard Securities Calculations Methods: Fixed Income Securities Formulas for Analytic Measures", SIA, Vol 2, Jan 1994.
Stigum, Marcia, and Franklin Robinson, Money Market and Bond Calculations, McGraw-Hill, 1996.
See Also bndconvy | bndconvp | bnddury | bndkrdur
How To - "Yield Conventions" on page 2-31

Purpose	Bond duration given yield
Syntax	```[ModDuration, YearDuration, PerDuration] = bnddury(Yield, CouponRate, Settle, Maturity) [ModDuration, YearDuration, PerDuration] = bnddury(Yield, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) [ModDuration, YearDuration, PerDuration] = bnddury(Yield, CouponRate, Settle, Maturity, 'ParameterName', 'ParameterValue ...)```
Description	[ModDuration, YearDuration, PerDuration] = bnddury(Yield, CouponRate, Settle, Maturity) computes the Macaulay and modified duration of NUMBONDS fixed income securities given yield to maturity for each bond.   [ModDuration, YearDuration, PerDuration] = bnddury(Yield, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)   [ModDuration, YearDuration, PerDuration] = bnddury(Yield, CouponRate, Settle, Maturity,   'ParameterName', 'ParameterValue ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName is the name of the parameter inside single quotes. ParameterValue is the value corresponding to 'ParameterName'. Specify parameter/value pairs in any order. Names are case-insensitive.
Input Arguments	Yield
	Yield to maturity on a semiannual basis.
	CouponRate

## CouponRate

Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.

## bnddury

## Settle

Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity.

## Maturity

Maturity date. A vector of serial date numbers or date strings.

## Ordered Input or Parameter-Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You cannot mix ordered syntax with parameter/value pairs.

## Period

Coupons per year of the bond. A vector of integers. Values are $0,1,2$, $3,4,6$, and 12 .

## Default: 2

## Basis

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- $3=$ actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=\mathrm{actual} / 365$ (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0

## EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month. $1=$ set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

## Default: 1

## IssueDate

Issue date for a bond.

## FirstCouponDate

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

## LastCouponDate

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon

## bnddury

structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

## StartDate

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

## Face

(Optional) Face or par value.
Default: 100

## Parameter-Value Pairs

Enter the following inputs only as parameter/value pairs.

## CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ISMA bases (8-12) use an annual compounding convention.

## DiscountBasis

Basis used to compute the discount factors for computing the yield. The default behavior is for SIA bases to use the actual/actual day count to compute discount factors. If you use ISMA day counts and BUS/252, the specified bases are used.

## Output Arguments

## Definitions

## Examples

## ModDuration

NUMBONDS-by-1 vector for the modified duration in years, reported on a semiannual bond basis (in accordance with SIA convention).

## YearDuration

NUMBONDS-by-1 vector for the Macaulay duration in years.

## PerDuration

NUMBONDS-by-1 vector for the periodic Macaulay duration reported on a semiannual bond basis (in accordance with SIA convention).
bnddurp determines the duration for a bond whether the first or last coupon periods in the coupon structure are short or long (that is, whether the coupon structure is synchronized to maturity). This function also determines the Macaulay and modified duration for a zero coupon bond.

All specified arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix ([]) as a placeholder for an optional argument. Fill in unspecified entries input vectors with NaNs. Dates can be serial date numbers or date strings.

## Find Bond Duration Given Yield

This example shows how to compute the duration of a bond at three different yield values.

```
Yield = [0.04; 0.055; 0.06];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;
```

[ModDuration, YearDuration, PerDuration]=bnddury(Yield,...

## bnddury

CouponRate, Settle, Maturity, Period, Basis)
ModDuration =4.2444
4.19244.1751
YearDuration $=$4.3292
4.30774.3004
PerDuration =

    8.6585
    
    8.6154
    
    8.6007
    References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John Wiley \& Sons, 2002.
Mayle, Jan, "Standard Securities Calculations Methods: Fixed Income Securities Formulas for Analytic Measures", SIA, Vol 2, Jan 1994.
Stigum, Marcia, and Franklin Robinson, Money Market and Bond Calculations, McGraw-Hill, 1996.
See Also bndconvp | bndconvy | bnddurp | bndkrdur
How To - "Yield Conventions" on page 2-31

```
Purpose Bond key rate duration given zero curve
Syntax KRDUR = bndkrdur(ZeroData, CouponRate,
Settle, Maturity)
KRDUR = bndkrdur(ZeroData, CouponRate, Settle,
Maturity, 'Parameter1', Value1, 'Parameter2',
Value2, ...)
```


## Arguments

ZeroData	Zero curve represented as a numRates-by-2   matrix where the first column is a MATLAB   date number and the second column is   accompanying zero rates.
CouponRate	numBonds-by-1 vector of coupon rates in decimal   form.
Settle	Scalar MATLAB date number for the   settlement date for all the bonds and the zero   data. Settle must be the same settlement date   for all the bonds and the zero curve.
Maturity	numBonds-by-1 vector of maturity dates.   (Optional) Coupons per year of the bond. A
Period	vector of integers. Acceptable values are 0, 1, 2   (default), 3, 4, 6, and 12.   (Optional) Interpolation method used to obtain
	points from the zero curve. Acceptable values   are:
	- 'linear' (default)
	- 'cubic'
- 'pchip'	

## bndkrdur

ShiftValue	(Optional) Scalar value that zero curve is   shifted up and down to compute duration.   Default is .01 (100 basis points).   (Optional) Rates to perform the duration   calculation, specified as a time to maturity.   By default, KeyRates is set to each of the zero   dates.   (Optional) Compounding frequency of the
Curvecompounding	curve. Default is semiannual.
CurveBasis	(Optional) Basis of the curve, where the choices   are identical to Basis below. Default is 0
(actual/actual).	
Basis	(Optional) Day-count basis of the bond
	instrument. A vector of integers:


	For more information, see basis on page   Glossary-2.
(Optional) End-of-month rule. This rule applies	
only when Maturity is an end-of-month date	
for a month having 30 or fewer days. The	
values are:	
- 0 = ignore rule, meaning that a bond's	
coupon payment date is always the same	
numerical day of the month.	


StartDate	(Optional) Date when a bond actually starts   (the date from which a bond cash flow   is considered). To make an instrument   forward-starting, specify this date as a future   date. If you do not specify StartDate, the   effective start date is the Settle date.
Face	(Optional) Face or par value. Default $=100$.   Face has no impact on key rate duration.

Note You must enter the optional arguments as parameter/value pairs.

## Description

```
KRDUR = bndkrdur(ZeroData, CouponRate, Settle, Maturity)
KRDUR = bndkrdur(ZeroData, CouponRate, Settle, Maturity,
'Parameter1', Value1, 'Parameter2', Value2, ...)
```

The output argument KRDUR is a numBonds-by-numRates matrix of key rate durations.
bndkrdur computes the key rate durations for one or more bonds given a zero curve and a set of key rates. By default, the key rates are each of the zero curve rates. For each key rate, the duration is computed by shifting the zero curve up and down by a specified amount (ShiftValue) at that particular key rate, computing the present value of the bond in each case with the new zero curves, and then evaluating the following:

$$
k r d u r_{i}=\frac{\left(P V_{\text {down }}-P V_{u p}\right)}{(P V \times \text { ShiftValue } \times 2)}
$$

> Note The shift to the curve is computed by shifting the particular key rate by the ShiftValue and then interpolating the values of the curve in the interval between the previous and next key rates. For the first key rate, any curve values before the date are equal to the ShiftValue; likewise, for the last key rate, any curve values after the date are equal to the ShiftValue.

## Examples

krdur =

$$
\begin{array}{llll}
0.2986 & 0.8791 & 4.1353 & 9.5814
\end{array}
$$

References Golub, B.W. and L.M. Tilman, Risk Management: Approaches for Fixed Income Markets Wiley, 2000.

Tuckman, B. Fixed Income Securities: Tools for Today's Markets Wiley, 2002.

See Also bndconvp | bndconvy | bnddurp | bnddury

## bndprice

Purpose
Price fixed-income security from yield to maturity
Syntax

```
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity)
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,
Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face)
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,
Maturity, 'ParameterName', 'ParameterValue ...)
```


## Description

## Input

Arguments
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity) given bonds with SIA date parameters and semiannual yields to maturity, returns the clean prices and accrued interest due.
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) given bonds with SIA date parameters and semiannual yields to maturity and optional inputs, returns the clean prices and accrued interest due.
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity, 'ParameterName', 'ParameterValue ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the name of the parameter inside single quotes. ParameterValue is the value corresponding to 'ParameterName'.
Specify parameter/value pairs in any order. Names are case-insensitive.

## Yield

Bond yield to maturity is on a semiannual basis for basis values 0 through 7 and an annual basis for basis values 8 through 12 .

## CouponRate

Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.

## Settle

Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity.

## Maturity

Maturity date. A vector of serial date numbers or date strings.

## Ordered Input or Parameter-Value Pairs

Enter the following inputs using an ordered syntax or as parameter value pairs. You cannot mix ordered syntax with parameter value pairs.

## Period

Coupons per year of the bond. A vector of integers. Values are $0,1,2$, $3,4,6$, and 12 .

## Default: 2

## Basis

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- $3=$ actual $/ 365$
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- 7 = actual/365 (Japanese)
- 8 = actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=\mathrm{actual} / 365$ (ISMA)


## bndprice

- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0

## EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month. $1=$ set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

## Default: 1

## IssueDate

Issue date for a bond.

Default: If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.

## FirstCouponDate

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

## LastCouponDate

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified

FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

## StartDate

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

Default: If you do not specify StartDate, the effective start date is the Settle date.

## Face

Face or par value.
Default: 100

## Parameter-Value Pairs

Enter the following inputs only as parameter/value pairs.

## CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ISMA bases ( $8-12$ ) use an annual compounding convention.

Default: SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ISMA bases (8-12) use an annual compounding convention.

## DiscountBasis

## bndprice

Basis used to compute the discount factors for computing the yield. The default behavior is for SIA bases to use the actual/actual day count to compute discount factors. If you use ISMA day counts and BUS/252, the specified bases are used.

Default: SIA bases use the actual/actual day count to compute discount factors.

## LastCouponInterest

Compounding convention for computing the yield of a bond in the last coupon period. This is based on only the last coupon and the face value to be repaid. Acceptable values are simple or compound.

Default: compound

## Output Arguments

## Definitions

## Examples

## Price

NUMBONDS-by-1 vector for the clean price of the bond. The dirty price of the bond is the clean price plus the accrued interest. It equals the present value of the bond cash flows of the yield to maturity with semiannual compounding.

## Accruedlnt

NUMBONDS-by-1 vector for the accrued interest payable at settlement.
Given NBONDS with date parameters and yields to maturity, bndprice returns the clean prices and the accrued interest due.

All nonscalar or empty matrix input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors. Fill in unspecified entries input vectors with NaNs. Dates can be serial date numbers or date strings.

## Price a Treasury Bond from Yield to Maturity

This example shows how to price a treasury bond at three different yield values.

```
Yield = [0.04; 0.05; 0.06];
CouponRate = 0.05;
Settle = '20-Jan-1997';
Maturity = '15-Jun-2002';
Period = 2;
Basis = 0;
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,...
Maturity, Period, Basis)
```

Price =
104.8106
99.9951
95.4384

AccruedInt =
0.4945
0.4945
0.4945

## Price a Treasury Bond with Different Yield Values

This example shows how to price a Treasury bond at two different yield values that include parameter/value pairs for CompoundingFrequency, DiscountBasis, and LastCouponPeriodInterest.
bndprice(.04,0.08,'5/25/2004','4/21/2005','Period',1,'Basis', 8, ... 'LastCouponInterest', 'simple')

## bndprice

Algorithms
For SIA conventions, the following formula defines bond price and yield:

$$
P V=\sum_{i=1}^{n}\left(\frac{C F}{\left(1+\frac{z}{f}\right)^{T F}}\right),
$$

where:

$P V=$	Present value of a cash flow.
$C F=$	Cash flow amount.
$z=$	Risk-adjusted annualized rate or yield corresponding to   a given cash flow. The yield is quoted on a semiannual   basis.

$f=\quad$ Frequency of quotes for the yield. Default is 2 for Basis values 0 to 7 and 13 and 1 for Basis values 8 to 12. The default can be overridden by specifying the CompoundingFrequency name/value pair.
$T F=\quad$ Time factor for a given cash flow. The time factor is computed using the compounding frequency and the discount basis. If these values are not specified, then the defaults are as follows: CompoundingFrequency default is 2 for Basis values 0 to 7 and 13 and 1 for Basis values 8 to 12. DiscountBasis is 0 for Basis values 0 to 7 and 13 and the input Basis for Basis values 8 to 12.

Note The Basis is always used to compute accrued interest.

For ISMA conventions, the frequency of annual coupon payments determines bond price and yield.

References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John Wiley \& Sons, 2002.<br>Mayle, Jan, "Standard Securities Calculations Methods: Fixed Income Securities Formulas for Analytic Measures", SIA, Vol 2, Jan 1994.<br>Stigum, Marcia, and Franklin Robinson, Money Market and Bond Calculations, McGraw-Hill, 1996.

See Also bndyield | cfamounts
Tutorials . "Pricing Functions" on page 2-31

## bndspread

Purpose
Syntax

## Description

## Input <br> Arguments

Static spread over spot curve
Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity) Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)
Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity, 'ParameterName', 'ParameterValue ...)

Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity) computes the static spread (Z-spread) to benchmark in basis points.

Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) computes the static spread (Z-spread) to benchmark in basis points including optional inputs.

Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity,
'ParameterName', 'ParameterValue ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName ' is the name of the parameter inside single quotes. Parametervalue is the value corresponding to 'ParameterName'. Specify parameter/value pairs in any order. Names are case-insensitive.

## SpotInfo

This input can either be a matrix of two columns, or an annualized term structure created by intenvset.

- Matrix of two columns- The first column is the SpotDate, and the second column, ZeroRates, is the zero-rate corresponding to maturities on the SpotDate. It is recommended that the spot-rates are spaced as evenly apart as possible, perhaps one that is built from

3 -months deposit rates. For example, using the 3 -month deposit rates:

```
SpotInfo = ...
[datenum('2-Jan-2004') , 0.03840;
datenum('2-Jan-2005') , 0.04512;
datenum('2-Jan-2006') , 0.05086];
```

- Annualized term structure - Refer to intenvset to create an annualized term structure. For example:

```
Settle = datenum('1-Jan-2004');
Rates = [0.03840; 0.04512; 0.05086];
EndDates = [datenum('2-Jan-2004'); datenum('2-Jan-2005');...
 datenum('2-Jan-2006')];
SpotInfo = intenvset('StartDates' , Settle ,...
 'Rates' , Rates ,...
 'EndDates' , EndDates,...
 'Compounding', 2 ,...
 'Basis' , 0);
```


## Price

Price for every $\$ 100$ notional amount of bonds whose spreads are computed. This is the clean price of the bond (current price without accrued interest).

## Coupon

Annual coupon rate of bonds whose spreads are computed.

## Settle

Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity.

## Maturity

Maturity date. A vector of serial date numbers or date strings.

## bndspread

## Ordered Input or Parameter-Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You cannot mix ordered syntax with parameter/value pairs.

## Period

Coupons per year of the bond. A vector of integers. Values are $0,1,2$, $3,4,6$, and 12 .

Default: 2

## Basis

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=$ actual/365 (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

Default: 0

## EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month. $1=$ set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

## Default: 1

## IssueDate

Issue date for a bond.

## FirstCouponDate

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

## LastCouponDate

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

## StartDate

## bndspread

## Output <br> Arguments

## Examples

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

## Face

Face or par value.
Default: 100

## Parameter-Value Pairs

Enter the following inputs only as parameter/value pairs.

## CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ISMA bases (8-12) use an annual compounding convention.

## DiscountBasis

Basis used to compute the discount factors for computing the yield. The default behavior is for SIA bases to use the actual/actual day count to compute discount factors. If you use ISMA day counts and BUS/252, the specified bases are used.

## Spread

Static spread to benchmark, in basis points.

## Compute the Static Spread Over a Spot Curve

This example shows how to compute a Federal National Mortgage Association (FNMA) $43 / 8$ spread over a Treasury spot curve and plot the results.

```
RefMaturity = [datenum('02/27/2003');
 datenum('05/29/2003');
```

```
 datenum('10/31/2004');
datenum('11/15/2007');
datenum('11/15/2012');
datenum('02/15/2031')];
RefCpn = [0;
 0;
 2.125;
 3;
 4;
 5.375] / 100;
RefPrices = [99.6964;
 99.3572;
 100.3662;
 99.4511;
 99.4299;
 106.5756];
RefBonds = [RefPrices, RefMaturity, RefCpn];
Settle = datenum('26-Nov-2002');
[ZeroRates, CurveDates] = zbtprice(RefBonds(:, 2:end), ...
RefPrices, Settle)
% FNMA 4 3/8 maturing 10/06 at 4.30 pm Tuesday
Price = 105.484;
Coupon = 0.04375;
Maturity = datenum('15-0ct-2006');
% All optional inputs are supposed to be accounted by default,
% except the accrued interest under 30/360 (SIA), so:
Period = 2;
Basis = 1;
SpotInfo = [CurveDates, ZeroRates];
% Compute static spread over treasury curve, taking into account
% the shape of curve as derived by bootstrapping method embedded
```


## bndspread

```
% within bndspread.
SpreadInBP = bndspread(SpotInfo, Price, Coupon, Settle, ...
Maturity, Period, Basis)
plot(CurveDates, ZeroRates*100, 'b', CurveDates, ...
ZeroRates*100+SpreadInBP/100, 'r--')
legend({'Treasury'; 'FNMA 4 3/8'})
xlabel('Curve Dates')
ylabel('Spot Rate [%]')
grid;
ZeroRates =
 0.0121
 0.0127
 0.0194
 0.0317
 0.0423
 0.0550
CurveDates =
7 3 1 6 3 9
7 3 1 7 3 0
7 3 2 2 5 1
7 3 3 3 6 1
735188
741854
SpreadInBP =
18.5669
```



References $\quad \begin{aligned} & \text { Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John } \\ & \\ & \text { Wiley \& Sons, 2002. }\end{aligned}$
Mayle, Jan, "Standard Securities Calculations Methods: Fixed Income Securities Formulas for Analytic Measures", SIA, Vol 2, Jan 1994.
Stigum, Marcia, and Franklin Robinson, Money Market and Bond Calculations, McGraw-Hill, 1996.

## bndspread

See Also bndyield | bndprice

## bndtotalreturn

## Purpose Total return of fixed-coupon bond

Syntax

```
[BondEquiv,EffectiveRate] = bndtotalreturn(Price,CouponRate,Settle,
 Maturity,ReinvestRate)
[BondEquiv,EffectiveRate] = bndtotalreturn(Price,CouponRate,Settle,Ma-
ReinvestRate,Name,Value)
```

[BondEquiv,EffectiveRate] = bndtotalreturn(Price, CouponRate, Settle, Maturity, ReinvestRate) calculates the total return for fixed-coupon bonds to maturity or to a specific investment horizon.

```
[BondEquiv,EffectiveRate] =
bndtotalreturn(Price,CouponRate,Settle,Maturity,
```

ReinvestRate, Name, Value) calculates the total return for fixed-coupon
bonds to maturity or to a specific investment horizon with additional
options specified by one or more Name, Value pair arguments.

## Input Arguments

## Price

NINST-by- 1 matrix for the clean price at the settlement date.

## CouponRate

NINST-by- 1 matrix for the coupon rate in decimal form.

## Settle

NINST-by-1 vector for the settlement date of the fixed-coupon bond.

## Maturity

NINST-by- 1 vector of dates representing the maturity date of the fixed-coupon bond.

## ReinvestRate

NINST-by-1 vector for the reinvestment rate in decimal form. This is the rate earned by reinvesting the coupons.

## bndtotalreturn

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

## 'HorizonDate'

Investment horizon date. If unspecified, the total return is calculated to maturity.

## 'HorizonPrice'

Price at investment horizon date. If unspecified, the price at horizon will be calculated based on the reinvestment rate. If the horizon date equals the maturity date, this price is ignored and the total return to maturity is calculated based on the face value.

## 'Period'

Number of coupon payments per year. Values are: $0,1,2,3,4,6,12$.

## Default: 2

## 'Basis'

NINST-by-1 vector representing day-count basis:

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual $/ 360$
- $3=$ actual $/ 365$
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- 7 = actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- $10=\mathrm{actual} / 365$ (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0 (actual/actual)

## 'EndMonthRule'

Value for the end-of-month rule.

- 0 - Rule is not in effect for the bond(s).
- 1 - Rule is in effect for the bond(s). This means that a security that pays coupon interest on the last day of the month will always make payment on the last day of the month.

Default: 1 (in effect)

## 'IssueDate'

Bond issue date.
Default: If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.

## 'FirstCouponDate'

Irregular or normal first coupon date.
Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

## bndtotalreturn

## 'LastCouponDate'

Irregular or normal last coupon date.
Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

## 'StartDate'

Forward starting date of payments.
Default: If you do not specify a StartDate, the effective start date is the Settle date.

## 'Face'

Face value of the bond.
Default: 100

## 'CompoundingFrequency'

Compounding frequency for yield calculation. By default, SIA bases ( $0-7$ ) and BUS/252 use a semi-annual compounding convention and ISMA bases (8-12) use an annual compounding convention.

## 'DiscountBasis'

Basis used to compute the discount factors for computing the yield. The default behavior is for SIA bases to use the actual/actual day count to compute discount factors, and for ISMA day counts (8-12) and BUS/252 to use the specified basis.

## Output

Arguments

## BondEquiv

NUMBONDS-by- 1 vector for the total return in bond equivalent basis.

## EffectiveRate

NUMBONDS-by-1 vector for the total return in effective rate basis.

## Examples Compute the Total Return of a Fixed-Coupon Bond

Use bndtotalreturn to compute the total return for a fixed-coupon bond, given an investment horizon date.

Define fixed-coupon bond.

```
Price = 101;
CouponRate = 0.05;
Settle = '15-Nov-2011';
Maturity = '15-Nov-2031';
ReinvestRate = 0.04;
```

Calculate the total return to maturity.

```
[BondEquiv, EffectiveRate] = bndtotalreturn(Price, CouponRate, ...
```

Settle, Maturity, ReinvestRate)

BondEquiv =
0.0460

EffectiveRate =
0.0466

Specify an investment horizon.
HorizonDate = '15-Nov-2021';
[BondEquiv, EffectiveRate] = bndtotalreturn(Price, CouponRate, ... Settle, Maturity, ReinvestRate, 'HorizonDate', HorizonDate)

BondEquiv =

## bndtotalreturn

## EffectiveRate =

0.0528

Perform scenario analysis on the reinvestment rate.
ReinvestRate = [0.03; 0.035; 0.04; 0.045; 0.05];
[BondEquiv, EffectiveRate] = bndtotalreturn(Price, CouponRate, ... Settle, Maturity, ReinvestRate, 'HorizonDate', HorizonDate)

BondEquiv =
0.0557
0.0538
0.0521
0.0505
0.0490

EffectiveRate =
0.0565
0.0546
0.0528
0.0511
0.0496

References Fabozzi, Frank J., Mann, Steven V., Introduction to Fixed Income Analytics: Relative Value Analysis, Risk Measures and Valuation, John Wiley and Sons, New York, 2010.

## bndtotalreturn

See Also
bndyield | bndprice | cfamounts

## bndyield

Purpose Yield to maturity for fixed-income security

Syntax $\quad$| Yield = bndyield(Price, CouponRate, Settle, Maturity) |
| :--- |
| Yield = bndyield(Price, CouponRate, Settle, Maturity, |
| Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, |
|  |
| LastCouponDate, StartDate, Face) |
|  |
| Yield = bndyield(Price, CouponRate, Settle, Maturity, |
|  |
| 'ParameterName', 'ParameterValue ...) |

## Description

## Input <br> Arguments

Yield = bndyield(Price, CouponRate, Settle, Maturity), given NUMBONDS bonds with SIA date parameters and clean prices (excludes accrued interest), returns the bond equivalent yields to maturity.

Yield = bndyield(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) bonds with SIA date parameters and clean prices (excludes accrued interest) and optional inputs, returns the bond equivalent yields to maturity.

Yield = bndyield(Price, CouponRate, Settle, Maturity, 'ParameterName', 'ParameterValue ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the name of the parameter inside single quotes. Parametervalue is the value corresponding to 'ParameterName'. Specify parameter/value pairs in any order. Names are case-insensitive.

## Price

Clean price of the bond (current price without accrued interest).

## CouponRate

Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.

## Settle

Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity.

## Maturity

Maturity date. A vector of serial date numbers or date strings.

## Ordered Input or Parameter-Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You cannot mix ordered syntax with parameter/value pairs.

## Period

Coupons per year of the bond. A vector of integers. Values are $0,1,2$, $3,4,6$, and 12 .

Default: 2

## Basis

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=\mathrm{actual} / 365$ (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- $12=$ actual/365 (ISDA)


## bndyield

- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0

## EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month. $1=$ set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

## Default: 1

## IssueDate

Issue date for a bond.
Default: If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.

## FirstCouponDate

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

## LastCouponDate

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at
the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

## StartDate

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

Default: If you do not specify StartDate, the effective start date is the Settle date.

## Face

Face or par value.
Default: 100

## Parameter-Value Pairs

Enter the following inputs only as parameter/value pairs.

## CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ISMA bases (8-12) use an annual compounding convention.

Default: SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ISMA bases (8-12) use an annual compounding convention.

## DiscountBasis

Basis used to compute the discount factors for computing the yield. The default behavior is for SIA bases to use the actual/actual day count to

## bndyield

compute discount factors. If you use ISMA day counts and BUS/252, the specified bases are used.

Default: SIA bases use the actual/actual day count to compute discount factors.

## LastCouponInterest

Compounding convention for computing the yield of a bond in the last coupon period. This computation is based on only the last coupon and the face value to be repaid. Acceptable values are simple or compound.

Default: compound

## Output <br> Arguments

## Definitions

## Examples

## Yield

NUMBONDS-by-1 vector of the yield to maturity with semiannual compounding.

All nonscalar or empty matrix input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors. Fill in unspecified entries input vectors with NaNs. Dates can be serial date numbers or date strings.

## Compute Yield to Maturity for a Treasury Bond

This example shows how to compute the yield of a Treasury bond at three different price values.

```
Price = [95; 100; 105];
CouponRate = 0.05;
Settle = '20-Jan-1997';
Maturity = '15-Jun-2002';
Period = 2;
Basis = 0;
Yield = bndyield(Price, CouponRate, Settle,...
Maturity, Period, Basis)
```

Yield =
0.0610
0.0500
0.0396

## Algorithms

$$
P V=\frac{C F}{\left(1+\frac{z}{f}\right)^{T F}},
$$

where:

$P V=$	Present value of a cash flow.
$C F=$	The cash flow amount.
$z=$	The risk-adjusted annualized rate or yield corresponding   to a given cash flow. The yield is quoted on a semiannual   basis.
$f=$	The frequency of quotes for the yield.
$T F=$	Time factor for a given cash flow. Time is measured   in semiannual periods from the settlement date to the   cash flow date. In computing time factors, use SIA   actual/actual day count conventions for all time factor   calculations.

For ISMA conventions, the frequency of annual coupon payments determines bond price and yield.

[^2]
## bndyield

Mayle, Jan, "Standard Securities Calculations Methods: Fixed Income Securities Formulas for Analytic Measures", SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson, Money Market and Bond Calculations, McGraw-Hill, 1996.

See Also bndprice | cfamounts
How To . "Yield Functions" on page 2-32

## Purpose

Bollinger band chart

## Syntax <br> Arguments

bolling(Asset, Samples, Alpha, Width)
[Movavgv, UpperBand, LowerBand] = bolling(Asset, Samples, Alpha, Width)

## Description

bolling(Asset, Samples, Alpha, Width) plots Bollinger bands for given Asset data. This form of the function does not return any data.
[Movavgv, UpperBand, LowerBand] = bolling(Asset, Samples, Alpha, Width) returns Movavgv with the moving average of the Asset data, UpperBand with the upper band data, and LowerBand with the lower band data. This form of the function does not plot any data.

Note The standard deviations are normalized by $\mathrm{N}-1$, where $\mathrm{N}=$ the sequence length.

## bolling

Examples If Asset is a column vector of closing stock prices
bolling(Asset, 20, 1)plots linear 20-day moving average Bollinger bands based on the stockprices.
[Movavgv, UpperBand, LowerBand] = bolling(Asset, 20, 1)
returns Movavgv, UpperBand, and LowerBand as vectors containing the
moving average, upper band, and lower band data, without plotting the data.
See Also candle | dateaxis | highlow | movavg | pointfig

## Purpose

Time series Bollinger band

## Syntax

## Arguments

## Description

data Data vector.
wsize (Optional) Window size. Default $=20$.
wts (Optional) Weight factor. Determines the type of moving average used. Default $=0$ (box). $1=$ linear.
nstd (Optional) Number of standard deviations for upper and lower bands. Default $=2$.
tsobj Financial time series object.
[mid, uppr, lowr] = bollinger(data, wsize, wts, nstd) calculates the middle (mid), upper (uppr), and lower (lowr) bands that make up the Bollinger bands from the vector data.
mid is the vector that represents the middle band, a simple moving average with a window size of wsize. uppr and lowr are vectors that represent the upper and lower bands. uppr is a vector representing the upper band that is +nstd times. lowr is a vector representing the lower band that is -nstd times.
[midfts, upprfts, lowrfts] = bollinger(tsobj, wsize, wts, nstd) calculates the middle, upper, and lower bands that make up the Bollinger bands from a financial time series object tsobj.
midfts is a financial time series object that represents the middle band for all series in tsobj. Both upprfts and lowrfts are financial time series objects that represent the upper and lower bands of all series, which are $+n s t d$ times and -nstd times moving standard deviations away from the middle band.

## bollinger

## Examples Create a Bollinger Bands Plot

This example shows how to compute the Bollinger bands for Disney stock closing prices and plot the results.

```
load disney.mat
[dis_Mid,dis_Uppr,dis_Lowr]= bollinger(dis);
dis_CloseBolling = [dis_Mid.CLOSE, dis_Uppr.CLOSE,...
dis_Lowr.CLOSE];
plot(dis_CloseBolling)
title('Bollinger Bands for Disney Closing Prices')
```




References Achelis, Steven B., Technical Analysis from A to Z, Second Edition, McGraw-Hill, 1995, pp. 72-74.

See Also tsmovavg

Purpose Box-Cox transformation

```
Syntax [transdat, lambda] = boxcox(data)
[transfts, lambdas] = boxcox(tsobj)
transdat = boxcox(lambda, data)
transfts = boxcox(lambda, tsobj)
```


## Arguments

## Description

$$
\begin{array}{ll}
\text { data } & \begin{array}{l}
\text { Data vector. Must be positive and specified as a } \\
\text { column data vector. }
\end{array} \\
\text { tsobj } & \text { Financial time series object. }
\end{array}
$$

boxcox transforms nonnormally distributed data to a set of data that has approximately normal distribution. The Box-Cox transformation is a family of power transformations.

If $\lambda$ is not $=0$, then

$$
\operatorname{data}(\lambda)=\frac{d a t a^{\lambda}-1}{\lambda}
$$

If $\lambda$ is $=0$, then

$$
d a t a(\lambda)=\log (d a t a)
$$

The logarithm is the natural logarithm (log base e). The algorithm calls for finding the $\lambda$ value that maximizes the Log-Likelihood Function (LLF). The search is conducted using fminsearch.
[transdat, lambda] = boxcox(data) transforms the data vector data using the Box-Cox transformation method into transdat. It also estimates the transformation parameter $\lambda$.
[transfts, lambda] = boxcox(tsojb) transforms the financial time series object tsobj using the Box-Cox transformation method into transfts. It also estimates the transformation parameter $\lambda$.

If the input data is a vector, lambda is a scalar. If the input is a financial time series object, lambda is a structure with fields similar to the components of the object; for example, if the object contains series names Open and Close, lambda has fields lambda.Open and lambda.Close.
transdat $=$ boxcox(lambda, data) and transfts = boxcox(lambda, tsobj) transform the data using a certain specified $\lambda$ for the Box-Cox transformation. This syntax does not find the optimum $\lambda$ that maximizes the LLF.

## See Also <br> fminsearch

## busdate

Purpose	Next or previous business day
Syntax	Busday = busdate(Date, DirFlag, Holiday, Weekend)

## Arguments

Date	Reference date. Enter scalar, vector, or matrix of reference business dates as serial date numbers or date strings.
DirFlag	(Optional) String or cell array of strings of business day convention with possible values: follow (default), modifiedfollow, previous, modifiedprevious. Also, DirFlag may be a scalar, vector, or matrix of search directions, where Next is DIREC $=1$ (default) or Previous is DIREC $=-1$.
Holiday	(Optional) Vector of holidays and nontrading-day dates. All dates in Holiday must be the same format: either serial date numbers or date strings. (Using serial date numbers improves performance.) If Holiday is not specified, the non-trading day default vector is determined by the routine holidays function.
Weekend	(Optional) Vector of length 7, containing 0 and 1, the value 1 indicating weekend days. The first element of this vector corresponds to Sunday. Thus, when Saturday and Sunday form the weekend (default), Weekend $=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.

Description Busday = busdate (Date, DirFlag, Holiday, Weekend) returns the scalar, vector, or matrix of the next or previous business day(s), depending on Holiday.

Use the function datestr to convert serial date numbers to formatted date strings.

```
Examples Example 1.
Busday = busdate('3-Jul-2001', 1)
Busday =
 731037
datestr(Busday)
ans =
05-Jul-2001
```

Example 2. You can indicate that Saturday is a business day by appropriately setting the Weekend argument.

Weekend = $\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0\end{array}\right]$;
July 4, 2003 falls on a Friday. Use busdate to verify that Saturday, July 5 , is actually a business day.

```
Date = datestr(busdate('3-Jul-2003', 1, [], Weekend))
```

See Also holidays | isbusday

## busdays

Purpose Business days in serial date format

```
Syntax
bdates = busdays(sdate, edate, bdmode)
bdates = busdays(sdate, edate, bdmode, holvec)
```


## Arguments

sdate	Start date in string or serial date format.
edate	End date in string or serial date format.
bdmode	(Optional) Frequency of business days:
	- DAILY, Daily, daily, D, d, 1 (default)
	- WEEKLY, Weekly, weekly, W, w, 2
	- MONTHLY, Monthly, monthly, M, m, 3
	- QUARTERLY, Quarterly, quarterly, Q, q, 4
	- SEMIANNUAL, Semiannual, semiannual, S, s, 5
	- ANNUAL, Annual, annual, A, a, 6

Strings must be enclosed in single quotation marks.
holvec (Optional) Holiday dates vector in string or serial date format. Note that using a holvec value of NaN will use a holiday list that has no dates.

## Description

bdates = busdays(sdate, edate, bdmode) generates a vector of business days, bdates, in serial date format between the last business date of the period that contains the start date, and the last business date of period that contains the end date. If holvec is not supplied, the dates are generated based on United States holidays. If you do not supply bdmode, busdays generates a daily vector.

For example:
vec = datestr(busdays('1/2/01','1/9/01', 'weekly'))
vec =
05-Jan-2001
12-Jan-2001

The end of the week is considered to be a Friday. Between 1/2/01 (Monday) and 1/9/01 (Tuesday) there is only one end-of-week day, 1/5/01 (Friday).

Because $1 / 9 / 01$ is part of following week, the following Friday (1/12/01) is also reported.
bdates = busdays(sdate, edate, bdmode, holvec) lets you supply a vector of holidays, holvec, used to generate business days. holvec can either be in serial date format or date string format. If you use this syntax, you need to supply the frequency bdmode.

The output, bdates, is a column vector of business dates in serial date format.

Setting holvec to ' ' (empty string) or [] (empty vector) results in BUSDAYS using a default holiday schedule. The default holiday schedule is the NYSE holiday schedule.

## Purpose Candlestick chart

Syntax candle(HighPrices, LowPrices, ClosePrices, OpenPrices) candle(HighPrices, LowPrices, ClosePrices, OpenPrices, Color, Dates, Dateform)

## Arguments

HighPrices	High prices for a security. A column vector.
LowPrices	Low prices for a security. A column vector.
ClosePrices	Closing prices for a security. A column vector.
OpenPrices	Opening prices for a security. A column vector.   Color                     (Optional) Candlestick color. A string. MATLAB   software supplies a default color if none is specified.   The default color differs depending on the background   color of the figure window. See ColorSpec in the
	MATLAB documentation for color names.
Dates	(Optional) Column vector of dates for user specified
	X-axis tick labels.
	(Optional) Date string format used as the $x$-axis   tick labels. (See datetick in the MATLAB   documentation.) You can specify a dateform only   when tsobj does not contain time-of-day data.
	If tsobj contains time-of-day data, dateform is   restricted to 'dd-mmm-yyy HH:MM'.

## Description

candle(HighPrices, LowPrices, ClosePrices, OpenPrices) plots a candlestick chart given column vectors with the high, low, closing, and opening prices of a security.

If the closing price is greater than the opening price, the body (the region between the opening and closing price) is unfilled.

If the opening price is greater than the closing price, the body is filled. candle(HighPrices, LowPrices, ClosePrices, OpenPrices, Color, Dates, Dateform) plots a candlestick chart given column vectors with the high, low, closing, and opening prices of a security. In addition, the optional arguments Color, Dates, and Dateform specify the color of the candle box and the date string format used as the $x$-axis tick labels.

## Examples Create a Candlestick Chart

This example shows how to create a candlestick chart, with blue candles, for the most recent 21 days in disney.mat.

```
load disney;
candle(dis_HIGH(end-20:end), dis_LOW(end-20:end), dis_CLOSE(end-20:enc
dis_OPEN(end-20:end), 'b');
```



See Also
bolling | candle | dateaxis | highlow | movavg | pointfig

## Purpose

Time series candle plot
Syntax
candle(tsobj)
candle(tsobj, color)
candle(tsobj, color, dateform)
candle(tsobj, color, dateform, ParameterName, ParameterValue, ...) hcdl = candle(tsobj, color, dateform, ParameterName, ParameterValue, ...)

## Arguments

tsobj	Financial time series object   color
(Optional) A three-element row vector representing   RGB or a color identifier. (See plot in the MATLAB   documentation.)	
dateform	(Optional) Date string format used as the $x$-axis   tick labels. (See datetick in the MATLAB   documentation.) You can specify a dateform only   when tsobj does not contain time-of-day data.   If tsobj contains time-of-day data, dateform is   restricted to 'dd-mmm-yyy HH:MM'.

## Description

candle(tsobj) generates a candle plot of the data in the financial time series object tsobj. tsobj must contain at least four data series representing the high, low, open, and closing prices. These series must have the names High, Low, Open, and Close (case-insensitive).
candle(tsobj, color) additionally specifies the color of the candle box.
candle(tsobj, color, dateform) additionally specifies the date string format used as the $x$-axis tick labels. See datestr for a list of date string formats.
candle(tsobj, color, dateform, ParameterName, ParameterValue, ...) indicates the actual name(s) of the required
data series if the data series do not have the default names. ParameterName can be

- HighName: high prices series name
- LowName: low prices series name
- OpenName: open prices series name
- CloseName: closing prices series name
hcdl = candle(tsobj, color, dateform, ParameterName, ParameterValue, ...) returns the handle to the patch objects and the line object that make up the candle plot. hdcl is a three-element column vector representing the handles to the two patches and one line that forms the candle plot.


## Examples Create a Candle Plot for a Financial Time Series Object

This example shows how to create a candle plot for Disney stock for the dates March 31, 1998 through April 30, 1998.

```
load disney.mat
candle(dis('3/31/98::4/30/98'))
title('Disney 3/31/98 to 4/30/98')
```



See Also candle | chartfts | highlow | plot

Purpose Accrued interest on certificate of deposit

```
Syntax AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate, Basis)
```

Arguments

CouponRate	Annual interest rate in decimal.
Settle	Settlement date. Settle must be earlier than
Maturity.	
Maturity	Maturity date.
IssueDate	Issue date.
Basis	(Optional) Day-count basis of the instrument.
	- $0=$ actual/actual (default)
	- $1=30 / 360$ (SIA)
	- $2=$ actual/360
	- $3=$ actual/365
	- $4=30 / 360$ (BMA)
	- $5=30 / 360$ (ISDA)
	- $6=30 / 360$ (European)
	- $7=$ actual/365 (Japanese)
	- $8=$ actual/actual (ICMA)
	- $9=$ actual/360 (ICMA)
	- $10=$ actual/365 (ICMA)
	- $11=30 / 360 \mathrm{E}$ (ICMA)
	- $12=$ actual/actual (ISDA)
	- $13=\mathrm{BUS} / 252$

For more information, see basis on page Glossary-2.

Each required input must be some certificates of deposit (NCDS)-by-1 or 1 -by-NCDS conforming vector or scalar. The optional Basis argument may be either a NCDS-by-1 or a 1 -by-NCDS vector, a scalar, or the empty matrix ([]).

## Description AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate, Basis) computes the accrued interest on a certificate of deposit.

Accrint represents the accrued interest per $\$ 100$ of face value.
This function assumes that the certificates of deposit pay interest at maturity. Because of the simple interest treatment of these securities, the function is best used for short-term maturities (less than 1 year). The default simple interest calculation is the actual/360 convention (SIA).

## Examples Find the Accrued Interest on a Certificate of Deposit

This example shows how to compute the accrued interest due, given a certificate of deposit with the following characteristics.

```
CouponRate = 0.05;
Settle = '02-Jan-02';
Maturity = '31-Mar-02';
IssueDate = '1-Oct-01';
AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate)
```

AccrInt =
1.2917

```
See Also accrfrac | bndyield | stepcpnyield | tbillyield | cdprice |
cdyield | zeroyield
```


## cdprice

Purpose Price of certificate of deposit

```
Syntax
[Price, AccrInt] = cdprice(Yield, CouponRate, Settle, Maturity,
IssueDate, Basis)
```


## Arguments

Yield	Simple yield to maturity over the basis denominator.
CouponRate	Coupon interest rate in decimal.   Settle
Settlement date. Settle must be earlier than   Maturity.	
Maturity	Maturity date.
IssueDate	Issue date.
Basis	(Optional) Day-count basis of the instrument.

- $0=$ actual/actual (default)
- 1 = 30/360 (SIA)
- 2 = actual/360
- $3=$ actual/365
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- 7 = actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Each required input must be some certificates of deposit (NCDS)-by-1 or 1-by-NCDS conforming vector or scalar. The optional Basis argument may be either a NCDS-by-1 or a 1-by-NCDS vector, a scalar, or the empty matrix ([]).

## Description <br> Examples <br> Compute the Price and Accrued Interest for a Certificate of Deposit

This example shows how to compute the price and the accrued interest due on the settlement date, given a certificate of deposit with the following characteristics.

```
Yield = 0.0525;
CouponRate = 0.05;
Settle = '02-Jan-02';
Maturity = '31-Mar-02';
IssueDate = '1-0ct-01';
[Price, AccruedInt] = cdprice(Yield, CouponRate, Settle, ...
Maturity, IssueDate)
```

Price =
99.9233

## AccruedInt =

1.2917

See Also bndprice | cdai | cdyield | stepcpnprice | tbillprice
Purpose Yield on certificate of deposit (CD)
Syntax Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate, Basis)
Arguments ..... PriceCouponRate Annual interest rate in decimal.Settle Settlement date. Settle must be earlier thanMaturity.
Maturity Maturity date.
IssueDate Issue date.
Basis (Optional) Day-count basis of the instrument.

- $0=$ actual/actual (default)
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)- $6=30 / 360$ (European)
- 7 = actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- $12=$ actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

Each required input must be some certificates of deposit (NCDS)-by-1 or 1 -by-NCDS conforming vector or scalar. The optional Basis argument may be either a NCDS-by-1 or a 1-by-NCDS vector, a scalar, or the empty matrix ([]).

Description
Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate, Basis) computes the yield to maturity of a certificate of deposit given its clean price.

This function assumes that the certificates of deposit pay interest at maturity. Because of the simple interest treatment of these securities, the function is best used for short-term maturities (less than 1 year). The default simple interest calculation is the actual/360 convention.

## Examples

## Compute the Yield to Maturity of a Certificate of Deposit

This example shows how to compute the yield on the certificate of deposit (CD), given a CD with the following characteristics.

```
Price = 101.125;
CouponRate = 0.05;
Settle = '02-Jan-02';
Maturity = '31-Mar-02';
IssueDate = '1-Oct-01';
Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate)
```

Yield =
0.0039

## Purpose

Construct constant elasticity of variance models (objects of class CEV)

Syntax

## Class

Description
CEV $=\operatorname{cev}($ Return, Alpha, Sigma)
CEV = cev(Return, Alpha, Sigma, 'Name1', Value1, 'Name2',
Value2, ...)

CEV

This constructor creates and displays CEV objects, which derive from the SDELD (SDE with drift rate expressed in linear form) class. Use CEV objects to simulate sample paths of NVARS state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation periods, approximating continuous-time stochastic processes.

This method allows you to simulate any vector-valued SDE of the form:

$$
\begin{equation*}
d X_{t}=\mu(t) X_{t} d t+D\left(t, X_{t}^{\alpha(t)}\right) V(t) d W_{t} \tag{18-2}
\end{equation*}
$$

where:

- $X_{t}$ is an NVARS-by- 1 state vector of process variables.
- $\mu$ is an NVARS-by-NVARS (generalized) expected instantaneous rate of return matrix.
- $D$ is an NVARS-by-NVARS diagonal matrix, where each element along the main diagonal is the corresponding element of the state vector raised to the corresponding power of $\alpha$.
- $V$ is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
- $d W_{t}$ is an NBROWNS-by-1 Brownian motion vector.


## Input

 ArgumentsSpecify required input parameters as one of the following types:

- A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric specification. This array fully
captures all implementation details, which are clearly associated with a parametric form.
- A MATLAB function. Specifying a function provides indirect support for virtually any static, dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.

The required input parameters are:

Return	Return represents the parameter $\mu$. If you specify Return as an array, it is a NVARS-by-NVARS 2 -dimensional matrix that represents the expected (mean) instantaneous rate of return.
	If you specify Return as a function, it calculates the expected instantaneous rate of return. This function must generate an NVARS-by-NVARS matrix when invoked with two inputs:   - A real-valued scalar observation time $t$.   - An NVARS-by-1 state vector $X_{t}$.
Alpha	Alpha determines the format of the parameter $D$. If you specify Alpha as an array, it represents an NVARS-by-1 column vector of exponents.
	If you specify it as a function, Alpha must return an NVARS-by- 1 column vector of exponents when invoked with two inputs:

- A real-valued scalar observation time $t$.

\author{

- An NVARS-by-1 state vector $X_{t}$. <br> Sigma Sigma represents the parameter $V$. If you specify Sigma as an array, it represents an NVARS-by-NBROWNS 2 -dimensional matrix of instantaneous volatility rates. In this case, each row of Sigma corresponds to a particular state variable. Each column of Sigma corresponds to a particular Brownian source of uncertainty, and associates the magnitude of the exposure of state variables with sources of uncertainty. <br> If you specify it as a function, Sigma must generate an NVARS-by-NBROWNS matrix of volatility rates when invoked with two inputs: <br> - A real-valued scalar observation time $t$. <br> - An NVARS-by-1 state vector $X_{t}$.
}

Note Although the constructor does not enforce restrictions on the signs of these input arguments, each argument is usually specified as a positive value.

## Optional Input Arguments

Specify optional inputs as matching parameter name/value pairs as follows:

- Specify the parameter name as a character string, followed by its corresponding value.
- You can specify parameter name/value pairs in any order.
- Parameter names are case insensitive.
- You can specify unambiguous partial string matches.

Valid parameter names are:

StartTime Scalar starting time of the first observation, applied to all state variables. If you do not specify a value for StartTime, the default is 0 .

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of initial values of the state variables. If StartState is a scalar, cev applies the same initial value to all state variables on all trials.

If StartState is a column vector, cev applies a unique initial value to each state variable on all trials.

If StartState is a matrix, cev applies a unique initial value to each state variable on each trial.

If you do not specify a value for StartState, all variables start at 1 .

Correlation Correlation between Gaussian random variates drawn to generate the Brownian motion vector (Wiener processes). Specify Correlation as an NBROWNS-by-NBROWNS positive semidefinite matrix, or as a deterministic function $C(t)$ that accepts the current time $t$ and returns an NBROWNS-by-NBROWNS positive semidefinite correlation matrix. A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation structure.

If you do not specify a value for Correlation, the default is an NBROWNS-by-NBROWNS identity matrix representing independent Gaussian processes.
Simulation A user-defined simulation function or SDE simulation method. If you do not specify a value for Simulation, the default method is simulation by Euler approximation (simByEuler).

Object of class CEV with the following displayed parameters:

- StartTime: Initial observation time
- StartState: Initial state at time StartTime
- Correlation: Access function for the Correlation input argument, callable as a function of time
- Drift: Composite drift-rate function, callable as a function of time and state
- Diffusion: Composite diffusion-rate function, callable as a function of time and state
- Simulation: A simulation function or method
- Return: Access function for the input argument Return, callable as a function of time and state
- Alpha: Access function for the input argument Alpha, callable as a function of time and state
- Sigma: Access function for the input argument Sigma, callable as a function of time and state


## Algorithms

When you specify the required input parameters as arrays, they are associated with a specific parametric form. By contrast, when you specify either required input parameter as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input specification. Thus, when you invoke these parameters with no inputs, they behave like simple properties and allow you to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of dynamic behavior. The parameters
accept the observation time $t$ and a state vector $X_{t}$, and return an array of appropriate dimension. Even if you originally specified an input as an array, cev treats it as a static function of time and state, thereby guaranteeing that all parameters are accessible by the same interface.

## Examples

## References

See Also

- "Creating Constant Elasticity of Variance (CEV) Models" on page 17-26
- Implementing Multidimensional Equity Market Models, Implementation 3: Using SDELD, CEV, and GBM Objects

Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426.
Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.
Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.
Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.

Purpose
Syntax

## Description

Cash flow and time mapping for bond portfolio
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags, CFPrincipal] = cfamounts(CouponRate, Settle, Maturity) [CFlowAmounts, CFlowDates, TFactors, CFlowFlags, CFPrincipal] = cfamounts(CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) [CFlowAmounts, CFlowDates, TFactors, CFlowFlags, CFPrincipal] = cfamounts(CouponRate, Settle, Maturity, 'ParameterName', 'ParameterValue ...)
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags, CFPrincipal] = cfamounts(CouponRate, Settle, Maturity) returns matrices of cash flow amounts, cash flow dates, time factors, and cash flow flags for a portfolio of NUMBONDS fixed-income securities.
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags, CFPrincipal] = cfamounts(CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) returns matrices of cash flow amounts, cash flow dates, time factors, and cash flow flags for a portfolio of NUMBONDS fixed-income securities defined using required and optional inputs.
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags, CFPrincipal] = cfamounts(CouponRate, Settle, Maturity, 'ParameterName', 'ParameterValue ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the name of the parameter inside single quotes. Parametervalue is the value corresponding to 'ParameterName'. Specify parameter/value pairs in any order. Names are case-insensitive.

## Input Arguments

## CouponRate

Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond. CouponRate is 0 for zero coupon bonds.

Note CouponRate and Face can change over the life of the bond. Schedules for CouponRate and Face can be specified with an NINST-by-1 cell array, where each element is a NumDates-by-2 matrix or cell array, where the first column is dates and the second column is associated rates. The date indicates the last day that the coupon rate or face value is valid.

## Settle

Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity.

## Maturity

Maturity date. A vector of serial date numbers or date strings.

## Ordered Input or Parameter-Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You cannot mix ordered syntax with parameter/value pairs.

## Period

Coupons per year of the bond. A vector of integers. Values are $0,1,2$, $3,4,6$, and 12 .

Default: 2

## Basis

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual $/ 365$
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=\mathrm{actual} / 365$ (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0

## EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.

- $0=$ ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

Default: 1

## IssueDate

Issue date for a bond.
Default: If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.

## FirstCouponDate

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

## LastCouponDate

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

## StartDate

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date.

Default: If you do not specify StartDate, the effective start date is the Settle date.

## Face

Face or par value.

> Note CouponRate and Face can change over the life of the bond. Schedules for CouponRate and Face can be specified with an NINST-by-1 cell array where each element is a NumDates-by-2 matrix or cell array, where the first column is dates and the second column is associated rates. The date indicates the last day that the coupon rate or face value is valid.

Default: 100

## Parameter-Value Pairs

Enter the following inputs only as parameter/value pairs.

## AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.

Default: False

## BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with possible choices of business day convention:

- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual
CompoundingFrequency

Compounding frequency for yield calculation.
Default: SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ISMA bases (8-12) use an annual compounding convention.

## DiscountBasis

Basis used to compute the discount factors for computing the yield. If you use ISMA day counts and BUS/252, the specified basis are used.

Default: SIA bases use the actual/actual day count to compute discount factors.

## Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.

Default: If no dates are specified, holidays.m is used.

## PrincipalType

Type of principal for case when a Face schedule is specified. The principal type is either sinking or bullet. If sinking, principal cash flows are returned throughout the life of the bond. If bullet, principal cash flow is only returned at maturity.

> Default: sinking

## Output <br> Arguments

## CFlowAmounts

Cash flow matrix of a portfolio of bonds. Each row represents the cash flow vector of a single bond. Each element in a column represents a specific cash flow for that bond.

## CFlowDates

Cash flow date matrix of a portfolio of bonds. Each row represents a single bond in the portfolio. Each element in a column represents a cash flow date of that bond.

## TFactors

Matrix of time factors for a portfolio of bonds. Each row corresponds to the vector of time factors for each bond. Each element in a column corresponds to the specific time factor associated with each cash flow of a bond. Time factors help determine the present value of a stream of cash flows. The term time factor refers to the exponent $T F$ in the discounting equation

$$
P V=\sum_{i=1}^{n}\left(\frac{C F}{\left(1+\frac{z}{f}\right)^{T F}}\right)
$$

where:

$P V=$	Present value of a cash flow.
$C F=$	Cash flow amount.
$z=$	Risk-adjusted annualized rate or yield corresponding to   a given cash flow. The yield is quoted on a semiannual   basis.


$f=\quad$| Frequency of quotes for the yield. Default is 2 for |
| :--- |
| Basis values 0 to 7 and 13 and 1 for Basis values 8 to |
| 12. The default can be overridden by specifying the |
| CompoundingFrequency name/value pair. |
| Time factor for a given cash flow. The time factor is |
| computed using the compounding frequency and the |
| discount basis. If these values are not specified, then the |
| defaults are as follows: CompoundingFrequency default |
| is 2 for Basis values 0 to 7 and 13 and 1 for Basis |
| values 8 to 12 . DiscountBasis is 0 for Basis values 0 to |
| 7 and 13 and the input Basis for Basis values 8 to 12. |

Note The Basis is always used to compute accrued interest.

## CFlowFlags

Matrix of cash flow flags for a portfolio of bonds. Each row corresponds to the vector of cash flow flags for each bond. Each element in a column corresponds to the specific flag associated with each cash flow of a bond. Flags identify the type of each cash flow (for example, nominal coupon cash flow, front, or end partial, or "stub" coupon, maturity cash flow).

Flag	Cash Flow Type
0	Accrued interest due on a bond at settlement.
1	Initial cash flow amount smaller than normal due to a   "stub" coupon period. A stub period is created when   the time from issue date to first coupon date is shorter   than normal.
2	Larger than normal initial cash flow amount because   the first coupon period is longer than normal.


Flag	Cash Flow Type
3	Nominal coupon cash flow amount.
4	Normal maturity cash flow amount (face value plus the   nominal coupon amount).
5	End "stub" coupon amount (last coupon period is   abnormally short and actual maturity cash flow is   smaller than normal).
6	Larger than normal maturity cash flow because the last   coupon period longer than normal.
$\mathbf{8}$	Maturity cash flow on a coupon bond when the bond   has less than one coupon period to maturity.
$\mathbf{8}$	Smaller than normal maturity cash flow when the bond   has less than one coupon period to maturity.
10	Larger than normal maturity cash flow when the bond   has less than one coupon period to maturity.
11	Maturity cash flow on a zero coupon bond.
Sinking principal and initial cash flow amount smaller   than normal due to a "stub" coupon period. A stub   period is created when the time from issue date to first   coupon date is shorter than normal.	
12	Sinking principal and larger than normal initial cash   flow amount because the first coupon period is longer   than normal.
13	Sinking principal and nominal coupon cash flow   amount.

## CFPrincipal

CFPrincipal contains the principal cash flows. If PrincipalType is bullet, CFPrincipal is all zeros and, at Maturity, the appropriate Face value.

Definitions

## Examples

The elements contained in the cfamounts cash flow matrix, time factor matrix, and cash flow flag matrix correspond to the cash flow dates for each security. The first element of each row in the cash flow matrix is the accrued interest payable on each bond. This accrued interest is zero in the case of all zero coupon bonds. cfamounts determines all cash flows and time mappings for a bond whether or not the coupon structure contains odd first or last periods. All output matrices are padded with NaNs as necessary to ensure that all rows have the same number of elements.

## Compute the Cash Flow Structure and Time Factors for a Bond Portfolio

This example shows how to compute the cash flow structure and time factors for a bond portfolio that contains a corporate bond paying interest quarterly and a Treasury bond paying interest semiannually.

```
Settle = '01-Nov-1993';
Maturity = ['15-Dec-1994';'15-Jun-1995'];
CouponRate= [0.06; 0.05];
Period = [4; 2];
Basis = [1; 0];
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = ...
cfamounts(CouponRate,Settle, Maturity, Period, Basis)
```

CFlowAmounts =

-0.7667	1.5000	1.5000	1.5000	1.5000	101.5000
-1.8989	2.5000	2.5000	2.5000	102.5000	NaN

CFlowDates =

728234	728278	728368	728460	728552
728234	728278	728460	728643	728825

TFactors =

0	0.2404	0.7403	1.2404	1.7403	2.2404
0	0.2404	1.2404	2.2404	3.2404	NaN

CFlowFlags =

0	3	3	3	3	4
0	3	3	3	4	NaN

## Compute the Cash Flow Structure and Time Factors for a Bond Portfolio Using Optional Name-Value Pairs

This example shows how to compute the cash flow structure and time factors for a bond portfolio that contains a corporate bond paying interest quarterly and a Treasury bond paying interest semiannually. This example uses the following Name-Value pairs for Period, Basis, BusinessDayConvention, and AdjustCashFlowsBasis.

```
Settle = '01-Jun-2010';
Maturity = ['15-Dec-2011';'15-Jun-2012'];
CouponRate= [0.06; 0.05];
Period = [4; 2];
Basis = [1; 0];
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = ...
cfamounts(CouponRate,Settle, Maturity, 'Period',Period, ...
'Basis', Basis, 'AdjustCashFlowsBasis', true,...
'BusinessDayConvention','modifiedfollow')
```

CFlowAmounts =

Columns 1 through 7

```
 -1.2667 1.5000 1.5000 1.5000 1. 1.5000 1.5000 1.5000
 -2.3077 2.4932 2.5068 2.4932 2.5000 102.5000
 Column 8
 101.5000
 NaN
CFlowDates =
 Columns 1 through 6
 734290 734304 734396 734487 7346
 734290 734304 734487 734669 7350
 Columns 7 through 8
 734761 734852
 NaN NaN
TFactors =
 Columns 1 through 7
 0 0.0778 0.5778 1.0778 1.5778 2.0778 2.577&
 0 0.0769 1.0769 2.0769 3.0769 4.0769
 Column 8
 3.0778
 NaN
CFlowFlags =
```

0	3	3	3	3	3	3	4
0	3	3	3	3	4	NaN	NaN

## Use cfamounts With a CouponRate Schedule

This example shows how to use cfamounts with a CouponRate schedule. For CouponRate and Face that change over the life of the bond, schedules for CouponRate and Face can be specified with an NINST-by-1 cell array, where each element is a NumDates-by-2 matrix where the first column is dates and the second column is associated rates.

```
CouponSchedule = {[datenum('15-Mar-2012') .04;datenum('15- Mar -2013')
datenum('15- Mar -2015') .06]}
cfamounts(CouponSchedule,'01-Mar-2011','15-Mar-2015')
```

CouponSchedule =
[3x2 double]
ans =

Columns 1 through 7

```
-1.8453 2.0000
2.0000
2.0000
2.5000
2.5000
3.0000
```

Columns 8 through 10
$3.0000 \quad 3.0000 \quad 103.0000$

## Use cfamounts With a Face Schedule

This example shows how to use cfamounts with a Face schedule. For CouponRate and Face that change over the life of the bond, schedules for CouponRate and Face can be specified with an NINST-by- 1 cell array, where each element is a NumDates-by-2 matrix where the first column is dates and the second column is associated rates.

```
FaceSchedule = {[datenum('15-Mar-2012') 100;datenum('15- Mar -2013')
datenum('15- Mar -2015') 80]}
cfamounts(.05,'01-Mar-2011','15-Mar-2015', 'Face', FaceSchedule)
```

FaceSchedule =
[3x2 double]
ans =

Columns 1 through 7
$\begin{array}{lllllll}-2.3066 & 2.5000 & 2.5000 & 12.5000 & 2.2500 & 12.2500 & 2.000\end{array}$
Columns 8 through 10
$2.0000 \quad 2.0000 \quad 82.0000$

## Use cfamounts to Generate the Cash Flows for a Sinking Bond

This example shows how to use cfamounts to generate the cash flows for a sinking bond.

```
[CFlowAmounts,CFDates,TFactors,CFFlags,CFPrincipal] = cfamounts(.05,
{'15-Jul-2014';'15-Jul-2015'},'Face',{[datenum('15-Jul-2013') 100;dat
90;datenum('15-Jul-2015') 80]})
```

```
CFlowAmounts =
 Columns 1 through 7
\begin{tabular}{llll}
-1.5217 & 2.5000 & 2.5000 & 2.5000
\end{tabular}
 -1.5217 2.5000 2.5000
 2.5000
 2.5000
 2.5000
 12.5000
 2.5000
 2.5000
 12.5000
 Columns 8 through 11
\begin{tabular}{rrrr}
2.2500 & 92.2500 & NaN & NaN \\
2.2500 & 12.2500 & 2.0000 & 82.0000
\end{tabular}
CFDates =
 Columns 1 through 6
 734446 734518 734699
 734699
 734883
 734446 734518
 734883
 735065
 735249
 11
\begin{tabular}{lllrr}
735430 & 735614 & 735795 & NaN & NaN \\
735430 & 735614 & 735795 & 735979 & 736160
\end{tabular}
TFactors =
 Columns 1 through 7
\begin{tabular}{lllllll}
0 & 0.3913 & 1.3913 & 2.3913 & 3.3913 & 4.3913 & 5.3913 \\
0 & 0.3913 & 1.3913 & 2.3913 & 3.3913 & 4.3913 & 5.3913
\end{tabular}
 Columns 8 through 11
 6.3913 7.3913 NaN NaN
```



[^3]| Purpose | Cash flow convexity |
| :--- | :--- |
| Syntax | CFlowConvexity $=\operatorname{cfconv}($ CashFlow, Yield $)$ |

## Arguments

CashFlow	A vector of real numbers.
Yield	Periodic yield. A scalar. Enter as a decimal fraction.

## Description CFlowConvexity = cfconv(CashFlow, Yield) returns the convexity of a cash flow in periods.

## Examples Compute the Convexity of a Cash Flow

This example shows how to return the convexity of a cash flow, given a cash flow of nine payments of $\$ 2.50$ and a final payment $\$ 102.50$, with a periodic yield of $2.5 \%$.

CashFlow = [2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];
Convex = cfconv(CashFlow, 0.025)

Convex =
90.4493

See Also bndconvp | bndconvy | bnddurp | bnddury | cfdur

## Purpose

Cash flow dates for fixed-income security

Syntax CFlowDates = cfdates(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate)

## Arguments

Settle	Settlement date. A vector of serial date   numbers or date strings. Settle must be   earlier than Maturity.
Maturity	Maturity date. A vector of serial date numbers   or date strings.   (Optional) Coupons per year of the bond. A   vector of integers. Allowed values are $0,1,2$   (default), $3,4,6$, and 12.
Period	(Optional) Day-count basis of the instrument.
Basis	A vector of integers.
	- $0=$ actual/actual (default)
	- $1=30 / 360$ (SIA)
	- $2=$ actual/360
	- $3=$ actual/365
- $4=30 / 360$ (PSA)	
- $5=30 / 360$ (ISDA)	
- $6=30 / 360$ (European)	
- $7=$ actual/365 (Japanese)	
- $8=$ actual/actual (ISMA)	

## cfdates

- $12=$ actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.
FirstCouponDate (Optional) Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

LastCouponDate	(Optional) Last coupon date of a bond before the   maturity date; used when bond has an irregular   last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate	
determines the coupon structure of the bond.	
The coupon structure of a bond is truncated	
at the LastCouponDate, regardless of where	
it falls, and is followed only by the bond's	
maturity cash flow date. If you do not specify a	
LastCouponDate, the cash flow payment dates	
are determined from other inputs.	
StartDate	(Optional) Date when a bond actually starts
(the date from which a bond cash flow   is considered). To make an instrument   forward-starting, specify this date as a future   date. If you do not specify StartDate, the   effective start date is the Settle date.	

Required arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices.

Any input can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, if Maturity contains N dates, then Settle must contain N dates or a single date.

## Description

CFlowDates = cfdates(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate) returns a matrix of cash flow dates for a bond or set of bonds. cfdates determines all cash flow dates for a bond whether or not the coupon payment structure is normal or the first and/or last coupon period is long or short.

## cfdates

CFlowDates is an N -row matrix of serial date numbers, padded with NaNs as necessary to ensure that all rows have the same number of elements. Use the function datestr to convert serial date numbers to formatted date strings.

Note The cash flow flags for a portfolio of bonds were formerly available as the cfdates second output argument, CFlowFlags. You can now use cfamounts to get these flags. If you specify a CFlowFlags argument, cfdates displays a message directing you to use cfamounts.

## Examples

```
CFlowDates = cfdates('14 Mar 1997', '30 Nov 1998', 2, 0, 1)
CFlowDates =
 729541 729724 729906 730089
datestr(CFlowDates)
ans =
31-May-1997
30-Nov-1997
31-May-1998
30-Nov-1998
```

Given three securities with different maturity dates and the same default arguments

```
Maturity = ['30-Sep-1997'; '31-Oct-1998'; '30-Nov-1998'];
CFlowDates = cfdates('14-Mar-1997',Maturity)
CFlowDates =
\begin{tabular}{rrrr}
729480 & 729663 & NaN & NaN \\
729510 & 729694 & 729875 & 730059 \\
729541 & 729724 & 729906 & 730089
\end{tabular}
```

Look at the cash-flow dates for the last security.
datestr(CFlowDates(3,:))

```
ans =
31-May-1997
30-Nov-1997
31-May-1998
30-Nov-1998
```

See Also
accrfrac | cfamounts | cftimes | cpncount | cpndaten | cpndatenq | cpndatep | cpndatepq | cpndaysn | cpndaysp | cpnpersz

## cfdur

Purpose Cash-flow duration and modified duration
Syntax [Duration, ModDuration] = cfdur(CashFlow, Yield)
Arguments

CashFlow	A vector or matrix of real numbers. When using   a matrix, each column of the matrix is a separate
Yield	eastrfliowield. A scalar or vector. Enter as a decimal   fraction.

## Description [Duration, ModDuration] = cfdur(CashFlow, Yield) calculates the duration and modified duration of a cash flow in periods.

## Examples <br> Compute the Duration and Modified Duration of a Cash Flow

This example shows how to calculate the duration and modified duration of a cash flow, given a cash flow of nine payments of $\$ 2.50$ and a final payment $\$ 102.50$, with a periodic yield of $2.5 \%$.

CashFlow=[2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];
[Duration, ModDuration] = cfdur(CashFlow, 0.025)

Duration =
8.9709

ModDuration $=$
8.7521

See Also bndconvp | bndconvy | bnddurp | bnddury | cfconv

## cfplot

Purpose Visualize cash flows of financial instruments

```
Syntax cfplot(CFlowDates,CFlowAmounts)
cfplot(__ ,Name,Value)
h = cfplot(__, Name,Value)
[h,axes_handle] = cfplot(__ ,Name,Value)
```


## Description

## Input Arguments

cfplot(CFlowDates, CFlowAmounts) plots a cash flow diagram for the specified cash flow amounts (CFlowAmounts) and dates (CFlowDates). The length and orientation of each arrow correspond to the cash flow amount.
cfplot (__ ,Name, Value) plots a cash flow diagram for the specified cash flow amounts (CFlowAmounts), dates (CFlowDates), and optional name-value pair arguments.
h = cfplot( __ ,Name, Value) returns the handle to the line objects used in the cash flow diagram.
[h,axes_handle] = cfplot(__, Name, Value) returns the handles to the line objects and the axes using optional name-value pair arguments.

## CFlowDates - Matrix of serial date numbers for cash flows vector

Matrix of serial date numbers for cash flows, specified as a NINST-by-(Number of cash flows) matrix of cash flow dates in date numbers, with empty entries padded with NaNs .

Each row of the CFlowDates matrix represents an instrument so that CFlowDates ( $k,:$ ) is the vector of cash flow dates for the $k$ th instrument. Rows are padded with trailing NaNs if the number of cash flows is not the same for all instruments.
cfamounts can be used to generate CFlowDates.

## Data Types

double

## CFlowAmounts - Matrix of cash flow amounts

vector
Matrix of cash flow amounts, specified as a NINST-by-(Number of cash flows) matrix of cash flow amounts, with empty entries padded with NaNs. The CFlowAmounts matrix must be the same size as CFlowDates.
cfamounts can be used to generate CFlowAmounts.

## Data Types

double

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: cfplot(CFlowDates, CFlowAmounts, 'Groups', \{[2 3]\},'ShowAmnt', 1, 'DateFormat', 6,'DateSpacing', 100)

## 'Groups' - Group cash flows

'off' (default) | string with value 'off' or 'individual' | cell array of vectors

Group cash flows specified using the following values:

- 'off' - Show all instruments in one set of axes, arranged from top to bottom.
- 'individual' - Generate subplots and plot each instrument in its own axis.
- GRP - Cell array of instrument groups, \{Group1, Group2,... \}. This generates subplots and plots each group in each axis. When specifying \{Group1, Group2,... \}, each Group must be mutually


## cfplot

exclusive vectors of INSTIndex. Unspecified instruments are not shown in the grouped plot.

## Data Types <br> double

## 'Stacked' - Stack arrows if cash flows are in same direction on same day

Ignored when 'Groups' is 'off', otherwise 'off' (default) | string with value 'off', 'all', or 'GRPIndex'

Stack arrows if the cash flows are in the same direction on the same day specified using the following values:

- 'off' - For all groups, all arrows originate from the horizontal line.
- 'all' - For all groups, arrows are stacked if the cash flows are in the same direction on the same day.
- 'GRPIndex' - For specified groups, arrows are stacked if the cash flows are in the same direction on the same day.


## Data Types <br> double

## 'ShowAmnt' - Show amount on arrows <br> 'off' (default) | string with value 'off' or 'individual' | cell array of vectors |

Show amount on the arrows specified using the following values:

- 'off' - Hide cash flow amounts on arrows.
- 'all' - Show cash flow amounts on arrows.
- [INSTIndex or GRPIndex] - Show cash flow amounts for the specified vector of instruments (when 'Groups' is 'off') or groups.


## Data Types

double

## 'DateSpacing' - Control for date axis tick spacing

## 'off' (default) | string with value 'off' or string TickDateSpace | numeric value for TickDateSpace

Control for data spacing specified by the following values:

- 'off' - The date axis ticks are spaced regularly.
- TickDateSpace - The date axis ticks are placed on actual cash flow dates. The ticks skip some cash flows if they are less than TickDateSpace apart.


## Data Types <br> double

## 'DateFormat' - Date format

'off' (default) | string with value 'off' or string DateFormNum | numeric value for DateFormNum

Date format is specified by the following values:

- 'off' - The date axis tick labels will be in date numbers.
- DateFormNum - The date format number (2 = 'mm/dd/yy', $6=$ 'mm/dd', and $10=$ 'yyyy '). Additional values for DateFormNum are as follows:

DateFormNum	Example
2	$03 / 01 / 00$
3	Mar
5	03
6	$03 / 01$
7	01
8	Wed
9	W
10	2000
11	00

## cfplot

DateFormNum	Example
12	Mar00
17	$\mathrm{Q} 1-00$
18	Q 1
19	$01 / 03$
20	$01 / 03 / 00$
27	$\mathrm{Q} 1-2000$
28	$\mathrm{Mar2000}$
29	$2000-03-01$

Data Types
double

## Output <br> Arguments

## Examples

## h - Handles to line objects

vector
Handles to line objects, returned as a NINST-by-3 matrix of handles to line objects, containing [hLines, hUArrowHead, hDArrowHead] where:

- hLines - Horizontal and vertical lines used in the cash flow diagram
- hUArrowHead - "Up" arrowheads
- hDArrowHead - "Down" arrowheads


## axes_handle - Handles to axes for plot or subplots

vector
Handles to axes for the plot or subplots, returned as a (Number of axes)-by- 1 vector of handles to axes.

## Plot Cash Flows

Define CFlowAmounts and CFlowDates using the cfamounts function.

```
CouponRate = [0.06; 0.05; 0.03];
Settle = '03-Jun-1999';
Maturity = ['15-Aug-2000';'15-Dec-2000';'15-Jun-2000'];
Period = [1; 2; 2]; Basis = [1; 0; 0];
[CFlowAmounts, CFlowDates] = cfamounts(...
CouponRate, Settle, Maturity, Period, Basis)
CFlowAmounts =
\begin{tabular}{rrrrr}
-4.8000 & 6.0000 & 106.0000 & NaN & NaN \\
-2.3352 & 2.5000 & 2.5000 & 2.5000 & 102.5000 \\
-1.4011 & 1.5000 & 1.5000 & 101.5000 & NaN
\end{tabular}
CFlowDates =
\begin{tabular}{rrrrr}
730274 & 730347 & 730713 & NaN & NaN \\
730274 & 730286 & 730469 & 730652 & 730835 \\
730274 & 730286 & 730469 & 730652 & NaN
\end{tabular}
```

Plot all cash flows on the same axes, and label the first two.

```
cfplot(CFlowDates, CFlowAmounts, 'ShowAmnt', [1 2])
```



Group the second and third cash flows.
figure;
cfplot(CFlowDates, CFlowAmounts, 'Groups', \{[2 3]\}, 'ShowAmnt', 1);


Format the date axis and place ticks on actual cash flow dates.
figure;
cfplot(CFlowDates, CFlowAmounts, 'Groups', \{[2 3]\}, 'ShowAmnt', 1, .. 'DateFormat', 6, 'DateSpacing', 100);


Stack the cash flow arrows occurring on the same dates.
figure;
cfplot(CFlowDates, CFlowAmounts, 'Groups', \{[2 3]\}, 'ShowAmnt', 1, ... 'DateFormat', 6, 'DateSpacing', 100, 'Stacked', 1);


Form subplots of multiple groups and add titles using axes handles.
figure;
[h, axes_handle] = cfplot(CFlowDates, CFlowAmounts, ... 'Groups', \{[1] [2 3]\}, 'ShowAmnt', 1, 'Stacked', 2, ...
'DateSpacing', [1 602 100], 'DateFormat', [1 12 2 6]);
title(axes_handle(1), 'Group 1', 'FontWeight', 'bold');
title(axes_handle(2), 'Group 2', 'FontWeight', 'bold');

Group 1


Group 2


## Plot Cash Flows for Swap

Define the swap using the swapbyzero function.

```
Settle = datenum('08-Jun-2010');
RateSpec = intenvset('Rates', [.005 .0075 .01 .014 .02 .025 .03]',...
'StartDates',Settle, 'EndDates',{'08-Dec-2010','08-Jun-2011',...
'08-Jun-2012','08-Jun-2013','08-Jun-2015','08-Jun-2017', ...
'08-Jun-2020'}');
Maturity = datenum('15-Sep-2020');
```

```
LegRate = [.025 50];
LegType = [1 0]; % fixed/floating
LatestFloatingRate = .005;
[Price, SwapRate, AI, RecCF, RecCFDates, PayCF,PayCFDates] = ...
swapbyzero(RateSpec, LegRate, Settle, Maturity,'LegType',LegType,...
'LatestFloatingRate',LatestFloatingRate)
Price =
 -6.7258
SwapRate =
 NaN
AI =
 1.4575
RecCF =
 Columns 1 through 7
 lllllll
 Columns 8 through 12
 2.5000 2.5000 2.5000 2.5000 102.5000
 RecCFDates =
 Columns 1 through 6
```


## cfplot

Columns 7 through 12

736222736588
736953
737318
737683
738049

PayCF =

Columns 1 through 7

-0.3644	0.5000	1.4048	1.9823	2.8436	3.2842	3.8218

Columns 8 through 12

PayCFDates =

Columns 1 through 6
$\begin{array}{lllll}734297 & 734396 & 734761 & 735127 & 735492\end{array}$

Columns 7 through 12

736222
736588
736953
737318
737683
738049

Define CFlowDates and CFlowAmounts for the swap and generate a cash flow plot using cfplot.

CFlowDates = [PayCFDates;RecCFDates]; CFlowAmounts = [-PayCF;RecCF]; cfplot(CFlowDates, CFlowAmounts, 'Groups', \{[1 2]\}); xlabel('Numeric Cash Flow Dates');


See Also cfamounts | cfdates | swapbyzero

## cfport

Purpose<br>Portfolio form of cash flow amounts<br>Syntax<br>[CFBondDate, AllDates, AllTF, IndByBond] = cfport(CFlowAmounts, CFlowDates, TFactors)

## Arguments

CFlowAmounts	Number of bonds (NUMBONDS) by number of cash   flows (NUMCFS) matrix with entries listing cash   flow amounts corresponding to each date in   CFlowDates.
CFlowDates	NUMBONDS-by-NUMCFS matrix with rows listing   cash flow dates for each bond and padded with
TFactors	NaNs.
	(Optional) NUMBONDS-by-NUMCFS matrix with   entries listing the time between settlement and   the cash flow date measured in semiannual   coupon periods.

## Description

[CFBondDate, AllDates, AllTF, IndByBond] = cfport(CFlowAmounts, CFlowDates, TFactors) computes a vector of all cash flow dates of a bond portfolio, and a matrix mapping the cash flows of each bond to those dates. Use the matrix for pricing the bonds against a curve of discount factors.

CFBondDate is a NUMBONDS by number of dates (NUMDATES) matrix of cash flows indexed by bond and by date in AllDates. Each row contains a bond's cash flow values at the indices corresponding to entries in AllDates. Other indices in the row contain zeros.

AllDates is a NUMDATES-by-1 list of all dates that have any cash flow from the bond portfolio.

AllTF is a NUMDATES-by- 1 list of time factors corresponding to the dates in AllDates. If TFactors is not entered, AllTF contains the number of days from the first date in AllDates.

IndByBond is a NUMBONDS-by-NUMCFS matrix of indices. The $i$ th row contains a list of indices into AllDates where the $i$ th bond has cash flows. Since some bonds have more cash flows than others, the matrix is padded with NaNs.

## Examples <br> Calculate the Cash Flow Amounts, Cash Flow Dates, and Time Factors for Each of Two Bonds

Use the function cfamounts to calculate the cash flow amounts, cash flow dates, and time factors for each of two bonds. Then use the function cfplot to plot the cash flow diagram.

```
Settle = '03-Aug-1999';
Maturity = ['15-Aug-2000';'15-Dec-2000'];
CouponRate= [0.06; 0.05];
Period = [3;2];
Basis = [1;0];
[CFlowAmounts, CFlowDates, TFactors] = cfamounts(CouponRate,...
Settle, Maturity, Period, Basis);
cfplot(CFlowDates,CFlowAmounts)
xlabel('Numeric Cash Flow Dates')
ylabel('Bonds')
title('Cash Flow Diagram')
```

Cash Flow Diagram


Call the function cfport to map the cash flow amounts to the cash flow dates. Each row in the resultant CFBondDate matrix represents a bond. Each column represents a date on which one or more of the bonds has a cash flow. A 0 means the bond did not have a cash flow on that date. The dates associated with the columns are listed in AllDates. For example, the first bond had a cash flow of 2.000 on 730347. The second bond had no cash flow on this date For each bond, IndByBond indicates the columns of CFBondDate, or dates in AllDates, for which a bond has a cash flow.

```
[CFBondDate, AllDates, AllTF, IndByBond] = ...
cfport(CFlowAmounts, CFlowDates, TFactors)
CFBondDate =
\begin{tabular}{rrrrrrr}
-1.8000 & 2.0000 & 2.0000 & 2.0000 & 0 & 102.0000 & \\
-0.6694 & 0 & 2.5000 & 0 & 2.5000 & 0 & 102.500
\end{tabular}
AllDates =
 730335
 730347
 730469
 7 3 0 5 9 1
 730652
 7 3 0 7 1 3
 730835
AllTF =
 0
 0.0663
 0.7322
 1.3989
 1.7322
 2.0663
 2.7322
IndByBond =
\begin{tabular}{llllr}
1 & 2 & 3 & 4 & 6 \\
1 & 3 & 5 & 7 & NaN
\end{tabular}
```


## See Also cfamounts | cfplot

## Purpose

Compute price for cash flow given yield to maturity
Syntax

```
Price = cfprice(CFAmounts, CFDates, Yield, Settle)
Price = cfprice(CFAmounts, CFDates, Yield, Settle,
Name,Value)
```


## Description

## Input

Arguments
Price = cfprice(CFAmounts, CFDates, Yield, Settle) computes a price given yield for a cash flow.

Price = cfprice(CFAmounts, CFDates, Yield, Settle, Name, Value) computes a price for a cash flow given yield to maturity with additional options specified by one or more Name, Value pair arguments.

## CFIowAmounts

NINST-by-MOSTCFS matrix of cash flow amounts. Each row is a list of
cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.

## CFlowDates

NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the serial date of the corresponding cash flow in CFlowAmounts.

## Yield

NINST-by-1 vector of yields.

## Settle

Settlement date is a serial date number or date string. Settlement date is the date on which the cash flows are priced.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can

## cfprice

specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Note Any optional input of size N -by- 1 is also acceptable as an array of size 1 -by-N, or as a single value applicable to all contracts. Single values are internally expanded to an array of size N -by- 1 .

## 'Basis'

N -by-1 vector of day-count basis:

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- $12=$ actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0 (actual/actual)

## 'CompFreq'

Compounding frequency. By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ISMA bases (8-12) use an annual compounding convention.

Default: actual

## Output Arguments

## Examples

## Price

Price of cash flows.

## Compute the Price for a Cash Flow Given Yield to Maturity

Use cfprice to compute: price for a cash flow given yield to maturity.
Define data for the yield curve.

```
Settle = datenum('01-Jul-2003');
Yield = .05;
CFAmounts = [30;40;30];
CFDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'});
Compute the Price.
```

```
Price = cfprice(CFAmounts, CFDates, Yield, Settle)
```

```
Price = cfprice(CFAmounts, CFDates, Yield, Settle)
```

Price =
28.4999
36.1689
25.8195

See Also | cfbyzero | cfyield | cfspread

## cfspread

Purpose Compute spread over yield curve for cash flow

```
Syntax Spread = cfspread(RateSpec, Price, CFAmounts, CFDates, Settle)
Spread = cfspread(RateSpec, Price, CFAmounts, CFDates, Settle, Name, Value)
```


## Description

## Input

Arguments

## RateSpec

Interest-rate specification for the initial risk free rate curve. See intenvset for information on declaring an interest-rate variable.

## Price

Price of cash flows.

## CFlowAmounts

NINST-by-MOSTCFS matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.

## CFlowDates

NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the serial date of the corresponding cash flow in CFlowAmounts.

## Settle

Settlement date is a serial date number or date string. Settlement date is the date on which the cash flows are priced.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Note Any optional input of size N -by- 1 is also acceptable as an array of size 1-by-N, or as a single value applicable to all contracts. Single values are internally expanded to an array of size N -by- 1 .

## 'Basis'

N -by-1 vector of day-count basis:

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- $3=$ actual/365
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- 7 = actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/actual (ISDA)
- 13 = BUS/252


## cfspread

For more information, see basis on page Glossary-2.
Default: 0 (actual/actual)

## 'CompFreq'

Compounding frequency. By default, SIA bases (0-7) and BUS/252 use a semi-annual compounding convention and ISMA bases (8-12) use an annual compounding convention.

Default: actual

## Output <br> Arguments

## Spread

Spread of cash flows over a zero curve.

## Examples

## Compute Spread Over a Yield Curve for a Cash Flow

Use cfspread to compute the spread over a yield curve for a cash flow.
Define data for the yield curve.

```
Settle = datenum('01-Jul-2003');
CurveDates = daysadd(Settle,360*[.25 .5 1 2 3 5 7 10 20],1);
ZeroRates = [.0089 .0096 .0107 .0130 . 0166 .0248 .0306 .0356 .0454]';
```

Compute the RateSpec.

```
RateSpec = intenvset('StartDates', Settle, 'EndDates', CurveDates,...
```

'Rates', ZeroRates)

## RateSpec =

FinObj: 'RateSpec'
Compounding: 2
Disc:
Rates: $[9 \times 1$ double]
EndTimes: $[9 \times 1$ double]
double]

```
 StartTimes: [9x1 double]
 EndDates: [9x1 double]
 StartDates: 731763
ValuationDate: 731763
 Basis: 0
EndMonthRule: 1
```

Compute the spread.

```
Price = 98;
```

CFAmounts = [30;40;30];
CFDates = datenum(\{'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'\});
Spread $=$ cfspread(RateSpec, Price, CFAmounts, CFDates, Settle)
Spread =
$1.0 \mathrm{e}+03$ *
-8.7956
-4.0774
-3.7073

See Also | cfbyzero | cfyield | cfprice

Purpose Compute yield to maturity for cash flow given price

```
Syntax Yield = cfyield(CFAmounts, CFDates, Price, Settle)
Yield = cfyield(CFAmounts, CFDates, Price, Settle, Name, Value)
```


## Description

Input
Arguments
Yield = cfyield(CFAmounts, CFDates, Price, Settle) computes yield to maturity for a cash flow given price.

Yield = cfyield(CFAmounts, CFDates, Price, Settle, Name, Value) computes yield to maturity for a cash flow given price with additional options specified by one or more Name, Value pair arguments.

## CFlowAmounts

NINST-by-MOSTCFS matrix of cash flow amounts. Each row is a list of
cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.

## CFlowDates

NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the serial date of the corresponding cash flow in CFlowAmounts.

## Price

Price.

## Settle

Settlement date is a serial date number or date string. Settlement date is the date on which the cash flows are priced.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Note Any optional input of size N-by-1 is also acceptable as an array of size 1-by-N, or as a single value applicable to all contracts. Single values are internally expanded to an array of size N -by- 1 .

## 'Basis'

N -by-1 vector of day-count basis:

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- $10=\mathrm{actual} / 365$ (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0 (actual/actual)

## 'CompFreq'

Compounding frequency. By default, SIA bases (0-7) and BUS/252 use a semi-annual compounding convention and ISMA bases (8-12) use an annual compounding convention.

Default: actual

## Output Arguments

## Examples

## Yield

Yield for cash flows.

## Compute the Yield to Maturity for a Cash Flow When Given a Price

Use cfyield to compute yield to maturity for a cash flow when given a price.

Define data for the yield curve and price.
Settle = datenum('01-Jul-2003');
Price = 98;
CFlowAmounts = [30 40 30];
CFlowDates = datenum(\{'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'\})';
Compute the Yield.
Yield $=$ cfyield(CFlowAmounts, CFlowDates, Price, Settle)

Yield =
0.0099

See Also | cfbyzero | cfprice | cfspread

Purpose<br>Syntax<br>\section*{Description}

Time factors corresponding to bond cash flow dates

```
[TFactors] = cftimes(Settle, Maturity)
[TFactors] = cftimes(Settle, Maturity,
Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate)
[TFactors] = cftimes(Settle, Maturity,
'ParameterName', 'ParameterValue ...)
```


## Input <br> Arguments

[TFactors] = cftimes(Settle, Maturity) determines the time factors corresponding to the cash flows of a bond or set of bonds.

```
[TFactors] = cftimes(Settle, Maturity,
Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate)
determines the time factors corresponding to the cash flows of a bond or
set of bonds, including optional inputs.
```

[TFactors] = cftimes(Settle, Maturity,
'ParameterName', 'ParameterValue ...) accepts optional inputs as
one or more comma-separated parameter/value pairs. 'ParameterName'
is the name of the parameter inside single quotes. Parametervalue is
the value corresponding to 'ParameterName'. Specify parameter/value
pairs in any order. Names are case-insensitive.

## Settle

Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity.

## Maturity

Maturity date. A vector of serial date numbers or date strings.

## Ordered Input or Parameter-Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You cannot mix ordered syntax with parameter/value pairs.

## Period

Coupons per year of the bond. A vector of integers. Values are $0,1,2$, $3,4,6$, and 12 .

## Default: 2

## Basis

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- $2=$ actual $/ 360$
- $3=$ actual $/ 365$
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- 7 = actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=\mathrm{actual} / 365$ (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0

## EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month. $1=$ set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

## Default: 1

## IssueDate

Issue date for a bond.

## FirstCouponDate

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

## LastCouponDate

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

## StartDate

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this
date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

## Parameter-Value Pairs

Enter the following inputs only as parameter/value pairs.

## CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ISMA bases (8-12) use an annual compounding convention.

## DiscountBasis

Basis used to compute the discount factors for computing the yield. The default behavior is for SIA bases to use the actual/actual day count to compute discount factors. If you use ISMA day counts and BUS/252, the specified bases are used.

## Output

Arguments

Definitions

## Examples

## TFactors

TFactors has NUMBONDS rows and the number of columns is determined by the maximum number of cash flow payment dates required to hold the bond portfolio. NaNs are padded for bonds which have less than the maximum number of cash flow payment dates.
cftimes computes the time factor of a cash flow, which is the difference between the settlement date and the cash flow date, in units of semiannual coupon periods. In computing time factors, use SIA actual/actual day count conventions for all time factor calculations.

## Compute the Time Factor of a Cash Flow

This example shows how to calculate a cash flow time factor.

```
Settle = '15-Mar-1997';
```

Settle = '15-Mar-1997';
Maturity = '01-Sep-1999';
Maturity = '01-Sep-1999';
Period = 2;
Period = 2;
TFactors = cftimes(Settle, Maturity, Period)

```
TFactors = cftimes(Settle, Maturity, Period)
```

TFactors =

## $0.9239 \quad 1.9239 \quad 3.9239 \quad 4.9239$

References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John Wiley \& Sons, 2002.
Mayle, Jan, "Standard Securities Calculations Methods: Fixed Income Securities Formulas for Analytic Measures", SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson, Money Market and Bond Calculations, McGraw-Hill, 1996.

## See Also

accrfrac | cfdates | cfamounts | cpncount | cpndaten | cpndatenq | cpndatep | cpndatepq | cpndaysn | cpndaysp | date2time

## Purpose Chaikin oscillator

```
Syntax chosc = chaikosc(highp, lowp, closep, tvolume)
chosc = chaikosc([highp lowp closep tvolume])
choscts = chaikosc(tsobj)
choscts = chaikosc(tsobj, ParameterName, ParameterValue, ...)
```


## Arguments

highp	High price (vector)
lowp	Low price (vector)
closep	Closing price (vector)
tvolume	Volume traded (vector)
tsobj	Financial time series object

## Description

The Chaikin oscillator is calculated by subtracting the 10 -period exponential moving average of the Accumulation/Distribution (A/D) line from the three-period exponential moving average of the $A / D$ line.
chosc = chaikosc(highp, lowp, closep, tvolume) calculates the Chaikin oscillator (vector), chosc, for the set of stock price and volume traded data (tvolume). The prices that must be included are the high (highp), low (lowp), and closing (closep) prices.
chosc $=$ chaikosc([highp lowp closep tvolume]) accepts a four-column matrix as input.
choscts = chaikosc(tsobj) calculates the Chaikin Oscillator, choscts, from the data contained in the financial time series object tsobj. tsobj must at least contain data series with names High, Low, Close, and Volume. These series must represent the high, low, and closing prices, plus the volume traded. choscts is a financial time series object with the same dates as tsobj but only one series named ChaikOsc.
choscts $=$ chaikosc(tsobj, ParameterName, ParameterValue, ...) accepts parameter name/parameter value pairs as input. These pairs specify the name(s) for the required data series if it is different from the expected default name(s). Valid parameter names are

- HighName: high prices series name
- LowName: low prices series name
- CloseName: closing prices series name
- VolumeName: volume traded series name

Parameter values are the strings that represent the valid parameter names.

## Examples Compute the Chaikin Oscillator

This example shows how to compute the Chaikin oscillator for Disney stock and plot the results.

```
load disney.mat
dis_CHAIKosc = chaikosc(dis)
plot(dis_CHAIKosc)
title('Chaikin Oscillator for Disney')
```

dis_CHAIKosc =
desc: ChaikOsc: Walt Disney Company (DIS)
freq: Unknown (0)
'dates: (782)' 'ChaikOsc: (782)
'29-Mar-1996' [ NaN]
'01-Apr-1996' [ NaN]
'02-Apr-1996' [ NaN]
'03-Apr-1996' [ NaN]
'04-Apr-1996' [ NaN]
'05-Apr-1996' [ NaN]
'08-Apr-1996' [ NaN]

'09-Apr-1996 '		NaN]
'10-Apr-1996'	[	NaN]
'11-Apr-1996'		NaN]
'12-Apr-1996'		-5.7823e+06]
'15-Apr-1996'		-4.7812e+06]
'16-Apr-1996'		-3.3008e+06]
'17-Apr-1996'		-2.6274e+06]
'18-Apr-1996'		-1.8095e+06]
'19-Apr-1996'		-1.3104e+06]
'22-Apr-1996'	[	-1.4986e+06]
'23-Apr-1996'		-2.0408e+06]
'24-Apr-1996'		-2.4366e+06]
'25-Apr-1996'		-2.0938e+06]
'26-Apr-1996'		-2.4472e+06]
'29-Apr-1996'	[	-2.3693e+06]
'30-Apr-1996'		-1.6500e+06]
'01-May-1996'	[	-3.3841e+06]
'02-May-1996'		-4.4051e+06]
'03-May-1996'		-5.7456e+06]
'06-May-1996'		-4.2227e+06]
'07-May-1996'	[	-4.1151e+06]
'08-May-1996'	[	-1.8816e+06]
'09-May-1996'		-1.8227e+06]
'10-May-1996'		-1.0665e+06]
'13-May-1996 '		8.2140e+05]
'14-May-1996'		1.2920e+06]
'15-May-1996 '		$5.2981 e+05]$
'16-May-1996'		$6.5677 e+05]$
'17-May-1996 '	[	3.4817e+05]
'20-May-1996'		1.2216e+06]
'21-May-1996'		$2.5217 \mathrm{e}+06]$
'22-May-1996'		$3.4551 \mathrm{e}+06]$
'23-May-1996'		$2.4631 e+06]$
'24-May-1996'	[	$1.8334 \mathrm{e}+06$ ]
'27-May-1996 '		$\mathrm{NaN}]$
'28-May-1996'	[	1.1068e+06]
'29-May-1996'	[	-6.4252e+05]


03-Jun-1996 ${ }^{\prime}$	
04-Jun-1996'	
'06-Jun-1996'	
'07-Jun-1996'	
'10-Jun-1996	
,	
8-J	
'20-Jun-1996'	
21-J	
24-Jun-1996	
-J	
26-Jun-1996	
-Jun-1996 ${ }^{\prime}$	
-	
02-Jul-1996 '	
'	
'05-Jul-1996'	
'	
'10-Jul-1996'	
-J	
'12-Jul-1996'	
'15-Jul-1996'	
16-Jul-1996	
'17-Jul-1996'	
'18-Jul-1996'	

$-2.6283 e+05]$
$-8.9841 e+05]$
$-1.5843 e+06]$
$-1.4419 \mathrm{e}+06]$
-1.5087e+04
-1.5946e+04
$2.0129 e+06]$
$1.6825 \mathrm{e}+06$ ]
9.2108e+05]
2.2942e+05]
-7.5260e+05]
$-6.2693 e+05]$
$-5.5715 e+04]$
-7.1097e+05]
-9.1439e+05]
$-1.3932 e+04]$
$2.7139 \mathrm{e}+06$ ]
$2.8466 e+06]$
$3.6912 e+06]$
$3.7045 e+06]$
$4.0864 e+06]$
$3.0486 e+06]$
2. 1989e+06]
$4.6628 \mathrm{e}+05$ ]
$6.8226 e+05]$
$\mathrm{NaN}]$
$-3.7950 e+05]$
-2.0711e+06]
$-4.6332 \mathrm{e}+06$ ]
$-3.8426 e+06]$
$-5.3048 e+06]$
$-5.2564 \mathrm{e}+06]$
-7.0773e+06]
-4.2697e+06]
$-4.5130 e+06]$
-3.1269e+06]
$-1.8330 \mathrm{e}+06$ ]

22-Jul-1996'	[	-2.5397e+06]
'23-Jul-1996'	[	-3.6880e+06]
'24-Jul-1996'	[	-4.7401e+06]
'25-Jul-1996'	[	-5.6107e+06]
26-Jul-1996'	[	-5.4498e+06]
'29-Jul-1996'	[	-6.4300e+06]
30-Jul-1996'	[	-4.7233e+06]
31-Jul-1996'	[	-2.5272e+06]
01-Aug-1996'	[	-1.8736e+05]
02-Aug-1996'	[	-2.3661e+05]
05-Aug-1996'	[	-4.2549e+05]
06-Aug-1996'	[	$4.3954 \mathrm{e}+05$ ]
07-Aug-1996'	[	$4.5998 \mathrm{e}+05$ ]
08-Aug-1996'	[	-5.0814e+05]
09-Aug-1996'	[	-1.0350e+06]
12-Aug-1996'	[	-2.1912e+05]
13-Aug-1996'	[	$2.0052 \mathrm{e}+04$ ]
14-Aug-1996'	[	$9.8910 \mathrm{e}+05$ ]
15-Aug-1996'	[	$1.0001 \mathrm{e}+06$ ]
16-Aug-1996'	[	$1.7483 \mathrm{e}+06$ ]
19-Aug-1996'	[	$1.5925 \mathrm{e}+06$ ]
'20-Aug-1996'	[	$5.9560 \mathrm{e}+05$ ]
'21-Aug-1996'	[	$7.4467 \mathrm{e}+05$ ]
'22-Aug-1996'	[	$4.6791 \mathrm{e}+05$ ]
'23-Aug-1996'	[	$1.0546 \mathrm{e}+06$ ]
'26-Aug-1996'	[	$2.2204 \mathrm{e}+06]$
27-Aug-1996'	[	$2.0782 \mathrm{e}+06$ ]
'28-Aug-1996'	[	$1.5726 \mathrm{e}+06$ ]
29-Aug-1996'	[	$1.4295 \mathrm{e}+06$ ]
'30-Aug-1996'	[	$1.2410 \mathrm{e}+06$ ]
02-Sep-1996'	[	NaN ]
03-Sep-1996'	[	$1.8346 \mathrm{e}+06$ ]
04-Sep-1996'	[	$2.0535 \mathrm{e}+06$ ]
'05-Sep-1996'	[	$1.0081 \mathrm{e}+06$ ]
'06-Sep-1996'	[	$1.3719 \mathrm{e}+06$ ]
'09-Sep-1996'	[	$2.2715 \mathrm{e}+06$ ]
10-Sep-1996'	[	$2.6153 \mathrm{e}+06$ ]


11-Sep-1996 ${ }^{\prime}$	[	$3.4247 \mathrm{e}+06]$
12-Sep-1996'	[	$5.2683 \mathrm{e}+06$ ]
13-Sep-1996'	[	$5.5436 \mathrm{e}+06$ ]
16-Sep-1996'	[	$3.9025 \mathrm{e}+06$ ]
'17-Sep-1996'	[	$3.5540 \mathrm{e}+06]$
18-Sep-1996'	[	$3.3772 \mathrm{e}+06]$
'19-Sep-1996'	[	$5.1754 \mathrm{e}+06]$
'20-Sep-1996'	[	$6.7087 \mathrm{e}+06$ ]
23-Sep-1996'	[	$7.5872 \mathrm{e}+06]$
24-Sep-1996'	[	$6.4012 \mathrm{e}+06$ ]
25-Sep-1996'	[	$4.4008 \mathrm{e}+06$ ]
26-Sep-1996'	[	$2.3209 \mathrm{e}+06$ ]
27-Sep-1996'	[	$1.8734 \mathrm{e}+06$ ]
30-Sep-1996'	[	$1.3900 \mathrm{e}+06$ ]
01-Oct-1996'	[	$2.0380 \mathrm{e}+05]$
02-Oct-1996'	[	-5.5330e+05]
03-0ct-1996'	[	-6.2845e+05]
04-0ct-1996'	[	-4.6187e+05]
07-0ct-1996'	[	-3.5173e+05]
08-0ct-1996'	[	-8.6642e+05]
09-0ct-1996'	[	-5.3118e+05]
10-Oct-1996'	[	$8.4744 \mathrm{e}+04$ ]
11-0ct-1996'	[	$3.2901 \mathrm{e}+05$ ]
14-Oct-1996'	[	-1.5051e+05]
15-Oct-1996'	[	$1.3053 \mathrm{e}+05$ ]
'16-0ct-1996'	[	1.2913e+06]
17-Oct-1996'	[	$9.7024 \mathrm{e}+05$ ]
'18-0ct-1996'	[	$1.7152 \mathrm{e}+06$ ]
21-Oct-1996'	[	$2.3554 \mathrm{e}+06$ ]
'22-0ct-1996'	[	$3.3290 \mathrm{e}+06]$
23-0ct-1996'	[	$3.4247 \mathrm{e}+06$ ]
'24-0ct-1996'	[	$2.7675 \mathrm{e}+06$ ]
25-0ct-1996'	[	$3.0116 \mathrm{e}+06$ ]
'28-0ct-1996'	[	$2.4397 \mathrm{e}+06$ ]
'29-0ct-1996'	[	$1.2380 \mathrm{e}+06$ ]
'30-0ct-1996'	[	$9.5453 \mathrm{e}+04$ ]
'31-0ct-1996'	[	$2.7016 \mathrm{e}+05$ ]


'01-Nov-1996'		-6.3293e+04]
' 04 -Nov-1996'		$7.1229 \mathrm{e}+05]$
' $05-$ Nov-1996 '		$2.1262 \mathrm{e}+06]$
'06-Nov-1996'		3.1572e+06]
' 07 -Nov-1996 '		$4.7710 \mathrm{e}+06$ ]
'08-Nov-1996'		$5.5022 \mathrm{e}+06]$
'11-Nov-1996'		$6.9075 \mathrm{e}+06$ ]
'12-Nov-1996'		$7.2868 \mathrm{e}+06]$
'13-Nov-1996'		$6.6508 \mathrm{e}+06$ ]
'14-Nov-1996'		$6.4682 e+06]$
'15-Nov-1996'		$6.8301 e+06]$
'18-Nov-1996'		$6.1008 \mathrm{e}+06]$
'19-Nov-1996'	[	$4.6740 \mathrm{e}+06]$
'20-Nov-1996'		$5.2006 \mathrm{e}+06]$
'21-Nov-1996'	[	$5.6576 \mathrm{e}+06]$
' 22-Nov-1996'		$4.2460 e+06]$
' 25 -Nov-1996'		$4.5886 \mathrm{e}+06$ ]
' 26 -Nov-1996'		$4.9066 \mathrm{e}+06$ ]
'27-Nov-1996'		$3.0651 \mathrm{e}+06$ ]
' 28 -Nov-1996'	[	NaN]
' 29-Nov-1996'		$2.5073 \mathrm{e}+06$ ]
'02-Dec-1996'		$2.3251 e+06]$
'03-Dec-1996'		$9.1792 \mathrm{e}+05]$
'04-Dec-1996'	[	$1.7830 \mathrm{e}+06]$
'05-Dec-1996'		$3.0269 \mathrm{e}+06$ ]
'06-Dec-1996'		$4.4979 \mathrm{e}+06$ ]
'09-Dec-1996'	[	$5.6126 e+06]$
'10-Dec-1996'		$5.5613 \mathrm{e}+06]$
'11-Dec-1996'	[	$4.9115 \mathrm{e}+06]$
'12-Dec-1996'		$2.7469 \mathrm{e}+06]$
'13-Dec-1996'		$2.0715 e+06]$
'16-Dec-1996'	[	$1.0196 \mathrm{e}+06]$
'17-Dec-1996'		$1.6817 \mathrm{e}+06$ ]
'18-Dec-1996'	[	$1.9453 e+06]$
'19-Dec-1996'	[	$3.0330 \mathrm{e}+06]$
'20-Dec-1996'	[	$1.4680 \mathrm{e}+06]$
'23-Dec-1996'	[	$9.5497 e+05]$


24-Dec-1996'	[	$5.8528 \mathrm{e}+05$ ]
'25-Dec-1996'	[	$\mathrm{NaN}]$
'26-Dec-1996'	[	$3.8251 \mathrm{e}+05$ ]
'27-Dec-1996'	[	$1.1179 \mathrm{e}+04$ ]
'30-Dec-1996'	[	-9.1806e+05]
'31-Dec-1996'	[	-1.4992e+06]
'01-Jan-1997'	[	$\mathrm{NaN}]$
'02-Jan-1997'	[	-3.1305e+06]
'03-Jan-1997'	[	-2.3481e+06]
'06-Jan-1997'	[	-2.1935e+06]
'07-Jan-1997'	[	-1.1795e+06]
'08-Jan-1997'	[	-1.2647e+06]
'09-Jan-1997'	[	-2.1501e+06]
'10-Jan-1997'	[	-6.6048e+05]
'13-Jan-1997'	[	-8.6152e+05]
'14-Jan-1997'	[	$1.2642 \mathrm{e}+05$ ]
'15-Jan-1997'	[	$6.7486 \mathrm{e}+05$ ]
'16-Jan-1997'	[	$6.3433 \mathrm{e}+05$ ]
'17-Jan-1997'	[	$1.9569 \mathrm{e}+06$ ]
'20-Jan-1997'	[	$2.0374 \mathrm{e}+06$ ]
'21-Jan-1997'	[	$2.8213 \mathrm{e}+06$ ]
'22-Jan-1997'	[	$4.2660 \mathrm{e}+06$ ]
'23-Jan-1997'	[	$1.9124 \mathrm{e}+06]$
'24-Jan-1997'	[	$1.8754 \mathrm{e}+06$ ]
'27-Jan-1997'	[	$2.6218 \mathrm{e}+06$ ]
'28-Jan-1997'	[	$6.7254 \mathrm{e}+05$ ]
'29-Jan-1997'		$1.7653 \mathrm{e}+06$ ]
'30-Jan-1997'	[	$1.0415 \mathrm{e}+06$ ]
'31-Jan-1997'	[	$3.6170 \mathrm{e}+05$ ]
'03-Feb-1997'	[	$1.1269 \mathrm{e}+06$ ]
'04-Feb-1997'	[	$9.7488 \mathrm{e}+05$ ]
'05-Feb-1997'	[	$1.8521 \mathrm{e}+05$ ]
' 06-Feb-1997'	[	$1.1566 \mathrm{e}+06$ ]
'07-Feb-1997'	[	$1.9188 \mathrm{e}+06$ ]
'10-Feb-1997'	[	$1.9420 \mathrm{e}+05$ ]
'11-Feb-1997'	[	-1.0567e+06]
'12-Feb-1997'	[	-7.2036e+05]


'13-Feb-1997'		-1.0013e+06]
' 14-Feb-1997'	[	-1.7180e+06]
'17-Feb-1997'		$\mathrm{NaN}]$
'18-Feb-1997'		-1.5940e+06]
'19-Feb-1997'		-2.3075e+06]
' 20-Feb-1997'		-3.1073e+06]
' 21 -Feb-1997'		$-3.5483 \mathrm{e}+06]$
' 24 -Feb-1997'		-3.0524e+06]
' 25-Feb-1997'		-2.3726e+06]
' 26-Feb-1997'	[	-1.3305e+06]
' 27-Feb-1997'		-5.8313e+05]
' 28 -Feb-1997'	[	-1.2180e+06]
'03-Mar-1997'	[	-1.9613e+06]
'04-Mar-1997'		-2.7539e+06]
'05-Mar-1997'	[	-2.1334e+06]
'06-Mar-1997'		-7.3801e+05]
'07-Mar-1997'	[	$2.7576 e+05]$
'10-Mar-1997'		1.2436e+06]
'11-Mar-1997'		$1.3886 e+06]$
'12-Mar-1997'	[	$4.9493 \mathrm{e}+05$ ]
'13-Mar-1997'		-9.0353e+05]
'14-Mar-1997'	[	-8.6568e+05]
'17-Mar-1997'	[	$4.9734 \mathrm{e}+04$ ]
'18-Mar-1997'	[	$1.9282 \mathrm{e}+05$ ]
'19-Mar-1997'	[	$7.8217 e+05]$
' 20-Mar-1997'	[	$7.4814 \mathrm{e}+05]$
'21-Mar-1997'		$1.0778 e^{+05]}$
'24-Mar-1997'	[	$7.9304 \mathrm{e}+05]$
'25-Mar-1997'	[	$4.0190 \mathrm{e}+05$ ]
'26-Mar-1997'		$4.5087 e+05]$
'27-Mar-1997'	[	1.0280e+06]
' 28-Mar-1997'		$\mathrm{NaN}]$
'31-Mar-1997'	[	$7.1574 \mathrm{e}+05$ ]
'01-Apr-1997'	[	$6.5815 \mathrm{e}+05$ ]
'02-Apr-1997'		$4.5414 \mathrm{e}+05$ ]
'03-Apr-1997'	[	$1.2178 \mathrm{e}+06$ ]
'04-Apr-1997'	[	$2.5438 \mathrm{e}+06$ ]


07-Apr-1997'	[	$2.8550 \mathrm{e}+06]$
08-Apr-1997'	[	$3.4023 \mathrm{e}+06$ ]
09-Apr-1997'	[	$3.3169 \mathrm{e}+06$ ]
10-Apr-1997'	[	$1.9618 \mathrm{e}+06$ ]
'11-Apr-1997'	[	-4.1535e+05]
14-Apr-1997'	[	-1.5463e+06]
'15-Apr-1997'	[	-9.2120e+05]
16-Apr-1997'	[	$1.1059 \mathrm{e}+06$ ]
17-Apr-1997'	[	$1.7184 \mathrm{e}+06]$
18-Apr-1997'	[	$2.5255 \mathrm{e}+06$ ]
'21-Apr-1997'	[	$2.3150 \mathrm{e}+06$ ]
22-Apr-1997'	[	$3.0428 \mathrm{e}+06$ ]
'23-Apr-1997'	[	$3.6473 \mathrm{e}+06$ ]
24-Apr-1997'	[	$2.8593 \mathrm{e}+06$ ]
'25-Apr-1997'	[	$1.6810 \mathrm{e}+06$ ]
28-Apr-1997'	[	$8.0364 \mathrm{e}+05$ ]
29-Apr-1997'	[	$2.2948 \mathrm{e}+06$ ]
30-Apr-1997'	[	$3.5843 \mathrm{e}+06$ ]
01-May-1997'	[	$3.6327 \mathrm{e}+06]$
02-May-1997'	[	$2.2069 \mathrm{e}+06$ ]
05-May-1997'	[	$2.6414 \mathrm{e}+06$ ]
06-May-1997'	[	$3.6308 \mathrm{e}+06]$
07-May-1997'	[	$2.8822 \mathrm{e}+06$ ]
08-May-1997'	[	$2.9335 \mathrm{e}+06$ ]
09-May-1997 '	[	$3.7941 \mathrm{e}+06]$
'12-May-1997'	[	$4.6155 \mathrm{e}+06$ ]
13-May-1997 ${ }^{\prime}$	[	$4.5320 \mathrm{e}+06$ ]
'14-May-1997'	[	$3.5242 \mathrm{e}+06]$
15-May-1997'	[	$2.5167 \mathrm{e}+06$ ]
'16-May-1997'	[	$1.1714 \mathrm{e}+05]$
19-May-1997'	[	$-5.5805 \mathrm{e}+04$ ]
'20-May-1997'	[	$9.8226 \mathrm{e}+05]$
'21-May-1997'	[	$5.8576 \mathrm{e}+05$ ]
'22-May-1997'	[	$1.5292 \mathrm{e}+05$ ]
'23-May-1997'	[	$1.4930 \mathrm{e}+05$ ]
'26-May-1997'	[	$\mathrm{NaN}]$
'27-May-1997'	[	8.5799e+05]


'28-May-1997'	[	$1.5785 \mathrm{e}+06]$
'29-May-1997'	[	$1.4091 \mathrm{e}+06$ ]
'30-May-1997'	[	$1.9968 \mathrm{e}+06]$
'02-Jun-1997'	[	$1.3750 \mathrm{e}+06]$
'03-Jun-1997'	[	$8.2705 \mathrm{e}+05]$
'04-Jun-1997'	[	-3.2002e+05]
'05-Jun-1997'	[	-7.5858e+05]
'06-Jun-1997'	[	$1.2451 \mathrm{e}+05$ ]
'09-Jun-1997'	[	-3.1472e+05]
'10-Jun-1997'	[	$4.0861 \mathrm{e}+05]$
'11-Jun-1997'	[	$6.6737 \mathrm{e}+05$ ]
'12-Jun-1997'	[	$1.0226 \mathrm{e}+06$ ]
'13-Jun-1997'	[	$2.0308 \mathrm{e}+06]$
'16-Jun-1997'	[	$3.5137 \mathrm{e}+06$ ]
'17-Jun-1997'	[	$4.5563 \mathrm{e}+06$ ]
'18-Jun-1997'	[	$3.5268 \mathrm{e}+06$ ]
'19-Jun-1997'	[	$3.9786 \mathrm{e}+06]$
' 20-Jun-1997'	[	$2.7107 \mathrm{e}+06$ ]
'23-Jun-1997'	[	1.1987e+06]
'24-Jun-1997'	[	$1.8443 \mathrm{e}+06$ ]
'25-Jun-1997'	[	$1.9182 \mathrm{e}+06]$
'26-Jun-1997'	[	$1.6471 \mathrm{e}+06$ ]
'27-Jun-1997'	[	-2.3360e+05]
'30-Jun-1997'	[	$8.6827 \mathrm{e}+05]$
'01-Jul-1997'	[	$7.0916 \mathrm{e}+05]$
'02-Jul-1997'	[	-3.6483e+05]
'03-Jul-1997'	[	-2.1574e+06]
'04-Jul-1997'	[	$\mathrm{NaN}]$
'07-Jul-1997'	[	-4.0297e+06]
'08-Jul-1997'	[	-2.8269e+06]
'09-Jul-1997'	[	-3.5317e+06]
'10-Jul-1997'	[	-4.4905e+06]
'11-Jul-1997'	[	-4.3008e+06]
'14-Jul-1997'	[	-2.6495e+06]
'15-Jul-1997'	[	-1.8368e+05]
'16-Jul-1997'	[	$1.1028 \mathrm{e}+06$ ]
'17-Jul-1997'	[	$1.7192 \mathrm{e}+06$ ]


'18-Jul-1997'	[	1.1707e+06]
'21-Jul-1997'	[	$1.2886 \mathrm{e}+06$ ]
'22-Jul-1997'	[	$3.1615 \mathrm{e}+06$ ]
'23-Jul-1997'	[	$2.0208 \mathrm{e}+06$ ]
'24-Jul-1997'	[	$2.7014 \mathrm{e}+06$ ]
'25-Jul-1997'	[	$3.3949 \mathrm{e}+06$ ]
'28-Jul-1997'	[	$3.8927 \mathrm{e}+06]$
'29-Jul-1997'	[	$4.2131 \mathrm{e}+06$ ]
'30-Jul-1997'	[	$4.3083 \mathrm{e}+06$ ]
'31-Jul-1997'	[	$2.7588 \mathrm{e}+06$ ]
'01-Aug-1997'	[	$1.3232 \mathrm{e}+06$ ]
'04-Aug-1997'	[	$1.1413 \mathrm{e}+06$ ]
'05-Aug-1997'	[	$3.6725 \mathrm{e}+04$ ]
'06-Aug-1997'	[	$3.8302 \mathrm{e}+05]$
'07-Aug-1997'	[	-4.3822e+05]
'08-Aug-1997'	[	$3.4368 \mathrm{e}+04$ ]
'11-Aug-1997'	[	$9.2703 \mathrm{e}+05$ ]
'12-Aug-1997'	[	-3.2393e+05]
'13-Aug-1997'	[	-3.4439e+05]
'14-Aug-1997'	[	-2.8354e+05]
'15-Aug-1997'	[	-1.6402e+06]
'18-Aug-1997'	[	-4.4838e+05]
'19-Aug-1997'	[	$2.4140 \mathrm{e}+06$ ]
'20-Aug-1997'	[	$4.1758 \mathrm{e}+06$ ]
'21-Aug-1997'	[	$3.9797 \mathrm{e}+06$ ]
'22-Aug-1997'	[	$4.3039 \mathrm{e}+06$ ]
'25-Aug-1997'	[	$3.8220 \mathrm{e}+06$ ]
'26-Aug-1997'	[	$2.3476 \mathrm{e}+06]$
'27-Aug-1997'	[	$2.1092 \mathrm{e}+06$ ]
'28-Aug-1997'	[	$1.4435 \mathrm{e}+06$ ]
'29-Aug-1997'	[	$1.5923 \mathrm{e}+05$ ]
'01-Sep-1997'	[	$\mathrm{NaN}]$
'02-Sep-1997'	[	$4.7895 \mathrm{e}+05$ ]
'03-Sep-1997'	[	$5.6877 \mathrm{e}+05]$
'04-Sep-1997'	[	-5.2949e+05]
'05-Sep-1997'	[	-6.8358e+05]
'08-Sep-1997'	[	-1.4044e+06]


'09-Sep-1997'		-1.3430e+06]
'10-Sep-1997'	[	-1.7782e+06]
'11-Sep-1997'		-1.6203e+06]
'12-Sep-1997'		-3.1677e+05]
'15-Sep-1997'		$3.0351 \mathrm{e}+05$ ]
'16-Sep-1997'		$1.3289 \mathrm{e}+06]$
'17-Sep-1997'		$9.6405 \mathrm{e}+05$ ]
'18-Sep-1997'		$1.5924 \mathrm{e}+06]$
'19-Sep-1997'		$2.9585 e+06]$
'22-Sep-1997'	[	$2.4983 e+06]$
'23-Sep-1997'		$1.8303 e+06]$
'24-Sep-1997'	[	$4.3236 e+05]$
'25-Sep-1997'		$8.0521 \mathrm{e}+05]$
'26-Sep-1997'	[	$4.9036 \mathrm{e}+05$ ]
'29-Sep-1997'	[	$2.5134 \mathrm{e}+05$ ]
'30-Sep-1997'		$1.7482 \mathrm{e}+05]$
'01-0ct-1997'		8.2097e+05]
'02-0ct-1997'		$2.3990 \mathrm{e}+06]$
'03-0ct-1997'		$1.7888 \mathrm{e}+06$ ]
'06-0ct-1997'		$7.7926 e+05]$
'07-0ct-1997'	[	1.1024e+06]
'08-0ct-1997'		1.0862e+06]
'09-0ct-1997'		1.4000e+06]
'10-0ct-1997'		1.4693e+06]
'13-0ct-1997'		$1.5189 \mathrm{e}+06]$
'14-0ct-1997'	[	$2.0649 \mathrm{e}+06$ ]
'15-0ct-1997'		$2.2514 \mathrm{e}+06$ ]
'16-0ct-1997'		1.9512e+06]
'17-0ct-1997'	[	$1.3221 e+06]$
'20-0ct-1997'		$1.8449 \mathrm{e}+06]$
'21-0ct-1997'		$2.0493 \mathrm{e}+06$ ]
'22-0ct-1997'		1.0452e+06]
'23-0ct-1997'		$6.0265 \mathrm{e}+05$ ]
'24-0ct-1997'	[	-1.3419e+06]
'27-0ct-1997'		-3.7179e+06]
'28-0ct-1997'		-1.8048e+06]
'29-0ct-1997'	[	-3.0065e+05]


30-Oct-1997'	[	-7.0686e+05]
'31-0ct-1997'	[	-9.4239e+05]
'03-Nov-1997'	[	$2.0136 \mathrm{e}+05$ ]
'04-Nov-1997'	[	$1.6276 \mathrm{e}+06$ ]
'05-Nov-1997'	[	$1.1334 \mathrm{e}+06$ ]
'06-Nov-1997'	[	$1.7130 \mathrm{e}+06$ ]
'07-Nov-1997'	[	$2.0798 \mathrm{e}+06$ ]
'10-Nov-1997'	[	$1.4163 e+06]$
'11-Nov-1997'	[	$9.2906 \mathrm{e}+05$ ]
'12-Nov-1997'	[	-7.3196e+05]
'13-Nov-1997'	[	-1.1184e+06]
'14-Nov-1997'	[	-6.9357e+05]
'17-Nov-1997'	[	-1.3903e+05]
'18-Nov-1997'	[	$4.4483 \mathrm{e}+05$ ]
'19-Nov-1997'	[	$2.1957 \mathrm{e}+06$ ]
'20-Nov-1997'	[	1.2099e+06]
'21-Nov-1997'	[	$3.0834 \mathrm{e}+06$ ]
'24-Nov-1997'	[	$4.2602 \mathrm{e}+06$ ]
'25-Nov-1997'	[	$4.4726 \mathrm{e}+06$ ]
'26-Nov-1997'	[	$3.8788 \mathrm{e}+06$ ]
'27-Nov-1997'	[	NaN ]
'28-Nov-1997'	[	$3.2354 \mathrm{e}+06$ ]
'01-Dec-1997'	[	$3.6645 \mathrm{e}+06$ ]
'02-Dec-1997'	[	$3.2958 \mathrm{e}+06$ ]
'03-Dec-1997'	[	$2.5996 \mathrm{e}+06$ ]
'04-Dec-1997'	[	$1.8833 \mathrm{e}+06$ ]
'05-Dec-1997'	,	$2.0904 \mathrm{e}+06$ ]
'08-Dec-1997'	[	$2.1530 \mathrm{e}+06$ ]
'09-Dec-1997'	[	$1.9048 \mathrm{e}+06$ ]
'10-Dec-1997'	[	$2.0853 \mathrm{e}+06$ ]
'11-Dec-1997'	[	$2.2587 \mathrm{e}+06$ ]
'12-Dec-1997'	[	1.9876e+06]
'15-Dec-1997'	[	$3.2833 \mathrm{e}+06$ ]
'16-Dec-1997'	[	$2.7480 \mathrm{e}+06$ ]
'17-Dec-1997'	[	$2.8100 \mathrm{e}+06$ ]
'18-Dec-1997'	[	$3.0571 \mathrm{e}+06$ ]
'19-Dec-1997'	[	$4.4764 \mathrm{e}+06$ ]


22-Dec-1997 ${ }^{\prime}$
'23-Dec-1997'
'24-Dec-1997'
'25-Dec-1997'
'26-Dec-1997'
'29-Dec-1997'
'30-Dec-1997'
'31-Dec-1997'
'01-Jan-1998'
'02-Jan-1998'
'05-Jan-1998'
'06-Jan-1998'
'07-Jan-1998'
'08-Jan-1998'
'09-Jan-1998'
'12-Jan-1998'
'13-Jan-1998'
'14-Jan-1998'
'15-Jan-1998'
'16-Jan-1998'
'19-Jan-1998'
'20-Jan-1998'
'21-Jan-1998'
'22-Jan-1998'
'23-Jan-1998'
'26-Jan-1998'
'27-Jan-1998'
'28-Jan-1998'
'29-Jan-1998'
'30-Jan-1998'
'02-Feb-1998'
'03-Feb-1998'
'04-Feb-1998'
' 05-Feb-1998'
' 06-Feb-1998'
'09-Feb-1998'
'10-Feb-1998'

$3.8017 e+06]$
$2.4471 e+06]$
$\mathrm{NaN}]$
$1.5241 \mathrm{e}+06]$
$1.4052 e+06]$
$1.0148 e+06]$
$-9.4733 e+03]$
$\mathrm{NaN}]$
$2.0685 e+05]$
-7.1146e+05]
$-6.5095 e+05]$
8.3626e+05]
1.3686e+06]
-2.4157e+05]
-1.4927e+06]
-1.1838e+06]
$-3.3121 e+05]$
$4.7993 e+05]$
1.2376e+06]
$\mathrm{NaN}]$
$2.3917 e+06]$
$2.7887 e+06]$
$1.9897 e+06]$
$2.3942 \mathrm{e}+06$ ]
$1.6854 \mathrm{e}+06]$
$2.7130 e+06]$
$2.6713 e+06]$
$2.1795 e+06]$
$2.0792 e+06]$
$2.9723 e+06]$
$3.9538 e+06]$
$4.4188 e+06]$
$4.0988 \mathrm{e}+06$ ]
$3.5555 \mathrm{e}+06$ ]
2.2891e+06]
2.1226e+06]

'13-Feb-1998'	
'17-Feb-1998	
'18-Feb-1998'	
	Feb-19
'20-Feb-1998'	
	23-Feb-1998
24-Feb-1	
'25-Feb-19	
	6-Feb-1998
'27-Feb-1998'	
'03-Mar-1998	
	-Mar-1998
'05-Mar-1998'	
	Ma
'09-Mar-1998'	
	'10-Mar-1998
11-Mar-1998'	
'12-Mar-1998'	
	13-Mar-1998
'16-Mar-19	
	7-Mar-1998
Mar-19	
'19-Mar-1998'	
' 20-Mar-1998	
	23-Mar-1998
'24-Mar-1998	
'25-Mar-1998'	
'26-Mar-1998	
'27-Mar-1998'	
'30-Mar-1998'	
'31-Mar-1998'	
	01-Apr-1998
	Apr

'11-Feb-1998'
-
'16-Feb-1998'
'17-Feb-1998'
18-Feb-1998'
19-Feb-1998
'20-Feb-1998'
'23-Feb-1998'
'24-Feb-1998'
'25-Feb-1998'
'27-Feb-1998
'02-Mar-1998'
'03-Mar-1998'
'04-Mar-1998'
'05-Mar-1998'
'06-Mar-1998'
'09-Mar-1998'
'10-Mar-1998'
'11-Mar-1998'
-Mar-1998
'13-Mar-1998
'17-Mar-1998'
'18-Mar-1998'
'19-Mar-1998'
20-Mar-1998'
'23-Mar-1998'
'24-Mar-1998'
26-Mar-1998
27-Mar-1998'
30-Mar-1998
'31-Mar-1998'
02-Apr-1998'
$3.0935 \mathrm{e}+06$ ]
$3.9898 \mathrm{e}+06$ ]
$4.7657 e+06$ ]
NaN ]
$6.0554 \mathrm{e}+06$ ]
$6.9021 \mathrm{e}+06$ ]
$6.2574 \mathrm{e}+06$ ]
$5.9324 \mathrm{e}+06$ ]
$4.5438 \mathrm{e}+06$ ]
$2.4728 \mathrm{e}+06$ ]
$6.6540 \mathrm{e}+05$ ]
$-2.1480 e+05]$
$3.3649 \mathrm{e}+05$ ]
-3.4202e+05]
-4.0369e+05
3.0626e+06]
$3.7416 e+06]$
$3.3760 \mathrm{e}+06]$
$2.8653 \mathrm{e}+06$ ]
$2.4852 e+06]$
$1.8111 \mathrm{e}+06$ ]

1. $9625 \mathrm{e}+06$ ]
1.5256e+06]
$2.1752 e+06]$
$2.2112 \mathrm{e}+06$ ]
$2.7443 e+06]$
$2.2824 \mathrm{e}+06]$
$3.4933 \mathrm{e}+06]$
$1.6271 \mathrm{e}+06$ ]
$2.5328 \mathrm{e}+06$ ]
$3.0534 \mathrm{e}+06$ ]
$3.5614 \mathrm{e}+06]$
$2.8617 \mathrm{e}+06$ ]
$1.4949 \mathrm{e}+06$ ]
$1.0935 \mathrm{e}+06$ ]
$8.7164 \mathrm{e}+05$ ]
$2.1135 \mathrm{e}+06$ ]

03-Apr-1998 ${ }^{\text {' }}$	[	$3.7930 \mathrm{e}+06$ ]
06-Apr-1998'	[	$3.2430 \mathrm{e}+06$ ]
07-Apr-1998'	[	$2.8612 \mathrm{e}+06$ ]
08-Apr-1998'	[	$2.5841 \mathrm{e}+06$ ]
09-Apr-1998'	[	$3.1142 \mathrm{e}+06$ ]
10-Apr-1998'	[	NaN ]
'13-Apr-1998'	[	$4.0133 \mathrm{e}+06$ ]
14-Apr-1998'	[	$5.4360 \mathrm{e}+06$ ]
15-Apr-1998'	[	$5.3677 \mathrm{e}+06$ ]
16-Apr-1998'	[	$3.6992 \mathrm{e}+06$ ]
17-Apr-1998'	[	$3.8614 \mathrm{e}+06]$
20-Apr-1998'	[	$4.5717 \mathrm{e}+06$ ]
21-Apr-1998'	[	$5.7154 \mathrm{e}+06$ ]
22-Apr-1998'	[	$6.8663 \mathrm{e}+06$ ]
23-Apr-1998'	[	-8.8740e+05]
24-Apr-1998'	[	-3.0273e+06]
'27-Apr-1998'	[	-2.3628e+06]
28-Apr-1998'	[	-1.0712e+06]
29-Apr-1998'	[	-2.1176e+05]
30-Apr-1998'	[	-4.1771e+05]
01-May-1998'	[	$7.1593 \mathrm{e}+05]$
04-May-1998'	[	$8.1744 \mathrm{e}+05$ ]
05-May-1998'	[	$1.1133 \mathrm{e}+06$ ]
06-May-1998'	[	$3.0731 \mathrm{e}+05]$
07-May-1998'	[	-2.4762e+06]
08-May-1998'	[	-3.0498e+06]
11-May-1998'	[	-2.3445e+06]
'12-May-1998'	[	-2.9231e+06]
'13-May-1998'	[	-3.4059e+06]
'14-May-1998'	[	-4.2019e+06]
'15-May-1998'	[	-8.7911e+06]
'18-May-1998'	[	-1.1703e+07]
19-May-1998'	[	-1.1913e+07]
'20-May-1998'	[	-9.4087e+06]
'21-May-1998'	[	-7.1066e+06]
'22-May-1998'	[	-5.1471e+06]
25-May-1998'	[	NaN ]


$\begin{aligned} & \text { '26-May-1998' } \\ & \text { '27-May-1998 ' } \end{aligned}$	
'27-May-1998'	'28-May-1998'
29-May-1998'	
	01-Jun-1998
'02-Jun-1998'	
	03-Jun-199
04-Jun-1998'	
	5-Jun-19
08-Jun-1998	
	Ju
10-Jun-1998	
'11-Jun-1998'	
	-Jun-1998
'15-Jun-1998'	
16-Jun-1998'	
	17-Jun-1998'
18-Jun-1998'	
19-Jun-1998'	
	2-Jun-19
23-Jun-1998	
	-Jun-1
'25-Jun-1998'	
'26-Jun-1998'	
	'29-Jun-1998
'30-Jun-1998	
	'01-Jul-1998
'02-Jul-1998	
'03-Jul-1998	
'06-Jul-1998	
'07-Jul-1998	
'08-Jul-1998	
'09-Jul-1998	
'10-Jul-1998	
13-Jul-1998'	
4-Jul-1	
	-Jul-1998

-5.2894e+06]
-3.2097e+06]
$-1.8857 e+06]$
-1.9446e+06]
-2.7562e+06]
-3.9144e+06]
$-4.7361 e+06]$
-3.8413e+06]
-8.1146e+05]
$2.3404 \mathrm{e}+06]$
$4.7102 \mathrm{e}+06$ ]
$5.2023 e+06]$
$3.5955 \mathrm{e}+06$ ]
2.8235e+06]
$7.6259 \mathrm{e}+05$ ]
-7.9309e+05]
-1.7534e+06]
-4.1683e+06]
-8.3712e+06]
$-4.9198 \mathrm{e}+06$ ]
$-2.5009 e+06]$
1.6196e+03]
$6.1103 e+05]$
$-4.6280 \mathrm{e}+05$ ]
$-1.8587 e+05]$
-7.0727e+06]
-1.2580e+07]
-1.1113e+07]
NaN ]
$-8.6832 \mathrm{e}+06]$
-6.5446e+06]
-3.6455e+06]
7.3694e+05]
$5.5721 \mathrm{e}+06$ ]
1.0326e+07]
$1.0532 \mathrm{e}+07$ ]
7.8335e+06]

'16-Jul-1998'		$8.6227 \mathrm{e}+06]$
'17-Jul-1998'	[	$9.0815 \mathrm{e}+06]$
'20-Jul-1998'		$6.6363 \mathrm{e}+06$ ]
'21-Jul-1998'		$4.1304 \mathrm{e}+06$ ]
'22-Jul-1998'		1.7342e+06]
'23-Jul-1998'		-4.8036e+05]
'24-Jul-1998'		-5.3504e+05]
'27-Jul-1998'		$4.9261 \mathrm{e}+05$ ]
'28-Jul-1998'		-2.8640e+05]
'29-Jul-1998'	[	-6.9899e+05]
'30-Jul-1998'		$5.1526 \mathrm{e}+05$ ]
'31-Jul-1998'		$1.1816 \mathrm{e}+05$ ]
'03-Aug-1998'		-3.8427e+05]
'04-Aug-1998'		-2.8611e+06]
' 05-Aug-1998'	[	-2.5117e+06]
'06-Aug-1998'		-2.9496e+06]
'07-Aug-1998'	[	-2.1592e+06]
'10-Aug-1998'		-2.2255e+06]
'11-Aug-1998'		-1.2565e+06]
'12-Aug-1998'		-8.9229e+05]
'13-Aug-1998'		-1.7919e+06]
'14-Aug-1998'		-2.2207e+06]
'17-Aug-1998'		-9.5541e+05]
'18-Aug-1998'		1.1923e+06]
'19-Aug-1998'		$1.7341 \mathrm{e}+06$ ]
' 20-Aug-1998'	[	$2.3613 e+06]$
'21-Aug-1998'		$3.5182 \mathrm{e}+06$ ]
'24-Aug-1998'		$3.6707 \mathrm{e}+06$ ]
'25-Aug-1998'	[	$3.1611 \mathrm{e}+06$ ]
'26-Aug-1998'		$2.4725 \mathrm{e}+06]$
'27-Aug-1998'		$2.0587 \mathrm{e}+06]$
' 28-Aug-1998'		$1.0180 \mathrm{e}+06]$
'31-Aug-1998'		-1.1344e+06]
'01-Sep-1998'	[	$2.4855 \mathrm{e}+06]$
'02-Sep-1998'		$1.8406 \mathrm{e}+06]$
'03-Sep-1998'		-7.1608e+04]
'04-Sep-1998'	[	-3.6192e+05]


'07-Sep-1998'	[	$\mathrm{NaN}]$
'08-Sep-1998'	[	-5.3351e+05]
'09-Sep-1998'	[	-2.3322e+06]
'10-Sep-1998'	[	-3.4370e+06]
'11-Sep-1998'	[	-5.7321e+06]
'14-Sep-1998'	[	-7.5151e+06]
'15-Sep-1998'	[	-4.0887e+06]
'16-Sep-1998'	[	-1.1304e+06]
'17-Sep-1998'	[	$1.8326 \mathrm{e}+06$ ]
'18-Sep-1998'	[	$3.3011 \mathrm{e}+06]$
'21-Sep-1998'	[	$3.6017 \mathrm{e}+06]$
'22-Sep-1998'	[	$3.1821 \mathrm{e}+06]$
'23-Sep-1998'	[	$4.6199 \mathrm{e}+06$ ]
'24-Sep-1998'	[	$3.1642 \mathrm{e}+06$ ]
'25-Sep-1998'	[	$1.5881 \mathrm{e}+06$ ]
'28-Sep-1998'	[	$1.8193 \mathrm{e}+06$ ]
'29-Sep-1998'	[	$1.2065 \mathrm{e}+06$ ]
'30-Sep-1998'	[	$1.2364 \mathrm{e}+05$ ]
'01-0ct-1998'	[	$3.9497 \mathrm{e}+04$ ]
'02-0ct-1998'	[	$3.3405 \mathrm{e}+05]$
'05-0ct-1998'	[	$2.0233 \mathrm{e}+05$ ]
'06-0ct-1998'	[	-1.3243e+05]
'07-0ct-1998'	[	-9.2847e+05]
'08-0ct-1998'	[	-1.7882e+06]
'09-0ct-1998'	[	-3.9741e+05]
'12-0ct-1998'	[	-3.6976e+05]
'13-0ct-1998'	[	$9.5179 \mathrm{e}+05$ ]
'14-Oct-1998'	[	$4.1843 \mathrm{e}+04$ ]
'15-0ct-1998'	[	$1.0947 \mathrm{e}+06$ ]
'16-0ct-1998'	[	$1.1352 \mathrm{e}+06$ ]
'19-0ct-1998'	[	$2.6645 \mathrm{e}+06$ ]
'20-0ct-1998'	[	$3.8813 \mathrm{e}+06$ ]
'21-Oct-1998'	[	$4.9000 \mathrm{e}+06$ ]
'22-0ct-1998'	[	$6.0207 \mathrm{e}+06$ ]
'23-0ct-1998'	[	$6.9551 \mathrm{e}+06$ ]
'26-0ct-1998'	[	$7.5117 \mathrm{e}+06]$
'27-0ct-1998'	[	$5.3952 \mathrm{e}+06$ ]


'28-0ct-1998'
'29-0ct-1998'
'30-Oct-1998'
' 02-Nov-1998'
' $03-$ Nov-1998'
' 04 -Nov-1998'
' 05-Nov-1998'
' 06 -Nov-1998'
' 09-Nov-1998'
'10-Nov-1998'
'11-Nov-1998'
'12-Nov-1998'
'13-Nov-1998'
'16-Nov-1998'
'17-Nov-1998'
'18-Nov-1998'
'19-Nov-1998'
'20-Nov-1998'
'23-Nov-1998'
'24-Nov-1998'
'25-Nov-1998'
'26-Nov-1998'
' 27 -Nov-1998'
'30-Nov-1998'
'01-Dec-1998'
'02-Dec-1998'
'03-Dec-1998'
'04-Dec-1998'
'07-Dec-1998'
'08-Dec-1998'
'09-Dec-1998'
'10-Dec-1998'
'11-Dec-1998'
'14-Dec-1998'
'15-Dec-1998'
'16-Dec-1998'
'17-Dec-1998'

$3.6310 e+06]$
$3.0987 e+06]$
$4.0519 e+06]$
$5.6082 e+06]$
3.1593e+06]
$4.1144 e+06]$
$4.2768 \mathrm{e}+06$ ]
$2.9906 e+06]$
1.2646e+06]
$-5.9267 e+05]$
$-9.3606 e+05]$
$-2.3404 e+05]$
-8.8404e+05]
-3.5911e+05]
$1.1211 \mathrm{e}+06]$
$5.1859 \mathrm{e}+05$ ]
$8.6593 e+05]$
3.1058e+06]

1. $9752 \mathrm{e}+06]$
$3.3466 e+06]$
$\mathrm{NaN}]$
$4.4594 \mathrm{e}+06$ ]
$3.9210 e+06]$
$3.0572 \mathrm{e}+06$ ]
$2.9110 e+06]$
1.3061e+06]
$-8.9212 \mathrm{e}+04]$
$-1.4037 e+06]$
$-1.2538 e+06]$
$6.6093 e+05]$
$8.2767 e+04]$
$1.0137 e+06]$
$8.3556 e+05]$
$-7.0916 e+05]$
-2.0519e+06]
$-2.9059 \mathrm{e}+06$ ]

'18-Dec-1998'	
	'22-Dec-1998'
23	
	24-Dec-1998
25	
'28-Dec-1998'	
'30-Dec-1998	
	31-Dec-1998
'05-J	
07-Jan-1999	
11-Jan-1999	
	-Jan-199
13-Jan-19	
	-Jan-19
15-Jan-1999	
'18-Jan-1999'	
	19-Jan-1999
'20-Jan-1999'	
	21-Jan-1999
'22-Jan-1999'	
	25-Jan-1999
'26-Jan-1999'	
'27-Jan-1999'	
'28-Jan-1999'	
'29-Jan-1999'	
'01-Feb-1999'	
- Feb-1999'	
'03-Feb-1999	
04-Feb-1999'	
'05-Feb-1999	
'08-Feb-1999	

$-1.5865 \mathrm{e}+06$ ]
-3.6043e+05]
$-1.9643 e+06]$
-8.6388e+05]
$-7.6408 \mathrm{e}+05$ ]
NaN ]
-1.3842e+06]
-1.7140e+06]
-2.7727e+06]
-1.9687e+06]
NaN ]
$-2.7374 \mathrm{e}+06$ ]
-1.0861e+06]
$2.6890 \mathrm{e}+06$ ]
$7.4781 \mathrm{e}+06$ ]
1.0456e+07]
1.5098e+07]
$1.6184 \mathrm{e}+07$ ]
$1.5984 \mathrm{e}+07$ ]
1.2890e+07]
$9.8415 \mathrm{e}+06$ ]
NaN ]
$9.2473 e+06]$
$6.3567 e+06]$
$3.3324 \mathrm{e}+06$ ]
$8.9853 e+05]$
$9.5745 \mathrm{e}+05$ ]
2.2988e+05]
-2.6912e+06]
-6.1387e+06]
$-9.8113 e+06]$
-9.8834e+06]
-8.4725e+06]
-6.7057e+06]
-6.7894e+06]
-5.6881e+06]
$-4.9415 \mathrm{e}+06$ ]

09-Feb-1999 '	[	$-5.8311 \mathrm{e}+06]$
10-Feb-1999'	[	-4.2872e+06]
11-Feb-1999'	[	-1.9546e+06]
12-Feb-1999'	[	$7.6383 \mathrm{e}+05$ ]
15-Feb-1999'	[	$\mathrm{NaN}]$
16-Feb-1999'	[	$1.2297 \mathrm{e}+06$ ]
17-Feb-1999'	[	$1.1780 \mathrm{e}+06]$
18-Feb-1999'	[	$7.4262 \mathrm{e}+05]$
19-Feb-1999'	[	-8.0600e+03]
22-Feb-1999'	[	$5.5165 \mathrm{e}+05]$
23-Feb-1999'	[	-8.4828e+05]
24-Feb-1999'	[	-2.8422e+06]
25-Feb-1999'	[	-3.8473e+06]
26-Feb-1999'	[	-3.2034e+06]
01-Mar-1999'	[	-3.0481e+06]
02-Mar-1999'	[	-3.7797e+06]
03-Mar-1999'	[	$-4.7828 e^{+06]}$
04-Mar-1999'	[	-3.6738e+06]
05-Mar-1999'	[	-2.6461e+06]
08-Mar-1999'	[	-1.3433e+06]
09-Mar-1999'	[	-2.0082e+06]
10-Mar-1999'	[	$-3.2271 \mathrm{e}+06]$
11-Mar-1999'	[	-2.7764e+06]
12-Mar-1999'	[	-2.1242e+06]
15-Mar-1999'	[	-1.5880e+06]
16-Mar-1999'	[	-2.5603e+06]
17-Mar-1999'	[	-4.0673e+06]
18-Mar-1999'	[	-3.4692e+06]
19-Mar-1999'	[	-3.9701e+06]
22-Mar-1999'	[	-4.7345e+06]
'23-Mar-1999'	[	-6.0330e+06]
'24-Mar-1999'	[	-4.4789e+06]
'25-Mar-1999'	[	-2.5943e+06]
' 26-Mar-1999'	[	-2.2914e+06]
29-Mar-1999'	[	-1.0959e+06]



[^4]Purpose Chaikin volatility
Syntax

```
chvol = chaikvolat(highp, lowp)
chvol = chaikvolat([highp lowp])
chvol = chaikvolat(high, lowp, nperdiff, manper)
chvol = chaikvolat([high lowp], nperdiff, manper)
chvts = chaikvolat(tsobj)
chvts = chaikvolat(tsobj, nperdiff, manper, ParameterName,
ParameterValue, ...)
```


## Arguments

highp	High price (vector).
lowp	Low price (vector).
nperdiff	Period difference (vector). Default = 10.
manper	Length of exponential moving average in periods   (vector). Default $=10$.
tsobj	Financial time series object.

Description chvol = chaikvolat (highp, lowp) calculates the Chaikin volatility from the series of stock prices, highp and lowp. The vector chvol contains the Chaikin volatility values, calculated on a 10 -period exponential moving average and 10 -period difference.
chvol = chaikvolat([highp lowp]) accepts a two-column matrix as the input.
chvol = chaikvolat(high, lowp, nperdiff, manper) manually sets the period difference nperdiff and the length of the exponential moving average manper in periods.
chvol = chaikvolat([high lowp], nperdiff, manper) accepts a two-column matrix as the first input.
chvts = chaikvolat(tsobj) calculates the Chaikin volatility from the financial time series object tsobj. The object must contain at least two series named High and Low, representing the high and low prices per period. chvts is a financial time series object containing the Chaikin volatility values, based on a 10-period exponential moving average and 10 -period difference. chvts has the same dates as tsobj and a series called ChaikVol.
chvts = chaikvolat (tsobj, nperdiff, manper, ParameterName, ParameterValue, ...) accepts parameter name/parameter value pairs as input. These pairs specify the name(s) for the required data series if it is different from the expected default name(s). Valid parameter names are

- HighName: high prices series name
- LowName: low prices series name

Parameter values are the strings that represent the valid parameter names.
nperdiff, the period difference, and manper, the length of the exponential moving average in periods, can also be set with this form of chaikvolat.

## Examples Compute the Chaikin Volatility

This example shows how to compute the Chaikin volatility for Disney stock and plot the results.

```
load disney.mat
dis_CHAIKvol = chaikvolat(dis)
plot(dis_CHAIKvol)
title('Chaikin Volatility for Disney')
dis_CHAIKvol =
 desc: ChaikVolat: Walt Disney Company (DIS)
 freq: Unknown (0)
```

dates: (782)'	'ChaikVol: (782)'
29-Mar-1996'	NaN ]
01-Apr-1996'	NaN ]
02-Apr-1996'	NaN ]
03-Apr-1996'	NaN ]
04-Apr-1996'	NaN ]
05-Apr-1996'	NaN ]
08-Apr-1996'	NaN ]
09-Apr-1996'	NaN ]
10-Apr-1996'	NaN ]
11-Apr-1996'	NaN ]
12-Apr-1996'	NaN ]
15-Apr-1996'	NaN ]
16-Apr-1996'	NaN ]
17-Apr-1996'	NaN ]
18-Apr-1996'	NaN ]
19-Apr-1996'	NaN ]
22-Apr-1996'	NaN ]
23-Apr-1996'	NaN ]
24-Apr-1996'	NaN ]
25-Apr-1996'	$4.8676]$
26-Apr-1996'	$3.9728]$
29-Apr-1996'	-19.5818]
30-Apr-1996'	-19.6704]
01-May-1996'	-9.7334]
02-May-1996'	-2.3469]
03-May-1996'	$9.8035]$
06-May-1996'	$11.5194]$
07-May-1996'	-6.7871]
08-May-1996'	-3.9865]
09-May-1996'	$1.9762]$
10-May-1996'	13.7973]
13-May-1996'	$28.1598]$
14-May-1996'	$11.5765]$
'15-May-1996'	$13.5817]$
16-May-1996'	-4.8034]


$\text { ' } 20-\text { Mav- } 1996$	
22-May	
23-May-1996	
-May-1996'	
'29-May-1996'	
- May-1996	
' 03-Jun-1996	
-	
06-Jun-1996	
'07-Jun-1996	
12-Jun-1996	
14-Jun-1996	
17-Jun-1996	
19-Jun-1996	
20-Jun-1996	
'24-Jun-1996'	
'26-Jun-1996	
'27-Jun-1996'	
'01-Jul-1996'	
J	
'03-Jul-1996'	
'04-Jul-1996'	
05-J	
08-Jul-1996	

-17.1614]
-13.4310]
-9.1349]
-22.6727]
-16.9888]
-22.4251]
$\mathrm{NaN}]$
-11.3572]
-3.7469]
4.7273 ]
8.2392]
-7.6411]
-0.1838]
-4.3341]
18.5491 ]
$\mathrm{NaN}]$
$18.8124]$
$0.6897]$
-5.2494]
-10.1875]
-2.8120]
-4.6323]
-1.5500]
-23.6872]
-30.7550]
-17.5687]
-15.5560]
-11.5820]
-5.7370]
-4.8386]
$2.9057]$
-4.3935]
10.8771 ]
$16.0480]$
$\mathrm{NaN}]$
6.5328]
14.7520 ]

'09-Jul-1996'	[	$25.8777]$
'10-Jul-1996'	[	$24.0508]$
'11-Jul-1996'	[	35.0738 ]
'12-Jul-1996'	[	$38.6970]$
'15-Jul-1996'	[	70.0838 ]
'16-Jul-1996'	[	$72.8450]$
'17-Jul-1996'		$\mathrm{NaN}]$
'18-Jul-1996'	[	$57.3707]$
'19-Jul-1996'	[	40.5527 ]
'22-Jul-1996'	[	$20.9982]$
'23-Jul-1996'	[	$17.8008]$
'24-Jul-1996'	[	$2.8232]$
'25-Jul-1996'	[	-2.7974]
'26-Jul-1996'		-25.2865]
'29-Jul-1996'	[	-28.8613]
'30-Jul-1996'	[	-19.5082]
'31-Jul-1996'	[	-17.1403]
'01-Aug-1996'	[	-9.2072]
'02-Aug-1996'	[	-11.0063]
' 05-Aug-1996 '	[	-14.4598]
' 06-Aug-1996'	[	-18.6432]
' 07-Aug-1996 '	[	-16.0182]
'08-Aug-1996'	[	-16.7401]
'09-Aug-1996'	[	-25.2017]
'12-Aug-1996 '	[	-18.8791]
'13-Aug-1996 '	[	-19.3558]
'14-Aug-1996 '	[	-31.1671]
'15-Aug-1996 '	[	-20.6373]
'16-Aug-1996 '	[	-22.4503]
'19-Aug-1996 '	[	-17.6834]
' 20-Aug-1996 '	[	-18.9190]
'21-Aug-1996'	[	-13.6273]
'22-Aug-1996 '	[	-5.3063]
' 23-Aug-1996 '	[	-17.1517]
' 26-Aug-1996 '	[	-10.7052]
' 27-Aug-1996 '	[	$1.5535]$
' 28-Aug-1996 '	[	-5.1972]

' $^{\prime}$ '29-Aug-1996 '
19.4509]
23.4170]

NaN]
11.9712]
2.4703 ]
4.2386]
12.3813 ]
$12.3621]$
7.8387]
-4.3422]
4.5072 ]
$\mathrm{NaN}]$
12.9519 ]
$30.2209]$
14.6277 ]
26.9301 ]
$20.0225]$
14.9628 ]
$14.5046]$
-8.3992]
8.9695]
4.9628 ]
-3.4112]
$2.8154]$
-18.6952]
-21.2207]
-9.7848]
-17.4678]
-9.8167]
-18.4962]
-23.9151]
-25.4943]
-30.5920]
-23.8951]
-4.2909]
-7.3670]
-6.6522]

'21-Oct-1996'	[	-3.2537]
'22-0ct-1996'	[	-0.3349]
'23-0ct-1996'	[	-0.2865]
'24-Oct-1996'	[	$12.2392]$
'25-0ct-1996'	[	$24.4953]$
'28-0ct-1996'	[	$12.4581]$
'29-0ct-1996'	[	-4.5456]
'30-0ct-1996'	[	-14.5554]
'31-Oct-1996'	[	-5.9140]
'01-Nov-1996'	[	$0.0226]$
'04-Nov-1996'	[	$9.2192]$
05-Nov-1996'	[	$10.3172]$
06-Nov-1996'	[	7.8441]
07-Nov-1996'	[	$10.6567]$
'08-Nov-1996'	[	$10.2260]$
'11-Nov-1996'	[	27.2408]
'12-Nov-1996'	[	$47.3947]$
'13-Nov-1996'	[	43.9872]
'14-Nov-1996'	[	$33.4881]$
'15-Nov-1996'	[	$34.9005]$
'18-Nov-1996'	[	$31.7017]$
'19-Nov-1996'	[	$24.4377]$
'20-Nov-1996'	[	15.1918]
'21-Nov-1996'	[	$15.0252]$
'22-Nov-1996'	[	3.5578 ]
'25-Nov-1996'	[	$9.7493]$
'26-Nov-1996'	[	$33.0944]$
'27-Nov-1996'	[	$34.2948]$
'28-Nov-1996'	[	$\mathrm{NaN}]$
'29-Nov-1996'	[	$15.4984]$
'02-Dec-1996'	[	$14.3437]$
'03-Dec-1996'	[	$27.5704]$
'04-Dec-1996'	[	32.6218]
'05-Dec-1996'	[	19.1928]
'06-Dec-1996'	[	13.9941]
'09-Dec-1996'	[	4.3302]
'10-Dec-1996'	[	-4.4582]


'11-Dec-1996'	[	NaN]
'12-Dec-1996'	[	8.8819]
'13-Dec-1996'	[	$5.8709]$
'16-Dec-1996'	[	3.1262 ]
'17-Dec-1996'	[	$6.6382]$
'18-Dec-1996'	[	8.9414]
'19-Dec-1996'	[	-4.2435]
'20-Dec-1996'	[	-9.6103]
'23-Dec-1996'	[	-11.3146]
'24-Dec-1996'	[	-13.4485]
'25-Dec-1996'	[	$\mathrm{NaN}]$
'26-Dec-1996'	[	-19.3694]
'27-Dec-1996'	[	-25.5252]
'30-Dec-1996'	[	-22.8963]
'31-Dec-1996'	[	-20.0899]
'01-Jan-1997'	[	$\mathrm{NaN}]$
'02-Jan-1997'	[	3.5542 ]
'03-Jan-1997'	[	$9.5124]$
'06-Jan-1997'	[	$6.3982]$
'07-Jan-1997'	[	$\mathrm{NaN}]$
'08-Jan-1997'	[	$9.0815]$
'09-Jan-1997'	[	12.9037]
'10-Jan-1997'	[	6.6490]
'13-Jan-1997'	[	-1.2016]
'14-Jan-1997'	[	$\mathrm{NaN}]$
'15-Jan-1997'	[	-18.3501]
'16-Jan-1997'	[	-20.0183]
'17-Jan-1997'	[	-15.7655]
'20-Jan-1997'	,	-15.8689]
'21-Jan-1997'	[	-27.7245]
'22-Jan-1997'	[	-21.0010]
'23-Jan-1997'	[	-20.1854]
'24-Jan-1997'	[	$0.5141]$
'27-Jan-1997'	[	-2.9819]
'28-Jan-1997'	[	$11.0137]$
'29-Jan-1997'	[	$11.3940]$
'30-Jan-1997'	[	$20.0834]$


'31-Jan-1997'	[	$20.0941]$
'03-Feb-1997'	[	$22.2171]$
'04-Feb-1997'	[	-1.1739]
'05-Feb-1997'	[	$12.5670]$
' 06-Feb-1997'	[	-2.8662]
'07-Feb-1997'	[	-4.0765]
'10-Feb-1997'	[	-14.9813]
'11-Feb-1997'	[	-8.2269]
'12-Feb-1997'	[	-9.2400]
'13-Feb-1997'	[	$13.1119]$
'14-Feb-1997'	[	22.0808 ]
'17-Feb-1997'	[	$\mathrm{NaN}]$
'18-Feb-1997'	[	14.4715]
'19-Feb-1997'		$13.9513]$
' 20-Feb-1997'	[	$24.3519]$
'21-Feb-1997'	[	16.0015 ]
'24-Feb-1997'	[	$16.4524]$
'25-Feb-1997'	[	$14.3189]$
' 26-Feb-1997'	[	$16.1580]$
'27-Feb-1997'	[	$1.5289]$
'28-Feb-1997'	[	$\mathrm{NaN}]$
'03-Mar-1997'	[	$5.9196]$
'04-Mar-1997'	[	$1.8752]$
'05-Mar-1997'	[	$5.7658]$
'06-Mar-1997'		$17.2518]$
'07-Mar-1997'	[	$6.3199]$
'10-Mar-1997'	[	$3.5335]$
'11-Mar-1997'	[	-17.5351]
'12-Mar-1997'	[	-2.0361]
'13-Mar-1997'	[	$10.4245]$
'14-Mar-1997'	[	$2.2312]$
'17-Mar-1997'	[	$15.6941]$
'18-Mar-1997'	[	$3.3829]$
'19-Mar-1997'	[	-6.5575]
'20-Mar-1997'	[	-5.7813]
'21-Mar-1997'	[	-14.4147]
'24-Mar-1997'	[	-8.3149]


7 -Mar-1997	
' 31-Mar-1997	
,	
02-Apr-1997	
'04-Apr-1997'	
07-Apr-1997	
'09-Apr-1997'	
10-Apr-1997	
'14-Apr-1997'	
16-Apr-1997	
'17-Apr-1997'	
21-Apr-1997	
Apr	
-Apr-1997	
,	
'Apr-1997'	
-	
' 01-May-1997	
,	
05 - May	
' 06-May-1997	
May-1997	
08-May-1997	
-May-1997	
- May-1997	
3-May-1997	
'14-May-1997	

' 25 -Mar-1997' 26-Mar-1997
' 28 -Mar-1997
31-Mar-1997'
01-Apr-1997
02-Apr-1997'
03-Apr-1997'
'04-Apr-1997'
'07-Apr-1997'
'08-Apr-1997'
'09-Apr-1997'
10-Apr-1997
11-Apr-1997
14-Apr-1997
15-Apr-1997'
16-Apr-1997'
'17-Apr-1997'
'18-Apr-1997'
'21-Apr-1997'
'22-Apr-1997'
23-Apr-1997

25-Apr-1997
28-Apr-1997'
29-Apr-1997'
'30-Apr-1997'
' 01-May-1997'
'02-May-1997'
'05-May-1997'
' 06-May-1997'
07-May-1997

09-May-1997'
12-May-1997'
'14-May-1997'
-16.6545]
-24.0299]
-11.3827]
$\mathrm{NaN}]$
-11.8382]
$3.8090]$
24.3821 ]
29.7261]
33.0723 ]
24.9321 ]
19.5103 ]
-6.6040]
$\mathrm{NaN}]$
-0.2397]
-8.2250]
-4.8483]
$3.4096]$
-4.7082]
4.0628 ]
12.7369]
$34.9406]$
$30.7107]$
20.8289]
9.1818]
-12.5504]
-6.1696]
$8.9377]$
$10.1713]$
$2.9999]$
2.2543 ]
-2.0005]
-2.8064]
8.3092]
10.2726 ]
8.7866]
-2.9212]
-7.3042]

'15-May-1997'	[	-10.3789]
'16-May-1997'	[	-15.1421]
'19-May-1997'	[	$3.7222]$
'20-May-1997'	[	$2.9551]$
'21-May-1997'	[	-0.1713]
'22-May-1997'	[	-2.8039]
'23-May-1997'	[	-16.3339]
'26-May-1997'	[	NaN ]
27-May-1997'	[	-5.9618]
'28-May-1997'	[	$1.9082]$
'29-May-1997'	[	$0.0830]$
'30-May-1997'	[	-5.0354]
02-Jun-1997'	[	-7.8089]
03-Jun-1997'	[	-18.7956]
04-Jun-1997'	[	-19.4594]
05-Jun-1997'	[	-11.0326]
06-Jun-1997'	[	$\mathrm{NaN}]$
09-Jun-1997'	[	-16.2728]
'10-Jun-1997'	[	-18.0424]
'11-Jun-1997'	[	-21.8243]
'12-Jun-1997'	[	-32.9859]
'13-Jun-1997'	[	-21.7403]
'16-Jun-1997'	[	-17.0287]
'17-Jun-1997'	[	-3.5193]
'18-Jun-1997'	[	-13.8854]
'19-Jun-1997'	[	-0.2096]
'20-Jun-1997'	[	$3.1856]$
'23-Jun-1997'	[	$15.0276]$
'24-Jun-1997'	[	$27.4414]$
'25-Jun-1997'	[	$51.3033]$
'26-Jun-1997'	[	24.0898]
'27-Jun-1997'	[	$38.5675]$
'30-Jun-1997'	[	$30.6979]$
'01-Jul-1997'	[	41.5286]
'02-Jul-1997'	[	$17.4421]$
'03-Jul-1997'	[	$14.3352]$
'04-Jul-1997'	[	$\mathrm{NaN}]$


'07-Jul-1997'	[	19.6048]
'08-Jul-1997'	[	$6.5266]$
'09-Jul-1997'	[	10.5083]
'10-Jul-1997'	[	$0.1754]$
'11-Jul-1997'	[	-4.5314]
'14-Jul-1997'	[	-8.8922]
'15-Jul-1997'	[	-6.9530]
'16-Jul-1997'	[	-5.1910]
'17-Jul-1997'	[	$\mathrm{NaN}]$
'18-Jul-1997'	[	-9.6844]
'21-Jul-1997'	[	-1.9798]
'22-Jul-1997'	[	$9.0964]$
'23-Jul-1997'	[	$13.8263]$
'24-Jul-1997'	[	$32.8557]$
'25-Jul-1997'	[	$23.3822]$
'28-Jul-1997'	[	$12.9850]$
'29-Jul-1997'	[	$4.8154]$
'30-Jul-1997'	[	-14.5524]
'31-Jul-1997'	[	-21.1850]
'01-Aug-1997'	[	-27.4384]
'04-Aug-1997'	[	-31.4531]
'05-Aug-1997'	[	-32.3617]
'06-Aug-1997'	[	-38.5923]
'07-Aug-1997'	[	-22.7901]
'08-Aug-1997'	[	-15.6632]
'11-Aug-1997'	[	$4.4895]$
'12-Aug-1997'	[	$20.5047]$
'13-Aug-1997'	[	$40.8675]$
'14-Aug-1997'	[	$54.0946]$
'15-Aug-1997'	[	$50.2479]$
'18-Aug-1997'	[	64.4628]
'19-Aug-1997'	[	56.6416]
'20-Aug-1997'	[	$29.5360]$
'21-Aug-1997'	[	$33.2807]$
'22-Aug-1997'	[	$8.3325]$
'25-Aug-1997'	[	-3.2515]
'26-Aug-1997'	[	-15.6074]


'27-Aug-1997'	[	-15.0097]
'28-Aug-1997'	[	-15.4884]
'29-Aug-1997'	[	-24.4264]
01-Sep-1997'	[	NaN ]
'02-Sep-1997'	[	-12.7374]
03-Sep-1997'	[	-18.5009]
'04-Sep-1997'	[	-5.7260]
'05-Sep-1997'	[	-5.6721]
'08-Sep-1997'	[	-3.4784]
'09-Sep-1997'	[	-7.3782]
'10-Sep-1997'	[	-16.6713]
'11-Sep-1997'	[	-1.7669]
'12-Sep-1997'	[	NaN ]
'15-Sep-1997'	[	-15.5367]
'16-Sep-1997'	[	-3.6069]
'17-Sep-1997'	[	-7.4383]
'18-Sep-1997'	[	$4.1570]$
'19-Sep-1997'	[	-3.8536]
'22-Sep-1997'	[	-14.6542]
'23-Sep-1997'	[	-9.2245]
'24-Sep-1997'	[	-20.0891]
'25-Sep-1997'	[	-17.4511]
'26-Sep-1997'	[	-13.3037]
'29-Sep-1997'	[	-11.6169]
'30-Sep-1997'	[	-9.9665]
'01-0ct-1997'	[	-13.1937]
02-Oct-1997'	[	$0.1253]$
'03-0ct-1997'	[	15.3563]
'06-0ct-1997'	[	$22.7250]$
'07-0ct-1997'	[	$31.9520]$
'08-0ct-1997'	[	$31.9243]$
'09-0ct-1997'	[	29.1095]
'10-0ct-1997'	[	$7.6225]$
'13-0ct-1997'	[	-6.0469]
'14-0ct-1997'	[	$0.6483]$
'15-0ct-1997'	[	$5.1295]$
'16-0ct-1997'	[	20.2111]


'17-Oct-1997'	[	$32.6326]$
'20-0ct-1997'	[	$13.5801]$
'21-Oct-1997'	[	$2.9928]$
'22-Oct-1997'	[	$5.4262]$
'23-0ct-1997'	[	$11.0997]$
'24-0ct-1997'	[	$37.2311]$
'27-0ct-1997'	[	$66.2110]$
'28-0ct-1997'	[	116.3579]
'29-0ct-1997'	[	$73.3902]$
'30-0ct-1997'	[	$48.2718]$
'31-0ct-1997'	[	$47.2794]$
'03-Nov-1997'	[	$54.9817]$
'04-Nov-1997'	[	$44.8902]$
'05-Nov-1997'	[	$38.9680]$
'06-Nov-1997'	[	$23.3491]$
'07-Nov-1997'	[	-1.0301]
'10-Nov-1997'	[	-32.1286]
'11-Nov-1997'	[	-35.0033]
'12-Nov-1997'	[	-26.0043]
'13-Nov-1997'	[	-23.8013]
'14-Nov-1997'	[	-19.7298]
'17-Nov-1997'	[	-12.9133]
'18-Nov-1997'	[	-1.9313]
'19-Nov-1997'	[	-3.6100]
'20-Nov-1997'	[	-17.0307]
'21-Nov-1997'	[	$0.3218]$
'24-Nov-1997'	[	$4.0860]$
'25-Nov-1997'	[	-11.7166]
'26-Nov-1997'	[	-10.7675]
'27-Nov-1997'	[	NaN ]
'28-Nov-1997'	[	-20.4847]
'01-Dec-1997'	[	-5.9207]
'02-Dec-1997'	[	-4.4066]
'03-Dec-1997'	[	9.2040 ]
'04-Dec-1997'	[	-17.6372]
'05-Dec-1997'	[	-16.8227]
'08-Dec-1997'	[	-20.3527]


'09-Dec-1997'	[	-13.4618]
'10-Dec-1997'	[	$\mathrm{NaN}]$
'11-Dec-1997'	[	-15.1769]
'12-Dec-1997'	[	-28.6479]
'15-Dec-1997'	[	-14.1857]
'16-Dec-1997'	[	-20.5707]
'17-Dec-1997'	[	-19.8152]
'18-Dec-1997'	[	-15.7020]
'19-Dec-1997'	[	$12.2538]$
'22-Dec-1997'	[	$13.1503]$
'23-Dec-1997'	[	15.7349 ]
'24-Dec-1997'	[	34.6974 ]
'25-Dec-1997'	[	NaN]
'26-Dec-1997'		2.4548 ]
'29-Dec-1997'	[	$7.3707]$
'30-Dec-1997'	[	$26.1905]$
'31-Dec-1997'	[	$21.3276]$
'01-Jan-1998'	[	$\mathrm{NaN}]$
'02-Jan-1998'	[	-8.0487]
'05-Jan-1998'	[	$13.7573]$
'06-Jan-1998'	[	-10.4217]
'07-Jan-1998'		$\mathrm{NaN}]$
'08-Jan-1998'	[	-12.2272]
'09-Jan-1998'	[	-11.7557]
'12-Jan-1998'		-6.3029]
'13-Jan-1998'	[	-3.5172]
'14-Jan-1998'	[	NaN]
'15-Jan-1998'	[	8.6877]
'16-Jan-1998'	[	-9.8222]
'19-Jan-1998'	[	$\mathrm{NaN}]$
'20-Jan-1998'	[	$22.9422]$
'21-Jan-1998'	[	$18.3332]$
'22-Jan-1998'	[	21.0442 ]
'23-Jan-1998'	[	$13.7241]$
'26-Jan-1998'	[	$17.0117]$
'27-Jan-1998'	[	$33.4976]$
'28-Jan-1998'	[	47.1356 ]


'29-Jan-1998'	[	65.6699 ]
'30-Jan-1998'	[	$\mathrm{NaN}]$
'02-Feb-1998'	[	$39.8019]$
'03-Feb-1998'	[	$34.9329]$
'04-Feb-1998'	[	19.4341 ]
'05-Feb-1998'	[	$11.4209]$
' 06-Feb-1998'	[	-1.7196]
'09-Feb-1998'	[	-22.8019]
'10-Feb-1998'	[	-22.0364]
'11-Feb-1998'	[	-24.6330]
'12-Feb-1998'	[	-26.9545]
'13-Feb-1998'	[	-23.5244]
'16-Feb-1998'	[	NaN ]
'17-Feb-1998'	[	-16.0798]
'18-Feb-1998'	[	-4.1129]
'19-Feb-1998'	[	$4.5587]$
'20-Feb-1998'	[	-0.1352]
'23-Feb-1998'	[	-3.2567]
'24-Feb-1998'	[	-3.6450]
'25-Feb-1998'	[	-6.9365]
' 26-Feb-1998'	[	-7.1298]
'27-Feb-1998'	[	NaN ]
'02-Mar-1998'	[	$21.5023]$
'03-Mar-1998'	[	3.9788 ]
'04-Mar-1998'	[	$5.4084]$
'05-Mar-1998'	[	$0.2059]$
'06-Mar-1998'	[	-7.9909]
'09-Mar-1998'	[	-16.4319]
'10-Mar-1998'	[	-18.7817]
'11-Mar-1998'	[	-23.7127]
'12-Mar-1998'	[	-31.7812]
'13-Mar-1998'	[	-25.6946]
'16-Mar-1998'	[	-5.2555]
'17-Mar-1998'	[	-5.8220]
'18-Mar-1998'	[	-1.9388]
'19-Mar-1998'	[	$4.2206]$
'20-Mar-1998'	[	$8.1565]$


23-Mar-1998'	[	$33.9512]$
24-Mar-1998'	[	47.0898 ]
25-Mar-1998'	[	34.5390 ]
'26-Mar-1998'	[	$16.4258]$
'27-Mar-1998'	[	-10.9944]
'30-Mar-1998'	[	-9.6036]
'31-Mar-1998'	[	-3.8317]
'01-Apr-1998'	[	-2.0177]
'02-Apr-1998'	[	$15.8823]$
'03-Apr-1998'	[	$10.2044]$
'06-Apr-1998'	[	$10.0228]$
'07-Apr-1998'	[	$7.6292]$
'08-Apr-1998'	[	$9.0212]$
09-Apr-1998'	[	$24.5780]$
'10-Apr-1998'	[	NaN ]
'13-Apr-1998'	[	$13.9894]$
'14-Apr-1998'	[	8.4078]
'15-Apr-1998'	[	-3.5942]
'16-Apr-1998'	[	-12.9619]
'17-Apr-1998'	[	-18.4692]
'20-Apr-1998'	[	-7.8803]
'21-Apr-1998'	[	-5.4342]
'22-Apr-1998'	[	$21.4498]$
'23-Apr-1998'	[	$\mathrm{NaN}]$
'24-Apr-1998'	[	47.5192]
'27-Apr-1998'	[	44.1667 ]
'28-Apr-1998'	[	28.7592]
'29-Apr-1998'	[	$24.9220]$
'30-Apr-1998'	[	$18.5265]$
'01-May-1998'	[	$4.7819]$
'04-May-1998'	[	$0.6427]$
'05-May-1998'	[	-19.9586]
'06-May-1998'	[	-24.5210]
'07-May-1998'	[	-31.7328]
'08-May-1998'	[	-34.2823]
'11-May-1998'	[	-30.1064]
'12-May-1998'	[	-24.2205]


'13-May-1998'	[	-20.8378]
'14-May-1998'	[	-13.8776]
'15-May-1998'	[	$4.8508]$
'18-May-1998'	[	$6.6223]$
'19-May-1998'	[	-1.4091]
'20-May-1998'	[	16.5863]
'21-May-1998'	[	$24.5871]$
'22-May-1998'	[	$17.3567]$
'25-May-1998'	[	NaN]
'26-May-1998'	[	$54.6161]$
'27-May-1998'	[	$67.0943]$
'28-May-1998'	[	$32.4766]$
'29-May-1998'	[	$7.3097]$
'01-Jun-1998'	[	$20.4385]$
'02-Jun-1998'	[	$5.3775]$
'03-Jun-1998'	[	$5.8949]$
'04-Jun-1998'	[	$9.7696]$
'05-Jun-1998'	[	$\mathrm{NaN}]$
'08-Jun-1998'	[	-12.6297]
'09-Jun-1998'	[	-23.6960]
'10-Jun-1998'	[	-18.3922]
'11-Jun-1998'	[	-6.3094]
'12-Jun-1998'	[	-6.4924]
'15-Jun-1998'	[	-2.9586]
'16-Jun-1998'	[	-5.4800]
'17-Jun-1998'	[	$5.6493]$
'18-Jun-1998'	[	1.3843 ]
'19-Jun-1998'	[	$6.0764]$
'22-Jun-1998'	[	$25.7019]$
'23-Jun-1998'	[	13.6185]
'24-Jun-1998'	[	$17.8033]$
'25-Jun-1998'	[	7.7441]
'26-Jun-1998'	[	0.7042 ]
'29-Jun-1998'	[	$0.6089]$
'30-Jun-1998'	[	$10.3266]$
'01-Jul-1998'	[	$1.1794]$
'02-Jul-1998'	[	-11.2966]


'03-Jul-1998'	[	NaN ]
'06-Jul-1998'	[	-19.9421]
'07-Jul-1998'	[	-31.7099]
'08-Jul-1998'	[	-26.8603]
'09-Jul-1998'	[	-16.8517]
'10-Jul-1998'	[	$15.0102]$
'13-Jul-1998'	[	$3.6654]$
'14-Jul-1998'	[	6.3043 ]
'15-Jul-1998'	[	$22.3847]$
'16-Jul-1998'	[	$\mathrm{NaN}]$
'17-Jul-1998'	[	$33.7995]$
'20-Jul-1998'	[	$55.6589]$
'21-Jul-1998'	[	52.8201]
'22-Jul-1998'	[	$45.2558]$
'23-Jul-1998'	[	$25.9777]$
'24-Jul-1998'	[	15.9125]
'27-Jul-1998'	[	$15.2080]$
'28-Jul-1998'	[	19.0135]
'29-Jul-1998'	[	$2.5275]$
'30-Jul-1998'	[	15.9118]
'31-Jul-1998'	[	12.4339]
'03-Aug-1998'	[	-0.7444]
'04-Aug-1998'	[	$20.4800]$
'05-Aug-1998'	[	$13.8545]$
'06-Aug-1998'	[	11.8401]
'07-Aug-1998'	[	$10.4736]$
'10-Aug-1998'	[	$1.1417]$
'11-Aug-1998'	[	$7.3598]$
'12-Aug-1998'	[	-3.2608]
'13-Aug-1998'	[	$7.0932]$
'14-Aug-1998'	[	$18.4202]$
'17-Aug-1998'	[	-6.2194]
'18-Aug-1998'	[	-8.8321]
'19-Aug-1998'	[	-4.2015]
'20-Aug-1998'	[	$0.0186]$
'21-Aug-1998'	[	$0.9923]$
'24-Aug-1998'	[	$1.8199]$


25-Aug-1998 ${ }^{\text {' }}$	[	$3.5821]$
26-Aug-1998'	[	-8.2848]
27-Aug-1998'	[	-1.3599]
28-Aug-1998'	[	$6.3235]$
31-Aug-1998'	[	$58.6350]$
01-Sep-1998'	[	71.1685]
02-Sep-1998'	[	81.9201]
03-Sep-1998'	[	$77.3668]$
04-Sep-1998'	[	$65.8187]$
07-Sep-1998'	[	NaN ]
08-Sep-1998'	[	71.3215]
09-Sep-1998'	[	$53.8449]$
10-Sep-1998'	[	$34.5626]$
11-Sep-1998'	[	-9.4326]
14-Sep-1998'	[	-18.8717]
15-Sep-1998'	[	-28.7923]
'16-Sep-1998'	[	-32.5499]
17-Sep-1998'	[	-33.4200]
18-Sep-1998'	[	NaN ]
21-Sep-1998'	[	-45.6195]
22-Sep-1998'	[	-48.0701]
23-Sep-1998'	[	-41.1315]
24-Sep-1998'	[	-40.2653]
25-Sep-1998'	[	-43.6167]
28-Sep-1998'	[	-42.2964]
'29-Sep-1998'	[	-37.8764]
30-Sep-1998'	[	-28.6275]
01-Oct-1998'	[	-25.3646]
02-Oct-1998'	[	-10.4626]
05-0ct-1998'	[	-5.8719]
06-0ct-1998'	[	-7.9007]
07-Oct-1998'	[	-6.0891]
08-Oct-1998'	[	$25.6968]$
'09-0ct-1998'	[	$39.6002]$
12-Oct-1998'	[	$29.0667]$
'13-0ct-1998'	[	$28.7717]$
'14-Oct-1998'	[	$37.1039]$


15-Oct-1998 ${ }^{\text {' }}$	[	38.9679 ]
16-Oct-1998'	[	$35.6626]$
19-Oct-1998'	[	$25.9990]$
20-Oct-1998'	[	$18.5323]$
21-Oct-1998'	[	-7.6832]
22-Oct-1998'	[	-11.6861]
'23-0ct-1998'	[	-8.5166]
26-0ct-1998'	[	-20.9548]
27-0ct-1998'	[	-22.2450]
28-0ct-1998'	[	-23.5551]
29-0ct-1998'	[	-22.3737]
30-Oct-1998'	[	-22.0401]
02-Nov-1998'	[	-12.0902]
03-Nov-1998'	[	-9.5211]
04-Nov-1998'	[	$4.3049]$
05-Nov-1998'	[	29.9812]
'06-Nov-1998'	[	$33.1123]$
09-Nov-1998'	[	$32.7470]$
10-Nov-1998'	[	$13.8794]$
11-Nov-1998'	[	$7.2349]$
12-Nov-1998'	[	4.9598 ]
13-Nov-1998'	[	-6.0434]
16-Nov-1998'	[	-4.0018]
17-Nov-1998'	[	-18.7305]
18-Nov-1998'	[	-31.5644]
19-Nov-1998'	[	-28.7448]
'20-Nov-1998'	[	-34.0953]
'23-Nov-1998'	[	-27.4705]
'24-Nov-1998'	[	-9.7555]
'25-Nov-1998'	[	$3.1483]$
'26-Nov-1998'	[	NaN ]
'27-Nov-1998'	[	7.1501]
'30-Nov-1998'	[	$23.2013]$
'01-Dec-1998'	[	$19.2087]$
'02-Dec-1998'	[	$16.2748]$
'03-Dec-1998'	[	$26.5438]$
'04-Dec-1998'	[	$13.4073]$


07-Dec-1998 ${ }^{\text {' }}$	[	$3.7829]$
'08-Dec-1998'	[	-1.6517]
'09-Dec-1998'	[	NaN ]
'10-Dec-1998'	[	10.6546]
'11-Dec-1998'	[	-6.7522]
'14-Dec-1998'	[	$2.4713]$
'15-Dec-1998'	[	1.0432]
'16-Dec-1998'	[	-3.4723]
'17-Dec-1998'	[	-4.3238]
'18-Dec-1998'	[	-6.9776]
'21-Dec-1998'	[	-5.6157]
'22-Dec-1998'	[	$13.2435]$
'23-Dec-1998'	[	$0.6064]$
'24-Dec-1998'	[	-1.5724]
'25-Dec-1998'	[	$\mathrm{NaN}]$
'28-Dec-1998'	[	-4.4847]
'29-Dec-1998'	[	-11.5938]
'30-Dec-1998'	[	-4.3610]
'31-Dec-1998'	[	-9.8812]
'01-Jan-1999'	[	NaN ]
'04-Jan-1999'	[	-26.5078]
'05-Jan-1999'	[	-21.2732]
'06-Jan-1999'	[	-6.5541]
'07-Jan-1999'	[	$\mathrm{NaN}]$
'08-Jan-1999'	[	$10.1820]$
'11-Jan-1999'	[	$49.6938]$
'12-Jan-1999'	[	$57.5590]$
'13-Jan-1999'	[	$104.6860]$
'14-Jan-1999'	[	NaN ]
'15-Jan-1999'	[	$64.1528]$
'18-Jan-1999'	[	NaN ]
'19-Jan-1999'	[	41.1471]
'20-Jan-1999'	[	$18.4460]$
'21-Jan-1999'	[	$29.8198]$
'22-Jan-1999'	[	-5.3039]
'25-Jan-1999'	[	-11.7002]
'26-Jan-1999'	[	-27.6192]


'27-Jan-1999'	[	-20.3923]
'28-Jan-1999'	[	-17.8195]
'29-Jan-1999'	[	$\mathrm{NaN}]$
'01-Feb-1999'	[	-20.2487]
'02-Feb-1999'	[	-19.8776]
'03-Feb-1999'	[	-31.0083]
'04-Feb-1999'	[	-21.3876]
'05-Feb-1999'	[	-15.5678]
'08-Feb-1999'	[	-24.0705]
'09-Feb-1999'	[	-25.3887]
'10-Feb-1999'	[	-24.1898]
'11-Feb-1999'	[	-10.1984]
'12-Feb-1999'	[	-3.9539]
'15-Feb-1999'	[	$\mathrm{NaN}]$
'16-Feb-1999'	[	13.7285]
'17-Feb-1999'	[	$4.2595]$
'18-Feb-1999'	[	-5.4642]
'19-Feb-1999'	[	-3.7429]
'22-Feb-1999'	[	-6.4245]
' 23-Feb-1999'	[	-10.1334]
'24-Feb-1999'	[	-17.7491]
' 25-Feb-1999'	[	-11.5482]
'26-Feb-1999'	[	$\mathrm{NaN}]$
'01-Mar-1999'	[	-11.1132]
'02-Mar-1999'	[	-2.1631]
'03-Mar-1999'	[	$0.4372]$
'04-Mar-1999'	[	$5.5379]$
'05-Mar-1999'	[	-6.8916]
'08-Mar-1999'	[	-3.3122]
'09-Mar-1999'	[	$6.3370]$
'10-Mar-1999'	[	-4.7074]
'11-Mar-1999'	[	-17.2184]
'12-Mar-1999'	[	-12.7743]
'15-Mar-1999'	[	-4.6515]
'16-Mar-1999'	[	7.6823]
'17-Mar-1999'	[	$12.6629]$
'18-Mar-1999'	[	$23.6223]$


'19-Mar-1999'	[	$23.8609]$
'22-Mar-1999'	[	$2.6143]$
'23-Mar-1999'	[	$16.1176]$
'24-Mar-1999'	[	$9.5620]$
'25-Mar-1999'	[	$6.6268]$
'26-Mar-1999'	[	$-10.3158]$
'29-Mar-1999'	[	$-24.1175]$



References Achelis, Steven B., Technical Analysis from A to Z, Second Edition, McGraw-Hill, 1995, pp. 304-305.

## See Also chaikosc

## Purpose Interactive display

## Syntax <br> chartfts(tsobj)

Description
chartfts (tsobj) produces a figure window that contains one or more plots. You can use the mouse to observe the data at a particular time point of the plot.

## Examples

Create a financial time series object from the supplied data file ibm9599.dat:

```
ibmfts = ascii2fts('ibm9599.dat', 1, 3, 2);
```

Chart the financial time series object ibmfts:

```
chartfts(ibmfts)
```

With the Zoom feature set off, a mouse click on the indicator line displays object data in a pop-up box.


With the Zoom feature set on, mouse clicks indicate the area of the chart to zoom.


You can find a tutorial on using chartfts in "Visualizing Financial Time Series Objects" on page 11-18. See "Zoom Tool" on page 11-21 for details on performing the zoom. Also see "Combine Axes Tool" on page 11-24 for information about combining axes for specified plots.

## See Also

candle | highlow | plot

## Portfolio.checkFeasibility

## Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input Arguments

Check feasibility of input portfolios against Portfolio object
status = checkFeasibility(obj, pwgt)
status = checkFeasibility(obj, pwgt) checks the feasibility of input portfolios against a Portfolio object.

- Use dot notation to check the feasibility of input portfolios against a Portfolio object.

```
status = obj.checkFeasibility(pwgt);
```

- The constraint tolerance to assess whether a constraint is satisfied is obtained from the hidden property obj. defaultTolCon.


## obi

Portfolio object [Portfolio].

## pwgt

Portfolios to be checked [NumAssets-by-NumPortsmatrix].

## status

Row vector of NumPorts indicators that are true if portfolio is feasible and false otherwise.

Note By definition, any portfolio set must be nonempty and bounded. If the set is empty, no portfolios can be feasible. Use estimateBounds to test for nonempty and bounded sets.

## Portfolio.checkFeasibility

## Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

## Examples Determine if the Portfolio Is Feasible

Given portfolio $p$, determine if $p$ is feasible.

```
m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
 0.00408 0.0289 0.0204 0.0119;
 0.00192 0.0204 0.0576 0.0336;
 0 0.0119 0.0336 0.1225];
```

p = Portfolio;
p = p.setAssetMoments(m, C);
$\mathrm{p}=\mathrm{p}$.setDefaultConstraints;
pwgt = p.estimateFrontier;
p.checkFeasibility(pwgt)
ans =

See Also estimateBounds
Related - "Validate the Portfolio Problem" on page 4-84
Examples

## Portfolio.checkFeasibility

[^5]
## PortfolioCVaR.checkFeasibility

Superclasses
Purpose
Syntax
Description

Tips

Input
Arguments

AbstractPortfolio

Check feasibility of input portfolios against PortfolioCVaR object
status $=$ checkFeasibility (obj, pwgt)
status = checkFeasibility(obj, pwgt) checks the feasibility of input portfolios against a PortfolioCVaR object.

- Use dot notation to check the feasibility of input portfolios against a PortfolioCVaR object.

```
status = obj.checkFeasibility(pwgt);
```

- The constraint tolerance to assess whether a constraint is satisfied is obtained from the hidden property obj.defaultTolCon.


## obj

CVaR portfolio object [PortfolioCVaR].

## pwgt

Portfolios to be checked [NumAssets-by-NumPorts matrix].

## Output <br> Arguments

## status

Row vector of NumPorts indicators that are true if the CVaR portfolio object is feasible and false otherwise.

> Note By definition, any portfolio set must be nonempty and bounded. If the set is empty, no portfolios can be feasible. Use estimateBounds to test for nonempty and bounded sets.

## Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

## Examples Determine if the Portfolio Is Feasible

Given portfolio $p$, determine if $p$ is feasible.

```
m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
 0.00408 0.0289 0.0204 0.0119;
 0.00192 0.0204 0.0576 0.0336;
 0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontier;
p.checkFeasibility(pwgt)
```

ans =

## PortfolioCVaR.checkFeasibility

See Also estimateBounds<br>Related - "Validate the CVaR Portfolio Problem" on page 5-86<br>Examples<br>Concepts - "Portfolio Optimization Theory" on page 5-2

## Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input Arguments

Check feasibility of input portfolios against PortfolioMAD object
status = checkFeasibility(obj, pwgt)
status = checkFeasibility(obj, pwgt) checks the feasibility of input portfolios against a PortfolioMAD object.

- Use dot notation to check the feasibility of input portfolios against a PortfolioMAD object.

```
status = obj.checkFeasibility(pwgt);
```

- The constraint tolerance to assess whether a constraint is satisfied is obtained from the hidden property obj. defaultTolCon.


## obi

MAD portfolio object [PortfolioMAD].

## pwgt

Portfolios to be checked [NumAssets-by-NumPorts matrix].

## status

Row vector of NumPorts indicators that are true if the MAD portfolio object is feasible and false otherwise.

Note By definition, any portfolio set must be nonempty and bounded. If the set is empty, no portfolios can be feasible. Use estimateBounds to test for nonempty and bounded sets.

## PortfolioMAD.checkFeasibility

## Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

## Examples Determine if the Portfolio Is Feasible

Given portfolio $p$, determine if $p$ is feasible.

```
m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
 0.00408 0.0289 0.0204 0.0119;
 0.00192 0.0204 0.0576 0.0336;
 0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier;
p.checkFeasibility(pwgt)
```

ans =

See Also estimateBounds
Related $\quad$ "Validate the MAD Portfolio Problem" on page 6-85
Examples

Concepts - "Portfolio Optimization Theory" on page 6-2

## chfield

Purpose Change data series name
Syntax newfts = chfield(oldfts, oldname, newname)
Arguments

## Description

See Also fieldnames | isfield | rmfield and dates.
newfts = chfield(oldfts, oldname, newname) changes the name of the financial time series object component from oldname to newname.

Set newfts = oldfts to change the name of an existing component without changing the name of the financial time series object.

To change the names of several components at once, specify the series of old and new component names in corresponding column cell arrays.

You cannot change the names of the object components desc, freq,

## Purpose

## Syntax

## Arguments

Convert multivariate normal regression model to seemingly unrelated regression (SUR) model

```
DesignSUR = convert2sur(Design, Group)
```

Design A matrix or a cell array that depends on the number of data series NUMSERIES.

- If NUMSERIES = 1 , convert2sur returns the Design matrix.
- If NUMSERIES > 1, Design is a cell array with NUMSAMPLES cells, where each cell contains a NUMSERIES-by-NUMPARAMS matrix of known values.

Group Contains information about how data series are to be grouped, with separate parameters for each group. Specify groups either by series or by groups:

- To identify groups by series, construct an index vector that has NUMSERIES elements. Element i $=1, \ldots$, NUMSERIES in the vector, and has the index $\mathrm{j}=1, \ldots$, NUMGROUPS of the group in which series $i$ is a member.
- To identify groups by groups, construct a cell array with NUMGROUPS elements. Each cell contains a vector with the indexes of the series that populate a given group.

In either case, the number of series is NUMSERIES and the number of groups is NUMGROUPS, with $1 \leq$ NUMGROUPS $\leq$ NUMSERIES.

Description

## Examples

DesignSUR = convert2sur(Design, Group) converts a multivariate normal regression model into a seemingly unrelated regression model with a specified grouping of the data series. DesignSUR is either a matrix or a cell array that depends on the value of NUMSERIES:

- If NUMSERIES = 1, DesignSUR = Design, which is a NUMSAMPLES-by-NUMPARAMS matrix.
- If NUMSERIES > 1 and NUMGROUPS groups are to be formed, Design is a cell array with NUMSAMPLES cells, where each cell contains a NUMSERIES-by-(NUMGROUPS * NUMPARAMS) matrix of known values.

The original collection of parameters that are common to all series are replicated to form collections of parameters for each group.

## Use convert2sur to Estimate Stock Alpha and Beta Values

This example shows a CAPM demonstration using 6 stocks and 60 months of simulated asset returns, where the model for each stock is AssetReturn = Alpha * 1 + CashReturn + Beta * (MarketReturn - CashReturn) + Noise and the parameters to estimate are Alpha and Beta.

Using simulated data, where the Alpha estimate(s) are displayed in the first row(s) and the Beta estimate(s) are display in the second row(s).

```
Market = (0.1 - 0.04) + 0.17*randn(60, 1);
Asset = (0.1 - 0.04) + 0.35*randn(60, 6);
Design = cell(60, 1);
for i = 1:60
 Design{i} = repmat([1, Market(i)], 6, 1);
end
```

Obtain the aggregate estimates for all stocks.

```
[Param, Covar] = mvnrmle(Asset, Design);
```

disp(\{'All 6 Assets Combined'\});
disp(Param);

```
'All }6\mathrm{ Assets Combined'
0.0233
0.1050
```

Estimate parameters for individual stocks using convert2sur

```
Group = 1:6;
DesignSUR = convert2sur(Design, Group);
[Param, Covar] = mvnrmle(Asset, DesignSUR);
Param = reshape(Param, 2, 6);
disp({ 'A', 'B', 'C', 'D', 'E', 'F' });
disp(Param);
'A' 'B' 'C' 'D' 'E' 'F
0.0144 0.0270
0.3264 -0.1716 0.3248 -0.0630
```

Estimate parameters for pairs of stocks by forming groups.

```
disp({'A & B', 'C & D','E & F'});
Group = { [1,2],[3,4],[5,6]};
DesignSUR = convert2sur(Design, Group);
[Param, Covar] = mvnrmle(Asset, DesignSUR);
Param = reshape(Param, 2, 3);
disp(Param);
 'A & B' 'C & D' 'E & F'
 0.0186 0.0190 0.0334
```


## convert2sur

$0.0988 \quad 0.1757 \quad 0.0293$

## Purpose

Cox-Ingersoll-Ross mean-reverting square root diffusion models

Syntax

## Class

Description

```
CIR = cir(Speed, Level, Sigma)
CIR = cir(Speed, Level, Sigma, 'Name1', Value1, 'Name2',
Value2, ...)
```

CIR

This constructor creates and displays CIR objects, which derive from the SDEMRD (SDE with drift rate expressed in mean-reverting form) class. Use CIR objects to simulate sample paths of NVARS state variables expressed in mean-reverting drift-rate form. These state variables are driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation periods, approximating continuous-time CIR stochastic processes with square root diffusions.
This method allows you to simulate any vector-valued SDE of the form:

$$
\begin{equation*}
d X_{t}=S(t)\left[L(t)-X_{t}\right] d t+D\left(t, X_{t}^{\frac{1}{2}}\right) V(t) d W_{t} \tag{18-3}
\end{equation*}
$$

where:

- $X_{t}$ is an NVARS-by-1 state vector of process variables.
- $S$ is an NVARS-by-NVARS matrix of mean reversion speeds (the rate of mean reversion).
- $L$ is an NVARS-by- 1 vector of mean reversion levels (long-run mean or level).
- $D$ is an NVARS-by-NVARS diagonal matrix, where each element along the main diagonal is the square root of the corresponding element of the state vector.
- $V$ is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
- $d W_{t}$ is an NBROWNS-by- 1 Brownian motion vector.

Specify required input parameters as one of the following types:

- A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric specification. This array fully captures all implementation details, which are clearly associated with a parametric form.
- A MATLAB function. Specifying a function provides indirect support for virtually any static, dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.

The required input parameters are:

Speed	Speed represents $S$. If you specify Speed as an array, it   must be an NVARS-by-NVARS matrix of mean-reversion   speeds (the rate or speed at which the state vector   reverts to its long-run average Level).
	If you specify Speed as a function, it must generate an
	NVARS-by-NVARS matrix of reversion rates when invoked
with two inputs:	
Level	- A real-valued scalar observation time $t$.
	Level represents $L$. If you specify Level as an array, it
	must be an NVARS-by-1 column vector of reversion levels.
	If you specify Level as a function, it must generate
	an NVARS-by-1 column vector of reversion levels when
invoked with two inputs:	
	- A real-valued scalar observation time $t$.

- An NVARS-by-1 state vector $X_{t}$.

Sigma Sigma represents the parameter $V$. If you specify Sigma as an array, it must be an NVARS-by-NBROWNS 2 -dimensional matrix of instantaneous volatility rates. In this case, each row of Sigma corresponds to a particular state variable. Each column of Sigma corresponds to a particular Brownian source of uncertainty, and associates the magnitude of the exposure of state variables with sources of uncertainty.
If you specify Sigma as a function, it must generate an NVARS-by-NBROWNS matrix of volatility rates when invoked with two inputs:

- A real-valued scalar observation time $t$.
- An NVARS-by-1 state vector $X_{t}$.

Note Although the constructor does not enforce restrictions on the signs of these input arguments, each argument is usually specified as a positive value.

## Optional Input Arguments

Specify optional inputs as matching parameter name/value pairs as follows:

- Specify the parameter name as a character string, followed by its corresponding value.
- You can specify parameter name/value pairs in any order.
- Parameter names are case insensitive.
- You can specify unambiguous partial string matches.

Valid parameter names are:
StartTime Scalar starting time of the first observation, applied to all state variables. If you do not specify a value for StartTime, the default is 0 .

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of initial values of the state variables. If StartState is a scalar, cir applies the same initial value to all state variables on all trials.

If StartState is a column vector, cir applies a unique initial value to each state variable on all trials.

If StartState is a matrix, cir applies a unique initial value to each state variable on each trial.

If you do not specify a value for StartState, all variables start at 1 .
$\left.\begin{array}{ll}\text { Correlation } & \begin{array}{l}\text { Correlation between Gaussian random variates } \\ \text { drawn to generate the Brownian motion vector } \\ \text { (Wiener processes). Specify Correlation as an }\end{array} \\ & \begin{array}{l}\text { NBROWNS-by-NBROWNS positive semidefinite matrix, } \\ \text { or as a deterministic function } C(t) \text { that accepts the } \\ \text { current time } t \text { and returns an NBROWNS-by-NBROWNS }\end{array} \\ \text { positive semidefinite correlation matrix. A }\end{array}\right\}$

## Output <br> CIR Arguments

Object of class CIR with the following displayed parameters:

- StartTime: Initial observation time
- StartState: Initial state at time StartTime
- Correlation: Access function for the Correlation input argument, callable as a function of time
- Drift: Composite drift-rate function, callable as a function of time and state
- Diffusion: Composite diffusion-rate function, callable as a function of time and state
- Simulation: A simulation function or method
- Speed: Access function for the input argument Speed, callable as a function of time and state
- Level: Access function for the input argument Level, callable as a function of time and state
- Sigma: Access function for the input argument Sigma, callable as a function of time and state

[^6]Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.

Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.

Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.

See Also<br>drift | diffusion | sdeddo

## Purpose Convert to specified frequency

```
Syntax
```

```
newfts = convertto(oldfts, newfreq)
```

newfts = convertto(oldfts, newfreq)
newfts = convertto(oldfts, newfreq, 'param1','value1','param2',
newfts = convertto(oldfts, newfreq, 'param1','value1','param2',
'value2', ... )

```
'value2', ...)
```


## Arguments

Description

See Also

```
oldfts Name of an existing financial time series object.
newfreq 1, DAILY, Daily, daily, D, d
2, WEEKLY, Weekly, weekly, W, w
3, MONTHLY, Monthly, monthly, M, m
4, QUARTERLY, Quarterly, quarterly, Q, q
5, SEMIANNUAL, Semiannual, semiannual, S, s
6, ANNUAL, Annual, annual, A, a
```

convertto converts a financial time series of any frequency to one of a specified frequency.
newfts $=$ convertto(oldfts, newfreq) converts the object oldfts to the new time series object newfts with the frequency newfreq.

Refer to the documentation for each frequency conversion function to determine the valid parameter/value pairs.
toannual | todaily | tomonthly | toquarterly | tosemi | toweekly

## Purpose <br> Correlation coefficients

Syntax

```
r = corrcoef(X)
r = corrcoef(X,Y)
```


## Arguments

X	Matrix where each row is an observation and each   column is a variable.
Y	Matrix where each row is an observation and each   column is a variable.

## Description

corrcoef for financial time series objects is based on the MATLAB corrcoef function. See corrcoef in the MATLAB documentation.
$r=\operatorname{corrcoef}(X)$ calculates a matrix $r$ of correlation coefficients for an array $X$, in which each row is an observation and each column is a variable.
$r=\operatorname{corrcoef}(X, Y)$, where $X$ and $Y$ are column vectors, is the same as $r=\operatorname{cor}$ cooef ( $[X Y]$ ). corrcoef converts $X$ and $Y$ to column vectors if they are not; that is, $r=\operatorname{corrcoef}(X, Y)$ is equivalent to $r=\operatorname{corrcoef}([X(:) \quad Y(:)])$ in that case.

If $c$ is the covariance matrix, $c=\operatorname{cov}(X)$, then $\operatorname{corrcoef}(X)$ is the matrix whose ( $i, j$ ) 'th element is ci, $j /$ sqrt( $c i, i * c(j, j)$ ).
$[r, p]=\operatorname{corrcoef}(\ldots)$ also returns $p$, a matrix of $p$-values for testing the hypothesis of no correlation. Each p-value is the probability of getting a correlation as large as the observed value by random chance, when the true correlation is zero. If $p(i, j)$ is less than 0.05 , then the correlation $r(i, j)$ is significant.
[ $r, p, r l o, r u p]=c o r r c o e f(. .$.$) also returns matrices r l o$ and rup, of the same size as $r$, containing lower and upper bounds for a $95 \%$ confidence interval for each coefficient.
[...]=corrcoef(...,'PARAM1',VAL1,'PARAM2',VAL2,...) specifies additional parameters and their values. Valid parameters are:

- 'alpha' - A number between 0 and 1 to specify a confidence level of 100*(1-ALPHA)\%. Default is 0.05 for $95 \%$ confidence intervals.
- 'rows' — Either 'all' (default) to use all rows, 'complete' to use rows with no NaN values, or 'pairwise' to compute r $(i, j)$ using rows with no NaN values in column $i$ or $j$.

The $p$-value is computed by transforming the correlation to create a t-statistic having $N-2$ degrees of freedom, where $N$ is the number of rows of $X$. The confidence bounds are based on an asymptotic normal distribution of $0.5^{*} \log ((1+r) /(1-r))$, with an approximate variance equal to $1 /(\mathrm{N}-3)$. These bounds are accurate for large samples when $X$ has a multivariate normal distribution. The 'pairwise' option can produce an $r$ matrix that is not positive definite.

## Examples Compute Correlation Coefficients

This example shows how to generate random data having correlation between column 4 and the other columns.

```
x = randn(30,4); % uncorrelated data
x(:,4) = sum(x,2); % introduce correlation
f = fints((today:today+29)', x); % create a fints object using x
[r,p] = corrcoef(x); % compute sample correlation and p-values
[i,j] = find(p<0.05); % find significant correlations
[i,j] % display their (row,col) indices
ans =
\begin{tabular}{ll}
4 & 1 \\
3 & 2 \\
2 & 3 \\
1 & 4
\end{tabular}
```

Class support for inputs X,Y: float: double and single.

## See Also

 cov | std | var
# Purpose Convert standard deviation and correlation to covariance 

Syntax ExpCovariance $=\operatorname{corr2cov}($ ExpSigma, ExpCorrC $)$

## Arguments

## Description

corr2cov converts standard deviation and correlation to covariance.
ExpCovariance is an $n$-by- $n$ covariance matrix, where $n$ is the number of processes.
$\operatorname{ExpCov}(i, j)=\operatorname{ExpCorrC}(i, j) * E x p S i g m a(i) * E x p S i g m a(j)$

## Examples Convert Standard Deviation and Correlation to Covariance

This example shows how to convert standard deviation and correlation to covariance.

```
ExpSigma = [0.5 2.0];
ExpCorrC = [1.0 -0.5
 -0.5 1.0];
ExpCovariance = corr2cov(ExpSigma, ExpCorrC)
```

ExpCovariance =

$$
\begin{array}{rr}
0.2500 & -0.5000 \\
-0.5000 & 4.0000
\end{array}
$$

See Also corrcoef | cov | cov2corr | ewstats | std

Purpose Covariance matrix

## Syntax <br> $\operatorname{cov}(X)$ <br> $\operatorname{cov}(X, Y)$

## Arguments

$X$	Financial times series object.
$Y$	Financial times series object.

Description
cov for financial time series objects is based on the MATLAB cov function. See cov in the MATLAB documentation.

If $X$ is a financial time series object with one series, $\operatorname{cov}(X)$ returns the variance. For a financial time series object containing multiple series, where each row is an observation, and each series a variable, $\operatorname{cov}(X)$ is the covariance matrix.
$\operatorname{diag}(\operatorname{cov}(X))$ is a vector of variances for each series and sqrt $(\operatorname{diag}(\operatorname{cov}(X)))$ is a vector of standard deviations.
$\operatorname{cov}(X, Y)$, where $X$ and $Y$ are financial time series objects with the same number of elements, is equivalent to $\operatorname{cov}([X(:) \quad Y(:)])$.
$\operatorname{cov}(X)$ or $\operatorname{cov}(X, Y)$ normalizes by $(N-1)$ if $N>1$, where $N$ is the number of observations. This makes $\operatorname{cov}(X)$ the best unbiased estimate of the covariance matrix if the observations are from a normal distribution. For $\mathrm{N}=1$, cov normalizes by N .
$\operatorname{cov}(X, 1) \operatorname{or} \operatorname{cov}(X, Y, 1)$ normalizes by $N$ and produces the second moment matrix of the observations about their mean. $\operatorname{cov}(X, Y, 0)$ is the same as $\operatorname{cov}(X, Y)$ and $\operatorname{cov}(X, 0)$ is the same as $\operatorname{cov}(X)$. The mean is removed from each column before calculating the result.

## Examples

## Create a Covariance Matrix

This example shows how to create a covariance matrix for the following dates.
dates = \{'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'\};
A = [-1 1 2 ; -2 31 ; 40 3];
f = fints(dates, A);
$c=\operatorname{cov}(f)$
c =

10.3333	-4.1667	3.0000
-4.1667	2.3333	-1.5000
3.0000	-1.5000	1.0000

See Also
corrcoef | mean | std | var

# Purpose Convert covariance to standard deviation and correlation coefficient 

```
Syntax [ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)
```


## Arguments

ExpCovariance $n$-by- $n$ covariance matrix; for example, from cov or ewstats. $n$ is the number of random processes.

## Description [ExpSigma, ExpCorrC] = cov2corr(ExpCovariance) converts covariance to standard deviations and correlation coefficients.

ExpSigma is a 1-by- $n$ vector with the standard deviation of each process.
ExpCorrC is an $n$-by- $n$ matrix of correlation coefficients.

ExpSigma(i) = sqrt(ExpCovariance(i,i))
$\operatorname{ExpCorrC}(i, j)=\operatorname{ExpCovariance}(i, j) /(E x p S i g m a(i) * E x p S i g m a(j))$

## Examples Convert Covariance to Standard Deviations and Correlation Coefficients

This example shows how to convert a covariance matrix to standard deviations and correlation coefficients.

```
ExpCovariance = [0.25 -0.5
 -0.5 4.0];
[ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)
ExpSigma =
 0.5000 2.0000
```

```
ExpCorrC =
 1.0000 -0.5000
```

See Also corr2cov | corrcoef | cov | ewstats | std

Purpose Coupon payments remaining until maturity

## Syntax NumCouponsRemaining = cpncount(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate)

## Arguments

Settle	Settlement date. A vector of serial date   numbers or date strings. Settle must be   earlier than Maturity.
Maturity	Maturity date. A vector of serial date numbers   or date strings.   (Optional) Coupons per year of the bond. A   vector of integers. Allowed values are $0,1,2$   (default), $3,4,6$, and 12.
Period	(Optional) Day-count basis of the instrument.
Basis	A vector of integers.
	- $0=$ actual/actual (default)
	- $1=30 / 360$ (SIA)
	- $2=$ actual/360
	- $3=$ actual/365
	- $4=30 / 360$ (PSA)
	- $5=30 / 360$ (ISDA)
	- $6=30 / 360$ (European)
	- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ISMA)	
- $9=$ actual/360 (ISMA)	
- $10=\mathrm{actual} / 365$ (ISMA)	

- $11=30 / 360 \mathrm{E}$ (ISMA)
- $12=\mathrm{actual} / 365$ (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.
FirstCouponDate
(Optional) Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

LastCouponDate	(Optional) Last coupon date of a bond before the   maturity date; used when bond has an irregular   last coupon period. In the absence of a specified   FirstCouponDate, a specified LastCouponDate   determines the coupon structure of the bond.
The coupon structure of a bond is truncated	
at the LastCouponDate, regardless of where	
it falls, and is followed only by the bond's	
maturity cash flow date. If you do not specify a	
LastCouponDate, the cash flow payment dates	
are determined from other inputs.	
StartDate	(Future implementation)

Required arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices.

## Description

## Examples Find Coupon Payments Remaining Until Maturity

This example shows how to find the coupon payments remaining until maturity.

NumCouponsRemaining = cpncount('14 Mar 1997', '30 Nov 2000',... 2, 0, 0)

NumCouponsRemaining =

## Find Coupon Payments Remaining Until Maturity for Different Maturity Dates

This example shows how to find the coupon payments remaining until maturity, given three coupon bonds with different maturity dates and the same default arguments.

```
Maturity = ['30 Sep 2000'; '31 Oct 2001'; '30 Nov 2002'];
NumCouponsRemaining = cpncount('14 Sep 1997', Maturity)
```


## NumCouponsRemaining =

7
9
11

See Also
accrfrac | cfamounts | cfdates | cftimes | cpndaten | cpndatenq | cpndatep | cpndatepq | cpndaysn | cpndaysp | cpnpersz

Purpose Next coupon date for fixed-income security

```
Syntax NextCouponDate = cpndaten(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
```


## Arguments

Settle	Settlement date. A vector of serial date   numbers or date strings. Settle must be   earlier than Maturity.
Maturity	Maturity date. A vector of serial date numbers   or date strings.   (Optional) Coupons per year of the bond. A   vector of integers. Allowed values are 0, 1,2   (default), $3,4,6$, and 12.
Period	(Optional) Day-count basis of the instrument.
Basis	A vector of integers.
	- $0=$ actual/actual (default)
	- $1=30 / 360$ (SIA)
	- $2=$ actual/360
	- $3=$ actual/365
	- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)	
	- $6=30 / 360$ (European)
	- $7=$ actual/365 (Japanese)
	- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)	
- $10=$ actual/365 (ISMA)	
- $11=30 / 360 E$ (ISMA)	

- $12=$ actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
IssueDate	(Optional) Date when a bond was issued.
FirstCouponDate	(Optional) Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.
LastCouponDate	(Optional) Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not specify a

LastCouponDate, the cash flow payment dates are determined from other inputs.

Required arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices.

## Description

NextCouponDate = cpndaten(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate) returns the next coupon date after the settlement date. This function finds the next coupon date whether or not the coupon structure is synchronized with the maturity date.

NextCouponDate is returned as a serial date number. The function datestr converts a serial date number to a formatted date string.

## Examples

```
NextCouponDate = cpndaten('14 Mar 1997', '30 Nov 2000', 2, 0, 0);
datestr(NextCouponDate)
ans =
30-May-1997
NextCouponDate = cpndaten('14 Mar 1997', '30 Nov 2000', 2, 0, 1);
datestr(NextCouponDate)
ans =
31-May-1997
Maturity = ['30 Sep 2000'; '31 Oct 2000'; '30 Nov 2000'];
NextCouponDate = cpndaten('14 Mar 1997', Maturity);
datestr(NextCouponDate)
ans =
```

```
31-Mar-1997
30-Apr-1997
31-May-1997
```

See Also accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndatenq | cpndatep | cpndatepq | cpndaysn | cpndaysp | cpnpersz

Purpose Next quasi-coupon date for fixed-income security

```
Syntax NextQuasiCouponDate = cpndatenq(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
```


## Arguments

Settle	Settlement date. A vector of serial date   numbers or date strings. Settle must be   earlier than Maturity.
Maturity	Maturity date. A vector of serial date numbers   or date strings.   (Optional) Coupons per year of the bond. A   vector of integers. Allowed values are $0,1,2$   (default), $3,4,6$, and 12.
Period	(Optional) Day-count basis of the instrument.
Basis	A vector of integers.
	- $0=$ actual/actual (default)
	- $1=30 / 360$ (SIA)
	- $2=$ actual/360
	- $3=$ actual/365
	- $4=30 / 360$ (PSA)
	- $5=30 / 360$ (ISDA)
	- $6=30 / 360$ (European)
	- $7=$ actual/365 (Japanese)
	- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)	
- $10=$ actual/365 (ISMA)	
- $11=30 / 360 \mathrm{E}$ (ISMA)	

- $12=$ actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

IssueDate
FirstCouponDate

LastCouponDate
(Optional) Date when a bond was issued.
(Optional) Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.
(Optional) Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not specify a

LastCouponDate, the cash flow payment dates are determined from other inputs.

Required arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices. Fill unspecified entries in input vectors with the value NaN . Dates can be serial date numbers or date strings.

## Description

## Examples

NextQuasiCouponDate = cpndatenq(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate) determines the next quasi coupon date for a portfolio of NUMBONDS fixed income securities whether or not the first or last coupon is normal, short, or long. For zero coupon bonds cpndatenq returns quasi coupon dates as if the bond had a semiannual coupon structure. Successive quasi coupon dates determine the length of the standard coupon period for the fixed income security of interest and do not necessarily coincide with actual coupon payment dates.

Outputs are NUMBONDS-by- 1 vectors.
If Settle is a coupon date, this function never returns the settlement date. It returns the quasi coupon date strictly after settlement.

NextQuasiCouponDate is returned as a serial date number. The function datestr converts a serial date number to a formatted date string.

## Determine the Next Quasi Coupon Date for a Portfolio of Fixed-Income Securities

Given a pair of bonds with the following characteristics:

```
Settle = char('30-May-1997','10-Dec-1997');
Maturity = char('30-Nov-2002','10-Jun-2004');
```

Compute NextCouponDate for this pair of bonds.

```
NextCouponDate = cpndaten(Settle, Maturity);
datestr(NextCouponDate)
ans =
31-May-1997
10-Jun-1998
Compute the next quasi coupon dates for these two bonds.
```

```
NextQuasiCouponDate = cpndatenq(Settle, Maturity);
```

NextQuasiCouponDate = cpndatenq(Settle, Maturity);
datestr(NextQuasiCouponDate)
datestr(NextQuasiCouponDate)
ans =
31-May-1997
10-Jun-1998

```

Because no FirstCouponDate has been specified, the results are identical.

Now supply an explicit FirstCouponDate for each bond.
FirstCouponDate = char('30-Nov-1997','10-Dec-1998');
Compute the next coupon dates.
```

NextCouponDate = cpndaten(Settle, Maturity, 2, 0, 1, [],...
FirstCouponDate);
datestr(NextCouponDate)

```
ans =

30-Nov-1997
10-Dec-1998

The next coupon dates are identical to the specified first coupon dates.
Now recompute the next quasi coupon dates.
NextQuasiCouponDate = cpndatenq(Settle, Maturity, 2, 0, 1, [],... FirstCouponDate); datestr(NextQuasiCouponDate)
ans =

31-May-1997
10-Jun-1998

These results illustrate the distinction between actual coupon payment dates and quasi coupon dates. FirstCouponDate (and LastCouponDate, as well), when specified, is associated with an actual coupon payment and also serves as the synchronization date for determining all quasi coupon dates. Since each bond in this example pays semiannual coupons, and the first coupon date occurs more than six months after settlement, each will have an intermediate quasi coupon date before the actual first coupon payment occurs.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatep | cpndatepq | cpndaysn | cpndaysp | cpnpersz

\section*{Purpose}

Previous coupon date for fixed-income security

\author{
Syntax PreviousCouponDate = cpndatep(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
}

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Settle & Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity. \\
\hline Maturity & Maturity date. A vector of serial date numbers or date strings. \\
\hline Period & (Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12. \\
\hline \multirow[t]{13}{*}{Basis} & (Optional) Day-count basis of the instrument. A vector of integers. \\
\hline & - \(0=\) actual/actual (default) \\
\hline & - \(1=30 / 360\) (SIA) \\
\hline & - \(2=\) actual/360 \\
\hline & - \(3=\) actual/365 \\
\hline & - \(4=30 / 360\) (PSA) \\
\hline & - \(5=30 / 360\) (ISDA) \\
\hline & - \(6=30 / 360\) (European) \\
\hline & - \(7=\) actual/365 (Japanese) \\
\hline & - \(8=\) actual/actual (ISMA) \\
\hline & - \(9=\) actual/360 (ISMA) \\
\hline & - \(10=\mathrm{actual} / 365\) (ISMA) \\
\hline & - \(11=30 / 360 \mathrm{E}\) (ISMA) \\
\hline
\end{tabular}
- \(12=\) actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.
(Optional) Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not specify a

LastCouponDate, the cash flow payment dates are determined from other inputs.

Required arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices.

\section*{Description}

PreviousCouponDate = cpndatep(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate) returns the previous coupon date on or before settlement for a portfolio of bonds. This function finds the previous coupon date whether or not the coupon structure is synchronized with the maturity date.

For zero coupon bonds the previous coupon date is the issue date, if available. However, if the issue date is not supplied, the previous coupon date for zero coupon bonds is the previous quasi coupon date calculated as if the frequency is semiannual.
PreviousCouponDate is returned as a serial date number. The function datestr converts a serial date number to a formatted date string.

\section*{Examples}
```

PreviousCouponDate = cpndatep('14 Mar 1997', '30 Jun 2000',...
2, 0, 0);
datestr(PreviousCouponDate)
ans =
30-Dec-1996
PreviousCouponDate = cpndatep('14 Mar 1997', '30 Jun 2000',...
2, 0, 1);
datestr(PreviousCouponDate)
ans =

```

Maturity \(=\) ['30 Apr 2000'; '31 May 2000'; '30 Jun 2000']; PreviousCouponDate = cpndatep('14 Mar 1997', Maturity); datestr(PreviousCouponDate)
ans =

31-Oct-1996
30-Nov-1996
31-Dec-1996
See Also accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatenq | cpndatepq | cpndaysn | cpndaysp | cpnpersz

\section*{Purpose}

Previous quasi coupon date for fixed income security
```

Syntax
PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate)

```

\section*{Arguments}
\begin{tabular}{ll}
& - \(11=30 / 360 \mathrm{E}\) (ISMA) \\
& - \(12=\) actual/365 (ISDA) \\
& - \(13=\) BUS \(/ 252\) \\
& For more information, see basis on page \\
Glossary-2.
\end{tabular}

LastCouponDate, the cash flow payment dates are determined from other inputs.

Required arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices. Fill unspecified entries in input vectors with the value NaN. Dates can be serial date numbers or date strings.

\section*{Description}

PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate) determines the previous quasi coupon date on or before settlement for a set of NUMBONDS fixed income securities. This function finds the previous quasi coupon date for a bond with a coupon structure in which the first or last period is either normal, short, or long (whether or not the coupon structure is synchronized to maturity). For zero coupon bonds this function returns quasi coupon dates as if the bond had a semiannual coupon structure.

The term "previous quasi coupon date" refers to the previous coupon date for a bond calculated as if no issue date were specified. Although the issue date is not actually a coupon date, when issue date is specified, the previous actual coupon date for a bond is normally calculated as being either the previous coupon date or the issue date, whichever is greater. This function always returns the previous quasi coupon date regardless of issue date. If the settlement date is a coupon date, this function returns the settlement date.

PreviousQuasiCouponDate is returned as a serial date number. The function datestr converts a serial date number to a formatted date string.

\section*{Examples Determine the Previous Quasi Coupon Date for a Portfolio of Fixed-Income Securities}

Given a pair of bonds with the following characteristics:
```

Settle = char('30-May-1997','10-Dec-1997');
Maturity = char('30-Nov-2002','10-Jun-2004');

```

With no FirstCouponDate explicitly supplied, compute the PreviousCouponDate for this pair of bonds.

PreviousCouponDate = cpndatep(Settle, Maturity); datestr(PreviousCouponDate)
ans =

30-Nov-1996
10-Dec-1997

Note that since the settlement date for the second bond is also a coupon date, cpndatep returns this date as the previous coupon date.

Now establish a FirstCouponDate and IssueDate for this pair of bonds.
```

FirstCouponDate = char('30-Nov-1997','10-Dec-1998');

```
IssueDate = char('30-May-1996', '10-Dec-1996');

Recompute the PreviousCouponDate for this pair of bonds.
PreviousCouponDate = cpndatep(Settle, Maturity, 2, 0, 1, ... IssueDate, FirstCouponDate); datestr(PreviousCouponDate)
ans =

30-May-1996
10-Dec-1996

Since both of these bonds settled before the first coupon had been paid, cpndatep returns the IssueDate as the PreviousCouponDate.

Using the same data, compute PreviousQuasiCouponDate.
PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, 2, 0, 1,... IssueDate, FirstCouponDate); datestr(PreviousQuasiCouponDate)
ans =
30-Nov-1996
10-Dec-1997

For the first bond the settlement date is not a normal coupon date. The PreviousQuasiCouponDate is the coupon date before or on the settlement date. Since the coupon structure is synchronized to FirstCouponDate, the previous quasi coupon date is \(30-\) Nov-1996. PreviousQuasiCouponDate disregards IssueDate and FirstCouponDate in this case. For the second bond the settlement date (10-Dec-1997) occurs on a date when a coupon would normally be paid in the absence of an explicit FirstCouponDate. cpndatepq returns this date as PreviousQuasiCouponDate.

See Also accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatenq | cpndatep | cpndaysn | cpndaysp | cpnpersz

Purpose Number of days to next coupon date
```

Syntax NumDaysNext = cpndaysn(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Settle & Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity. \\
\hline Maturity & Maturity date. A vector of serial date numbers or date strings. \\
\hline Period & (Optional) Coupons per year of the bond. A vector of integers. Allowed values are \(0,1,2\) (default), 3, 4, 6, and 12. \\
\hline \multirow[t]{12}{*}{Basis} & (Optional) Day-count basis of the instrument. A vector of integers. \\
\hline & - \(0=\) actual/actual (default) \\
\hline & - \(1=30 / 360\) (SIA) \\
\hline & - 2 = actual/360 \\
\hline & - 3 = actual/365 \\
\hline & - \(4=30 / 360\) (PSA) \\
\hline & - \(5=30 / 360\) (ISDA) \\
\hline & - \(6=30 / 360\) (European) \\
\hline & - \(7=\) actual/365 (Japanese) \\
\hline & - \(8=\) actual/actual (ISMA) \\
\hline & - \(9=\) actual/360 (ISMA) \\
\hline & - \(10=\mathrm{actual} / 365\) (ISMA) \\
\hline
\end{tabular}
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- \(12=\mathrm{actual} / 365\) (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
\begin{tabular}{|c|c|}
\hline EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline
\end{tabular}

IssueDate (Optional) Date when a bond was issued.
FirstCouponDate (Optional) Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.
\begin{tabular}{ll}
LastCouponDate & \begin{tabular}{l}
(Optional) Last coupon date of a bond before the \\
maturity date; used when bond has an irregular \\
last coupon period. In the absence of a specified \\
FirstCouponDate, a specified LastCouponDate \\
determines the coupon structure of the bond.
\end{tabular} \\
The coupon structure of a bond is truncated \\
at the LastCouponDate, regardless of where \\
it falls, and is followed only by the bond's \\
maturity cash flow date. If you do not specify a \\
LastCouponDate, the cash flow payment dates \\
are determined from other inputs. \\
StartDate & \begin{tabular}{l}
(Future implementation)
\end{tabular}
\end{tabular}

Required arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices.

\section*{Description}

NumDaysNext = cpndaysn(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate) returns the number of days from the settlement date to the next coupon date for a bond or set of bonds. For zero coupon bonds coupon dates are computed as if the bonds have a semiannual coupon structure.
```

Examples
NumDaysNext $=$ cpndaysn('14 Sep 2000', '30 Jun 2001', 2, 0, 0)
NumDaysNext =
107
NumDaysNext = cpndaysn('14 Sep 2000', '30 Jun 2001', 2, 0, 1)
NumDaysNext =

```

Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001']; NumDaysNext = cpndaysn('14 Sep 2000', Maturity)

NumDaysNext =
47
77
108
See Also accrfrac | cfamounts | cftimes | cfdates | cpncount | cpndaten | cpndatenq | cpndatep | cpndatepq | cpndaysp | cpnpersz

Purpose Number of days since previous coupon date

\section*{Syntax NumDaysPrevious = cpndaysp(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate)}

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Settle & Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity. \\
\hline Maturity & Maturity date. A vector of serial date numbers or date strings. \\
\hline Period & (Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), \(3,4,6\), and 12 . \\
\hline \multirow[t]{12}{*}{Basis} & (Optional) Day-count basis of the instrument. A vector of integers. \\
\hline & - \(0=\) actual/actual (default) \\
\hline & - \(1=30 / 360\) (SIA) \\
\hline & - 2 = actual/360 \\
\hline & - 3 = actual/365 \\
\hline & - \(4=30 / 360\) (PSA) \\
\hline & - \(5=30 / 360\) (ISDA) \\
\hline & - \(6=30 / 360\) (European) \\
\hline & - \(7=\) actual/365 (Japanese) \\
\hline & - \(8=\) actual/actual (ISMA) \\
\hline & - 9 = actual/360 (ISMA) \\
\hline & - \(10=\mathrm{actual} / 365\) (ISMA) \\
\hline
\end{tabular}

\begin{tabular}{ll}
LastCouponDate & \begin{tabular}{l}
(Optional) Last coupon date of a bond before the \\
maturity date; used when bond has an irregular \\
last coupon period. In the absence of a specified \\
FirstCouponDate, a specified LastCouponDate \\
determines the coupon structure of the bond.
\end{tabular} \\
The coupon structure of a bond is truncated \\
at the LastCouponDate, regardless of where \\
it falls, and is followed only by the bond's \\
maturity cash flow date. If you do not specify a \\
LastCouponDate, the cash flow payment dates \\
are determined from other inputs.
\end{tabular}

Required arguments must be a number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices.

\section*{Description}

\section*{Examples}

NumDaysPrevious =

75
NumDaysPrevious = cpndaysp('14 Mar 2000', '30 Jun 2001', 2, 0, 1)
NumDaysPrevious =
74
Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001']; NumDaysPrevious = cpndaysp('14 Mar 2000', Maturity)
NumDaysPrevious =
135
105
74

\section*{See Also}
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatenq | cpndatep | cpndatepq | cpndaysn | cpnpersz

Purpose Number of days in coupon period

\section*{Syntax NumDaysPeriod = cpnpersz(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate)}

\section*{Arguments}
\begin{tabular}{ll}
Settle & \begin{tabular}{l}
Settlement date. A vector of serial date \\
numbers or date strings. Settle must be \\
earlier than Maturity.
\end{tabular} \\
Maturity & \begin{tabular}{l}
Maturity date. A vector of serial date numbers \\
or date strings.
\end{tabular} \\
Period & \begin{tabular}{l}
(Optional) Coupons per year of the bond. A \\
vector of integers. Allowed values are 0, 1, 2 \\
(default), 3, 4, 6, and 12.
\end{tabular} \\
Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. \\
A vector of integers.
\end{tabular}
\end{tabular}
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- 10 = actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- \(12=\) actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

IssueDate
FirstCouponDate
(Optional) Date when a bond was issued.
(Optional) Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.
\begin{tabular}{ll}
LastCouponDate & \begin{tabular}{l}
(Optional) Last coupon date of a bond before \\
the maturity date; used when bond has an \\
irregular last coupon period. In the absence \\
of a specified FirstCouponDate, a specified \\
LastCouponDate determines the coupon \\
structure of the bond. The coupon structure of \\
a bond is truncated at the LastCouponDate, \\
regardless of where it falls, and is followed \\
only by the bond's maturity cash flow date. If \\
you do not specify a LastCouponDate, the cash \\
flow payment dates are determined from other \\
inputs.
\end{tabular} \\
StartDate & \begin{tabular}{l}
(Future implementation)
\end{tabular}
\end{tabular}

Required arguments must be a number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices.

\section*{Description NumDaysPeriod = cpnpersz(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate) returns the number of days in the coupon period containing the settlement date. For zero coupon bonds coupon dates are computed as if the bonds have a semiannual coupon structure.}

\section*{Examples}
```

NumDaysPeriod = cpnpersz('14 Sep 2000', '30 Jun 2001', 2, 0, 0)
NumDaysPeriod =
1 8 3
NumDaysPeriod = cpnpersz('14 Sep 2000', '30 Jun 2001', 2, 0, 1)
NumDaysPeriod =

```

Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001']; NumDaysPeriod = cpnpersz('14 Sep 2000', Maturity)

NumDaysPeriod =
184
183
184
See Also
accrfrac | cfamounts | cfdates | cpncount | cpndaten | cpndatenq | cpndatep | cpndatepq | cpndaysn | cpndaysp

\section*{createholidays}

Purpose Create trading calendars
```

Syntax createholidays(Filename, Codefile, InfoFile, TargetDir,
IncludeWkds, Wprompt, NoGUI)

```

Arguments
\begin{tabular}{|c|c|}
\hline Filename & The data file name. \\
\hline Codefile & The code file name. \\
\hline InfoFile & The info file name. \\
\hline TargetDir & The target folder where to write the new holidays.m files. \\
\hline IncludeWkds & \begin{tabular}{l}
Option to include weekends in the holiday list. Values are: \\
- 0 - Do not include weekends in the holiday list. \\
- 1 - Include weekends in the holiday list.
\end{tabular} \\
\hline Wprompt & \begin{tabular}{l}
Option to prompt for the file location for each holiday.m file that is created. Values are: \\
- 0 - Do not prompt for the file location. \\
- 1 - Prompt for the file location.
\end{tabular} \\
\hline NoGUI & \begin{tabular}{l}
Run createholidays without displaying the Trading Calendars graphical user interface. Values are: \\
- 0 - Display the GUI. \\
- 1 - Do not display the GUI.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
createholidays(Filename, Codefile, InfoFile, TargetDir, IncludeWkds, Wprompt, NoGUI) programmatically generates the market-specific holidays.m files without displaying the interface.

Note To use createholidays, you must obtain data, codes, and info files from http://www.FinancialCalendar.com trading calendars.
```Examples
createholidays('FinancialCalendar\My_datafile.csv',...
'FinancialCalendar\My_codesfile.csv',.
'FinancialCalendar\My_infofile.csv','c:\work',1,1,1)
```

will create holidays*.m files from My_datafile.csv in the folder c : \work. Weekends will be included in the holidays list based on the input flag INCLUDEWDKS $=1$.

See Also holidays

Purpose Cumulative sum

Syntax newfts = cumsum(oldfts)

Description newfts = cumsum(oldfts) calculates the cumulative sum of each individual time series data series in the financial time series object oldfts and returns the result in another financial time series object newfts. newfts contains the same data series names as oldfts.

Examples Compute the Cumulative Sum

This example shows how to compute the cumulative sum for Disney stock and plot the results.

```
load disney.mat
cs_dis = cumsum(fillts(dis));
plot(cs_dis)
title('Cumulative Sum for Disney')
```


See Also
cumsum
Purpose Decimal currency values to fractional values
Syntax Fraction = cur2frac(Decimal, Denominator)
Description Fraction = cur2frac(Decimal, Denominator) converts decimalcurrency values to fractional values. Fraction is returned as a string.
Examples Convert Decimal Currency Values to Fractional Values
This example shows how to convert decimal currency values to fractional values.
Fraction = cur2frac(12.125, 8)
Fraction $=$
12.1
See Also cur2str | frac2cur

Purpose Bank-formatted text

```
Syntax String = cur2str(Value, Digits)
```

Description String = cur2str(Value, Digits) returns the given value in bank format. By default, Digits = 2. A negative Digits rounds the value to the left of the decimal point. String is returned as a string with a leading dollar sign (\$). Negative numbers are displayed in parentheses.

Examples Return Bank-Formatted Text

This example shows how to return a given value in bank format.
String $=$ cur2str(-8264, 2)

String =
(\$8264.00)

See Also cur2frac | frac2cur

date2time

Purpose Time and frequency from dates

```
Synfax [TFactors, F] = date2time(Settle, Maturity, Compounding, Basis,
EndMonthRule)
```


Arguments

Settle	Settlement date. A vector of serial date numbers or date strings.
Maturity	A vector of serial maturity dates.
Compounding	Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors:

- Compounding $=1,2,3,4,6,12$
- Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is the time in periodic units, for example, $\mathrm{T}=\mathrm{F}$ is one year.
- Compounding $=365$
- Disc $=(1+Z / F)^{\wedge}(-T)$, where F is the number of days in the basis year and T is a number of days elapsed computed by basis.
- Compounding $=-1$
- Disc $=\exp (-T * Z)$, where T is time in years.

Basis (Optional) Day-count basis of the instrument. A vector of integers.

- 0 = actual/actual (default)
- $1=30 / 360$ (SIA)
- 2 = actual/360
- $3=$ actual $/ 365$
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- 7 = actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=$ actual/365 (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

date2time

```
Description [TFactors, F] = date2time(Settle, Maturity, Compounding,
Basis, EndMonthRule) computes time factors appropriate to
compounded rate quotes between the settlement and maturity dates.
TFactors is a vector of time factors.
\(F\) is a scalar of related compounding frequencies.
date2time is the inverse of time2date.
```


Definitions

```
The difference between yearfrac and date2time is that date2time counts full periods as a whole integer, even if the number of actual days in the periods are different. yearfrac does not count full periods. For example,
```

```
yearfrac('1/1/2000', '1/1/2001', 9)
```

yearfrac('1/1/2000', '1/1/2001', 9)
ans $=$
1.0167

```
yearfrac for Basis 9 (ACT/360 ISMA) will calculate \(366 / 360=1.0167\). So, even if the dates have the same month and date, with a difference of 1 in the year, the returned value may not be exactly 1 . On the other hand, date2time will calculate one full year period:
```

date2time('1/1/2000', '1/1/2001', 1, 9)
ans =

```

1
```

See Also
cftimes | disc2rate | rate2disc | time2date | yearfrac

```

\section*{Purpose Convert serial-date axis labels to calendar-date axis labels \\ Syntax \\ dateaxis(Tickaxis, DateForm, StartDate)}

Tickaxis (Optional) Determines which axis tick labels- \(x, y\), or \(z\)-to replace. Enter as a string. Default = ' x '.
DateForm (Optional) Specifies which date format to use. Enter as an integer from 0 to 17. If no DateForm argument is entered, this function determines the date format based on the span of the axis limits. For example, if the difference between the axis minimum and maximum is less than 15 , the tick labels are converted to three-letter day-of-the-week abbreviations (DateForm = 8). See DateForm format descriptions below.
StartDate (Optional) Assigns the date to the first axis tick value. Enter as a string. The tick values are treated as serial date numbers. The default StartDate is the lower axis limit converted to the appropriate date number. For example, a tick value of 1 is converted to the date 01-Jan-0000. Entering StartDate as '06-apr-1999' assigns the date April 6, 1999 to the first tick value and the axis tick labels are set accordingly.

\section*{Description}
dateaxis(Tickaxis, DateForm, StartDate) replaces axis tick labels with date labels on a graphic figure.

See the MATLAB set command for information on modifying the axis tick values and other axis parameters.

\section*{dateaxis}
\begin{tabular}{lll}
\hline DateForm & Format & Description \\
\hline 0 & \(01-\) Mar-1999 & day-month-year \\
& \(15: 45: 17\) & hour:minute:second \\
1 & \(01-\) mar -1999 & day-month-year \\
2 & \(03 / 01 / 99\) & month/day/year \\
3 & Mar & month, three letters \\
4 & M & month, single letter \\
5 & 3 & month \\
6 & \(03 / 01\) & month/day \\
7 & 1 & day of month \\
8 & Wed & day of week, three letters \\
9 & W & day of week, single letter \\
10 & 1999 & year, four digits \\
11 & 99 & year, two digits \\
12 & Mar99 & month year \\
13 & \(15: 45: 17\) & hour:minute:second \\
14 & \(03: 45: 17\) & PM
\end{tabular}

\section*{Examples dateaxis('x') or dateaxis}
converts the \(x\)-axis labels to an automatically determined date format.
dateaxis('y', 6)
converts the \(y\)-axis labels to the month/day format.
dateaxis('x', 2, '03/03/1999')
converts the \(x\)-axis labels to the month/day/year format. The minimum \(x\)-tick value is treated as March 3, 1999.

See Also bolling | candle | datenum | datestr | highlow | movavg | pointfig

Purpose Display date entries
```

Syntax datedisp(NumMat, DateForm)
CharMat = datedisp(NumMat, DateForm)

```

Arguments
NumMat Numeric matrix to display.
DateForm (Optional) Date format. See datestr for available and default format flags.

\section*{Description datedisp(NumMat, DateForm) displays a matrix with the serial dates formatted as date strings, using a matrix with mixed numeric entries and serial date number entries. Integers between datenum('01-Jan-1900') and datenum('01-Jan-2200') are assumed to be serial date numbers, while all other values are treated as numeric entries. \\ CharMat is a character array representing NumMat. If no output variable is assigned, the function prints the array to the display.}

\section*{Examples Display a Matrix with the Serial Dates Formatted as Date Strings}

This example shows how to display a matrix with the serial dates formatted as date strings.
```

NumMat = [730730, 0.03, 1200 730100;
730731, 0.05, 1000 NaN];

```
datedisp(NumMat)
\begin{tabular}{cccc} 
01-Sep-2000 & 0.03 & 1200 & \(11-\) Dec-1998 \\
02-Sep-2000 & 0.05 & 1000 & NaN
\end{tabular}

See Also datenum | datestr

Purpose Indices of date numbers in matrix
Syntax Indices = datefind(Subset, Superset, Tolerance)
Arguments
\begin{tabular}{ll} 
Subset & \begin{tabular}{l} 
Subset matrix of date numbers used to find matching \\
date numbers in Superset. These date numbers \\
must be a nonrepeating subset of those in Superset.
\end{tabular} \\
Superset & \begin{tabular}{l} 
Superset matrix of nonrepeating date numbers \\
whose elements are sought.
\end{tabular} \\
Tolerance & \begin{tabular}{l} 
(Optional) Tolerance \((+/-)\) for matching the date \\
numbers in Superset. A positive integer. Default \\
\(=0\).
\end{tabular}
\end{tabular}

\section*{Description}

Indices = datefind(Subset, Superset, Tolerance) returns a vector of indices to the date numbers in Superset that are present in Subset, plus or minus the Tolerance. If no date numbers match, Indices = [].

Although this function was designed for use with sequential date numbers, you can use it with any nonrepeating integers.

\section*{Examples Return a Vector of Indices to Date Numbers}

This example shows how to return a vector of indices to date numbers.
```

Superset = datenum(1999, 7, 1:31);
Subset = [datenum(1999, 7, 10); datenum(1999, 7, 20)];
Indices = datefind(Subset, Superset, 1)

```

\section*{Indices =}
```

10
11
1 9
20
21

```

See Also datenum

Purpose Date of day in future or past month

\author{
Syntax TargetDate = datemnth(StartDate, NumberMonths, DayFlag, Basis, EndMonthRule)
}

\section*{Arguments}
\begin{tabular}{ll} 
StartDate & \begin{tabular}{l} 
Enter as serial date numbers or date strings. \\
NumberMonths \\
Vector containing number of months in future \\
(positive) or past (negative). Values must be \\
in integer form. \\
(Optional) Vector containing values that specify \\
how the actual day number for the target \\
date in future or past month is determined. 0 \\
(default) = day number should be the day in \\
the future or past month corresponding to the \\
actual day number of the start date. \(1=\) day \\
number should be the first day of the future or \\
past month. \(2=\) day number should be the last \\
day of the future or past month. \\
This flag has no effect if EndMonthRule is set \\
to 1.
\end{tabular} \\
(Optional) Day-count basis of the instrument. \\
Basis & \begin{tabular}{l} 
A vector of integers.
\end{tabular} \\
& - \(0=\) actual/actual (default)
\end{tabular}
- \(7=\mathrm{actual} / 365\) (Japanese)
- \(8=\mathrm{actual} / \mathrm{actual}\) (ISMA)
- \(9=\mathrm{actual} / 360\) (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- \(12=\mathrm{actual} / 365\) (ISDA)
- \(13=\mathrm{BUS} / 252\)

For more information, see basis on page Glossary-2.
EndMonthRule (Optional) End-of-month rule. A vector. \(1=\) rule in effect, meaning that if you are beginning on the last day of a month, and the month has 30 or fewer days, you will end on the last actual day of the future or past month regardless of whether that month has \(28,29,30\) or 31 days) \(0=\) rule off (default), meaning that the rule is not in effect.

Any input can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, if StartDate is an n-row character array of date strings, then NumberMonths must be an \(n\)-by- 1 vector of integers or a single integer. TargetDate is then an \(n\)-by- 1 vector of date numbers.

\section*{Description}

TargetDate = datemnth(StartDate, NumberMonths, DayFlag, Basis, EndMonthRule) returns the serial date number of the target date in the future or past.

Use datestr to convert serial date numbers to formatted date strings.
```

Examples
Day = datemnth('3 jun 2001', 6, 0, 0, 0)
Day =
7 3 1 1 8 8
datestr(Day)
ans =
03-Dec-2001
Day = datemnth('3 jun 2001', 6, 1, 0, 1); datestr(Day)
ans =
01-Dec-2001
Day = datemnth('31 jan 2001', 5, 0, 0, 0); datestr(Day)
ans =
30-Jun-2001
Day = datemnth('31 jan 2001', 5, 1, 0, 0); datestr(Day)
ans =
01-Jun-2001
Day = datemnth('31 jan 2001', 5, 1, 0, 1); datestr(Day)
ans =
30-Jun-2001
Day = datemnth('31 jan 2001', 5, 2, 0, 1); datestr(Day)
ans =
30-Jun-2001
Months = [1; 3; 5; 7; 9];
Day = datemnth('31 jan 2001', Months); datestr(Day)

```
```

ans =
28-Feb-2001
30-Apr-2001
30-Jun-2001
31-Aug-2001
31-0ct-2001

```

See Also
datestr | datevec | days360 | days365 | daysact | daysdif | wrkdydif
\begin{tabular}{ll} 
Purpose & Date of future or past workday \\
Syntax & EndDate = datewrkdy (StartDate, NumberWorkDays, NumberHolidays)
\end{tabular}

\section*{Arguments}

\section*{Description}

\section*{Examples}
\begin{tabular}{ll} 
StartDate & \begin{tabular}{l} 
Start date vector. Enter as serial date numbers \\
or date strings.
\end{tabular} \\
NumberWorkDays & \begin{tabular}{l} 
Vector containing number of work or business \\
days in future (positive) or past (negative), \\
including the starting date.
\end{tabular} \\
NumberHolidays & \begin{tabular}{l} 
Vector containing values for the number \\
of holidays within NumberWorkDays. \\
NumberHolidays and NumberWorkDays must \\
have the same sign.
\end{tabular}
\end{tabular}

Any input can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, if StartDate is an n-row character array of date strings, then NumberWorkDays must be an \(n\)-by- 1 vector of integers or a single integer. EndDate is then an \(n\)-by- 1 vector of date numbers.

EndDate = datewrkdy(StartDate, NumberWorkDays, NumberHolidays) returns the serial number of the date a given number of workdays before or after the start date.
Use datestr to convert serial date numbers to formatted date strings.
```

Workday = datewrkdy('12-dec-2000', 16, 2);
datestr(Workday)
ans =
04-Jan-2001

```
```

NumDays = [16; 20; 44];
Workdays = datewrkdy('12-dec-2000', NumDays, 2);
datestr(Workdays)
ans =
4-Jan-2001
10-Jan-2001
13-Feb-2001

```

\section*{See Also}
busdate | holidays | isbusday | wrkdydif
Purpose Day of month
Syntax DayMonth = day(Date)
DayMonth = day(Date, F)
Description DayMonth = day (Date) returns the day of the month given a serialdate number or date string.DayMonth = day (Date, F) returns the day of the of the month, given aserial date number or date string, in a specified date format.
Examples DayMonth \(=\operatorname{day}(730544)\)
or
DayMonth = day('2/28/00')
DayMonth =28.00
You can also use the F argument to designate a country-specific dateformat:
    DayMonth = day('28/02/00','dd/mm/yyyy')
    DayMonth =28.00
See Also datevec | eomday | month | year

\section*{Purpose Number of business days between dates}
```

Syntax NumberDays = days252bus(StartDate, EndDate)
NumberDays = days252bus(StartDate, EndDate, HolidayVector)

```

\section*{Arguments}

\section*{Description NumberDays = days252bus(StartDate, EndDate, HolidayVector) computes the number of business days (i.e. non-holiday or non-weekend) between the two input dates. Note that a holiday vector may be optionally specified; if it is not, then the holidays.m file is used to determine the holidays. \\ days252bus returns NumberDays, a N-by-1 or 1-by-N vector or scalar value for the number of days between two dates \\ Examples Computes the Number of Business Days Between Two Input Dates}

This example shows how to compute the number of business days (i.e. non-holiday or non-weekend) between two dates using the days252bus convention.
```

NumberDays = days252bus('1/1/2009', '8/1/2009')

```

\section*{NumberDays = \\ 145}

See Also days360psa | daysact | daysdif | days365
\begin{tabular}{|c|c|}
\hline Purpose & Days between dates based on 360-day year \\
\hline Syntax & NumDays = days360(StartDate, EndDate) \\
\hline \multicolumn{2}{|l|}{Arguments} \\
\hline & \begin{tabular}{ll} 
StartDate & Enter as serial date numbers or date strings. \\
EndDate & Enter as serial date numbers or date strings.
\end{tabular} \\
\hline & Either input can contain multiple values, but if so, the other must contain the same number of values or a single value that applies to all. For example, if StartDate is an n-row character array of date strings, then EndDate must be an \(n\)-by- 1 vector of integers or a single integer. NumDays is then an \(n\)-by- 1 vector of date numbers. \\
\hline Description & NumDays = days360(StartDate, EndDate) returns the number of days between StartDate and EndDate based on a 360-day year (that is, all months contain 30 days). If EndDate is earlier than StartDate, NumDays is negative. \\
\hline \multirow[t]{5}{*}{Examples} & NumDays \(=\) days360('15-jan-2000', '15-mar-2000') \\
\hline & NumDays = \\
\hline & 60 \\
\hline & ```
MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];
NumDays = days360('15-jan-2000', MoreDays)
``` \\
\hline & NumDays \(=\) \\
\hline
\end{tabular}

NumDays =

60
90
150

References Addendum to Securities Industry Association, Standard Securities Calculation Methods: Fixed Income Securities Formulas for Analytic Measures, Vol. 2, Spring 1995.

See Also days365 | daysact | daysdif | wrkdydif | yearfrac
\begin{tabular}{ll}
Purpose & Days between dates based on 360-day year (European) \\
Syntax & NumDays \(=\) days360e(StartDate, EndDate) \\
Arguments &
\end{tabular}
\begin{tabular}{ll}
StartDate & \begin{tabular}{l}
Row vector, column vector, or scalar value in serial \\
date number or date string format.
\end{tabular} \\
EndDate & \begin{tabular}{l}
Row vector, column vector, or scalar value in serial \\
date number or date string format.
\end{tabular}
\end{tabular}

Either input can contain multiple values, but if so, the other must contain the same number of values or a single value that applies to all.

\section*{Description}

NumDays = days360e(StartDate, EndDate) returns a vector or scalar value representing the number of days between StartDate and EndDate based on a 360-day year (that is, all months contain 30 days). If EndDate is earlier than StartDate, NumDays is negative.

This day count convention is used primarily in Europe. Under this convention all months contain 30 days.

\section*{Examples}

Example 1. Use this convention to find the number of days in the month of January.
```

StartDate = '1-Jan-2002';
EndDate = '1-Feb-2002';
NumDays = days360e(StartDate, EndDate)
NumDays =

```
 30

Example 2. Use this convention to find the number of days in February during a leap year.
```

StartDate = '1-Feb-2000';
EndDate = '1-Mar-2000';
NumDays = days360e(StartDate, EndDate)
NumDays =

```
30

Example 3. Use this convention to find the number of days in February of a non-leap year.

StartDate = '1-Feb-2002';
EndDate = '1-Mar-2002';
NumDays = days360e(StartDate, EndDate)

NumDays =

30

See Also days360 | days360isda | days360psa

\section*{days360isda}
\begin{tabular}{ll}
Purpose & \begin{tabular}{l}
Days between dates based on 360-day year (International Swap Dealer \\
Association (ISDA) compliant)
\end{tabular} \\
Syntax & NumDays = days360isda(StartDate, EndDate)
\end{tabular}

\section*{Arguments}
\[
\begin{array}{ll}
\text { Description } & \begin{array}{l}
\text { NumDays }=\text { days } 360 \text { isda(StartDate, EndDate) returns a vector or } \\
\\
\\
\text { scalar value representing the number of days between StartDate and }
\end{array} \\
& \text { EndDate based on a 360-day year (that is, all months contain } 30 \text { days). } \\
& \text { If EndDate is earlier than StartDate, NumDays is negative. }
\end{array}
\]

Under this convention all months contain 30 days.

\section*{Examples}

Example 1. Use this convention to find the number of days in the month of January.
```

StartDate = '1-Jan-2002';
EndDate = '1-Feb-2002';
NumDays = days360isda(StartDate, EndDate)
NumDays =

```
 30

Example 2. Use this convention to find the number of days in February during a leap year.
```

StartDate = '1-Feb-2000';
EndDate = '1-Mar-2000';
NumDays = days360isda(StartDate, EndDate)
NumDays =

```
30

Example 3. Use this convention to find the number of days in February of a non leap year.

StartDate = '1-Feb-2002';
EndDate = '1-Mar-2002';
NumDays = days360isda(StartDate, EndDate)

NumDays =
30

See Also days360 | days360e | days360psa
\begin{tabular}{ll}
Purpose & \begin{tabular}{l}
Days between dates based on 360-day year (Public Securities \\
Association (PSA) compliant)
\end{tabular} \\
Syntax & NumDays \(=\) days360psa(StartDate, EndDate)
\end{tabular}

\section*{Arguments}

\section*{Description NumDays \(=\) days360psa(StartDate, EndDate) returns a vector or scalar value representing the number of days between StartDate and EndDate based on a 360 -day year (that is, all months contain 30 days). If EndDate is earlier than StartDate, NumDays is negative. \\ Under this payment convention all months contain 30 days. In both leap and non-leap years, if the StartDate is the last day of February, this day is considered to be day 30 of the month. \\ Examples \\ Example 1. Use this convention to find the number of days in between the last day of February and the first day of March during a leap year.}
```

StartDate = '29-Feb-2000';
EndDate = '1-Mar-2000';
NumDays = days360psa(StartDate, EndDate)
NumDays =

```

\section*{days360psa}

Example 2. Use this convention to find the number of days in between the last day of February and the first day of March during a non-leap year.

StartDate = '28-Feb-2002';
EndDate = '1-Mar-2002';
NumDays = days360psa(StartDate, EndDate)

NumDays =
1

As expected, the number of days in both cases is the same. The convention always assumes that the last day of February is the 30th day.

See Also
days360 | days360e | days360isda

\section*{Purpose}

Days between dates based on 365-day year
Syntax NumDays = days365(StartDate, EndDate)
Arguments
StartDate Enter as serial date numbers or date strings.
EndDate Enter as serial date numbers or date strings.

Either input can contain multiple values, but if so, the other must contain the same number of values or a single value that applies to all. For example, if StartDate is an n-row character array of date strings, then EndDate must be an \(n\)-by- 1 vector of integers or a single integer. NumDays is then an \(n\)-by- 1 vector of date numbers.

Description NumDays \(=\) days365(StartDate, EndDate) returns the number of days between dates StartDate and EndDate based on a 365-day year. (All months contain their actual number of days. February always contains 28 days.) If EndDate is earlier than StartDate, NumDays is negative. Enter dates as serial date numbers or date strings.

\section*{Examples}

NumDays = days365('15-jan-2000', '15-mar-2000')
NumDays =

\section*{59}

MoreDays \(=[\) ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];
NumDays = days365('15-jan-2000', MoreDays)
NumDays =

\section*{Purpose Actual number of days between dates}

Syntax NumDays = daysact (StartDate, EndDate)
Arguments

\section*{Description}

NumDays = daysact(StartDate, EndDate) returns the actual number of days between two dates. Enter dates as serial date numbers or date strings. NumDays is negative if EndDate is earlier than StartDate.

NumDays = daysact(StartDate) returns the actual number of days between the MATLAB base date and StartDate. In MATLAB software, the base date 1 is \(1-J a n-0000\) A.D. See datenum for a similar function.
```

Examples NumDays = daysact('7-sep-2002', '25-dec-2002')
NumDays =
1 0 9
NumDays = daysact('9/7/2002')
NumDays =
731466
MoreDays = ['09/07/2002'; '10/22/2002'; '11/05/2002'];

```

NumDays = daysact(MoreDays, '12/25/2002')

NumDays =
109
64
50
See Also datenum | datevec | days360 | days365 | daysdif

\section*{Purpose}

Date away from starting date for any day-count basis
Syntax NumDays = daysadd(StartDate, NumDays, Basis)

\section*{Arguments}
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

Note When using the 30/360 day-count basis, it is not always possible to find the exact date NumDays number of days away because of a known discontinuity in the method of counting days. A warning is displayed if this occurs.

\section*{Description}

NumDays = daysadd(StartDate, NumDays, Basis) returns a date NumDays number of days away from StartDate, using the given day-count basis.

NewDate \(=\) daysadd('01-Feb-2004', 31)
NewDate =
732009
datestr(NewDate)
ans =

03-Mar-2004

NewDate \(=\) daysadd('01-Feb-2004', 31, 1)

NewDate =
732008
datestr(NewDate)
ans =

02-Mar-2004

\section*{References Stigum, Marcia L. and Franklin Robinson, Money Market and Bond Calculations, Richard D. Irwin, 1996, ISBN 1-55623-476-7}

See Also daysdif

Purpose Days between dates for any day-count basis
Syntax NumDays = daysdif(StartDate, EndDate, Basis)
Arguments
StartDate Enter as serial date numbers or date strings.
EndDate Enter as serial date numbers or date strings.
Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

Any input argument can contain multiple values, but if so, the other inputs must contain the same number of values or a single value that
applies to all. For example, if StartDate is an n-row character array of date strings, then EndDate must be an n-row character array of date strings or a single date. NumDays is then an \(n\)-by- 1 vector of numbers.

\section*{Description}

\section*{Examples}
```

NumDays = daysdif('3/1/99', '3/1/00', 1)
NumDays =
360
MoreDays = ['3/1/2001'; '3/1/2002'; '3/1/2003'];
NumDays = daysdif('3/1/98', MoreDays)
NumDays =
1096
1461
1826

```
References
See Also datenum | days360 | days365 | daysact | daysadd | wrkdydif | yearfrac

\section*{dec2thirtytwo}
Purpose Decimal to thirty-second quotation
Syntax [OutNumber, Fractions] = dec2thirtytwo(InNumber, Accuracy)
Syntax [OutNumber, Fractions] = dec2thirtytwo(InNumber, Accuracy)
Arguments

\title{
Description [OutNumber, Fractions] = dec2thirtytwo(InNumber, Accuracy) changes a decimal price quotation for a bond or bond future to a fraction with a denominator of 32 . \\ OutNumber is InNumber rounded downward to the closest integer. \\ Fractions is the fractional part in units of thirty-second with accuracy as prescribed by the input Accuracy.
}

\section*{Examples Convert Decimal to Thirty-Second Quotation}
This example shows two bonds that are quoted with decimal prices of 101.78 and 102.96 . These prices are converted to fractions with a denominator of 32 .
InNumber \(=\) [101.78; 102.96];
[OutNumber, Fractions] = dec2thirtytwo(InNumber)
OutNumber =
101
102

Fractions =

25 31

See Also thirtytwo2dec

Purpose Fixed declining-balance depreciation schedule
Syntax Depreciation = depfixdb(Cost, Salvage, Life, Period, Month)
Arguments
\begin{tabular}{ll}
Cost & Scalar for the initial value of the asset. \\
Salvage & Scalar for the salvage value of the asset. \\
Life & Scalar value for the life of the asset in years. \\
Period & \begin{tabular}{l}
Scalar integer for the number of years to calculate. \\
Month
\end{tabular} \\
\begin{tabular}{l}
(Optional) Scalar value for the number of months in \\
the first year of asset life. Default \(=12\).
\end{tabular}
\end{tabular}

\section*{Description}

\section*{Examples Compute the Fixed Declining-Balance Depreciation}

This example shows how to calculate the depreciation for the first five years for a car is purchased for \(\$ 11,000\), with a salvage value of \(\$ 1500\), and a lifetime of eight years.
```

Depreciation = depfixdb(11000, 1500, 8, 5)

```

Depreciation \(=\)
\(1.0 \mathrm{e}+03\) *
\(\begin{array}{lllll}2.4251 & 1.8904 & 1.4737 & 1.1488 & 0.8955\end{array}\)

\section*{See Also depgendb | deprdv | depsoyd | depstln}
\begin{tabular}{ll}
Purpose & General declining-balance depreciation schedule \\
Syntax & Depreciation = depgendb(Cost, Salvage, Life, Factor) \\
Arguments &
\end{tabular}

Cost Cost of the asset.
Salvage Estimated salvage value of the asset.
Life Number of periods over which the asset is depreciated.

Factor Depreciation factor. Factor \(=2\) uses the double-declining-balance method.
```

Description Depreciation = depgendb(Cost, Salvage, Life, Factor) calculates the declining-balance depreciation for each period.

```

\section*{Examples Calculate the Declining-Balance Depreciation}

A car is purchased for \(\$ 10,000\) and is to be depreciated over five years. The estimated salvage value is \(\$ 1000\). Using the double-declining-balance method, the function calculates the depreciation for each year and returns the remaining depreciable value at the end of the life of the car.

Define the depreciation.
```

Life = 5;
Salvage = 0;
Cost = 10000;
Factor=2;

```

Use depgendb to calculate the depreciation.
```

Depreciation = depgendb(10000, 1000, 5, 2)

```
```

Depreciation =
1.0e+03 *
4.0000 2.4000 1.4400 0.8640 0.2960

```

The large value returned at the final year is the sum of the depreciation over the life time and is equal to the difference between the cost and Salvage. The value of the asset in the final year is computed as (Cost â€"|Salvage|) â€" Sum_Depreciation_Upto_Finanl_Year.

See Also
depfixdb | deprdv | depsoyd | depstln
Purpose Remaining depreciable value
Syntax Value = deprdv(Cost, Salvage, Accum)
Arguments
Cost Cost of the asset.
Salvage Salvage value of the asset.
Accum Accumulated depreciation of the asset for prior periods.
Description Value = deprdv(Cost, Salvage, Accum) returns the remaining depreciable value for an asset.
Examples Compute the Remaining Depreciable Value for an AssetThis example shows how to find the remaining depreciable value aftersix years for the cost of an asset for \(\$ 13,000\) with a life of 10 years.The salvage value is \(\$ 1000\).
Accum \(=\) depstln(13000, 1000, 10) * 6

Value \(=\operatorname{deprdv}(13000,1000,7200)\)
Accum \(=\)
 7200
Value =4800

See Also depfixdb | depgendb | depsoyd | depstln
\begin{tabular}{lll}
Purpose & Sum of years' digits depreciation \\
Syntax & Sum = depsoyd(Cost, Salvage, Life) \\
Arguments & & \\
& Cost & Cost of the asset. \\
Salvage & Salvage value of the asset. \\
& Life & Depreciable life of the asset in years.
\end{tabular}

Description
Sum = depsoyd(Cost, Salvage, Life) calculates the depreciation for an asset using the sum of years' digits method. Sum is a 1-by-Life vector of depreciation values with each element corresponding to a year of the asset's life.

\section*{Examples Compute the Depreciation for an Asset Using the Sum of Years' Digits Method}

This example shows how to calculate the depreciation for an asset using the sum of years' digits method where the asset is \(\$ 13,000\) with a life of 10 years. The salvage value of the asset is \(\$ 1000\).
```

Sum = depsoyd(13000, 1000, 10)'

```

Sum =
\(1.0 \mathrm{e}+03\) *
2.1818
1.9636
1.7455
1.5273
1.3091
\[
\begin{aligned}
& 1.0909 \\
& 0.8727 \\
& 0.6545 \\
& 0.4364 \\
& 0.2182
\end{aligned}
\]

See Also

\footnotetext{
depfixdb | depgendb | deprdv | depstln
}
Purpose Straight-line depreciation schedule
Syntax Depreciation = depstln(Cost, Salvage, Life)
Arguments
Cost Cost of the asset.
Salvage Salvage value of the asset.
Life Depreciable life of the asset in years.
Description Depreciation = depstln(Cost, Salvage, Life) calculatesstraight-line depreciation for an asset.
Examples Compute the Straight-Line Depreciation for an AssetThis example shows how to calculate the straight-line depreciation foran asset that costs \(\$ 13,000\) with a life of 10 years. The salvage value ofthe asset is \(\$ 1000\).
Depreciation = depstln(13000, 1000, 10)
Depreciation =1200
See Also depfixdb | depgendb | deprdv | depsoyd

Purpose Differencing

\section*{Syntax newfts = diff(oldfts)}

Description diff computes the differences of the data series in a financial time series object. It returns another time series object containing the difference.
newfts = diff(oldfts) computes the difference of all the data in the data series of the object oldfts and returns the result in the object newfts. newfts is a financial time series object containing the same data series (names) as the input oldfts.

\section*{See Also \\ diff}
\begin{tabular}{ll}
Purpose & Construct diffusion-rate model components \\
Syntax & DiffusionRate = diffusion (Alpha, sigma) \\
Class & Diffusion \\
Description & \begin{tabular}{l}
The diffusion constructor specifies the diffusion-rate component \\
of continuous-time stochastic differential equations (SDEs). The \\
diffusion-rate specification supports the simulation of sample paths of \\
NVARS state variables driven by NBROwNS Brownian motion sources of \\
risk over NPERIODS consecutive observation periods, approximating \\
continuous-time stochastic processes. \\
The diffusion-rate specification can be any NVARS-by-NBRowNS \\
matrix-valued function \(G\) of the general form:
\end{tabular} \\
& \(G\left(t, X_{t}\right)=D\left(t, X_{t}^{\alpha(t)}\right) V(t)\) \\
& associated with a vector-valued SDE of the form: \\
& \(d X_{t}=F\left(t, X_{t}\right) d t+G\left(t, X_{t}\right) d W_{t}\)
\end{tabular}\(\quad\) (18-4)

\section*{diffusion}

\section*{Input Arguments}

Specify required input parameters as one of the following types:
- A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric specification. This array fully captures all implementation details, which are clearly associated with a parametric form.
- A MATLAB function. Specifying a function provides indirect support for virtually any static, dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.

The required input parameters are:
Alpha Alpha determines the format of the parameter \(D\). If you specify Alpha as an array, it must be an NVARS-by- 1 column vector of exponents. If you specify Alpha as a function, it must return an NVARS-by- 1 column vector of exponents when invoked with two inputs:
- A real-valued scalar observation time \(t\).
- An NVARS-by-1 state vector \(X_{t}\).

Sigma Sigma represents the parameter \(V\). If you specify Sigma as an array, it must be an NVARS-by-NBROWNS 2 -dimensional matrix of instantaneous volatility rates. In this case, each row of Sigma corresponds to a particular state variable. Each column corresponds to a particular Brownian source of uncertainty, and associates the magnitude of the exposure of state variables with sources of uncertainty. If you specify Sigma as a function, it must return an NVARS-by-NBROWNS matrix of volatility rates when invoked with two inputs:
- A real-valued scalar observation time \(t\).
- An NVARS-by-1 state vector \(X_{t}\).

Note Although the constructor enforces no restrictions on the signs of these volatility parameters, each parameter is usually specified as a positive value.

\section*{Output Arguments}

\section*{Algorithms}

When you specify the input arguments Alpha and Sigma as MATLAB arrays, they are associated with a specific parametric form. By contrast, when you specify either Alpha or Sigma as a function, you can customize virtually any diffusion-rate specification.

Accessing the output diffusion-rate parameters Alpha and Sigma with no inputs simply returns the original input specification. Thus, when you invoke diffusion-rate parameters with no inputs, they behave like simple properties and allow you to test the data type (double vs.

\section*{diffusion}
function, or equivalently, static vs. dynamic) of the original input specification. This is useful for validating and designing methods.
When you invoke diffusion-rate parameters with inputs, they behave like functions, giving the impression of dynamic behavior. The parameters Alpha and Sigma accept the observation time \(t\) and a state vector \(X_{t}\), and return an array of appropriate dimension. Specifically, parameters Alpha and Sigma evaluate the corresponding diffusion-rate component. Even if you originally specified an input as an array, diffusion treats it as a static function of time and state, thereby guaranteeing that all parameters are accessible by the same interface.

\section*{Examples}

\section*{References}
"Overview" on page 17-19
Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426.
Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.
Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.
Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.
Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.

\author{
See Also \\ drift | sdeddo
}

\author{
Purpose \\ Zero curve given discount curve \\ Syntax \\ [ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates, Settle, Compounding, Basis)
}

\section*{Arguments}

DiscRates Column vector of discount factors, as decimal fractions. In aggregate, the factors in DiscRates constitute a discount curve for the investment horizon represented by CurveDates.

CurveDates Column vector of maturity dates (as serial date numbers) that correspond to the discount factors in DiscRates.

Settle Serial date number that is the common settlement date for the discount rates in DiscRates.

Compounding (Optional) Output compounding. A scalar that sets the compounding frequency per year for annualizing the output zero rates. Allowed values are:
1 Annual compounding
2 Semiannual compounding (default)
3 Compounding three times per year
4 Quarterly compounding
6 Bimonthly compounding
12 Monthly compounding
365 Daily compounding

\section*{disc2zero}
\begin{tabular}{|c|c|}
\hline & -1 Continuous compounding \\
\hline \multirow[t]{16}{*}{Basis} & (Optional) Day-count basis for annualizing the output zero rates. \\
\hline & - \(0=\) actual/actual (default) \\
\hline & - 1 = 30/360 (SIA) \\
\hline & - 2 = actual/360 \\
\hline & - 3 = actual/365 \\
\hline & - \(4=30 / 360\) (PSA) \\
\hline & - \(5=30 / 360\) (ISDA) \\
\hline & - \(6=30 / 360\) (European) \\
\hline & - \(7=\) actual/365 (Japanese) \\
\hline & - \(8=\) actual/actual (ISMA) \\
\hline & - \(9=\) actual/360 (ISMA) \\
\hline & - \(10=\) actual/365 (ISMA) \\
\hline & - \(11=30 / 360 \mathrm{E}\) (ISMA) \\
\hline & - 12 = actual/365 (ISDA) \\
\hline & - 13 = BUS/252 \\
\hline & For more information, see basis on page Glossa \\
\hline
\end{tabular}
[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates, Settle, Compounding, Basis) returns a zero curve given a discount curve and its maturity dates.
\begin{tabular}{cl}
ZeroRates & \begin{tabular}{l}
Column vector of decimal fractions. In aggregate, the \\
rates in ZeroRates constitute a zero curve for the \\
investment horizon represented by CurveDates. The \\
zero rates are the yields to maturity on theoretical \\
zero-coupon bonds.
\end{tabular} \\
CurveDates & \begin{tabular}{l}
Column vector of maturity dates (as serial date \\
numbers) that correspond to the zero rates. This \\
vector is the same as the input vector CurveDates.
\end{tabular}
\end{tabular}

\section*{Examples Determine the Zero Curve Given a Discount Curve and Maturity Dates}

Given the following discount factors DiscRates over a set of maturity dates CurveDates, and a settlement date Settle:
```

DiscRates = [0.9996
0.9947
0.9896
0.9866
0.9826
0.9786
0.9745
0.9665
0.9552
0.9466];
CurveDates = [datenum('06-Nov-2000')
datenum('11-Dec-2000')
datenum('15-Jan-2001')
datenum('05-Feb-2001')
datenum('04-Mar-2001')
datenum('02-Apr-2001')
datenum('30-Apr-2001')
datenum('25-Jun-2001')
datenum('04-Sep-2001')

```

\section*{disc2zero}
```

    datenum('12-Nov-2001')];
    Settle = datenum('03-Nov-2000');

```

Set daily compounding for the output zero curve, on an actual/365 basis.
Compounding = 365;
Basis = 3;
Execute the function disc2zero which returns the zero curve ZeroRates at the maturity dates CurveDates.
[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates,... Settle, Compounding, Basis)

ZeroRates =
0.0487
0.0510
0.0523
0.0524
0.0530
0.0526
0.0530
0.0532
0.0549
0.0536

CurveDates =

730796
730831
730866
730887
730914

730943
730971
731027
731098
731167

For readability, DiscRates and ZeroRates are shown here only to the basis point. However, MATLAB® software computed them at full precision. If you enter DiscRates as shown, ZeroRates may differ due to rounding.

See Also zero2disc
How To . "Term Structure of Interest Rates" on page 2-41

Purpose
Bank discount rate of money market security
Syntax DiscRate = discrate(Settle, Maturity, Face, Price, Basis)
Arguments
\begin{tabular}{ll}
Settle & \begin{tabular}{l}
Enter as serial date numbers or date strings. \\
Settle must be earlier than Maturity.
\end{tabular} \\
Maturity & Enter as serial date numbers or date strings. \\
Face & \begin{tabular}{l}
Redemption (par, face) value.
\end{tabular} \\
Price & \begin{tabular}{l}
Price of the security.
\end{tabular} \\
Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A \\
vector of integers.
\end{tabular}
\end{tabular}
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

Description DiscRate = discrate(Settle, Maturity, Face, Price, Basis) finds the bank discount rate of a security. The bank discount rate normalizes by the face value of the security (for example, U. S. Treasury Bills) and understates the true yield earned by investors.

\section*{Examples Compute the Bank Discount Rate of a Security}

This example shows how to find the bank discount rate of a security.
```

DiscRate = discrate('12-jan-2000', '25-jun-2000', 100, 97.74, 0)

```

\section*{DiscRate =}
0.0501

\section*{References \\ Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition. Formula 1.}

See Also acrudisc | fvdisc | prdisc | ylddisc

Purpose Construct drift-rate model components
Syntax \(\quad \operatorname{DriftRate}=\operatorname{drift}(A, B)\)
Class Drift

Description

Input
Arguments

This constructor specifies the drift-rate component of continuous-time stochastic differential equations (SDEs). The drift-rate specification supports the simulation of sample paths of NVARS state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation periods, approximating continuous-time stochastic processes.

The drift-rate specification can be any NVARS-by-1 vector-valued function \(F\) of the general form:
\[
\begin{equation*}
F\left(t, X_{t}\right)=A(t)+B(t) X_{t} \tag{18-5}
\end{equation*}
\]
associated with a vector-valued SDE of the form
\[
d X_{t}=F\left(t, X_{t}\right) d t+G\left(t, X_{t}\right) d W_{t}
\]
where:
- \(X_{t}\) is an NVARS-by- 1 state vector of process variables.
- \(d W_{t}\) is an NBROWNS-by- 1 Brownian motion vector.
- \(A\) and \(B\) are model parameters.

The drift-rate specification is flexible, and provides direct parametric support for static/linear drift models. It is also extensible, and provides indirect support for dynamic/nonlinear models via an interface. This enables you to specify virtually any drift-rate specification.

Specify required input parameters as one of the following types:
- A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric specification. This array fully
captures all implementation details, which are clearly associated with a parametric form.
- A MATLAB function. Specifying a function provides indirect support for virtually any static, dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.

The required input parameters are:
A This argument represents the parameter \(A\). If you specify \(A\) as an array, it must be an NVARS-by- 1 column vector. If you specify A as a function, it must return an NVARS-by-1 column vector when invoked with two inputs:
- A real-valued scalar observation time \(t\).
- An NVARS-by-1 state vector \(X_{t}\).
\(B \quad\) This argument represents the parameter \(B\). If you specify \(B\) as an array, it must be an NVARS-by-NVARS 2-dimensional matrix. If you specify \(B\) as a function, it must return an NVARS-by-NVARS column vector when invoked with two inputs:
- A real-valued scalar observation time \(t\).
- An NVARS-by-1 state vector \(X_{t}\).

\section*{Output Arguments}

\section*{Algorithms}

\section*{Examples}

DriftRate Object of class drift that encapsulates the composite drift-rate specification, with the following displayed parameters:
- Rate: The drift-rate function, \(F\). Rate is the drift-rate calculation engine. It accepts the current time \(t\) and an NVARS-by- 1 state vector \(X_{t}\) as inputs, and returns an NVARS-by- 1 drift-rate vector.
- A: Access function for the input argument \(A\).
- B: Access function for the input argument B .

When you specify the input arguments \(A\) and \(B\) as MATLAB arrays, they are associated with a linear drift parametric form. By contrast, when you specify either \(A\) or \(B\) as a function, you can customize virtually any drift-rate specification.

Accessing the output drift-rate parameters A and B with no inputs simply returns the original input specification. Thus, when you invoke drift-rate parameters with no inputs, they behave like simple properties and allow you to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input specification. This is useful for validating and designing methods.

When you invoke drift-rate parameters with inputs, they behave like functions, giving the impression of dynamic behavior. The parameters A and B accept the observation time \(t\) and a state vector \(X_{t}\), and return an array of appropriate dimension. Specifically, parameters A and B evaluate the corresponding drift-rate component. Even if you originally specified an input as an array, drift treats it as a static function of time and state, thereby guaranteeing that all parameters are accessible by the same interface.
"Overview" on page 17-19
ReferencesSee Also diffusion | sdeddo

Purpose
Least-squares regression with missing data
```

Syntax
[Parameters, Covariance, Resid, Info] = ecmlsrmle(Data, Design,
MaxIterations, TolParam, TolObj, ParamO,
CovarO, CovarFormat)

```

\section*{Arguments}

MaxIterations (Optional) Maximum number of iterations for the estimation algorithm. Default value is 100 .
(Optional) Convergence tolerance for estimation algorithm based on changes in model parameter estimates. Default value is sqrt(eps) which is about \(1.0 \mathrm{e}-8\) for double precision. The convergence test for changes in model parameters is
\[
\| \text { Param }_{k}-\text { Param }_{k-1} \|<\text { TolParam } \times\left(1+\| \text { Param }_{k} \|\right)
\]
where Param represents the output Parameters, and iteration \(k=2,3, \ldots\). Convergence is assumed when both the TolParam and TolObj conditions are satisfied. If both TolParam \(\leq\) 0 and TolObj \(\leq 0\), do the maximum number of iterations (MaxIterations), whatever the results of the convergence tests.
(Optional) Convergence tolerance for estimation algorithm based on changes in the objective function. Default value is eps \(\wedge 3 / 4\) which is about \(1.0 \mathrm{e}-12\) for double precision. The convergence test for changes in the objective function is
\[
\left|O b j_{k}-O b j_{k-1}\right|<T o l O b j \times\left(1+\left|O b j_{k}\right|\right)
\]
for iteration \(k=2,3, \ldots\). Convergence is assumed when both the TolParam and TolObj conditions are satisfied. If both TolParam \(\leq\) 0 and TolObj \(\leq 0\), do the maximum number of iterations (MaxIterations), whatever the results of the convergence tests.

\section*{ecmlsrmle}
\(\left.\begin{array}{ll}\text { Param0 } & \begin{array}{l}\text { (Optional) NUMPARAMS-by-1 column vector that } \\ \text { contains a user-supplied initial estimate for the } \\ \text { parameters of the regression model. Default is }\end{array} \\ \text { a zero vector. } \\ \text { (Optional) NUMSERIES-by-NUMSERIES matrix }\end{array}\right\}\)
ecmlsrmle estimates a NUMPARAMS-by- 1 column vector of model parameters called Parameters, and a NUMSERIES-by-NUMSERIES matrix of covariance parameters called Covariance.
ecmlsrmle(Data, Design) with no output arguments plots the log-likelihood function for each iteration of the algorithm.

To summarize the outputs of ecmlsrmle:
- Parameters is a NUMPARAMS-by-1 column vector of estimates for the parameters of the regression model.
- Covariance is a NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of the regression model's residuals. For least-squares models, this estimate may not be a maximum likelihood estimate except under special circumstances.
- Resid is a NUMSAMPLES-by-NUMSERIES matrix of residuals from the regression.

Another output, Info, is a structure that contains additional information from the regression. The structure has these fields:
- Info. Obj - A variable-extent column vector, with no more than MaxIterations elements, that contains each value of the objective function at each iteration of the estimation algorithm. The last value in this vector, Obj (end), is the terminal estimate of the objective function. If you do least-squares, the objective function is the least-squares objective function.
- Info.PrevParameters - NUMPARAMS-by-1 column vector of estimates for the model parameters from the iteration just prior to the terminal iteration.
- Info.PrevCovariance - NUMSERIES-by-NUMSERIES matrix of estimates for the covariance parameters from the iteration just prior to the terminal iteration.

\section*{Notes}

If doing covariance-weighted least-squares, Covar0 should usually be a diagonal matrix. Series with greater influence should have smaller diagonal elements in Covar0 and series with lesser influence should

Examples

References
have larger diagonal elements. Note that if doing CWLS, Covar0 need not be a diagonal matrix even if CovarFormat = 'diagonal'.

You can configure Design as a matrix if NUMSERIES \(=1\) or as a cell array if NUMSERIES \(\geq 1\).
- If Design is a cell array and NUMSERIES \(=1\), each cell contains a NUMPARAMS row vector.
- If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-by-NUMPARAMS matrix.

These points concern how Design handles missing data:
- Although Design should not have NaN values, ignored samples due to NaN values in Data are also ignored in the corresponding Design array.
- If Design is a 1-by-1 cell array, which has a single Design matrix for each sample, no NaN values are permitted in the array. A model with this structure must have NUMSERIES \(\geq\) NUMPARAMS with rank(Design\{1\}) \(=\) NUMPARAMS.
- ecmlsrmle is more strict than mvnrmle about the presence of NaN values in the Design array.
Use the estimates in the optional output structure Info for diagnostic purposes.

See "Multivariate Normal Regression" on page 9-18, "Least-Squares Regression" on page 9-18, "Covariance-Weighted Least Squares" on page 9-19, "Feasible Generalized Least Squares" on page 9-20, and "Seemingly Unrelated Regression" on page 9-21.

Roderick J. A. Little and Donald B. Rubin, Statistical Analysis with Missing Data, 2nd ed., John Wiley \& Sons, Inc., 2002.
Xiao-Li Meng and Donald B. Rubin, "Maximum Likelihood Estimation via the ECM Algorithm," Biometrika, Vol. 80, No. 2, 1993, pp. 267-278.
Joe Sexton and Anders Rygh Swensen, "ECM Algorithms that Converge at the Rate of EM," Biometrika, Vol. 87, No. 3, 2000, pp. 651-662.
A. P. Dempster, N.M. Laird, and D. B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm," Journal of the Royal Statistical Society, Series B, Vol. 39, No. 1, 1977, pp. 1-37.

See Also ecmlsrobj | ecmmvnrmle | mvnrmle

Purpose Log-likelihood function for least-squares regression with missing data
Syntax Objective = ecmlsrobj(Data, Design, Parameters, Covariance)

\section*{Arguments}
\begin{tabular}{ll}
Data & \begin{tabular}{l}
NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES \\
samples of a NUMSERIES-dimensional random vector. \\
Missing values are represented as NaNs. Only \\
samples that are entirely NaNs are ignored. (To \\
ignore samples with at least one NaN, use mvnrmle.)
\end{tabular} \\
Design & \begin{tabular}{l}
A matrix or a cell array that handles two model \\
structures:
\end{tabular} \\
& - If NUMSERIES = 1, Design is a \\
& NUMSAMPLES-by-NUMPARAMS matrix with \\
& known values. This structure is the standard form \\
& for regression on a single series.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Description & Objective = ecmlsrobj(Data, Design, Parameters, Covariance) computes a least-squares objective function based on current parameter estimates with missing data. Objective is a scalar that contains the least-squares objective function. \\
\hline \multirow[t]{7}{*}{Notes} & ecmlsrobj requires that Covariance be positive-definite. \\
\hline & Note that \\
\hline & ```
ecmlsrobj(Data, Design, Parameters) = ecmmvnrobj(Data, .
Design, Parameters, IdentityMatrix)
``` \\
\hline & where IdentityMatrix is a NUMSERIES-by-NUMSERIES identity matrix. \\
\hline & You can configure Design as a matrix if NUMSERIES \(=1\) or as a cell array if NUMSERIES \(\geq 1\). \\
\hline & - If Design is a cell array and NUMSERIES \(=1\), each cell contains a NUMPARAMS row vector. \\
\hline & - If Design is a cell array and NUMSERIES > 1 , each cell contains a NUMSERIES-by-NUMPARAMS matrix. \\
\hline Examples & See "Multivariate Normal Regression" on page 9-18, "Least-Squares Regression" on page 9-18, "Covariance-Weighted Least Squares" on page 9-19, "Feasible Generalized Least Squares" on page 9-20, and "Seemingly Unrelated Regression" on page 9-21. \\
\hline
\end{tabular}

See Also
ecmlsrmle | mvnrmle | mvnrobj

Purpose
Fisher information matrix for multivariate normal regression model
```

Syntax
Fisher = ecmmvnrfish(Data, Design, Covariance, Method,
MatrixFormat, CovarFormat)

```

\section*{Arguments}
\(\left.\left.\begin{array}{ll}\text { Covariance } & \begin{array}{l}\text { NUMSERIES-by-NUMSERIES matrix of estimates } \\ \text { for the covariance of the residuals of the } \\ \text { regression. }\end{array} \\ \text { Method } \\ \text { (Optional) String that identifies method of } \\ \text { calculation for the information matrix: }\end{array}\right] \begin{array}{l}\text { - hessian - Default method. Use the expected } \\ \\ \\ \text { Hessian matrix of the observed log-likelihood } \\ \text { function. This method is recommended since } \\ \text { the resultant standard errors incorporate the } \\ \text { increased uncertainties due to missing data. } \\ \text { - fisher - Use the Fisher information matrix. }\end{array}\right\}\)

\footnotetext{
Description
Fisher = ecmmvnrfish(Data, Design, Covariance, Method, MatrixFormat, CovarFormat) computes a Fisher information matrix
}
based on current maximum likelihood or least-squares parameter estimates that account for missing data.

Fisher is a NUMPARAMS-by-NUMPARAMS Fisher information matrix or Hessian matrix. The size of NUMPARAMS depends on MatrixFormat and on current parameter estimates. If MatrixFormat = 'full',

NUMPARAMS = NUMSERIES * (NUMSERIES + 3)/2

If MatrixFormat = 'paramonly',
NUMPARAMS = NUMSERIES

Note ecmmvnrfish operates slowly if you calculate the full Fisher information matrix.

\author{
Examples
}

See Also ecmnmle | ecmnstd

\section*{Purpose}

Multivariate normal regression with missing data
```

Syntax
[Parameters, Covariance, Resid, Info] = ecmmvnrmle(Data, Design,
MaxIterations, TolParam, TolObj, ParamO,
Covar0, CovarFormat)

```

\section*{Arguments}

TolParam

TolObj

Param0
(Optional) Convergence tolerance for estimation algorithm based on changes in model parameter estimates. Default value is sqrt (eps) which is about \(1.0 \mathrm{e}-8\) for double precision. The convergence test for changes in model parameters is
\[
\| \operatorname{Param}_{k}-\text { Param}_{k-1} \|<\text { TolParam } \times\left(1+\left\|\operatorname{Param}_{k}\right\|\right)
\]
where Param represents the output Parameters, and iteration \(k=2,3, \ldots\). Convergence is assumed when both the TolParam and TolObj conditions are satisfied. If both TolParam \(\leq\) 0 and TolObj \(\leq 0\), do the maximum number of iterations (MaxIterations), whatever the results of the convergence tests.
(Optional) Convergence tolerance for estimation algorithm based on changes in the objective function. Default value is eps \(\wedge 3 / 4\) which is about \(1.0 \mathrm{e}-12\) for double precision. The convergence test for changes in the objective function is
\[
\left|O b j_{k}-O b j_{k-1}\right|<\operatorname{TolObj} \times\left(1+\left|O b j_{k}\right|\right)
\]
for iteration \(k=2,3, \ldots\). Convergence is assumed when both the TolParam and TolObj conditions are satisfied. If both TolParam \(\leq\) 0 and TolObj \(\leq 0\), do the maximum number of iterations (MaxIterations), whatever the results of the convergence tests.
(Optional) NUMPARAMS-by-1 column vector that contains a user-supplied initial estimate for the parameters of the regression model.
\begin{tabular}{ll} 
Covaro & \begin{tabular}{l} 
(Optional) NUMSERIES-by-NUMSERIES matrix \\
that contains a user-supplied initial or known \\
estimate for the covariance matrix of the \\
regression residuals.
\end{tabular} \\
CovarFormat \(\quad\)\begin{tabular}{l} 
(Optional) String that specifies the format for \\
the covariance matrix. The choices are:
\end{tabular}
\end{tabular}
- 'full' - Default method. Compute the full covariance matrix.
- 'diagonal ' - Force the covariance matrix to be a diagonal matrix.

\section*{Description}
[Parameters, Covariance, Resid, Info] = ecmmvnrmle(Data, Design, MaxIterations, TolParam, TolObj, Param0, Covaro, CovarFormat) estimates a multivariate normal regression model with missing data. The model has the form
\[
\text { Data }_{k} \square N\left(\text { Design }_{k} \times \text { Parameters, Covariance }\right)
\]
for samples \(k=1, \ldots\), NUMSAMPLES.
ecmmvnrmle estimates a NUMPARAMS-by- 1 column vector of model parameters called Parameters, and a NUMSERIES-by-NUMSERIES matrix of covariance parameters called Covariance.
ecmmvnrmle(Data, Design) with no output arguments plots the log-likelihood function for each iteration of the algorithm.

To summarize the outputs of ecmmvnrmle:
- Parameters is a NUMPARAMS-by-1 column vector of estimates for the parameters of the regression model.
- Covariance is a NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of the regression model's residuals.
- Resid is a NUMSAMPLES-by-NUMSERIES matrix of residuals from the regression. For any missing values in Data, the corresponding
residual is the difference between the conditionally imputed value for Data and the model, that is, the imputed residual.

Note The covariance estimate Covariance cannot be derived from the residuals.

Another output, Info, is a structure that contains additional information from the regression. The structure has these fields:
- Info. Obj - A variable-extent column vector, with no more than MaxIterations elements, that contains each value of the objective function at each iteration of the estimation algorithm. The last value in this vector, Obj (end), is the terminal estimate of the objective function. If you do maximum likelihood estimation, the objective function is the log-likelihood function.
- Info.PrevParameters - NUMPARAMS-by-1 column vector of estimates for the model parameters from the iteration just prior to the terminal iteration.nfo. PrevCovariance - NUMSERIES-by-NUMSERIES matrix of estimates for the covariance parameters from the iteration just prior to the terminal iteration.
ecmmvnrmle does not accept an initial parameter vector, since the parameters are estimated directly from the first iteration onward.

You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if NUMSERIES \(\geq 1\).
- If Design is a cell array and NUMSERIES \(=1\), each cell contains a NUMPARAMS row vector.
- If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-by-NUMPARAMS matrix.

These points concern how Design handles missing data:
- Although Design should not have NaN values, ignored samples due to NaN values in Data are also ignored in the corresponding Design array.
- If Design is a 1 -by- 1 cell array, which has a single Design matrix for each sample, no NaN values are permitted in the array. A model with this structure must have NUMSERIES \(\geq\) NUMPARAMS with rank(Design\{1\}) = NUMPARAMS.
- ecmmvnrmle is more strict than mvnrmle about the presence of NaN values in the Design array.

Use the estimates in the optional output structure Info for diagnostic purposes.
\begin{tabular}{ll} 
References & \begin{tabular}{l} 
Roderick J. A. Little and Donald B. Rubin, Statistical Analysis with \\
\\
Missing Data, 2nd ed., John Wiley \& Sons, Inc., 2002. \\
\\
Xiao-Li Meng and Donald B. Rubin, "Maximum Likelihood Estimation \\
via the ECM Algorithm," Biometrika, Vol. 80, No. 2, 1993, pp. 267-278.
\end{tabular} \\
& \begin{tabular}{l} 
Joe Sexton and Anders Rygh Swensen, "ECM Algorithms that Converge \\
at the Rate of EM," Biometrika, Vol. 87, No. 3, 2000, pp. 651-662.
\end{tabular} \\
& \begin{tabular}{l} 
A. P. Dempster, N.M. Laird, and D. B. Rubin, "Maximum Likelihood \\
from Incomplete Data via the EM Algorithm," Journal of the Royal
\end{tabular} \\
& Statistical Society, Series B, Vol. 39, No. 1, 1977, pp. 1-37.
\end{tabular}

Purpose Log-likelihood function for multivariate normal regression with missing data

Syntax \(\quad \begin{aligned} & \text { Objective }=\text { CovarFormat })\end{aligned}\)

\section*{Arguments}
\begin{tabular}{ll} 
Data & \begin{tabular}{l} 
NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES \\
samples of a NUMSERIES-dimensional random vector. \\
Missing values are represented as NaNs. Only \\
samples that are entirely NaNs are ignored. (To \\
ignore samples with at least one NaN, use mvnrmle.)
\end{tabular} \\
Design & \begin{tabular}{l} 
A matrix or a cell array that handles two model \\
structures:
\end{tabular} \\
& - If NUMSERIES = 1, Design is a \\
& NUMSAMPLES-by-NUMPARAMS matrix with \\
& known values. This structure is the standard form \\
& for regression on a single series.
\end{tabular}

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of the residuals of the regression.

CovarFormat (Optional) String that specifies the format for the covariance matrix. The choices are:
- 'full' - Default method. The covariance matrix is a full matrix.
- 'diagonal' - The covariance matrix is a diagonal matrix.

\section*{Description}

Notes

\section*{Examples}

See Also ecmmvnrmle | mvnrmle | mvnrobj

\title{
Purpose Evaluate standard errors for multivariate normal regression model
}

\author{
Syntax [StdParameters, StdCovariance] = ecmmvnrstd(Data, Design, Covariance, Method, CovarFormat)
}

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Data & NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a NUMSERIES-dimensional random vector Missing values are represented as NaNs. Only samples that are entirely NaNs are ignored. (To ignore samples with at least one NaN, use mvnrstd.) \\
\hline \multirow[t]{4}{*}{Design} & A matrix or a cell array that handles two model structures: \\
\hline & - If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS matrix with known values. This structure is the standard form for regression on a single series. \\
\hline & - If NUMSERIES \(\geq 1\), Design is a cell array. The cell array contains either one or NUMSAMPLES cells. Each cell contains a NUMSERIES-by-NUMPARAMS matrix of known values. \\
\hline & If Design has a single cell, it is assumed to have the same Design matrix for each sample. If Design has more than one cell, each cell contains a Design matrix for each sample. \\
\hline Covariance & NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of the regression residuals. \\
\hline
\end{tabular}

Method (Optional) String that identifies method of calculation for the information matrix:
- hessian - Default method. Use the expected Hessian matrix of the observed log-likelihood function. This method is recommended since the resultant standard errors incorporate the increased uncertainties due to missing data.
- fisher - Use the Fisher information matrix.

CovarFormat (Optional) String that specifies the format for the covariance matrix. The choices are:
- 'full' - Default method. The covariance matrix is a full matrix.
- 'diagonal' - The covariance matrix is a diagonal matrix.

\section*{Description}
[StdParameters, StdCovariance] = ecmmvnrstd(Data, Design, Covariance, Method, CovarFormat) evaluates standard errors for a multivariate normal regression model with missing data. The model has the form
```

Data $_{k} \square N\left(\right.$ Design $_{k} \times$ Parameters, Covariance $)$

```
for samples \(k=1, \ldots\), NUMSAMPLES.
ecmmvnrstd computes two outputs:
- StdParameters is a NUMPARAMS-by-1 column vector of standard errors for each element of Parameters, the vector of estimated model parameters.
- StdCovariance is a NUMSERIES-by-NUMSERIES matrix of standard errors for each element of Covariance, the matrix of estimated covariance parameters.

Note ecmmvnrstd operates slowly when you calculate the standard errors associated with the covariance matrix Covariance.
\(\left.\begin{array}{ll}\text { Notes } & \begin{array}{l}\text { You can configure Design as a matrix if NUMSERIES }=1 \text { or as a cell } \\
\text { array if NUMSERIES } \geq 1 .\end{array} \\
& \text { - If Design is a cell array and NUMSERIES }=1 \text {, each cell contains a } \\
& \text { NUMPARAMS row vector. }\end{array}\right]\)\begin{tabular}{l} 
- If Design is a cell array and NUMSERIES > 1, each cell contains a \\
NUMSERIES-by-NUMPARAMS matrix.
\end{tabular}

\section*{Purpose}

Fisher information matrix
Syntax Fisher = ecmnfish(Data, Covariance, InvCovariance, MatrixFormat)
Arguments
\begin{tabular}{ll} 
Data & \begin{tabular}{l} 
NUMSAMPLES-by-NUMSERIES matrix of observed \\
multivariate normal data
\end{tabular} \\
Covariance & \begin{tabular}{l} 
NUMSERIES-by-NUMSERIES matrix with \\
covariance estimate of Data
\end{tabular} \\
InvCovariance & \begin{tabular}{l} 
(Optional) Inverse of covariance matrix: \\
inv(Covariance)
\end{tabular} \\
MatrixFormat & \begin{tabular}{l} 
(Optional) String that identifies parameters \\
included in the Fisher information matrix. If \\
MatrixFormat = [] or ', the default method
\end{tabular} \\
& \begin{tabular}{l} 
(ull is used. The parameter choices are
\end{tabular}
\end{tabular}
- full - (Default) Compute full Fisher information matrix.
- meanonly - Compute only components of the Fisher information matrix associated with the mean.

\section*{Description}

Fisher = ecmnfish(Data, Covariance, InvCovariance, MatrixFormat) computes a NUMPARAMS-by-NUMPARAMS Fisher information matrix based on current parameter estimates, where

NUMPARAMS \(=\) NUMSERIES*(NUMSERIES + 3)/2
if MatrixFormat = 'full' and
NUMPARAMS = NUMSERIES
if MatrixFormat = 'meanonly'.
The data matrix has NaNs for missing observations. The multivariate normal model has

NUMPARAMS = NUMSERIES + NUMSERIES*(NUMSERIES + 1)/2
distinct parameters. Therefore, the full Fisher information matrix is of size NUMPARAMS-by-NUMPARAMS. The first NUMSERIES parameters are estimates for the mean of the data in Mean, and the remaining NUMSERIES*(NUMSERIES + 1)/2 parameters are estimates for the lower-triangular portion of the covariance of the data in Covariance, in row-major order.

If MatrixFormat = 'meanonly', the number of parameters is reduced to NUMPARAMS = NUMSERIES, where the Fisher information matrix is computed for the mean parameters only. In this format, the routine executes fastest.

This routine expects the inverse of the covariance matrix as an input. If you do not pass in the inverse, the routine computes it. You can obtain an approximation for the lower-bound standard errors of estimation of the parameters from

Stderr = (1.0/sqrt(NumSamples)) .* sqrt(diag(inv(Fisher)));
Because of missing information, these standard errors may be smaller than the estimated standard errors derived from the expected Hessian matrix. To see the difference, compare to standard errors calculated with ecmnhess.

See Also ecmnhess \| ecmnmle

\section*{Purpose}

Hessian of negative log-likelihood function
Syntax Hessian = ecmnhess(Data, Covariance, InvCovariance, MatrixFormat)

\section*{Arguments}
\begin{tabular}{ll} 
Data & \begin{tabular}{l} 
NUMSAMPLES-by-NUMSERIES matrix of observed \\
multivariate normal data
\end{tabular} \\
Covariance & \begin{tabular}{l} 
NUMSERIES-by-NUMSERIES matrix with \\
covariance estimate of Data
\end{tabular} \\
InvCovariance & \begin{tabular}{l} 
(Optional) Inverse of covariance matrix: \\
inv(Covariance)
\end{tabular} \\
MatrixFormat & \begin{tabular}{l} 
(Optional) String that identifies parameters \\
included in the Hessian matrix. If \\
MatrixFormat = [] or ', the default method \\
full is used. The parameter choices are
\end{tabular}
\end{tabular}
- full - (Default) Compute full Hessian matrix.
- meanonly - Compute only components of the Hessian matrix associated with the mean.
```

Description Hessian = ecmnhess(Data, Covariance, InvCovariance, MatrixFormat) computes a NUMPARAMS -by-NUMPARAMS Hessian matrix of the observed negative log-likelihood function based upon current parameter estimates, where

```
```

NUMPARAMS = NUMSERIES*(NUMSERIES + 3)/2

```
NUMPARAMS = NUMSERIES*(NUMSERIES + 3)/2
if MatrixFormat = 'full' and
NUMPARAMS = NUMSERIES
```

if MatrixFormat = 'meanonly'.
This routine is very slow for NUMSERIES > 10 or NUMSAMPLES > 1000 .
The data matrix has NaNs for missing observations. The multivariate normal model has

NUMPARAMS $=$ NUMSERIES + NUMSERIES*(NUMSERIES + 1)/2
distinct parameters. Therefore, the full Hessian is a NUMPARAMS-by-NUMPARAMS matrix.

The first NUMSERIES parameters are estimates for the mean of the data in Mean and the remaining NUMSERIES* (NUMSERIES + 1)/2 parameters are estimates for the lower-triangular portion of the covariance of the data in Covariance, in row-major order.
If MatrixFormat = 'meanonly', the number of parameters is reduced to NUMPARAMS = NUMSERIES, where the Hessian is computed for the mean parameters only. In this format, the routine executes fastest.

This routine expects the inverse of the covariance matrix as an input. If you do not pass in the inverse, the routine computes it.

The equation
Stderr = (1.0/sqrt(NumSamples)) .* sqrt(diag(inv(Hessian)));
provides an approximation for the observed standard errors of estimation of the parameters.

Because of the additional uncertainties introduced by missing information, these standard errors may be larger than the estimated standard errors derived from the Fisher information matrix. To see the difference, compare to standard errors calculated from ecmnfish.

See Also
 ecmnfish | ecmnmle

Purpose Initial mean and covariance

```
Syntax
[Mean, Covariance] = ecmninit(Data, InitMethod)
```


Arguments

Description

Algorithms
[Mean, Covariance] = ecmninit(Data, InitMethod) creates initial mean and covariance estimates for the function ecmnmle. Mean is a NUMSERIES-by- 1 column vector estimate for the mean of Data. Covariance is a NUMSERIES-by-NUMSERIES matrix estimate for the covariance of Data.

Model

The general model is

$$
Z \square N(\text { Mean, Covariance }),
$$

where each row of Data is an observation of Z.

ecmninit

Each observation of Z is assumed to be iid (independent, identically distributed) multivariate normal, and missing values are assumed to be missing at random (MAR).

Initialization Methods

This routine has three initialization methods that cover most cases, each with its advantages and disadvantages.

nanskip

The nanskip method works well with small problems (fewer than 10 series or with monotone missing data patterns). It skips over any records with NaNs and estimates initial values from complete-data records only. This initialization method tends to yield fastest convergence of the ECM algorithm. This routine switches to the twostage method if it determines that significant numbers of records contain NaN .

twostage

The twostage method is the best choice for large problems (more than 10 series). It estimates the mean for each series using all available data for each series. It then estimates the covariance matrix with missing values treated as equal to the mean rather than as NaNs. This initialization method is quite robust but tends to result in slower convergence of the ECM algorithm.

diagonal

The diagonal method is a worst-case approach that deals with problematic data, such as disjoint series and excessive missing data (more than 33% missing data). Of the three initialization methods, this method causes the slowest convergence of the ECM algorithm.

See Also

Purpose

Mean and covariance of incomplete multivariate normal data

```
Syntax
[Mean, Covariance] = ecmnmle(Data, InitMethod, MaxIterations,
Tolerance, MeanO, CovarO)
```


Arguments

Tolerance	(Optional) Convergence tolerance for the
	ECM algorithm (Default =1.0e-8.) If Tolerance ≤ 0, perform maximum iterations specified by MaxIterations and do not evaluate the objective function at each step unless in display mode, as described below.
Meano	(Optional) Initial NUMSERIES-by-1 column vector estimate for the mean. If you leave MeanO unspecified ([]), the method specified by InitMethod is used. If you specify Mean0, you must also specify Covaro.
Covaro	(Optional) Initial NUMSERIES-by-NUMSERIES matrix estimate for the covariance, where the input matrix must be positive-definite. If you leave Covaro unspecified ([]), the method specified by InitMethod is used. If you specify Covar0, you must also specify Mean0.

Description

[Mean, Covariance] = ecmnmle(Data, InitMethod, MaxIterations, Tolerance, Mean0, Covar0) estimates the mean and covariance of a data set. If the data set has missing values, this routine implements the ECM algorithm of Meng and Rubin [2] with enhancements by Sexton and Swensen [3]. ECM stands for expectation conditional maximization, a conditional maximization form of the EM algorithm of Dempster, Laird, and Rubin [4].
This routine has two operational modes.

Display Mode

With no output arguments, this mode displays the convergence of the ECM algorithm. It estimates and plots objective function values for each iteration of the ECM algorithm until termination, as shown in the following plot.

Display mode can determine MaxIter and Tolerance values or serve as a diagnostic tool. The objective function is the negative log-likelihood function of the observed data and convergence to a maximum likelihood estimate corresponds with minimization of the objective.

Estimation Mode

With output arguments, this mode estimates the mean and covariance via the ECM algorithm.

Examples

To see an example of how to use ecmnmle, run the program ecmguidemo.

Algorithms

Model

The general model is

$$
Z \square N(\text { Mean, Covariance }),
$$

where each row of Data is an observation of Z.
Each observation of Z is assumed to be iid (independent, identically distributed) multivariate normal, and missing values are assumed to be missing at random (MAR). See Little and Rubin [1] for a precise definition of MAR.

This routine estimates the mean and covariance from given data. If data values are missing, the routine implements the ECM algorithm of Meng and Rubin [2] with enhancements by Sexton and Swensen [3].

If a record is empty (every value in a sample is NaN), this routine ignores the record because it contributes no information. If such records exist in the data, the number of nonempty samples used in the estimation is \leq NumSamples.

The estimate for the covariance is a biased maximum likelihood estimate (MLE). To convert to an unbiased estimate, multiply the covariance by Count/(Count - 1), where Count is the number of nonempty samples used in the estimation.

Requirements

This routine requires consistent values for NUMSAMPLES and NUMSERIES with NUMSAMPLES > NUMSERIES. It must have enough nonmissing values to converge. Finally, it must have a positive-definite covariance matrix. Although the references provide some necessary and sufficient conditions, general conditions for existence and uniqueness of solutions in the missing-data case do not exist. The main failure mode is an ill-conditioned covariance matrix estimate. Nonetheless, this routine works for most cases that have less than 15% missing data (a typical upper bound for financial data).

Initialization Methods

This routine has three initialization methods that cover most cases, each with its advantages and disadvantages. The ECM algorithm always converges to a minimum of the observed negative log-likelihood function. If you override the initialization methods, you must ensure that the initial estimate for the covariance matrix is positive-definite.

The following is a guide to the supported initialization methods.

nanskip

The nanskip method works well with small problems (fewer than 10 series or with monotone missing data patterns). It skips over any records with NaNs and estimates initial values from complete-data records only. This initialization method tends to yield fastest convergence of the ECM algorithm. This routine switches to the twostage method if it determines that significant numbers of records contain NaN.

twostage

The twostage method is the best choice for large problems (more than 10 series). It estimates the mean for each series using all available data for each series. It then estimates the covariance matrix with missing values treated as equal to the mean rather than as NaNs. This initialization method is quite robust but tends to result in slower convergence of the ECM algorithm.

diagonal

The diagonal method is a worst-case approach that deals with problematic data, such as disjoint series and excessive missing data (more than 33% of data missing). Of the three initialization methods, this method causes the slowest convergence of the ECM algorithm. If problems occur with this method, use display mode to examine convergence and modify either MaxIterations or Tolerance, or try alternative initial estimates with Mean0 and Covar0. If all else fails, try

```
MeanO = zeros(NumSeries);
CovarO = eye(NumSeries,NumSeries);
```

Given estimates for mean and covariance from this routine, you can estimate standard errors with the companion routine ecmnstd.

Convergence

The ECM algorithm does not work for all patterns of missing values. Although it works in most cases, it can fail to converge if the covariance
becomes singular. If this occurs, plots of the log-likelihood function tend to have a constant upward slope over many iterations as the log of the negative determinant of the covariance goes to zero. In some cases, the objective fails to converge due to machine precision errors. No general theory of missing data patterns exists to determine these cases. An example of a known failure occurs when two time series are proportional wherever both series contain nonmissing values.

References [1] Little, Roderick J. A. and Donald B. Rubin, Statistical Analysis with Missing Data, 2nd ed., John Wiley \& Sons, Inc., 2002.
[2] Meng, Xiao-Li and Donald B. Rubin, "Maximum Likelihood Estimation via the ECM Algorithm," Biometrika, Vol. 80, No. 2, 1993, pp. 267-278.
[3] Sexton, Joe and Anders Rygh Swensen, "ECM Algorithms that Converge at the Rate of EM," Biometrika, Vol. 87, No. 3, 2000, pp. 651-662.
[4] Dempster, A. P., N. M. Laird, and Donald B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm," Journal of the Royal Statistical Society, Series B, Vol. 39, No. 1, 1977, pp. 1-37.
See Also ecmnfish | ecmnhess | ecmninit | ecmnobj | ecmnstd

Purpose	Multivariate normal negative log-likelihood function
Syntax	Objective = ecmnobj (Data, Mean, Covariance, CholCovariance)
Arguments	Data
	Mean
	NUMSAMPLES-by-NUMSERIES matrix of observed multivariate normal data NUMSERIES-by-1 column vector with mean estimate of Data
CholCovariance	NUMSERIES-by-NUMSERIES matrix with covariance estimate of Data (Optional) Cholesky decomposition of covariance matrix: chol (Covariance)

Description

See Also

Objective = ecmnobj(Data, Mean, Covariance, CholCovariance) computes the value of the observed negative log-likelihood function over the data given current estimates for the mean and covariance of the data.

The data matrix has NaNs for missing observations. The inputs Mean and Covariance are current estimates for model parameters.

This routine expects the Cholesky decomposition of the covariance matrix as an input. The routine computes the Cholesky decomposition if you do not explicitly specify it.
chol | ecmnmle

Purpose

Syntax [StdMean, StdCovariance] = ecmnstd(Data, Mean, Covariance, Method)

Description

[StdMean, StdCovariance] = ecmnstd(Data, Mean, Covariance, Method) computes standard errors for mean and covariance of incomplete data.

StdMean is a NUMSERIES-by-1 column vector of standard errors of estimates for each element of the mean vector Mean.

StdCovariance is a NUMSERIES-by-NUMSERIES matrix of standard errors of estimates for each element of the covariance matrix Covariance.

Use this routine after estimating the mean and covariance of Data with ecmnmle. If the mean and distinct covariance elements are treated as the parameter θ in a complete-data maximum-likelihood estimation, then as the number of samples increases, θ attains asymptotic normality such that

$$
\theta-E[\theta] \square N\left(0, I^{-1}(\theta)\right),
$$

where $E[\theta]$ is the mean and $I(\theta)$ is the Fisher information matrix.
With missing data, the Hessian $H(\theta)$ is a good approximation for the Fisher information (which can only be approximated when data is missing).

It is usually advisable to use the default Method since the resultant standard errors incorporate the increased uncertainty due to missing data. In particular, standard errors calculated with the Hessian are generally larger than standard errors calculated with the Fisher information matrix.

Note This routine is very slow for NUMSERIES > 10 or NUMSAMPLES > 1000.

See Also

ecmnmle

Purpose Effective rate of return
Syntax

Return = effrr(Rate, NumPeriods)
Arguments
Rate Annual percentage rate. Enter as a decimal fraction.
NumPeriods Number of compounding periods per year, an integer.
Description Return = effrr(Rate, NumPeriods) calculates the annual effectiverate of return. Compounding continuously returns Return equivalentto ($e^{\wedge R a t e-1) . ~}$
Examples Compute the Annual Effective Rate of ReturnThis example shows how to find the effective annual rate of returnbased on an annual percentage rate of 9% compounded monthly.
Return $=$ effrr(0.09, 12)
Return =
0.0938
See Also nomrr

Purpose

Compute expected lower partial moments for normal asset returns

Syntax

```
elpm(Mean, Sigma)
elpm(Mean, Sigma, MAR)
elpm(Mean, Sigma, MAR, Order)
oment = elpm(Mean, Sigma, MAR, Order)
```


Arguments

Mean	NUMSERIES vector with mean returns for a collection of NUMSERIES assets.
Sigma	NUMSERIES vector with standard deviation of returns for a collection of NUMSERIES assets.
MAR	(Optional) Scalar minimum acceptable return (default MAR $=0$). This is a cutoff level of return such that all returns above MAR contribute nothing to the lower partial moment.
Order	(Optional) Either a scalar or a NUMORDERS vector of nonnegative integer moment orders. If no order specified, default Order = 0, which is the shortfall probability. This function will not work for negative or noninteger orders.

Description

Given NUMSERIES asset returns with a vector of mean returns in a NUMSERIES vector Mean, a vector of standard deviations of returns in a NUMSERIES vector Sigma, a scalar minimum acceptable return MAR, and one or more nonnegative integer moment orders in a NUMORDERS vector Order, compute expected lower partial moments (elpm) relative to MAR for each asset in a NUMORDERS-by-NUMSERIESmatrix Moment.

The output, Moment, is a NUMORDERS-by-NUMSERIES matrix of expected lower partial moments with NUMORDERS Orders and NUMSERIES series, that is, each row contains expected lower partial moments for a given order.

Note To compute upper partial moments, just reverse the signs of both the input Mean and MAR (do not reverse the signs of either Sigma or the output). This function computes expected lower partial moments with the mean and standard deviation of normally distributed asset returns. To compute sample lower partial moments from asset returns which have no distributional assumptions, use lpm.

Examples See "Expected Lower Partial Moments" on page 7-15. See Also lpm

Purpose
 Compute expected maximum drawdown for Brownian motion
 Syntax
 Arguments

Description

Scalar. Drift term of a Brownian motion with drift.
Sigma Scalar. Diffusion term of a Brownian motion with drift.

A time period of interest or a vector of times.
$E D D=$ emaxdrawdown(Mu, Sigma, T) computes the expected maximum drawdown for a Brownian motion for each time period in T using the following equation:

$$
d X(t)=\mu d t+\sigma d W(t)
$$

If the Brownian motion is geometric with the stochastic differential equation

$$
d S(t)=\mu_{0} S(t) d t+\sigma_{0} S(t) d W(t)
$$

then use Ito's lemma with $X(t)=\log (S(t))$ such that

$$
\begin{aligned}
\mu & =\mu_{0}-0.5 \sigma_{0}{ }^{2}, \\
\sigma & =\sigma_{0}
\end{aligned}
$$

converts it to the form used here.
The output argument ExpDrawdown is computed using an interpolation method. Values are accurate to a fraction of a basis point. Maximum drawdown is nonnegative since it is the change from a peak to a trough.

Note To compare the actual results from maxdrawdown with the expected results of emaxdrawdown, set the Format input argument of maxdrawdown to either of the nondefault values ('arithmetic' or 'geometric '). These are the only two formats emaxdrawdown supports.

Examples See "Expected Maximum Drawdown" on page 7-21.
References Malik Magdon-Ismail, Amir F. Atiya, Amrit Pratap, and Yaser S. Abu-Mostafa, "On the Maximum Drawdown of a Brownian Motion," Journal of Applied Probability, Volume 41, Number 1, March 2004, pp. 147-161.

See Also

maxdrawdown

Purpose Last date entry

Syntax end

Description end returns the index to the last date entry in a financial time series object.

Examples Consider a financial time series object called fts:
fts =
desc: DJI30MAR94.dat
freq: Daily (1)
'dates: (20)' 'Open: (20)'
'04-Mar-1994' [3830.9]
'07-Mar-1994' [3851.7]
'08-Mar-1994' [3858.5]
'09-Mar-1994' [3854]
'10-Mar-1994' [3852.6]
'11-Mar-1994' [3832.6]
'14-Mar-1994' [3870.3]
'16-Mar-1994' [3851]
'17-Mar-1994' [3853.6]
'18-Mar-1994' [3865.4]
'21-Mar-1994' [3878.4]
'22-Mar-1994' [3865.7]
'23-Mar-1994' [3868.9]
'24-Mar-1994' [3849.9]
'25-Mar-1994' [3827.1]
'28-Mar-1994' [3776.5]
'29-Mar-1994' [3757.2]
'30-Mar-1994' [3688.4]
'31-Mar-1994' [3639.7]
The command fts(15:end) returns

```
ans =
    desc: DJI30MAR94.dat
    freq: Daily (1)
    'dates: (6)' 'Open: (6)
    '24-Mar-1994' [ 3849.9]
    '25-Mar-1994' [ 3827.1]
    '28-Mar-1994' [ 3776.5]
    '29-Mar-1994' [ 3757.2]
    '30-Mar-1994' [ 3688.4]
    '31-Mar-1994' [ 3639.7]
```

See Also subsasgn | subsref | end

Purpose Last date of month

```
Syntax DayMonth = eomdate(Date)
DayMonth = eomdate(Year, Month)
```

Description DayMonth = eomdate(Date) returns the serial date number of the last date of the month for the given Date. Enter Date as a four-digit integer or a date string.

DayMonth = eomdate(Year, Month) returns the serial date number of the last date of the month for the given year and month. Enter Year as a four-digit integer; enter Month as an integer from 1 through 12.

Either input argument can contain multiple values, but if so, the other input must contain the same number of values or a single value that applies to all. For example, if Year is a 1-by- n vector of integers, then Month must be a 1 -by- n vector of integers or a single integer. DayMonth is then a 1 -by- n vector of date numbers.
Use the function datestr to convert serial date numbers to formatted date strings or datenum to convert date and time to serial date number.

```
Examples DayMonth = eomdate(2001, 2)
DayMonth =
    7 3 0 9 1 0
datestr(DayMonth)
ans =
28-Feb-2001
Year = [2002 2003 2004 2005];
DayMonth = eomdate(Year, 2)
DayMonth =
datestr(DayMonth)
ans =
```

 \(\begin{array}{llll}731275 & 731640 & 732006 & 732371\end{array}\)

eomdate

$$
\begin{aligned}
& 28-\text { Feb- } 2002 \\
& 28-\text { Feb-2003 } \\
& 29-\text { Feb- } 2004 \\
& 28-\text { Feb- } 2005
\end{aligned}
$$

See Also day | eomday | lbusdate | month | year

Purpose Multiple financial times series object equality

```
Syntax
tsobj_1 == tsobj_2
iseq = eq(tsobj_1, tsobj_2)
```


Arguments

tsobj_1	Financial time series object.
tsobj_2	Financial time series object.

Description tsobj_1 == tsobj_2 returns True (1) if both financial time series

 objects have the same dates, frequencies, data series names, and data values. Otherwise, eq returns False (0).Note The data series names are case-sensitive, but do not have to be in the same order within each object.

Examples

Determine Multiple Financial Times Series Object Equality
This example shows how to determine if multiple financial times series objects are equal.

```
load disney
dis == dis
```

See Also isequal

Portfolio.estimateAssetMoments

Purpose

Estimate mean and covariance of asset returns from data

Syntax

Description

Tips

Input
Arguments
obj = estimateAssetMoments(obj,AssetReturns)
obj = estimateAssetMoments(obj,AssetReturns,varargin)
obj = estimateAssetMoments(obj, AssetReturns) to estimate the mean and covariance of asset returns from data.
obj = estimateAssetMoments(obj,AssetReturns,varargin) to estimate mean and covariance of asset returns from data with additional options specified by one or more Name, Value pair arguments.

Use dot notation to estimate the mean and covariance of asset returns from data:
obj = obj.estimateAssetMoments(AssetReturns, varargin);

obi

Portfolio object [Portfolio].

AssetReturns

Either a matrix or fints object that contains asset data that can be converted to asset returns [NumSamples-by-NumAssets matrix].

Note This method estimates the mean and covariance of asset returns from either price or return data. Data can reside in a NumSamples-by-NumAssets matrix of NumSamples prices or returns. This matrix represents a given periodicity for a collection of NumAssets assets or a fints object with NumSamples observations and NumAssets time series.

Name-Value Pair Arguments for varargin

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can

Portfolio.estimateAssetMoments

specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, Valuen.

'DataFormat'

If the input data are prices, these values can be converted into returns with the DataFormat flag, where the default format is assumed to be returns. Be careful using price data because portfolio optimization requires total returns and not simply price returns.

Acceptable values for DataFormat are:

- 'Returns' - Data in AssetReturns contains asset total returns.
- 'Prices' - Data in AssetReturns contains asset total return prices.

Default: 'Returns'

'MissingData'

To handle time series with missing data (indicated with NaN values), the MissingData flag either uses the ECM algorithm to obtain maximum likelihood estimates in the presences of NaN values or excludes samples with NaN values. Since the default is false, it is necessary to specify MissingData as true to use the ECM algorithm.

Acceptable values for MissingData are:

- false - Do not use ECM algorithm to handle NaN values (just exclude NaN values).
- true - Use ECM algorithm to handle NaN values.

Portfolio.estimateAssetMoments

For more information on the ECM algorithm, see ecmnmle and "Multivariate Normal Regression" on page 9-2.

Default: false

'GetAssetList'

If a fints object is passed into this method and the GetAssetList flag is true, the series names from the fints object are used as asset names in obj.AssetList.

If a matrix is passed and the GetAssetList flag is true, default asset names are created based on the AbstractPortfolio property defaultforAssetList, which is currently 'Asset'.

If the GetAssetList flag is false, no action occurs, which is the default behavior.

Acceptable values for GetAssetList are:

- false - Do not extract or create asset names.
- true - Extract or create asset names from fints object.

Default: false

Output obj

Arguments
Updated Portfolio object [Portfolio].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Portfolio.estimateAssetMoments

Examples
 To illustrate using the estimateAssetMoments method, generate data with estimated mean and covariance identical to the input function in the variable X, a price series is created in the variable Y :
 ```m = [0.05; 0.1; 0.12; 0.18]; \\ C = [0.0064 0.00408 0.00192 0; \\ 0.00408 0.0289 0.0204 0.0119; \\ 0.00192 0.0204 0.0576 0.0336; \\ 0 0.0119 0.0336 0.1225]; \\ m = m/12; \\ C = C/12; \\ X = portsim(m', C, 120); \\ Y = ret2tick(X);```

Estimate Mean and Covariance of Asset Returns from Data random samples of 120 observations of asset returns for four assets from the mean and covariance of asset returns in the variables m and C with the portsim function. The default behavior portsim creates simulated moments m and C . In addition to a return series created by the portsim

Given asset returns and prices in the variables X and Y from above, the following examples demonstrate equivalent ways to estimate asset moments for the Portfolio object. A Portfolio object is created in p with the moments of asset returns set directly in the constructor and a second Portfolio object is created in q to obtain the mean and covariance of asset returns from asset return data in X using the estimateAssetMoments method.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
X = portsim(m', C, 120);
```

```
p = Portfolio('mean',m,'covar',C);
q = Portfolio;
q = q.estimateAssetMoments(X);
[passetmean, passetcovar] = p.getAssetMoments
[qassetmean, qassetcovar] = q.getAssetMoments
passetmean =
    0.0042
    0.0083
    0.0100
    0.0150
passetcovar =
\begin{tabular}{rrrr}
0.0005 & 0.0003 & 0.0002 & 0 \\
0.0003 & 0.0024 & 0.0017 & 0.0010 \\
0.0002 & 0.0017 & 0.0048 & 0.0028 \\
0 & 0.0010 & 0.0028 & 0.0102
\end{tabular}
qassetmean =
    0.0042
    0.0083
    0.0100
    0.0150
qassetcovar =
\begin{tabular}{llll}
0.0005 & 0.0003 & 0.0002 & 0.0000 \\
0.0003 & 0.0024 & 0.0017 & 0.0010 \\
0.0002 & 0.0017 & 0.0048 & 0.0028
\end{tabular}
```


Portfolio.estimateAssetMoments

$\begin{array}{llll}0.0000 & 0.0010 \quad 0.0028 \quad 0.0102\end{array}$

Notice how either approach yields the same moments. The default behavior of the estimateAssetMoments method is to work with asset returns. If, instead, you have asset prices, such as in the variable Y, the estimateAssetMoments method accepts a parameter name 'DataFormat' with a corresponding value set to 'prices' to indicate that the input to the method is in the form of asset prices and not returns (the default parameter value for 'DataFormat' is 'returns'). The following example compares direct assignment of moments in the Portfolio object p with estimated moments from asset price data in Y in the Portfolio object q :

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
        0.00408 0.0289 0.0204 0.0119;
        0.00192 0.0204 0.0576 0.0336;
        0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
X = portsim(m', C, 120);
Y = ret2tick(X);
p = Portfolio('mean',m,'covar',C);
q = Portfolio;
q = q.estimateAssetMoments(Y, 'dataformat', 'prices');
[passetmean, passetcovar] = p.getAssetMoments
[qassetmean, qassetcovar] = q.getAssetMoments
```

passetmean =
0.0042

$$
\begin{aligned}
& 0.0083 \\
& 0.0100 \\
& 0.0150
\end{aligned}
$$

passetcovar =

0.0005	0.0003	0.0002	0
0.0003	0.0024	0.0017	0.0010
0.0002	0.0017	0.0048	0.0028
0	0.0010	0.0028	0.0102

qassetmean =
0.0042
0.0083
0.0100
0.0150
qassetcovar =

0.0005	0.0003	0.0002	0.0000
0.0003	0.0024	0.0017	0.0010
0.0002	0.0017	0.0048	0.0028
0.0000	0.0010	0.0028	0.0102

See Also

estimateBounds | Portfolio | portsim
Related
Examples

- "Asset Returns and Moments of Asset Returns" on page 4-42
Concepts
- "Estimating Asset Moments from Time Series Data" on page 4-52
- "Portfolio Optimization Theory" on page 4-2

Portfolio.estimateBounds

$\left.\begin{array}{ll}\text { Superclasses } & \text { AbstractPortfolio } \\ \text { Purpose } & \begin{array}{l}\text { Estimate global lower and upper bounds for set of portfolios }\end{array} \\ \text { Syntax } & \begin{array}{l}\text { [glb, gub, isbounded] }=\text { estimateBounds (obj) } \\ \text { [glb,gub, isbounded] }=\text { estimateBounds (obj },\end{array} \\ \text { obtainExactBounds) }\end{array}\right\}$

Default: True

Output
 glb

 ArgumentsGlobal lower bounds for portfolio set [vector].

gub

Global upper bounds for portfolio set [vector].

isbounded

Indicates if set is empty ([]), bounded (true), or unbounded (false).

Note By definition, any portfolio set must be nonempty and bounded:

- If the set is empty, isbounded $=[$].
- If the set is nonempty and unbounded, isbounded = false.
- If the set is nonempty and bounded, isbounded = true.
- If the set is empty, glb and gub are set to NaN vectors.

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Portfolio.estimateBounds

Examples Create an Unbounded PortfolioCreate an unbounded portfolio set.
$\mathrm{p}=$ Portfolio('AInequality', $\left[\begin{array}{cc}1-1 ; 11], \\ {[l b, ~ u b, ~ i s b o u n d e d] ~}\end{array}\right.$ p.estimateBounds
lb $=$
- Inf
- Inf
$u b=$
1.0e-08 *
-0.3712
Inf
isbounded =
0
The estimateBounds method returns (possibly infinite) bounds and sets the isbounded flag to false. The result shows which assets are unbounded so that you can apply bound constraints as necessary.

See Also checkFeasibility

Related
Examples "Validating a Portfolio Set" on page 4-84

Concepts • "Portfolio Optimization Theory" on page 4-2

PortfolioCVaR.estimateBounds

Superclasses AbstractPortfolio
Purpose Estimate global lower and upper bounds for portfolio set in PortfolioCVaR object

Syntax

[glb,gub,isbounded] = estimateBounds(obj) [glb,gub,isbounded] = estimateBounds(obj, obtainExactBounds)

Description [glb,gub,isbounded] = estimateBounds(obj) estimates the global lower and upper bounds for a given set of portfolios.
[glb,gub,isbounded] = estimateBounds(obj, obtainExactBounds) estimates the global lower and upper bounds for a given set of portfolios with an additional option specified for obtainExactBounds.

Tips

Input
Arguments

obj

CVaR portfolio object [PortfolioCVaR].

obtainExactBounds

(Optional) Boolean flag to specify whether to solve for all bounds or to accept specified bounds whenever available [logical]. If bounds are known, set obtainExactBounds to false to accept known bounds.

PortfolioCVaR.estimateBounds

Output Arguments
 glb

Default: true
gub
Global upper bounds for portfolio set [vector].

isbounded

Indicates if the portfolio set is empty ([]), bounded (true), or unbounded (false).

Note By definition, any portfolio set must be nonempty and bounded:

- If the set is empty, isbounded $=[$].
- If the set is nonempty and unbounded, isbounded = false.
- If the set is nonempty and bounded, isbounded = true.
- If the set is empty, glb and gub are set to NaN vectors.

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioCVaR.estimateBounds

Examples Create an Unbounded Portfolio
Create an unbounded portfolio set.
$\mathrm{p}=$ PortfolioCVaR('AInequality', [1-1; 1 1], 'bInequality', 0);
[lb, ub, isbounded] = p.estimateBounds
lb $=$
- Inf
- Inf
$u b=$
1.0e-08 *
-0.3712
Inf
isbounded =
0
The estimateBounds method returns (possibly infinite) bounds and sets the isbounded flag to false. The result shows which assets are unbounded so that you can apply bound constraints as necessary.

See Also checkFeasibility

Related
Examples "Validating a CVaR Portfolio Set" on page 5-86

PortfolioCVaR.estimateBounds

Concepts - "Portfolio Optimization Theory" on page 5-2

PortfolioMAD.estimateBounds

Superclasses AbstractPortfolio
Purpose Estimate global lower and upper bounds for portfolio set in PortfolioMAD object

Syntax

[glb,gub,isbounded] = estimateBounds(obj) [glb,gub,isbounded] = estimateBounds(obj, obtainExactBounds)

Description [glb,gub,isbounded] = estimateBounds(obj) estimates the global lower and upper bounds for a given set of portfolios.
[glb,gub,isbounded] = estimateBounds(obj, obtainExactBounds) estimates the global lower and upper bounds for a given set of portfolios with an additional option specified for obtainExactBounds.

Tips

- Use dot notation to estimate the global lower and upper bounds for a given set of MAD portfolios.
[glb, gub, isbounded] = obj.estimateBounds;
- Estimated bounds are accurate in most cases to within 1.0e-8. If you intend to use these bounds directly in a MAD portfolio object, keep in mind that if you impose such bound constraints, a lower bound of 0 is probably preferable to a lower bound of, for example, 1.0e-10 for portfolio weights. If bounds are known, set obtainExactBounds to false to accept known bounds.

MAD portfolio object [PortfolioMAD].

obtainExactBounds

(Optional) Boolean flag to specify whether to solve for all bounds or to accept specified bounds whenever available [logical]. If
bounds are known, set obtainExactBounds to false to accept known bounds.

Default: true

Output glb

Arguments
Global lower bounds for portfolio set [vector].

gub

Global upper bounds for portfolio set [vector].

isbounded

Indicates if the portfolio set is empty ([]), bounded (true), or unbounded (false).

Note By definition, any portfolio set must be nonempty and bounded:

- If the set is empty, isbounded $=[$].
- If the set is empty, glb and gub are set to NaN vectors.
- If the set is nonempty and unbounded, isbounded = false.
- If the set is nonempty and bounded, isbounded $=$ true.

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioMAD.estimateBounds

PortfolioMAD.estimateBounds

Concepts • "Portfolio Optimization Theory" on page 6-2

Portfolio.estimateFrontier

Superclasses AbstractPortfolio
Purpose Estimate specified number of optimal portfolios on the efficient frontier
Syntax $\quad \begin{aligned} & {[\text { pwgt, pbuy, psell] }=\text { estimateFrontier (obj) }} \\ & {[\text { pwgt, pbuy, psell] }}\end{aligned}=$ estimateFrontier(obj,NumPorts)
Description

Tips

Input
Arguments

obj

Portfolio object [Portfolio].

NumPorts

(Optional) Number of points to obtain on the efficient frontier [scalar integer].

Note If no value is specified for NumPorts, the default value is obtained from the hidden property defaultNumPorts (default value is 10). If NumPorts $=1$, this method returns the portfolio specified by the hidden property defaultFrontierLimit (current default value is 'min').

Default: 10

Portfolio.estimateFrontier

Output Arguments

pwgt

Optimal portfolios on the efficient frontier with specified number of portfolios spaced equally from minimum to maximum portfolio return [NumAssets-by-NumPorts matrix].

pbuy

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier [NumAssets-by-NumPorts matrix].

psell

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj. InitPort, that value is assumed to be 0 such that pbuy $=\max (0$, pwgt) and psell $=\max (0$, -pwgt).

Attributes

Examples Obtain the Default Number of Efficient Portfolios

Obtain the default number of efficient portfolios over the entire range of the efficient frontier.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
```


Portfolio.estimateFrontier

```
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier;
disp(pwgt);
    Columns 1 through 7
\begin{tabular}{rrrrrrr}
0.8891 & 0.7215 & 0.5540 & 0.3865 & 0.2190 & 0.0515 & 0 \\
0.0369 & 0.1289 & 0.2209 & 0.3129 & 0.4049 & 0.4969 & 0.4049 \\
0.0404 & 0.0567 & 0.0730 & 0.0893 & 0.1056 & 0.1219 & 0.1320 \\
0.0336 & 0.0929 & 0.1521 & 0.2113 & 0.2705 & 0.3297 & 0.4630
\end{tabular}
Columns 8 through 10
\begin{tabular}{rrr}
0 & 0 & 0 \\
0.2314 & 0.0579 & 0 \\
0.1394 & 0.1468 & 0 \\
0.6292 & 0.7953 & 1.0000
\end{tabular}
```


Obtain Purchases and Sales for Portfolios on the Efficient Frontier

Starting from the initial portfolio, the estimateFrontier method returns purchases and sales to get from your initial portfolio to each efficient portfolio on the efficient frontier. Given an initial portfolio in pwgt0, you can obtain purchases and sales.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
```

```
    0 0.0119 0.0336 0.1225 ];
p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateFrontier;
display(pwgt);
display(pbuy);
display(psell);
```

pwgt =

Columns 1 through 7

0.8891	0.7215	0.5540	0.3865	0.2190	0.0515	
0.0369	0.1289	0.2209	0.3129	0.4049	0.4969	0.4049
0.0404	0.0567	0.0730	0.0893	0.1056	0.1219	0.132
0.0336	0.0929	0.1521	0.2113	0.2705	0.3297	0.463

Columns 8 through 10

0	0	0
0.2314	0.0579	0
0.1394	0.1468	0
0.6292	0.7953	1.0000

pbuy =

Columns 1 through 7

0.5891	0.4215	0.2540	0.0865	0	0	
0	0	0	0.0129	0.1049	0.1969	0.104

Portfolio.estimateFrontier

	0	0	0	0	0	0	0	
	0	0	0.0521	0.1113	0.1705	0.2297	0.3630	
Columns 8 through 10								
	0	0	0					
	0	0	0					
	0	0	0					
	0.5292	0.6953	0.9000					
psell =								
Columns 1 through 7								
	0	0	0	0	0.0810	0.2485	0.3000	
	0.2631	0.1711	0.0791	0	0	0	0	
	0.1596	0.1433	0.1270	0.1107	0.0944	0.0781	0.0680	
	0.0664	0.0071	0	0	0	0	0	
Columns 8 through 10								
	0.3000	0.3000	0.3000					
	0.0686	0.2421	0.3000					
	0.0606	0.0532	0.2000					
	0	0	0					
See Also	```estimateFrontierByReturn \| estimateFrontierByRisk	estimateFrontierLimits```						
Related Examples	- "Estimate Efficient Frontiers" on page 4-103 - "Estimate Efficient Portfolios" on page 4-89							

Superclasses AbstractPortfolio

Purpose Estimate specified number of optimal portfolios on efficient frontier for PortfolioCVaR object

Syntax [pwgt, pbuy,psell] = estimateFrontier(obj)
[pwgt,pbuy, psell] = estimateFrontier(obj,NumPorts)

Description

[pwgt,pbuy,psell] = estimateFrontier(obj) estimates a default number of optimal portfolios on the efficient frontier.
[pwgt, pbuy, psell] = estimateFrontier(obj,NumPorts) estimates the specified number of optimal portfolios on the efficient frontier with an additional option for NumPorts.

Tips
Use dot notation to estimate the specified number of optimal portfolios over the entire efficient frontier.

```
[pwgt, pbuy, psell] = obj.estimateFrontier(NumPorts);
```


Input

Arguments
CVaR portfolio object [PortfolioCVaR].

NumPorts

(Optional) Number of points to obtain on the efficient frontier [scalar integer].

Note If no value is specified for NumPorts, the default value is obtained from the hidden property defaultNumPorts (default value is 10). If NumPorts $=1$, this method returns the portfolio specified by the hidden property defaultFrontierLimit (current default value is 'min').

Default: 10

PortfolioCVaR.estimateFrontier

Output
 Arguments

pwgt

Optimal portfolios on the efficient frontier with a specified number of portfolios spaced equally from minimum to maximum portfolio return [NumAssets-by-NumPorts matrix].

pbuy

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier [NumAssets-by-NumPorts matrix].

psell

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj. InitPort, that value is assumed to be 0 such that pbuy $=\max (0$, pwgt) and psell $=\max (0$, -pwgt).

Attributes

Examples Obtain the Default Number of Efficient Portfolios

Obtain the default number of efficient portfolios over the entire range of the efficient frontier.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
```

```
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontier;
disp(pwgt);
```

Columns 1 through 7

0.8454	0.6847	0.5151	0.3541	0.1901	0.0314	0.000
0.0599	0.1427	0.2302	0.3165	0.3980	0.4734	0.351
0.0462	0.0639	0.0945	0.1079	0.1345	0.1580	0.175
0.0485	0.1088	0.1602	0.2215	0.2773	0.3371	0.473

Columns 8 through 10

0.0000	0.0000	0.0000
0.1806	0	0.0000
0.1916	0.2212	0.0000
0.6278	0.7788	1.0000

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

PortfolioCVaR.estimateFrontier

Obtain Purchases and Sales for Portfolios on the Efficient Frontier

Starting from the initial portfolio, the estimateFrontier method returns purchases and sales to get from your initial portfolio to each efficient portfolio on the efficient frontier. Given an initial portfolio in pwgt0, you can obtain purchases and sales.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
        0.00408 0.0289 0.0204 0.0119;
        0.00192 0.0204 0.0576 0.0336;
        0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgtO = [ 0.3; 0.3; 0.2; 0.1 ];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateFrontier;
display(pwgt);
display(pbuy);
display(psell);
```

pwgt =
Columns 1 through 7

0.8454	0.6847	0.5151
0.0599	0.1427	0.2302
0.0462	0.0639	0.0945
0.0485	0.1088	0.1602
Columns 8 through 10		
0.0000	0.0000	0.0000
0.1806	0	0.0000
0.1916	0.2212	0.0000
0.6278	0.7788	1.0000

pbuy =

Columns 1 through 7

0.5454	0.3847	0.2151
0	0	0
0	0	0
0	0.0088	0.0602
olumns 8 through 10		
0	0	0
0	0	0
0	0.0212	0

$$
\begin{array}{lll}
0.5278 & 0.6788 & 0.9000
\end{array}
$$

psell =

Columns 1 through 7

0	0	0	0	0.1099	0.2686	0.300
0.2401	0.1573	0.0698	0	0	0	
0.1538	0.1361	0.1055	0.0921	0.0655	0.0420	0.024

PortfolioCVaR.estimateFrontier

0.0515	0	0
Columns 8 through 10		
0.3000	0.3000	0.3000
0.1194	0.3000	0.3000
0.0084	0	0.2000
0	0	0

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.
See Also
estimateFrontierLimits | estimateFrontierByRisk | estimateFrontierByReturn | rng

Related

- "Estimate Efficient Portfolios" on page 5-91

Concepts

- "Estimating Efficient Portfolios and Frontiers" on page 5-25

PortfolioMAD.estimateFrontier

Superclasses AbstractPortfolio

Purpose Estimate specified number of optimal portfolios on efficient frontier for PortfolioMAD object

Syntax [pwgt, pbuy,psell] = estimateFrontier(obj)
[pwgt,pbuy,psell] = estimateFrontier(obj,NumPorts)

Description

[pwgt, pbuy, psell] = estimateFrontier(obj) estimates a default number of optimal portfolios on the efficient frontier.
[pwgt, pbuy, psell] = estimateFrontier(obj,NumPorts) estimates the specified number of optimal portfolios on the efficient frontier with an additional option for NumPorts.

Tips
Use dot notation to estimate the specified number of optimal portfolios over the entire efficient frontier.

```
[pwgt, pbuy, psell] = obj.estimateFrontier(NumPorts);
```


Input

Arguments

MAD portfolio object [PortfolioMAD].

NumPorts

(Optional) Number of points to obtain on the efficient frontier [scalar integer].

Note If no value is specified for NumPorts, the default value is obtained from the hidden property defaultNumPorts (default value is 10). If NumPorts $=1$, this method returns the portfolio specified by the hidden property defaultFrontierLimit (current default value is 'min').

Default: 10

PortfolioMAD.estimateFrontier

Output
 Arguments

pwgt

Optimal portfolios on the efficient frontier with a specified number of portfolios spaced equally from minimum to maximum portfolio return [NumAssets-by-NumPorts matrix].

pbuy

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier [NumAssets-by-NumPorts matrix].

psell

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj. InitPort, that value is assumed to be 0 such that pbuy $=\max (0$, pwgt) and psell $=\max (0$, -pwgt).

Attributes

Examples Obtain the Default Number of Efficient Portfolios

Obtain the default number of efficient portfolios over the entire range of the efficient frontier.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
```


PortfolioMAD.estimateFrontier

```
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier;
disp(pwgt);
```

Columns 1 through 7

0.8815	0.7151	0.5487	0.3817	0.2170	0.0499	0.000
0.0431	0.1282	0.2128	0.2981	0.3825	0.4662	0.360
0.0389	0.0605	0.0826	0.1053	0.1241	0.1492	0.178
0.0365	0.0963	0.1559	0.2149	0.2764	0.3348	0.460

Columns 8 through 10

0	0.0000	0.0000
0.1755	0	0.0000
0.2095	0.2266	0.0000
0.6150	0.7734	1.0000

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

PortfolioMAD.estimateFrontier

Obtain Purchases and Sales for Portfolios on the Efficient Frontier

Starting from the initial portfolio, the estimateFrontier method returns purchases and sales to get from your initial portfolio to each efficient portfolio on the efficient frontier. Given an initial portfolio in pwgt0, you can obtain purchases and sales.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
        0.00408 0.0289 0.0204 0.0119;
        0.00192 0.0204 0.0576 0.0336;
        0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgtO = [ 0.3; 0.3; 0.2; 0.1 ];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateFrontier;
display(pwgt);
display(pbuy);
display(psell);
```

pwgt =
Columns 1 through 7
0.8815
0.7151
0.5487
0.3817
0.2170
0.0499
0.0000

PortfolioMAD.estimateFrontier

0.0431	0.1282	0.2128
0.0389	0.0605	0.0826
0.0365	0.0963	0.1559
Columns 8 through 10		
0	0.0000	0.0000
0.1755	0	0.0000
0.2095	0.2266	0.0000
0.6150	0.7734	1.0000

pbuy =
Columns 1 through 7

0.5815	0.4151
0	0
0	0
0	0
olumns 8 through	10

0	0	0
0	0	0
0.0095	0.0266	0
0.5150	0.6734	0.9000

psell =

Columns 1 through 7

0	0	0	0	0.0830	0.2501	$0.300($
0.2569	0.1718	0.0872	0.0019	0	0	
0.1611	0.1395	0.1174	0.0947	0.0759	0.0508	0.0212
0.0635	0.0037	0	0	0	0	

PortfolioMAD.estimateFrontier

Columns 8 through 10

0.3000	0.3000	0.3000
0.1245	0.3000	0.3000
0	0	0.2000
0	0	0

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

See Also

Related

- "Estimate Efficient Portfolios" on page 6-90

Examples
Concepts - "Estimating Efficient Portfolios and Frontiers" on page 6-24

Portfolio.estimateFrontierByReturn

Superclasses AbstractPortfolio

Purpose
Syntax

Description

Tips

Input
Arguments

Estimate optimal portfolios with targeted portfolio returns
[pwgt, pbuy, psell] = estimateFrontierByReturn(obj, TargetReturn)
[pwgt,pbuy,psell] = estimateFrontierByReturn(obj, TargetReturn) estimates optimal portfolios with targeted portfolio returns.

Use dot notation to estimate optimal portfolios with targeted portfolio returns.

```
[pwgt, pbuy, psell] = obj.estimateFrontierByReturn(TargetReturn);
```

obi
Portfolio object [Portfolio].

TargetReturn

Target values for portfolio return [NumPorts vector].

Note TargetReturn specifies target returns for portfolios on the efficient frontier. If any TargetReturn values are outside the range of returns for efficient portfolios, the TargetReturn is replaced with the minimum or maximum efficient portfolio return, depending upon whether the target return is below or above the range of efficient portfolio returns.

Output Arguments

pwgt

Optimal portfolios on the efficient frontier with specified target returns from TargetReturn that are [NumAssets-by-NumPorts matrix].

Portfolio.estimateFrontierByReturn

pbuy

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier that are [NumAssets-by-NumPorts matrix].

psell

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier that are [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj. InitPort, it is assumed to be 0 , such that pbuy $=\max (0, \mathrm{pwgt})$ and psell $=\max (0,-$ pwgt $)$.

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Examples Obtain the Portfolio for Targeted Portfolio Returns

To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn method accepts one or more target portfolio returns and obtains efficient portfolios with the specified returns. Assume you have a universe of four assets where you want to obtain efficient portfolios with target portfolio returns of $6 \%, 9 \%$, and 12%.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
```


Portfolio.estimateFrontierByReturn

```
p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierByReturn([0.06, 0.09, 0.12]);
display(pwgt);
```

pwgt =

0.8772	0.5032	0.1293
0.0434	0.2488	0.4541
0.0416	0.0780	0.1143
0.0378	0.1700	0.3022

See Also estimateFrontier | estimateFrontierByRisk | estimateFrontierLimits

Related • "Estimate Efficient Frontiers" on page 4-103
Examples

PortfolioCVaR.estimateFrontierByReturn

Superclasses AbstractPortfolio
Purpose Estimate optimal portfolios with targeted portfolio returns for PortfolioCVaR object
$\begin{array}{ll}\text { Syntax } & \begin{array}{l}\text { [pwgt, pbuy, psell] = estimateFrontierByReturn(obj }, \\ \text { TargetReturn) }\end{array} \\ \text { Description } \quad \begin{array}{l}\text { [pwgt, pbuy, psell] = estimateFrontierByReturn (obj, } \\ \text { TargetReturn) estimates optimal portfolios with targeted portfolio } \\ \text { returns. }\end{array}\end{array}$
Tips Use dot notation to estimate optimal portfolios with targeted portfolio returns.
[pwgt, pbuy, psell] = obj.estimateFrontierByReturn(TargetReturn);
Input obi
Arguments
CVaR portfolio object [PortfolioCVaR].

TargetReturn

Target values for CVaR portfolio object returns [NumPorts vector].

Note TargetReturn specifies target returns for portfolios on the efficient frontier. If any TargetReturn values are outside the range of returns for efficient portfolios, TargetReturn is replaced with the minimum or maximum efficient portfolio return, depending whether the target return is below or above the range of efficient portfolio returns.

PortfolioCVaR.estimateFrontierByReturn

Output Arguments

pwgt

Optimal portfolios on the efficient frontier with specified target returns from TargetReturn [NumAssets-by-NumPorts matrix].

pbuy

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier [NumAssets-by-NumPorts matrix].

psell

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj. InitPort, it is assumed to be 0 , such that pbuy $=\max (0$, pwgt $)$ and psell $=\max (0,-$ pwgt $)$.

Attributes

Examples
 Obtain the Portfolio for Targeted Portfolio Returns

To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn method accepts one or more target portfolio returns and obtains efficient portfolios with the specified returns. Assume you have a universe of four assets where you want to obtain efficient portfolios with target portfolio returns of $7 \%, 10 \%$, and 13%.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
```


PortfolioCVaR.estimateFrontierByReturn

```
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
rng(11);
p = PortfolioCVaR;
p = p.simulateNormalScenariosByMoments(m, C, 2000);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontierByReturn([0.07 0.10, 0.13]);
display(pwgt);
pwgt =
\begin{tabular}{lrr}
0.7371 & 0.3072 & 0 \\
0.1504 & 0.3919 & 0.4396 \\
0.0286 & 0.1011 & 0.1360 \\
0.0839 & 0.1999 & 0.4244
\end{tabular}
```

The function rng(seed) is used to reset the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

```
See Also
estimateFrontier | estimateFrontierLimits |
estimateFrontierByRisk | rng
```

Related
Examples
Concepts - "Estimating Efficient Portfolios and Frontiers" on page 5-25

PortfolioMAD.estimateFrontierByReturn

Superclasses AbstractPortfolio

Purpose Estimate optimal portfolios with targeted portfolio returns for PortfolioMAD object

Syntax

Description

Tips

Input
Arguments
[pwgt, pbuy,psell] = estimateFrontierByReturn(obj, TargetReturn)
[pwgt, pbuy,psell] = estimateFrontierByReturn(obj, TargetReturn) estimates optimal portfolios with targeted portfolio returns.

Use dot notation to estimate optimal portfolios with targeted portfolio returns.

```
[pwgt, pbuy, psell] = obj.estimateFrontierByReturn(TargetReturn);
```

obi
MAD portfolio object [PortfolioMAD].

TargetReturn

Target values for MAD portfolio object returns [NumPorts vector].

Note TargetReturn specifies target returns for portfolios on the efficient frontier. If any TargetReturn values are outside the range of returns for efficient portfolios, TargetReturn is replaced with the minimum or maximum efficient portfolio return, depending whether the target return is below or above the range of efficient portfolio returns.

Output
 Arguments

pwgt

Optimal portfolios on the efficient frontier with specified target returns from TargetReturn [NumAssets-by-NumPorts matrix].

PortfolioMAD.estimateFrontierByReturn

pbuy

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier [NumAssets-by-NumPorts matrix].

psell

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj. InitPort, it is assumed to be 0 , such that pbuy $=\max (0$, pwgt $)$ and psell $=\max (0,-$ pwgt $)$.

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Examples Obtain the Portfolio for Targeted Portfolio Returns

To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn method accepts one or more target portfolio returns and obtains efficient portfolios with the specified returns. Assume you have a universe of four assets where you want to obtain efficient portfolios with target portfolio returns of $7 \%, 10 \%$, and 13%.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
```


PortfolioMAD.estimateFrontierByReturn

```
rng(11);
p = PortfolioMAD;
p = p.simulateNormalScenariosByMoments(m, C, 2000);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierByReturn([0.07 0.10, 0.13]);
display(pwgt);
```

pwgt =

0.7436	0.3147	0.0000
0.1357	0.3835	0.4422
0.0328	0.0939	0.1324
0.0879	0.2079	0.4254

The function rng(seed) is used to reset the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

Concepts - "Estimating Efficient Portfolios and Frontiers" on page 6-24

Portfolio.estimateFrontierByRisk

Superclasses AbstractPortfolio
Purpose Estimate optimal portfolios with targeted portfolio risks
Syntax [pwgt,pbuy,psell] = estimateFrontierByRisk(obj,TargetRisk)
Description [pwgt,pbuy,psell] = estimateFrontierByRisk(obj,TargetRisk) estimates optimal portfolios with targeted portfolio risks.

Tips

Input
Arguments

Output
Arguments

pwgt

Optimal portfolios on the efficient frontier with specified target risks from TargetRisk that are [NumAssets-by-NumPorts matrix].

pbuy

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier that are [NumAssets-by-NumPorts matrix].

psell

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier that are [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj. InitPort, it is assumed to be 0 such that so pbuy $=\max (0, \mathrm{pwgt})$ and psell $=\max (0$, -pwgt).

Attributes

Examples

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Obtain Portfolios with Targeted Portfolio Risks

To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk method accepts one or more target portfolio risks and obtains efficient portfolios with the specified risks. Assume you have a universe of four assets where you want to obtain efficient portfolios with target portfolio risks of $12 \%, 14 \%$, and 16%.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierByRisk([0.12, 0.14, 0.16]);
```


Portfolio.estimateFrontierByRisk

PortfolioCVaR.estimateFrontierByRisk

Superclasses AbstractPortfolio
Purpose Estimate optimal portfolios with targeted portfolio risks forPortfolioCVaR object
Syntax [pwgt, pbuy, psell] = estimateFrontierByRisk(obj,TargetRisk)
Description [pwgt,pbuy,psell] = estimateFrontierByRisk(obj,TargetRisk)estimates optimal portfolios with targeted portfolio risks.
TipsUse dot notation to estimate optimal portfolios with targeted portfoliorisks.

```
[pwgt, pbuy, psell] = obj.estimateFrontierByRisk(TargetRisk);
```


obj

CVaR portfolio object [PortfolioCVaR].

TargetRisk

Target values for CVaR portfolio object risk [NumPorts vector].
Note If any TargetRisk values are outside the range of risks for efficient portfolios, the target risk is replaced with the minimum or maximum efficient portfolio risk, depending on whether the target risk is below or above the range of efficient portfolio risks.

Output
 Arguments

pwgt

Optimal portfolios on the efficient frontier with specified target risks from TargetRisk [NumAssets-by-NumPorts matrix].

pbuy

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier [NumAssets-by-NumPorts matrix].

PortfolioCVaR.estimateFrontierByRisk

psell

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj. InitPort, it is assumed to be 0 such that so pbuy $=\max (0, \mathrm{pwgt})$ and psell $=\max (0$, -pwgt).

Attributes

Examples

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Obtain Portfolios with Targeted Portfolio Risks

To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk method accepts one or more target portfolio risks and obtains efficient portfolios with the specified risks. Assume you have a universe of four assets where you want to obtain efficient portfolios with target portfolio risks of $12 \%, 20 \%$, and 30%.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
rng(11);
p = PortfolioCVaR;
p = p.simulateNormalScenariosByMoments(m, C, 2000);
```

```
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontierByRisk([0.12, 0.20, 0.30]);
display(pwgt);
pwgt =
\begin{tabular}{lll}
0.5363 & 0.1388 & 0.0000 \\
0.2655 & 0.4990 & 0.3830 \\
0.0568 & 0.1239 & 0.1461 \\
0.1413 & 0.2383 & 0.4709
\end{tabular}
```

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

See Also
 estimateFrontier | estimateFrontierLimits | estimateFrontierByReturn | rng

Related
 Examples

- "Estimate Efficient Portfolios" on page 5-91

Concepts

- "Estimating Efficient Portfolios and Frontiers" on page 5-25

PortfolioMAD.estimateFrontierByRisk

Superclasses
Purpose

Syntax
Description

Tips

Input
Arguments

Output Arguments

AbstractPortfolio

Estimate optimal portfolios with targeted portfolio risks for PortfolioMAD object
[pwgt, pbuy, psell] = estimateFrontierByRisk(obj,TargetRisk)
[pwgt,pbuy,psell] = estimateFrontierByRisk(obj,TargetRisk) estimates optimal portfolios with targeted portfolio risks.

Use dot notation to estimate optimal portfolios with targeted portfolio risks.
[pwgt, pbuy, psell] = obj.estimateFrontierByRisk(TargetRisk);

obj

MAD portfolio object [PortfolioMAD].

TargetRisk

Target values for MAD portfolio object risk [NumPorts vector].

Note If any TargetRisk values are outside the range of risks for efficient portfolios, the target risk is replaced with the minimum or maximum efficient portfolio risk, depending on whether the target risk is below or above the range of efficient portfolio risks.

pwgt

Optimal portfolios on the efficient frontier with specified target risks from TargetRisk [NumAssets-by-NumPorts matrix].
pbuy
Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier [NumAssets-by-NumPorts matrix].

PortfolioMAD.estimateFrontierByRisk

psell

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj. InitPort, it is assumed to be 0 such that so pbuy $=\max (0, \mathrm{pwgt})$ and psell $=\max (0$, -pwgt).

Attributes

Examples Obtain Portfolios with Targeted Portfolio Risks

To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk method accepts one or more target portfolio risks and obtains efficient portfolios with the specified risks. Assume you have a universe of four assets where you want to obtain efficient portfolios with target portfolio risks of $12 \%, 20 \%$, and 25%.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
rng(11);
p = PortfolioMAD;
p = p.simulateNormalScenariosByMoments(m, C, 2000);
```


PortfolioMAD.estimateFrontierByRisk

```
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierByRisk([0.12, 0.20, 0.25]);
display(pwgt);
pwgt =
\begin{tabular}{rrr}
0.1613 & 0 & 0 \\
0.4777 & 0.2139 & 0.0037 \\
0.1118 & 0.1381 & 0.1214 \\
0.2492 & 0.6480 & 0.8749
\end{tabular}
```

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

See Also
 estimateFrontier | estimateFrontierLimits | estimateFrontierByReturn | rng

Related
Examples
Concepts

- "Estimating Efficient Portfolios and Frontiers" on page 6-24

Portfolio.estimateFrontierLimits

Superclasses AbstractPortfolio

Purpose

Syntax

Description

Tips

Input
Arguments

Estimate optimal portfolios at endpoints of efficient frontier

```
[pwgt,pbuy,psell] = estimateFrontierLimits(obj)
[pwgt,pbuy,psell] = estimateFrontierLimits(obj,Choice)
```

[pwgt,pbuy,psell] = estimateFrontierLimits(obj) estimates the optimal portfolios at the endpoints of the efficient frontier.
[pwgt,pbuy,psell] = estimateFrontierLimits(obj,Choice) estimates the optimal portfolios at the endpoints of the efficient frontier with an additional option specified for the Choice argument.

Use dot notation to estimate the optimal portfolios at the endpoints of the efficient frontier.

```
[pwgt, pbuy, psell] = obj.estimateFrontierLimits(Choice);
```

obj
Portfolio object [Portfolio].

Choice

Indicates which portfolios to obtain at the extreme ends of the efficient frontier [string].

Choice specifies various actions with default value []. The options for Choice action are:

- [] - Compute both minimum-risk and maximum-return portfolios.
- 'Both ' - Compute both minimum-risk and maximum-return portfolios.
- 'Min' - Compute minimum-risk portfolio only.
- 'Max' - Compute maximum-return portfolio only.

Portfolio.estimateFrontierLimits

Default: []

Output Arguments
 pwgt
 Optimal portfolios at the endpoints of the efficient frontier TargetReturn that are [NumAssets-by-NumPorts matrix].
 pbuy
 Purchases relative to an initial portfolio for optimal portfolios at the endpoints of the efficient frontier that are [NumAssets-by-NumPorts matrix].
 psell
 Sales relative to an initial portfolio for optimal portfolios at the endpoints of the efficient frontier that are [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj. InitPort, it is assumed to be 0 such that pbuy $=\max (0$, pwgt $)$ and psell $=\max (0,-$ pwgt $)$.

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Portfolio.estimateFrontierLimits

Examples Obtain Endpoint Portfolios

Given portfolio p, the estimateFrontierLimits method obtains the endpoint portfolios.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierLimits;
disp(pwgt);
    0.8891 0
    0.0369 0
    0.0404 0
    0.0336 1.0000
```

See Also estimateFrontier \| estimateFrontierByReturn I estimateFrontierByRisk

Related - "Estimate Efficient Frontiers" on page 4-103
Examples

- "Estimate Efficient Portfolios" on page 4-89

PortfolioCVaR.estimateFrontierLimits

Superclasses AbstractPortfolio

Description

Tips

Input
Arguments

Purpose Estimate optimal portfolios at endpoints of efficient frontier for PortfolioCVaR object

Syntax \quad| $[$ pwgt, pbuy, psell] |
| :--- |
| $[$ pwgt, pbuy, psell] |$=$ estimateFrontierLimits (obj)

[pwgt, pbuy, psell] = estimateFrontierLimits(obj)
[pwgt, pbuy, psell] = estimateFrontierLimits(obj,Choice)
[pwgt, pbuy, psell] = estimateFrontierLimits(obj) estimates the optimal portfolios at the endpoints of the efficient frontier.
[pwgt, pbuy, psell] = estimateFrontierLimits(obj,Choice) estimates the optimal portfolios at the endpoints of the efficient frontier with an additional option specified for the Choice argument.

Use dot notation to estimate the optimal portfolios at the endpoints of the efficient frontier.
[pwgt, pbuy, psell] = obj.estimateFrontierLimits(Choice);
obj
CVaR portfolio object [PortfolioCVaR].

Choice

(Optional) Indicates which portfolios to obtain at the extreme ends of the efficient frontier [string].
Choice specifies various actions with default value []. The options for Choice action are:

- [] - Compute both minimum-risk and maximum-return portfolios.
- 'Both' - Compute both minimum-risk and maximum-return portfolios.
- 'Min' - Compute minimum-risk portfolio only.

PortfolioCVaR.estimateFrontierLimits

- 'Max' - Compute maximum-return portfolio only.

The number of portfolios returned by this method is either 1 or 2 .
Default: []

Output
 pwgt

 ArgumentsOptimal portfolios at the endpoints of the efficient frontier TargetReturn [NumAssets-by-NumPorts matrix].

pbuy

Purchases relative to an initial portfolio for optimal portfolios at the endpoints of the efficient frontier [NumAssets-by-NumPorts matrix].

psell

Sales relative to an initial portfolio for optimal portfolios at the endpoints of the efficient frontier [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj. InitPort, it is assumed to be 0 such that pbuy $=\max (0, \mathrm{pwg})$ and psell $=\max (0,-$ pwgt $)$.

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioCVaR.estimateFrontierLimits

Examples Obtain Endpoint Portfolios

Given portfolio p, the estimateFrontierLimits method obtains the endpoint portfolios.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontierLimits;
disp(pwgt);
    0.8454 0.0000
    0.0599 0.0000
    0.0462 0.0000
    0.0485 1.0000
```

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

PortfolioCVaR.estimateFrontierLimits

See Also estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk | rng
Related - "Estimate Efficient Portfolios" on page 5-91
Examples
Concepts - "Estimating Efficient Portfolios and Frontiers" on page 5-25

PortfolioMAD.estimateFrontierLimits

Superclasses AbstractPortfolio
Purpose Estimate optimal portfolios at endpoints of efficient frontier for PortfolioMAD object

Syntax \quad| $[$ pwgt, pbuy, psell] |
| :--- |
| $[$ pwgt, pbuy, psell] |$=$ estimateFrontierLimits (obj)

Description

Tips

Input
Arguments
obj
MAD portfolio object [PortfolioMAD].

Choice

(Optional) Indicates which portfolios to obtain at the extreme ends of the efficient frontier [string].
Choice specifies various actions with default value []. The options for Choice action are:

- [] - Compute both minimum-risk and maximum-return portfolios.
- 'Both ' - Compute both minimum-risk and maximum-return portfolios.
- 'Min' - Compute minimum-risk portfolio only.

PortfolioMAD.estimateFrontierLimits

- 'Max' - Compute maximum-return portfolio only.

The number of portfolios returned by this method is either 1 or 2 .
Default: []

Output
 pwgt

 ArgumentsOptimal portfolios at the endpoints of the efficient frontier TargetReturn [NumAssets-by-NumPorts matrix].

pbuy

Purchases relative to an initial portfolio for optimal portfolios at the endpoints of the efficient frontier [NumAssets-by-NumPorts matrix].

psell

Sales relative to an initial portfolio for optimal portfolios at the endpoints of the efficient frontier [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj. InitPort, it is assumed to be 0 such that pbuy $=\max (0$, pwgt $)$ and psell $=\max (0,-$ pwgt $)$.

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioMAD.estimateFrontierLimits

Examples Obtain Endpoint Portfolios

Given portfolio p , the estimateFrontierLimits method obtains the endpoint portfolios.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierLimits;
disp(pwgt);
    0.8815 0.0000
    0.0431 0.0000
    0.0389 0.0000
    0.0365 1.0000
```

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.
See Also estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk | rng
Related - "Estimate Efficient Portfolios" on page 6-90
Examples
Concepts - "Estimating Efficient Portfolios and Frontiers" on page 6-24

Portfolio.estimateMaxSharpeRatio

Superclasses AbstractPortfolio
Purpose Estimate efficient portfolio to maximize Sharpe ratio
Syntax [pwgt,pbuy,psell] = estimateMaxSharpeRatio(obj)
Description [pwgt,pbuy,psell] = estimateMaxSharpeRatio (obj) estimates an efficient portfolio that maximizes the Sharpe ratio.

Tips
Use dot notation to estimate an efficient portfolio that maximizes the Sharpe ratio.
[pwgt, pbuy,psell] = obj.estimateMaxSharpeRatio;
Input obi
Arguments
Portfolio object [Portfolio].

Note The risk-free rate is obtained from the property RiskFreeRate in the Portfolio object. If you leave the RiskFreeRate unset, it is assumed to be 0 .

Output
 Arguments

pwgt

A portfolio on the efficient frontier with a maximum Sharpe ratio [NumAssets vector].
pbuy
Purchases relative to an initial portfolio for a portfolio on the efficient frontier with a maximum Sharpe ratio [NumAssets vector].

psell

Sales relative to an initial portfolio for a portfolio on the efficient frontier with maximum Sharpe ratio [NumAssets vector].

Portfolio.estimateMaxSharpeRatio

Definitions Sharpe Ratio

The Sharpe ratio is the ratio of the difference between the mean of portfolio returns and the risk-free rate divided by the standard deviation of portfolio returns. This method maximizes the Sharpe ratio among portfolios on the efficient frontier.

Attributes

Examples Estimate Efficient Portfolio that Maximizes the Sharpe Ratio

Estimate the efficient portfolio that maximizes the Sharpe ratio.

```
p = Portfolio('AssetMean',[0.3, 0.1, 0.5], 'AssetCovar',...
[0.01, -0.010, 0.004; -0.010, 0.040, -0.002; 0.004, -0.002, 0.023
p = p.setDefaultConstraints;
p.plotFrontier(20);
weights = p.estimateMaxSharpeRatio;
[risk, ret] = p.estimatePortMoments(weights);
hold on
plot(risk,ret,'*r');
```


Portfolio.estimateMaxSharpeRatio

Algorithms
The maximization of the Sharpe ratio is accomplished by a one-dimensional optimization using fminbnd to find the portfolio that minimizes the negative of the Sharpe ratio. The method takes only a fully qualified Portfolio object as its input and uses all information in the object to solve the problem.

See Also $\begin{aligned} & \text { estimateFrontier | estimateFrontierByReturn | } \\ & \text { estimateFrontierByRisk | Portfolio }\end{aligned}$

Portfolio.estimateMaxSharpeRatio

Related
 Examples

- "Efficient Portfolio that Maximizes Sharpe Ratio" on page 4-98

Concepts - "Portfolio Optimization Theory" on page 4-2

Portfolio.estimatePortMoments

Purpose Estimate moments of portfolio returns
Syntax [prsk, pret] = estimatePortMoments(obj, pwgt)

Description

Tips

Input
Arguments
[prsk, pret] = estimatePortMoments(obj, pwgt) estimates the moments of portfolio returns.

The estimate of port moments is specific to mean-variance portfolio optimization and computes the mean and standard deviation (which is the square-root of variance) of portfolio returns.

Use dot notation to estimate the moments of portfolio returns.
[prsk, pret] = obj.estimatePortMoments(pwgt);
obi
Portfolio object [Portfolio].

pwgt

Collection of portfolios [NumAssets-by-NumPorts matrix] where NumAssets is the number of asset in the universe and NumPorts is the number of portfolios in the collection of portfolios.

Output prsk

Arguments
Estimates for standard deviations of portfolio returns for each portfolio in pwgt [NumPorts vector].
pret
Estimates for means of portfolio returns for each portfolio in pwgt [NumPorts vector].

Attributes

Access	public
Static	false
Hidden	false

Portfolio.estimatePortMoments

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Examples Identify the Range of Risks and Returns for Efficient Portfolios

Given portfolio p , use the estimatePortMoments method to show the range of risks and returns for efficient portfolios.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierLimits;
```

[prsk, pret] = p.estimatePortMoments(pwgt);
disp([prsk, pret]);
$0.0769 \quad 0.0590$
$0.3500 \quad 0.1800$

See Also estimatePortReturn | estimatePortRisk

Related - "Estimate Efficient Portfolios" on page 4-89
Examples
Concepts - "Portfolio Optimization Theory" on page 4-2

Portfolio.estimatePortReturn

Superclasses AbstractPortfolio
Purpose Estimate mean of portfolio returns
Syntax pret = estimatePortReturn(obj, pwgt)
Description pret = estimatePortReturn(obj, pwgt) estimates the mean of portfolio returns (as the proxy for portfolio return).

Note Depending on whether costs have been set, the portfolio return is either gross or net portfolio returns.

Tips
Use dot notation to estimate the mean of portfolio returns (as the proxy for portfolio return).

```
pret = obj.estimatePortReturn(pwgt);
```

Input
Arguments
obj
Portfolio object [Portfolio].

pwgt

Collection of portfolios [NumAssets-by-NumPorts matrix] where NumAssets is the number of assets in the universe and NumPorts is the number of portfolios in the collection of portfolios.

Output pret
Arguments
Estimates for means of portfolio returns for each portfolio in pwgt [NumPorts vector].

Portfolio.estimatePortReturn

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Examples Estimate the Mean of Portfolio Returns

Given portfolio p, use the estimatePortReturn method to estimate the mean of portfolio returns.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
```

p = Portfolio;
p = p.setAssetMoments(m, C);
$\mathrm{p}=\mathrm{p}$. setDefaultConstraints;
pwgt = p.estimateFrontierLimits;
pret = p.estimatePortReturn(pwgt);
disp(pret)
0.0590
0.1800

See Also
 estimatePortRisk | estimateFrontierByRisk | estimateFrontierByReturn

Related • "Obtaining Efficient Portfolios for Target Returns" on page 4-93 Examples

Portfolio.estimatePortReturn

Concepts • "Portfolio Optimization Theory" on page 4-2

PortfolioCVaR.estimatePortReturn

Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input
Arguments

Estimate mean of portfolio returns for PortfolioCVaR object
pret $=$ estimatePortReturn(obj, pwgt)
pret = estimatePortReturn(obj, pwgt) estimates the mean of portfolio returns (as the proxy for portfolio returns).

Note Depending on whether costs have been set, the portfolio return is either gross or net portfolio returns.

Use dot notation to estimate the mean of portfolio returns (as the proxy for portfolio return).

```
pret = obj.estimatePortReturn(pwgt);
```

obj
CVaR portfolio object [PortfolioCVaR].

pwgt

Collection of portfolios [NumAssets-by-NumPorts matrix] where NumAssets is the number of assets in the universe and NumPorts is the number of portfolios in the collection of portfolios.

Output pret
Arguments

Estimates for means of portfolio returns for each portfolio in pwgt [NumPorts vector].

PortfolioCVaR.estimatePortReturn

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Examples Estimate the Mean of Portfolio Returns

Given portfolio p, use the estimatePortReturn method to estimate the mean of portfolio returns.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontierLimits;
pret = p.estimatePortReturn(pwgt);
disp(pret)
```

0.0050
0.0154

PortfolioCVaR.estimatePortReturn

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.
$\begin{array}{ll}\text { See Also } & \begin{array}{l}\text { estimatePortRisk I estimateFrontierByReturn I } \\ \text { estimateFrontierByRisk I rng }\end{array} \\ \begin{array}{l}\text { Related } \\ \text { Examples }\end{array} & \text { - "Obtaining Efficient Portfolios for Target Returns" on page 5-95 }\end{array}$
Concepts - "Estimating Efficient Portfolios and Frontiers" on page 5-25

PortfolioMAD.estimatePortReturn

Superclasses
Purpose Estimate mean of portfolio returns for PortfolioMAD object
Syntax pret = estimatePortReturn (obj, pwgt)
Description pret = estimatePortReturn (obj, pwgt) estimates the mean of portfolio returns (as the proxy for portfolio returns).

Note Depending on whether costs have been set, the portfolio return is either gross or net portfolio returns.

Tips

Input
Arguments
Use dot notation to estimate the mean of portfolio returns (as the proxy for portfolio return).

```
pret = obj.estimatePortReturn(pwgt);
```

obj
MAD portfolio object [PortfolioMAD].

pwgt

Collection of portfolios [NumAssets-by-NumPorts matrix] where NumAssets is the number of assets in the universe and NumPorts is the number of portfolios in the collection of portfolios.

Output pret
Arguments
Estimates for means of portfolio returns for each portfolio in pwgt [NumPorts vector].
Portfolio weights are a [NumAssets-by-NumPorts matrix] and pret is a NumPorts-by-1 vector, where NumAssets is the number of assets in the universe and NumPorts is the number of portfolios in the collection of portfolios.

PortfolioMAD.estimatePortReturn

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Examples Estimate the Mean of Portfolio Returns

Given portfolio p, use the estimatePortReturn method to estimate the mean of portfolio returns.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierLimits;
pret = p.estimatePortReturn(pwgt);
disp(pret)
```

0.0048
0.0154

PortfolioMAD.estimatePortReturn

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.
$\begin{array}{ll}\text { See Also } & \begin{array}{l}\text { estimatePortRisk I estimateFrontierByReturn I } \\ \text { estimateFrontierByRisk I rng }\end{array} \\ \begin{array}{ll}\text { Related } & \text { - "Obtaining Efficient Portfolios for Target Returns" on page 6-95 } \\ \text { Examples } & \end{array}\end{array}$
Concepts

- "Estimating Efficient Portfolios and Frontiers" on page 6-24

Superclasses AbstractPortfolio

Purpose
Estimate standard deviation of portfolio returns (portfolio risk)
Syntax
prsk = estimatePortRisk(obj, pwgt)
Description

Tips

Input
Arguments

obi

Portfolio object [Portfolio].

pwgt

Collection of portfolios[NumAssets-by-NumPorts matrix] where NumAssets is the number of assets in the universe and NumPorts is the number of portfolios in the collection of portfolios.

Output

Arguments

prsk

Estimates for standard deviations of portfolio returns for each portfolio in pwgt [NumPorts vector].

Attributes

Portfolio.estimatePortRisk

Examples Conditional Value-at-Risk of Portfolio Returns as the Proxy for Portfolio Risk

Given portfolio p, use the estimatePortRisk method to show the standard deviation of portfolio returns for each portfolio in pwgt.
m = [0.05; 0.1; 0.12; 0.18];
m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
0 0.0119 0.0336 0.1225];
p = Portfolio;
p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierLimits;
pwgt = p.estimateFrontierLimits;
prsk = p.estimatePortRisk(pwgt);
prsk = p.estimatePortRisk(pwgt);
disp(prsk)
disp(prsk)
0.0769
0.3500
See Also estimatePortRisk I estimateFrontierByRisk I
Related - "Obtaining Efficient Portfolios for Target Risks" on page 4-96
Examples

- "Portfolio Optimization Theory" on page 4-2

PortfolioCVaR.estimatePortRisk

Superclasses AbstractPortfolio

Purpose
Estimate conditional value-at-risk (CVaR) portfolio risk proxy
Syntax
prsk = estimatePortRisk(obj, pwgt)
Description

Tips

Arguments

Output
Arguments
prsk
Estimate for conditional value-at-risk (CVaR) of portfolio returns for each portfolio in pwgt [NumPorts vector].

Attributes

Access	public
Static	false
Hidden	false

PortfolioCVaR.estimatePortRisk

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Examples Conditional Value-at-Risk of Portfolio Returns as the Proxy for Portfolio Risk

Given a portfolio pwgt, use the estimatePortRisk method to show the conditional value-at-risk (CVaR) of portfolio returns for each portfolio.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontierLimits;
prsk = p.estimatePortRisk(pwgt);
disp(prsk)
    0.0407
    0.1911
```

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

PortfolioCVaR.estimatePortRisk

See Also estimatePortReturn | estimateFrontierByReturn | estimateFrontierByRisk | rng
Related - "Obtaining Efficient Portfolios for Target Risks" on page 5-98
Examples
Concepts - "Estimating Efficient Portfolios and Frontiers" on page 5-25

PortfolioMAD.estimatePortRisk

Superclasses AbstractPortfolio
Purpose Estimate mean-absolute deviation (MAD) for portfolio risk proxy
Syntax prsk = estimatePortRisk(obj, pwgt)
Description
prsk = estimatePortRisk(obj, pwgt) estimates the mean-absolute deviation of portfolio returns (portfolio risk proxy).

Tips
Use dot notation to estimate mean-absolute deviation of portfolio returns (portfolio risk proxy).

```
prsk = obj.estimatePortRisk(pwgt);
```

Input obi
Arguments
MAD portfolio object [PortfolioMAD].

pwgt

Collection of portfolios [NumAssets-by-NumPorts matrix] where NumAssets is the number of assets in the universe and NumPorts is the number of portfolios in the collection of portfolios.

Output prsk

Arguments
Estimate for mean-absolute deviation of portfolio returns for each portfolio in pwgt [NumPorts vector].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioMAD.estimatePortRisk

Examples Mean-Absolute Deviation Returns as the Proxy for Portfolio Risk

Given a portfolio pwgt, use the estimatePortRisk method to show the mean-absolute deviation of portfolio returns for each portfolio.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierLimits;
prsk = p.estimatePortRisk(pwgt);
disp(prsk)
0.0177
0.0809
```

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

See Also

```
estimatePortReturn | estimateFrontierByReturn |
estimateFrontierByRisk | rng
```


PortfolioMAD.estimatePortRisk

Related Examples

Concepts

- "Estimating Efficient Portfolios and Frontiers" on page 6-24

PortfolioCVaR.estimatePortStd

Superclasses AbstractPortfolio

Purpose

Syntax
pstd = estimatePortStd(obj, pwgt)
Description

Tips

Input
Arguments

Output

Arguments object of portfolio returns.

```
pstd = obj.estimatePortStd(pwgt);
```


obi

CVaR portfolio object [PortfolioCVaR].

pwgt

pstd

Estimate standard deviation of portfolio returns for PortfolioCVaR
pstd $=$ estimatePortStd(obj, pwgt) estimates the standard deviation

Use dot notation to estimate the standard deviation of portfolio returns.

Collection of portfolios [NumAssets-by-NumPorts matrix], where NumAssets is the number of assets in the universe and NumPorts is the number of portfolios in the collection of portfolios.

Estimates for standard deviations of portfolio returns for each portfolio in pwgt [NumPorts vector].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioCVaR.estimatePortStd

```
Examples
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontierLimits;
pstd = p.estimatePortStd(pwgt);
disp(pstd)
    0.0223
    0.1010
```

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

See Also estimatePortReturn | estimateFrontierByReturn | estimateFrontierByRisk | estimatePortVaR | rng

PortfolioCVaR.estimatePortStd

Related - "Obtaining Portfolio Standard Deviation and VaR" on page 5-106
Examples

PortfolioMAD.estimatePortStd

Superclasses AbstractPortfolio
Purpose Estimate standard deviation of portfolio returns for PortfolioMAD object
Syntax pstd = estimatePortStd (obj, pwgt)
Description
pstd = estimatePortStd(obj, pwgt) estimates the standard deviation of portfolio returns. This method uses the asset return scenarios to compute the standard deviation of portfolio returns.

Tips
Use dot notation to estimate the standard deviation of portfolio returns.

```
pstd = obj.estimatePortStd(pwgt);
```

Input obi
Arguments
MAD portfolio object [PortfolioMAD].

pwgt

Collection of portfolios [NumAssets-by-NumPorts matrix], where NumAssets is the number of assets in the universe and NumPorts is the number of portfolios in the collection of portfolios.

Output
 pstd

Arguments
Estimates for standard deviations of portfolio returns for each portfolio in pwgt [NumPorts vector].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioMAD.estimatePortStd

```
Example
Estimate Standard Deviations for Portfolio Returns
Given a portfolio pwgt, use the estimatePortStd method to show the standard deviation of portfolio returns.
```

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
0 0.0119 0.0336 0.1225];
m = m/12;
m = m/12;
C = C/12;
C = C/12;
rng(11);
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierLimits;
pwgt = p.estimateFrontierLimits;
pstd = p.estimatePortStd(pwgt);
pstd = p.estimatePortStd(pwgt);
disp(pstd)
disp(pstd)
0.0222
0.0222
0.1010

```
    0.1010
```

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

```
See Also
estimatePortReturn | estimateFrontierByReturn | estimateFrontierByRisk | rng
```


PortfolioMAD.estimatePortStd

Related
- "Obtaining Portfolio Standard Deviation" on page 6-105
Examples

PortfolioCVaR.estimatePortVaR

Superclasses AbstractPortfolio

Purpose
Estimate value-at-risk for PortfolioCVaR object
Syntax pvar = estimatePortVaR(obj, pwgt)
Description pvar = estimatePortVaR(obj, pwgt) estimates the value-at-risk for PortfolioCVaR object, where the probability level used is from the PortfolioCVaR property ProbabilityLevel.

Tips
Use dot notation to estimate the value-at-risk of PortfolioCVaR object.

```
pvar = obj.estimatePortVaR(pwgt);
```


Input

Arguments

obi

CVaR portfolio object [PortfolioCVaR].

pwgt

Collection of portfolios [NumAssets-by-NumPorts matrix] where NumAssets is the number of asset in the universe and NumPorts is the number of portfolios in the collection of portfolios.

Output

Arguments

pvar

Estimates for value-at-risk of portfolio returns for each portfolio in pwgt [NumPorts vector].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioCVaR.estimatePortVaR

```
Examples Estimate Value-at-Risk for Portfolio
Given a portfolio pwgt, use the estimatePortVaR method to estimate
the value-at-risk of portfolio.
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
pwgt = p.estimateFrontierLimits;
pvar = p.estimatePortVaR(pwgt);
disp(pvar)
    0.0314
    0.1483
```

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

See Also PortfoliovCaR \| estimatePortStd \| rng

PortfolioCVaR.estimatePortVaR

Related
 Examples

- "Obtaining Portfolio Standard Deviation and VaR" on page 5-106

Concepts • "Conditional Value-at-Risk" on page 5-6

PortfolioCVaR.estimateScenarioMoments

Note If no scenarios are associated with the specified object, both ScenarioMean and ScenarioCovar are set to empty [].

PortfolioCVaR.estimateScenarioMoments

Attributes

Examples

Access
Static
Hidden
public
false
false
To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Given PortfolioCVaR object p, use the estimatePortRisk method to estimate mean and covariance of asset return scenarios.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
[ScenarioMean, ScenarioCovar] = estimateScenarioMoments(p)
```

ScenarioMean =
0.0039

PortfolioCVaR.estimateScenarioMoments

$$
\begin{aligned}
& 0.0082 \\
& 0.0102 \\
& 0.0154
\end{aligned}
$$

ScenarioCovar =

0.0005	0.0003	0.0001	-0.0001
0.0003	0.0024	0.0017	0.0010
0.0001	0.0017	0.0048	0.0028
-0.0001	0.0010	0.0028	0.0102

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

See Also
 PortfolioVCaR | setScenarios | rng

Related - "Asset Returns and Scenarios" on page 5-44
Examples
Concepts - "How Stochastic Optimization Works" on page 5-44

PortfolioMAD.estimateScenarioMoments

Superclasses AbstractPortfolio
Purpose Estimate mean and covariance of asset return scenarios inPortfolioMAD object
Syntax [ScenarioMean,ScenarioCovar] = estimateScenarioMoments(obj)
Description [ScenarioMean,ScenarioCovar] = estimateScenarioMoments(obj) estimates the mean and covariance of asset return scenarios for a PortfolioMAD object.
TipsUse dot notation to estimate the mean and covariance of asset returnscenarios for a portfolio.
[ScenarioMean, ScenarioCovar] = obj.estimateScenarioMoments
Input obMAD portfolio object [PortfolioMAD].
Output Arguments

Note If no scenarios are associated with the specified object, both ScenarioMean and ScenarioCovar are set to empty [].

PortfolioMAD.estimateScenarioMoments

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Examples Estimate Mean and Covariance of Asset Return Scenarios

Given PortfolioMAD object p, use the estimatePortRisk method to estimate mean and covariance of asset return scenarios.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
[ScenarioMean, ScenarioCovar] = estimateScenarioMoments(p)
```

ScenarioMean =
0.0039
0.0082

PortfolioMAD.estimateScenarioMoments

$$
\begin{aligned}
& 0.0102 \\
& 0.0154
\end{aligned}
$$

ScenarioCovar =

0.0005	0.0003	0.0001	-0.0001
0.0003	0.0024	0.0017	0.0010
0.0001	0.0017	0.0048	0.0028
-0.0001	0.0010	0.0028	0.0102

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

See Also
 PortfolioVCaR | setScenarios | estimatePortRisk | simulateNormalScenariosByMoments | rng

 Related

 Related Examples Examples
 - "Asset Returns and Scenarios" on page 6-44

Concepts
 - "How Stochastic Optimization Works" on page 6-44

Purpose
Expected return and covariance from return time series

Syntax

Arguments

Description

RetSeries Return Series: number of observations (NUMOBS) by number of assets (NASSETS) matrix of equally spaced incremental return observations. The first row is the oldest observation, and the last row is the most recent.

DecayFactor (Optional) Controls how much less each observation is weighted than its successor. The k th observation back in time has weight DecayFactor^k. DecayFactor must lie in the range: $0<$ DecayFactor <= 1 .

Default = 1, the equally weighted linear moving average model (BIS).
WindowLength (Optional) Number of recent observations in the computation. Default $=$ NUMOBS.
[ExpReturn, ExpCovariance, NumEffObs] = ewstats(RetSeries, DecayFactor, WindowLength) computes estimated expected returns, estimated covariance matrix, and the number of effective observations. These are maximum likelihood estimates which are generally biased.

ExpReturn is a 1-by-NASSETS vector of estimated expected returns.
ExpCovariance is an NASSETS-by-NASSETS estimated covariance matrix. The standard deviations of the asset return processes are given by

```
STDVec = sqrt(diag(ExpCovariance))
```

The correlation matrix is

```
CorrMat = ExpCovariance./( STDVec*STDVec' )
```

NumEffobs is the number of effective observations = (1-DecayFactor^WindowLength)/(1-DecayFactor).

A smaller DecayFactor or WindowLength emphasizes recent data more strongly but uses less of the available data set.

Examples Compute Estimated Expected Returns and Estimated Covariance Matrix

This example shows how to compute the estimated expected returns and the estimated covariance matrix.

```
RetSeries = [ 0.24 0.08
    0.15 0.13
    0.27 0.06
    0.14 0.13 ];
DecayFactor = 0.98;
[ExpReturn, ExpCovariance] = ewstats(RetSeries, DecayFactor)
ExpReturn =
    0.1995 0.1002
ExpCovariance =
    0.0032 -0.0017
    -0.0017 0.0010
```

See Also
cov | mean

Purpose Exponential values

Syntax newfts $=\exp (t s o b j)$

Description newfts $=\exp (t s o b j)$ calculates the natural exponential (base e) of all the data in the data series of the financial time series object tsobj and returns the result in the object newfts.

See Also $\quad \log |\log 2| \log 10$

Purpose Data series extraction

```
Syntax ftse = extfield(tsobj, fieldnames)
```


Arguments

Description ftse = extfield(tsobj, fieldnames) extracts from tsobj the dates

 and data series specified by fieldnames into a new financial time series object ftse. ftse has all the dates in tsobj but contains a smaller number of data series.Examples extfield is identical to referencing a field in the object. For example, ftse = extfield(fts, 'Close')
is the same as
ftse = fts.Close
This function is the complement of the function rmfield.

See Also
 rmfield

fbusdate

Purpose First business date of month

```
Syntax Date = fbusdate(Year, Month, Holiday, Weekend)
```


Arguments

Year	Enter as four-digit integer.
Month	Enter as integer from 1 to 12.
Holiday	(Optional) Vector of holidays and nontrading-day dates. All dates in Holiday must be the same format: either serial date numbers or date strings. (Using date numbers improves performance.) The holidays function supplies the default vector.
Weekend	(Optional) Vector of length 7, containing 0 and 1, the value 1 indicating weekend days. The first element of this vector corresponds to Sunday. Thus, when Saturday and Sunday form the weekend (default), then Weekend $=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$.

Description Date $=$ fbusdate (Year, Month, Holiday, Weekend) returns the serial date number for the first business date of the given year and month. Holiday specifies nontrading days.

Year and Month can contain multiple values. If one contains multiple values, the other must contain the same number of values or a single value that applies to all. For example, if Year is a 1 -by-n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. Date is then a 1-by-n vector of date numbers.

Use the function datestr to convert serial date numbers to formatted date strings.

Examples

Return a Serial Date Number for the First Business Date

This example shows how to return serial date numbers for the first business date, given year and month.

```
Date = fbusdate(2001, 11)
datestr(Date)
Year = [2002 2003 2004];
Date = fbusdate(Year, 11)
datestr(Date)
Date =
    7 3 1 1 5 6
ans =
01-Nov-2001
Date =
    731521 731888
        7 3 2 2 5 2
ans =
01-Nov-2002
03-Nov-2003
01-Nov-2004
```


fbusdate

Return This example shows how to return serial date numbers for the first
a Serial
Date
Number for the
First
Business
Date
Using the
Weekend
Argument business date, given year and month, and also indicate that Saturday is a business day by setting the Weekend argument. March 1, 2003, is a Saturday. Use fbusdate to check that this Saturday is actually the first business day of the month.
Weekend $=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$;
Date $=$ datestr(fbusdate(2003, 3, [], Weekend))
Date =
01-Mar-2003
See Also busdate | eomdate | holidays | isbusday | lbusdate

Purpose

Data from financial time series object

```
Syntax
newfts = fetch(oldfts, StartDate, StartTime, EndDate, EndTime,
delta, dmy_specifier, time_ref)
```

Arguments

oldfts	Existing financial time series object.
StartDate	First date in the range from which data is to be extracted.
StartTime	Beginning time on each day. If you do not require specific times or oldfts does not contain time information, use []. If you specify StartTime, you must also specify EndTime.
EndDate	Last date in the range from which data is to be extracted.
EndTime	Ending time on each day. If you do not require specific times or oldfts does not contain time information, use []. If you specify EndTime, you must also specify StartTime.
delta	Skip interval. Can be any positive integer.
Units for the skip interval specified by	
dmy_specifier.	

Description
newfts $=$ fetch(oldfts, StartDate, StartTime, EndDate, EndTime, delta, dmy_specifier, time_ref) requests data from a financial time series object beginning from the start date and/or start time to the end date and/or end time, skipping a specified number of days, months, or years.

Note If time information is present in oldfts, using [] for start or end times results in fetch returning all instances of a specific date.

Examples

Example 1. Create a financial time series object containing both dates and times:

```
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
    '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),\ldots
times]);
myFts = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')
myFts =
```

 desc: My first FINTS
 freq: Daily (1)
 | dates: (6)' | 'times: | (6) ${ }^{\prime}$ | 'Data1: (6)' |
| :---: | :---: | :---: | :---: |
| 01-Jan-2001' | '11:00' | | $1]$ |
| " ' | '12:00' | | 2] |
| '02-Jan-2001' | '11:00' | | $3]$ |
| " ' | '12:00' | | $4]$ |
| '03-Jan-2001' | '11:00' | | 5] |
| " ' | '12:00' | | 6] |

To fetch all dates and times from this financial time series, enter

```
fetch(myFts,'01-Jan-2001',[],'03-Jan-2001',[],1,'d')
```

or
fetch(myFts,'01-Jan-2001','11:00','03-Jan-2001','12:00',1,'d')
These commands reproduce the entire time series shown above.
To fetch every other day's data, enter

```
fetch(myFts,'01-Jan-2001',[],'03-Jan-2001',[], 2, 'd')
```

This returns:

```
ans =
    desc: My first FINTS
    freq: Daily (1)
    'dates: (4)' 'times: (4)' 'Data1: (4)
    '01-Jan-2001' '11:00' [ 1]
```



```
    " ' '12:00' [ 6]
```

Example 2. Create a financial time series object with time intervals of less than 1 hour:

```
dates2 = ['01-Jan-2001';'01-Jan-2001'; '01-Jan-2001';...
'02-Jan-2001'; '02-Jan-2001';'02-Jan-2001'];
times2 = ['11:00';'11:05';'11:06';'12:00';'12:05';'12:06'];
dates_times2 = cellstr([dates2, repmat(' ',size(dates2,1),1),\ldots.
times2]);
myFts2 = fints(dates_times2,(1:6)',{'Data1'},1,'My second
FINTS')
myFts2 =
    desc: My second FINTS
```

```
freq: Daily (1)
```

dates: (6)'	'times: (6)'	'Data1: (6)'
'01-Jan-2001'	'11:00'	1]
' " '	'11:05'	2]
' " '	'11:06'	$3]$
'02-Jan-2001'	'12:00'	$4]$
' " '	'12:05'	5]
' " '	'12:06'	$6]$

Use fetch to extract data from this time series object at 5 -minute intervals for each day starting at 11:00 o'clock on January 1, 2001.

```
fetch(myFts2,'01-Jan-2001',[],'02-Jan-2001',[],1,'d',5)
desc: My second FINTS
freq: Daily (1)
'dates: (4)' 'times: (4)' 'Data1: (4)'
'01-Jan-2001' '11:00' [ 1]
' " ' '11:05' [ 2]
'02-Jan-2001' '12:00' [ 4]
' " ' '12:05' [ 5]
```

You can use this version of fetch to extract data at specific times. For example, to fetch data only at 11:06 and 12:06 from myFts2, enter

```
fetch(myFts2,'01-Jan-2001',[],'02-Jan-2001',[],1,'d',...
{'11:06';'12:06'})
ans =
    desc: My second FINTS
    freq: Daily (1)
    'dates: (2)' 'times: (2)' 'Data1: (2)'
    '01-Jan-2001' '11:06' [ 3]
```


See Also
 extfield | ftsbound | getfield | subsref

fieldnames

Purpose Get names of fields

```
Syntax fnames = fieldnames(tsobj)
fnames = fieldnames(tsobj, srsnameonly)
```


Arguments

Description

See Also
tsobj Financial time series object
srsnameonly Field names returned:
$0=$ All field names (default).
$1=$ Data series names only.
fieldnames gets field names in a financial time series object.
fnames = fieldnames(tsobj) returns the field names associated with the financial time series object tsobj as a cell array of strings, including the common fields: desc, freq, dates (and times if present).
fnames = fieldnames(tsobj, srsnameonly) returns field names depending upon the setting of srsnameonly. If srsnameonly is 0 , the function returns all field names, including the common fields: desc, freq, dates, and times. If srsnameonly is set to 1, fieldnames returns only the data series in fnames.
chfield | getfield | isfield | rmfield | setfield

Purpose

Fill missing values in time series

```
Syntax newfts = fillts(oldfts, fill_method)
newfts = fillts(oldfts, fill_method, newdates)
newfts = fillts(oldfts, fill_method,
newdates, {'T1','T2',...})
newfts = fillts(oldfts, fill_method, newdates,
'SPAN', {'TS','TE'}, delta)
newfts = fillts(... sortmode)
```


Arguments

- pchip with extrapolation - 'pchipExtrap' -'pe'
(See interp1 for a discussion of extrapolation.)
To fill with a constant, enter that constant.
A zero-order hold ('zero') fills a missing value with the value immediately preceding it. If the first value in the time series is missing, it remains a NaN .

newdates	(Optional) Column vector of serial dates, a date string, or a column cell array of date strings. If oldfts contains time of day information, newdates must be accompanied by a time vector (newtimes). Otherwise, newdates is assumed to have times of '00:00'
T1, T2, TS, TE \quadFirst time, second time, start time, end time	
delta	Time interval in minutes to span between the start time and end time
sortmode	(Optional) Default = (unsorted). $1=$ sorted.

Description

newfts $=$ fillts(oldfts, fill_method) replaces missing values (represented by NaN) in the financial time series object oldfts with real values, using either a constant or the interpolation process indicated by fill_method.
newfts = fillts(oldfts, fill_method, newdates) replaces all the missing values on the specified dates newdates added to the financial time series oldfts with new values. The values can be a single constant or values obtained through the interpolation process designated by fill_method. If any of the dates in newdates exists in oldfts, the existing one has precedence.

```
newfts = fillts(oldfts, fill_method,
```

newdates, \{'T1', 'T2', ...\}) additionally allows the designation of specific times of day for addition or replacement of data.

```
newfts = fillts(oldfts, fill_method, newdates,
```

'SPAN', \{'TS','TE'\}, delta) is similar to the previous format except that you designate only a start time and an end time. You follow these times with a spanning time interval, delta.

If you specify only one date for newdates, specifying a start and end time generates only times for that specific date.
newfts = fillts(... sortmode) additionally denotes whether you want the order of the dates in the output object to stay the same as in the input object or to be sorted chronologically.
sortmode $=0$ (unsorted) appends any new dates to the end. The interpolation and zero-order processes that calculate the values for the new dates work on a sorted object. Upon completion, the existing dates are reordered as they were originally, and the new dates are appended to the end.
sortmode $=1$ sorts the output. After interpolation, no reordering of the date sequence occurs.

Examples

Example 1. Create a financial time series object with missing data in the fourth and fifth rows.

```
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001';...
    '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),\ldots.
        times]);
OpenFts = fints(dates_times,[(1:3)'; nan; nan; 6],{'Data1'},1,...
'Open Financial Time Series');
OpenFts looks like this:
OpenFts =
```

```
desc: Open Financial Time Series
freq: Daily (1)
```

'dates: (6)'	'times:	$(6)^{\prime}$	'Data1:	(6) ${ }^{\prime}$
'01-Jan-2001'	'11:00'		[$1]$
' " '	'12:00'		[$2]$
'02-Jan-2001'	'11:00'		[$3]$
' "	'12:00'		[NaN]
'03-Jan-2001'	'11:00'		[$\mathrm{NaN}]$
, "	'12:00'		[$6]$

Example 2. Fill the missing data in OpenFts using cubic interpolation.

```
FilledFts = fillts(OpenFts,'cubic')
```

FilledFts =
desc: Filled Open Financial Time Series
freq: Unknown (0)

dates: (6)'	'times:	(6) ${ }^{\prime}$	'Data1:	: (6) ${ }^{\prime}$
01-Jan-2001'	'11:00'		[$1]$
" '	'12:00'		[2]
02-Jan-2001'	'11:00'		[$3]$
" '	'12:00'		3.	3.0663]
03-Jan-2001'	'11:00'		5.	5.8411]
"	'12:00'			6.0000]

Example 3. Fill the missing data in OpenFts with a constant value.

```
FilledFts = fillts(OpenFts,0.3)
FilledFts =
    desc: Filled Open Financial Time Series
    freq: Unknown (0)
    'dates: (6)' 'times: (6)' 'Data1: (6)'
```

'01-Jan-2001'	'11:00'		1]
'	'12:00'		2]
'02-Jan-2001'	'11:00'		$3]$
' "	'12:00'		$0.3000]$
'03-Jan-2001'	'11:00'		$0.3000]$
' " '	'12:00'		$6]$

Example 4. You can use fillts to identify a specific time on a specific day for the replacement of missing data. This example shows how to replace missing data at 12:00 on January 2 and 11:00 on January 3.

```
FilltimeFts = fillts(OpenFts,'c',...
{'02-Jan-2001';'03-Jan-2001'}, {'12:00';'11:00'},0)
```

FilltimeFts =
desc: Filled Open Financial Time Series
freq: Unknown (0)

dates: (6)'	'times:	(6) '	'Data1: (6)'
'01-Jan-2001'	'11:00'		[1]
, " ।	'12:00'		[2]
'02-Jan-2001'	'11:00'		[3]
' "	'12:00'		[3.0663]
'03-Jan-2001'	'11:00'		[5.8411]
, "	'12:00'		[6.0000]

Example 5. Use a spanning time interval to add an additional day to OpenFts.

```
SpanFts = fillts(OpenFts,'c','04-Jan-2001','span',...
    {'11:00';'12:00'},60,0)
```

SpanFts =
desc: Filled Open Financial Time Series
freq: Unknown (0)

dates: (8)'	'times:	(8) '	'Data1: (8)'
'01-Jan-2001'	'11:00'		$1]$
' "	'12:00'		2]
'02-Jan-2001'	'11:00'		3]
' " '	'12:00'		3.0663]
'03-Jan-2001'	'11:00'		$5.8411]$
' " '	'12:00'		$6.0000]$
'04-Jan-2001'	'11:00'		$9.8404]$
' " '	'12:00'		$9.9994]$

See Also interp1

Purpose Linear filtering

Syntax newfts $=$ filter $(B, A$, oldfts $)$
Description filter filters an entire financial time series object with certain filter specifications. The filter is specified in a transfer function expression.
newfts $=$ filter (B, A, oldfts) filters the data in the financial time series object oldfts with the filter described by vectors A and B to create the new financial time series object newfts. The filter is a "Direct Form II Transposed" implementation of the standard difference equation. newfts is a financial time series object containing the same data series (names) as the input oldfts.

See Also
filter | filter2

fints

Purpose Construct financial time series object

Syntax tsobj = fints (dates_and_data)

tsobj = fints(dates, data)
tsobj = fints(dates, data, datanames)
tsobj = fints(dates, data, datanames, freq)
tsobj = fints(dates, data, datanames, freq, desc)

Arguments

dates_and_data Column-oriented matrix containing one column of dates and a single column for each series of data. In this format, dates must be entered in serial date number format. If the input serial date numbers encode time-of-day information, the output object contains a column labeled 'dates' containing the date information and another labeled 'times ' containing the time information.

You can use the function today to enter date information or the function now to enter date with time information.
dates Column vector of dates. Dates can be date strings or serial date numbers and can include time of day information. When entering time-of-day information as serial date numbers, the entry must be a column-oriented matrix when multiple entries are present. If the time-of-day information is in string format, the entry must be a column-oriented cell array of dates and times when multiple entries are present.
Valid date and time string formats are:

- 'ddmmmyy hh:mm' or 'ddmmmyyyy hh:mm'
- 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'
- 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy hh:mm'
- 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy hh:mm'

Dates and times can initially be separate column-oriented vectors, but they must be concatenated into a single column-oriented matrix before being passed to fints. You can use the MATLAB functions today and now to assist in entering date and time information.
data
datanames

Column-oriented matrix containing a column for each series of data. The number of values in each data series must match the number of dates. If a mismatch occurs, MATLAB does not generate the financial time series object, and you receive an error message.
Cell array of data series names. Overrides the default data series names. Default data series names are series1, series2, and so on.

Note Not all strings are accepted as datanames parameters. Supported data series names cannot start with a number and must contain only these characters:

- Lowercase Latin alphabet, a to z
- Uppercase Latin alphabet, A to Z
- Underscore,

fints

freq	Frequency indicator. Allowed values are:
	UNKNOWN, Unknown, unknown, U, u, 0
	DAILY, Daily, daily, D, d, 1
	WEEKLY, Weekly, weekly, W, w, 2
	MONTHLY, Monthly, monthly, M, m, 3
	QUARTERLY, Quarterly, quarterly, Q, q, 4
	SEMIANNUAL, Semiannual, semiannual, S, s, 5
ANNUAL, Annual, annual, A, a, 6	

Description

fints constructs a financial time series object. A financial time series object is a MATLAB object that contains a series of dates and one or more series of data. Before you perform an operation on the data, you must set the frequency indicator (freq). You can optionally provide a description (desc) for the time series.
tsobj = fints(dates_and_data) creates a financial time series object containing the dates and data from the matrix dates_and_data. If the dates contain time-of-day information, the object contains an additional series of times. The date series and each data series must each be a column in the input matrix. The names of the data series default to series1, ..., seriesn. The desc and freq fields are set to their defaults.
tsobj = fints(dates, data) generates a financial time series object containing dates from the dates column vector of dates and data from the matrix data. If the dates contain time-of-day information, the object contains an additional series of times. The data matrix must be column-oriented, that is, each column in the matrix is a data series. The names of the series default to series $1, \ldots$, seriesn, where n is the
total number of columns in data. The desc and freq fields are set to their defaults.
tsobj = fints(dates, data, datanames) additionally allows you to rename the data series. The names are specified in the datanames cell array. The number of strings in datanames must correspond to the number of columns in data. The desc and freq fields are set to their defaults.
tsobj = fints(dates, data, datanames, freq) additionally sets the frequency when you create the object. The desc field is set to its default ' ' .
tsobj $=$ fints(dates, data, datanames, freq, desc) provides a description string for the financial time series object.

Note fints only supports hourly and minute time series. Seconds are not supported and will be disregarded when the fints object is created (i.e. 01-jan-2001 12:00:01 will be considered as 01-jan-2001 12:00). If there are duplicate dates and times, the fints constructor will sort the dates and times and choose the first instance of the duplicate dates and times. The other duplicate dates and times will be removed from the object along with their corresponding data.

Examples Create a Financial Time Series Object Containing Days and Data

Define the data:

```
data = [1:6]'
```

data $=$

```
        4
        5
        6
Define the dates:
```

```
dates = [today:today+5]'
```

dates = [today:today+5]'
dates =
7 3 5 6 1 7
7 3 5 6 1 8
7 3 5 6 1 9
7 3 5 6 2 0
7 3 5 6 2 1
7 3 5 6 2 2
Create the financial times series object:

```
```

tsobjkt = fints(dates, data)

```
tsobjkt = fints(dates, data)
tsobjkt =
    desc: (none)
    freq: Unknown (0)
    'dates: (6)' 'series1: (6)
    '18-Jan-2014' [ 1]
    '19-Jan-2014' [ 2]
    '20-Jan-2014' [ 3]
    '21-Jan-2014' [ 4]
    '22-Jan-2014' [ 5]
    '23-Jan-2014' [ 6]
```


Create a Financial Time Series Object Containing Days, Time of Day, and Data

Define the data:
data $=[1: 6]$
data $=$
1
2
3
4
5
6

Define the dates:
dates = [now:now+5]'
dates =
$1.0 \mathrm{e}+05$ *
7.3562
7.3562
7.3562
7.3562
7.3562
7.3562

fints

Create the financial times series object:

```
tsobjkt = fints(dates, data)
tsobjkt =
    desc: (none)
    freq: Unknown (0)
```

'dates: (6)'	'times:	(6)'	'series1:
'18-Jan-2014'	(6)'		
'19-Jan-2014'	'04:54'		$[$
'20-Jan-2014'	$' 04: 54^{\prime}$	$[$	$1]$
'21-Jan-2014'	$' 04: 54^{\prime}$	$[$	$2]$
'22-Jan-2014'	$' 04: 54^{\prime}$	$[$	$3]$
'23-Jan-2014'	'04:54'	$[$	$4]$

Create a Financial Time Series Object From a Single Input for Dates and Times

Define the dates and times:

```
dates_and_times = (now:now+5)
dates_and_times =
    1.0e+05 *
    7.3562
    7.3562
    7.3562
    7.3562
    7.3562
    7.3562
```

Create the financial times series object:

```
f = fints(dates_and_times, randn(6,1))
```

f =
desc: (none)
freq: Unknown (0)

'dates: (6)'	'times:	(6)'	'series1: (6)'
'18-Jan-2014'	'04:58'		[
'19-Jan-2014'	'04:58'	$0.5377]$	
'20-Jan-2014'	'04:58'	[$1.8339]$
'21-Jan-2014'	'04:58'	[$-2.2588]$
'22-Jan-2014'	'04:58'	[$0.8622]$
'23-Jan-2014'	'04:58'	[$-1.3077]$

This generates a financial time series object, f, and obtains the dates and data from the matrix dates_and_times. The dates and times in the input matrix must be oriented column-wise (i.e. the date series and each time series are columns in the input matrix). In addition, the dates entered must be in the serial date format (i.e. 01-Jan-2001 is 730852). You can also use the function now to enter in date information. The names of the series will default to 'series1', ..., '| seriesN'| where N is the total number of columns in dates_and_times less 1 (that is the number of data columns). The default contents of the desc and freq fields are|"| and | 'Unknown'| (0), respectively.

See Also
datenum | datestr | ftstool | ftsgui

floatdiscmargin

Purpose Discount margin for floating-rate bond
Syntax $\quad \begin{aligned} & \text { Margin }=\text { floatdiscmargin(Price, Spread, Settle, Maturity, } \\ & \\ & \text { RateInfo, LatestFloatingRate) } \\ & \\ & \text { Margin }=\text { floatdiscmargin(Price, Spread, Settle, Maturity, } \\ & \\ & \text { RateInfo, LatestFloatingRate, Name, Value) }\end{aligned}$
Description Margin = floatdiscmargin(Price,Spread,Settle, Maturity, RateInfo, LatestFloatingRate) calculates the discount margin or zero discount margin for a floating-rate bond.

Margin = floatdiscmargin(Price,Spread,Settle, Maturity, RateInfo, LatestFloatingRate, Name, Value) calculates the discount margin or zero discount margin for a floating-rate bond with additional options specified by one or more Name, Value pair arguments.

Input
 Arguments

Price

NINST-by- 1 matrix of bond prices where the discount margin is to be computed. The spread is calculated against the clean price (the function internally does not add the accrued interest to the price specified by the Price input). If the spread is required against the dirty price, you must supply the dirty price to this input.

Spread

NINST-by-1 matrix for the number of basis points over the reference rate.

Settle

Settlement date of the floating-rate bond(s). If supplied as a NINST-by-1 vector of dates, all settlement dates must be the same (only a single settlement date is supported).

Maturity

NINST-by-1 vector of dates representing the maturity date of the floating-rate bond.

floatdiscmargin

RateInfo

Interest-rate information. This argument determines if the discount margin or zero discount margin is calculated. If this input is a NINST-by-2 vector, the discount margin is calculated where the:

- First column is the stub rate between the settlement date and the first coupon rate.
- Second column is the reference rate for the term of the floating coupons (for example, the 3-month LIBOR from the settlement date for a bond with Reset of 4).

Note If this argument is an annualized zero-rate term structure created by intenvset, the zero discount margin is calculated.

LatestFloatingRate

NINST-by-1 vector representing the rate for the next floating payment set at the last reset date.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

'Reset'

NINST-by-1 vector representing the frequency of payments per year.
Default: 1

'Basis'

NINST-by-1 vector representing the basis used for time factor calculations:

floatdiscmargin

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- 7 = actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0 (actual/actual)

'Principal'

NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NUMDATES-by-2 cell array where the first column is dates and the second column is the associated principal amount. The date indicates the last day that the principal value is valid.

Default: 100

'EndMonthRule'

NINST-by-1 vector representing the end-of-month rule.

floatdiscmargin

Default: 1 (in effect)

'AdjustCashFlowsBasis'

NINST-by-1 vector of logicals. Adjusts cash flows according to the accrual amount.

Note Usually you want to set AdjustCashFlowsBasis to true, so cash flows are calculated with adjustments on accrual amounts. The default is set to false to be consistent with floatbyzero.

Default: false

'Holidays'

NHOLIDAYS-by- 1 vector of MATLAB date numbers. Holidays are used in computing business days.

Default: holidays.m used

'BusinessDayConvention'

NINST-by- 1 cell array of business day convention to be used in computing payment dates. Values are:

- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

floatdiscmargin

Output Arguments

Examples

Margin

NINST-by- 1 vector of the discount margin if RateInfo is specified as a NINST-by-2 vector of stub and spot rates. NINST-by-NCURVES matrix of the zero discount margin if RateInfo is specified as an annualized zero rate term structure created by intenvset.

Compute the Zero Discount Margin Using a Yield Curve

Use floatdiscmargin to compute the discount margin and zero discount margin for a floating-rate note.

Define data for the floating-rate note.
Price = 99.99;
Spread = 50;
Settle = '20-Jan-2011';
Maturity = '15-Jan-2012';
LatestFloatingRate = 0.05;
StubRate = 0.049;
SpotRate = 0.05;
Reset = 4;
Basis = 2;
Compute the discount margin.
dMargin = floatdiscmargin(Price, Spread, Settle, Maturity, ... [StubRate, SpotRate], LatestFloatingRate,'Reset', Reset, 'Basis', Basis, 'AdjustCashFlowsBasis', true)
dMargin =
48.4810

Usually you want to set AdjustCashFlowsBasis to true, so cash flows are calculated with adjustments on accrual amounts.

floatdiscmargin

Create an annualized zero-rate term structure to calculate the zero discount margin.

```
Rates = [0.0500;
    0.0505;
    0.0510;
    0.0520];
StartDates = ['20-Jan-2011';
            '15-Apr-2011';
            '15-Jul-2011';
            '15-Oct-2011'];
EndDates = ['15-Apr-2011';
            '15-Jul-2011';
            '15-Oct-2011';
            '15-Jan-2012'];
ValuationDate = '20-Jan-2011';
RateSpec = intenvset('Compounding', Reset, 'Rates', Rates,...
'StartDates', StartDates, 'EndDates', EndDates,...
'ValuationDate', ValuationDate, 'Basis', Basis);
```

Calculate the zero discount margin using the previous yield curve.

```
dMargin = floatdiscmargin(Price, Spread, Settle, Maturity, ...
RateSpec, LatestFloatingRate,'Reset', Reset, 'Basis', Basis, ...
'AdjustCashFlowsBasis', true)
```

dMargin =
46.0688

References Fabozzi, Frank J., Mann, Steven V., Floating-Rate Securities, John Wiley and Sons, New York, 2000.
 Fabozzi, Frank J., Mann, Steven V., Introduction to Fixed Income Analytics: Relative Value Analysis, Risk Measures and Valuation, John Wiley and Sons, New York, 2010.

floatdiscmargin

O’Kane, Dominic, Sen, Saurav, Credit Spreads Explained, Lehman Brothers Fixed Income Quantitative Research, March 2004.

See Also
| floatmargin | floatbyzero | bndspread | intenvset

floatmargin

Purpose Margin measures for floating-rate bond

Syntax

```
[Margin,AdjPrice] = floatmargin(Price,Spread,Settle, Maturity)
[Margin,AdjPrice] = floatmargin(Price,Spread,Settle, Maturity, Name, Value)
```

Description

Input Arguments

[Margin,AdjPrice] = floatmargin(Price,Spread,Settle, Maturity) calculates margin measures for a floating-rate bond.
[Margin,AdjPrice] = floatmargin(Price,Spread,Settle, Maturity, Name, Value) calculates margin measures for a floating-rate bond with additional options specified by one or more Name, Value pair arguments.

Use floatmargin to calculate the following types of margin measures for a floating-rate bond:

- Spread for life
- Adjusted simple margin
- Adjusted total margin

To calculate the discount margin or zero discount margin, see floatdiscmargin.

Price

NINST-by-1 matrix of bond prices where spreads are to be computed.

Spread

NINST-by-1 matrix for the number of basis points over the reference rate.

Settle

Settlement date of the floating-rate bond(s). If supplied as a NINST-by-1 vector of dates, all settlement dates must be the same (only a single settlement date is supported).

floatmargin

Maturity

NINST-by-1 vector of dates representing the maturity date of the floating-rate bond.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

'SpreadType'

The type of spread to calculate. Values are:

- spreadforlife
- adjustedsimple
- adjustedtotal

Only single SpreadType values are supported.
If the SpreadType is spreadforlife (default), then the Name-Value arguments LatestFloatingRate and RateInfo are not used. If the SpreadType is adjustedsimple or adjustedtotal, then the Name-Value arguments LatestFloatingRate and RateInfo must be specified.

Default: spreadforlife

'LatestFloatingRate'

NINST-by-1 vector representing the rate for the next floating payment set at the last reset date. This rate must be specified for SpreadType of adjustedsimple and adjustedtotal.

'Ratelnfo'

NINST-by-2 vector representing the interest-rate information where the:

- First column is the stub rate between the settlement date and the first coupon rate.
- Second column is the reference rate for the term of the floating coupons (for example, the 3-month LIBOR from settlement date for a bond with Reset of 4).

Note The RateInfo must be specified for SpreadType of adjustedsimple and adjustedtotal.

'Reset'

NINST-by-1 vector representing the frequency of payments per year.

Default: 1

'Basis'

NINST-by-1 vector representing the basis used for time factor calculations:

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- 7 = actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- 10 = actual/365 (ICMA)

floatmargin

- $11=30 / 360 \mathrm{E}$ (ICMA)
- $12=$ actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0 (actual/actual)

'Principal'

NINST-by-1 of notional principal amounts.
Default: 100

'EndMonthRule'

NINST-by-1 vector representing the end-of-month rule.
Default: 1 (in effect)

'Holidays'

NHOLIDAYS-by- 1 vector of MATLAB date numbers. Holidays are used in computing business days.

Default: holidays.m used

'BusinessDayConvention'

NINST-by- 1 cell array of business day conventions to be used in computing payment dates. Values are:

- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

Output Arguments

Examples

Margin

NINST-by- 1 vector of spreads for the floating-rate bond.

AdjPrice

NINST-by-1 vector of the adjusted price used to calculate spreads for spreadType of adjustedsimple and adjustedtotal.

Compute Margin Measures for a Floating-Rate Bond

Use floatmargin to compute margin measures for spreadforlife, adjustedsimple, and adjustedtotal for a floating-rate note.

Define data for the floating-rate note.

```
Price = 99.99;
Spread = 50;
Settle = '20-Jan-2011';
Maturity = '15-Jan-2012';
LatestFloatingRate = 0.05;
StubRate = 0.049;
SpotRate = 0.05;
Reset = 4;
Basis = 2;
Calculate spreadforlife.
Margin = floatmargin(Price, Spread, Settle, Maturity, 'Reset', ...
Reset, 'Basis', Basis)
```

Margin =
51.0051

floatmargin

```
Calculate adjustedsimple margin.
[Margin, AdjPrice] = floatmargin(Price, Spread, Settle, Maturity, ...
'SpreadType', 'adjustedsimple', 'RateInfo', [StubRate, SpotRate], ...
'LatestFloatingRate', LatestFloatingRate, 'Reset', Reset, 'Basis', Basis)
Margin =
    53.2830
AdjPrice =
99.9673
Calculate adjustedtotal margin.
[Margin, AdjPrice] = floatmargin(Price, Spread, Settle, Maturity, ... 'SpreadType', 'adjustedtotal', 'RateInfo', [StubRate, SpotRate], ... 'LatestFloatingRate', LatestFloatingRate, 'Reset', Reset, 'Basis', Basis)
Margin =
53.4463
```


AdjPrice =

```
99.9673
```


References Fabozzi, Frank J., Mann, Steven V., Floating-Rate Securities, John Wiley and Sons, New York, 2000.

Fabozzi, Frank J., Mann, Steven V., Introduction to Fixed Income Analytics: Relative Value Analysis, Risk Measures and Valuation, John Wiley and Sons, New York, 2010.

See Also | floatdiscmargin | floatbyzero | bndspread

fpctkd

Purpose Fast stochastics

```
Syntax
```

```
[pctk, pctd] = fpctkd(highp, lowp, closep)
```

[pctk, pctd] = fpctkd(highp, lowp, closep)
[pctk, pctd] = fpctkd([highp lowp closep])
[pctk, pctd] = fpctkd([highp lowp closep])
[pctk, pctd] = fpctkd(highp, lowp, closep, kperiods, dperiods,
[pctk, pctd] = fpctkd(highp, lowp, closep, kperiods, dperiods,
dmamethod)
dmamethod)
[pctk, pctd] = fpctkd([highp lowp closep], kperiods, dperiods,
[pctk, pctd] = fpctkd([highp lowp closep], kperiods, dperiods,
dmamethod)
dmamethod)
pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod)
pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod)
pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod, ParameterName,
pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod, ParameterName,
ParameterValue, ...)

```
ParameterValue, ...)
```

Arguments

highp	High price (vector).
lowp	Low price (vector).
closep	Closing price (vector).

kperiods (Optional) \%K periods. Default $=10$.
dperiods $\quad($ Optional) $\%$ D periods. Default $=3$.
damethod (Optional) \%D moving average method. Default = 'e' (exponential).
tsobj Financial time series object.
ParameterName Valid parameter names are:

- HighName: high prices series name
- LowName: low prices series name
- CloseName: closing prices series name

ParameterValueParameter values are the strings that represent the valid parameter names.

Description
fpctkd calculates the stochastic oscillator.
[pctk, pctd] = fpctkd(highp, lowp, closep) calculates the fast stochastics $\mathrm{F} \% \mathrm{~K}$ and $\mathrm{F} \% \mathrm{D}$ from the stock price data highp (high prices), lowp (low prices), and closep (closing prices).
[pctk, pctd] = fpctkd([highp lowp closep])accepts a three-column matrix of high (highp), low (lowp), and closing prices (closep), in that order.
[pctk, pctd] = fpctkd(highp, lowp, closep, kperiods, dperiods, dmamethod) calculates the fast stochastics F\%K and F\%D from the stock price data highp (high prices), lowp (low prices), and closep (closing prices). kperiods sets the \%K period. dperiods sets the \%D period.
damethod specifies the \%D moving average method. Valid moving average methods for \%D are Exponential ('e') and Triangular ('t'). See tsmovavg for explanations of these methods.
[pctk, pctd]= fpctkd([highp lowp closep], kperiods, dperiods, dmamethod) accepts a three-column matrix of high (highp), low (lowp), and closing prices (closep), in that order.
pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod) calculates the fast stochastics F\%K and F\%D from the stock price data in the financial time series object tsobj. tsobj must minimally contain the series High (high prices), Low (low prices), and Close (closing prices). pkdts is a financial time series object with similar dates to tsobj and two data series named PercentK and PercentD.
pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod, ParameterName, ParameterValue, ...) accepts parameter name/parameter value pairs as input. These pairs specify the name(s) for the required data series if it is different from the expected default name(s). Parameter values are the strings that represent the valid parameter names.

Examples Compute the Stochastic Oscillator

This example shows how to compute the stochastic oscillator for Disney stock and plot the results.

```
load disney.mat
dis_FastStoc = fpctkd(dis)
plot(dis_FastStoc)
title('Stochastic Oscillator for Disney')
```

dis_FastStoc =
desc: FastPercentKD: Walt Disney Company (DIS)
freq: Unknown (0)

dates: (782)	PercentK:	(782) ${ }^{\prime}$	PercentD:	(782) ${ }^{\prime}$
' 29-Mar-1996'	6	68.1942]	[NaN]
'01-Apr-1996'		$86.3612]$	[$\mathrm{NaN}]$
02-Apr-1996'	9	$97.7087]$	[90	$90.8983]$
'03-Apr-1996'	[100]	[9	$95.4492]$
04-Apr-1996'	8	$88.6525]$	[9	$92.0508]$
'05-Apr-1996'	[$\mathrm{NaN}]$	[$\mathrm{NaN}]$
08-Apr-1996'	7	$77.2504]$	[84	$84.6506]$
'09-Apr-1996'	6	$63.6116]$	[74	74.1311]
'10-Apr-1996'	1	$13.6388]$	[43	$43.8850]$
'11-Apr-1996'	[4.5281]	[24	$24.2065]$
'12-Apr-1996'	2	$22.6950]$	[23	$23.4508]$
'15-Apr-1996'	3	$31.8058]$	[27	$27.6283]$
'16-Apr-1996'	3	$38.6252]$	[3	$33.1267]$
'17-Apr-1996'	4	$40.9165]$	[37	$37.0216]$
'18-Apr-1996'	5	$56.3692]$	[46	$46.6954]$
'19-Apr-1996'	6	61.5385]	[54	$54.1169]$
'22-Apr-1996'	5	$55.5333]$	[54	$54.8251]$
'23-Apr-1996'	4	$46.3979]$	[50	$50.6115]$
'24-Apr-1996'	2	$22.5407]$	[36	$36.5761]$
'25-Apr-1996'	3	$38.7297]$	[37	$37.6529]$
'26-Apr-1996'	5	$54.8412]$	[46	$46.2470]$

'29-Apr-1996'
'30-Apr-1996'
'01-May-1996'
'02-May-1996'
'03-May-1996'
'06-May-1996'
' 07-May-1996'
'08-May-1996'
'09-May-1996'
'10-May-1996'
'13-May-1996'
'14-May-1996'
'15-May-1996'
'16-May-1996'
'17-May-1996'
'20-May-1996'
'21-May-1996'
'22-May-1996'
'23-May-1996'
'24-May-1996'
'27-May-1996'
' 28 -May-1996'
'29-May-1996'
'30-May-1996'
'31-May-1996'
'03-Jun-1996'
'04-Jun-1996'
'05-Jun-1996'
'06-Jun-1996'
'07-Jun-1996'
'10-Jun-1996'
'11-Jun-1996'
'12-Jun-1996'
'13-Jun-1996'
'14-Jun-1996'
'17-Jun-1996'
'18-Jun-1996'

$54.8412]$	[$50.5441]$
58.0945]	[$54.3193]$
19.3648]	[$36.8421]$
9.3773]	[$23.1097]$
9.7775]	[$16.4436]$
$38.2498]$	[$27.3467]$
20.6069]	[23.9768]
$23.0769]$	[$23.5269]$
7.6923]	[15.6096]
$32.3446]$	[$23.9771]$
$67.6554]$	[$45.8162]$
$77.4593]$	[61.6378]
71.4408]	[$66.5393]$
82.1612]	[$74.3503]$
90]	[82.1751]
$96.9455]$	[$89.5603]$
$97.3394]$	[93.4498]
$97.5390]$	[$95.4944]$
$74.4000]$	[84.9472]
80]	[82.4736]
NaN]	[NaN]
$66.6667]$	[74.5701]
$18.5778]$	[$46.5740]$
$33.4000]$	[$39.9870]$
$16.7000]$	[$28.3435]$
$4.2000]$	[$16.2717]$
$13.8245]$	[$15.0481]$
$26.7200]$	[20.8841]
70.5716]	[$45.7278]$
88.2145]	[$66.9712]$
67.6782]	[$67.3247]$
$67.6782]$	[$67.5014]$
67.6782]	[$67.5898]$
$52.9287]$	[$60.2593]$
$47.0713]$	[$53.6653]$
$58.8567]$	[$56.2610]$
35.2858]	[$45.7734]$

18-695

'19-Jun-1996'
'20-Jun-1996'
'21-Jun-1996'
'24-Jun-1996'
'25-Jun-1996'
'26-Jun-1996'
'27-Jun-1996'
'28-Jun-1996'
'01-Jul-1996'
'02-Jul-1996'
'03-Jul-1996'
'04-Jul-1996'
'05-Jul-1996'
'08-Jul-1996'
'09-Jul-1996'
'10-Jul-1996'
'11-Jul-1996'
'12-Jul-1996'
'15-Jul-1996'
'16-Jul-1996'
'17-Jul-1996'
'18-Jul-1996'
'19-Jul-1996'
'22-Jul-1996'
'23-Jul-1996'
'24-Jul-1996'
'25-Jul-1996'
'26-Jul-1996'
'29-Jul-1996'
'30-Jul-1996'
'31-Jul-1996'
'01-Aug-1996'
'02-Aug-1996'
'05-Aug-1996'
'06-Aug-1996'
'07-Aug-1996 '
'08-Aug-1996 '

'19-Jun-1996'
'20-Jun-1996'
'21-Jun-1996'
'24-Jun-1996'
'25-Jun-1996'
26-Jun-1996'
27-Jun-1996'
'28-Jun-1996'
01-Jul-1996'
'02-Jul-1996'
'03-Jul-1996'
'04-Jul-1996'
'05-Jul-1996'
08-Jul-1996'
'09-Jul-1996'
10-Jul-1996'
11-Jul-1996'
12-Jul-1996'
'15-Jul-1996'
'16-Jul-1996'
'17-Jul-1996'
'18-Jul-1996'
'19-Jul-1996'
-Jul-1996
23-Jul-1996'
24-Jul-1996'
'25-Jul-1996'
'26-Jul-1996'
'29-Jul-1996'
'30-Jul-1996'
'31-Jul-1996'
'01-Aug-1996'
02-Aug-1996'
05-Aug-1996 '
06-Aug-1996'
08-Aug-1996'

19-Jun-1996' 20-Jun-1996' 21-Jun-1996' '25-Jun-1996' 26-Jun-1996' 27-Jun-1996 28-Jun-1996' 01-Jul-1996' 02-Jul-1996'
'09-Aug-1996'
'12-Aug-1996'
'13-Aug-1996'
'14-Aug-1996'
'15-Aug-1996'
'16-Aug-1996'
'19-Aug-1996'
'20-Aug-1996'
'21-Aug-1996'
'22-Aug-1996'
'23-Aug-1996'
'26-Aug-1996'
'27-Aug-1996'
'28-Aug-1996'
'29-Aug-1996'
'30-Aug-1996'
'02-Sep-1996'
'03-Sep-1996'
'04-Sep-1996'
'05-Sep-1996'
'06-Sep-1996'
'09-Sep-1996'
'10-Sep-1996'
'11-Sep-1996'
'12-Sep-1996'
'13-Sep-1996'
'16-Sep-1996'
'17-Sep-1996'
'18-Sep-1996'
'19-Sep-1996'
'20-Sep-1996'
'23-Sep-1996'
'24-Sep-1996'
'25-Sep-1996'
'26-Sep-1996'
'27-Sep-1996'
'30-Sep-1996'

$65.9857]$	$[$	$73.3975]$
$89.1441]$	$[$	$81.2708]$
$74.2798]$	$[$	$77.7753]$
$68.0115]$	$[$	$72.8934]$
$52.4571]$	$[$	$62.6753]$
$61.9429]$	$[$	$62.3091]$
$57.1429]$	$[$	$59.7260]$
$29.9760]$	$[$	$44.8510]$
$57.9545]$	$[$	$51.4028]$
$68.4343]$	$[$	$59.9186]$
$78.9141]$	$[$	$69.4163]$
$100]$	$[$	$84.7082]$
$73.9312]$	$[$	$79.3197]$
$47.8624]$	$[$	$63.5910]$
$33.3000]$	$[$	$48.4455]$
$18.4889]$	$[$	$33.4672]$
NaN]	$[$	
$18.4889]$	$[$	$25.9780]$
$11.1111]$	$[$	$18.5446]$
$0]$	$[$	$9.2723]$
$33.3091]$	$[$	$21.2907]$
$63.6364]$	$[$	$42.4635]$
$66.6667]$	$[$	$54.5651]$
$100]$	$[$	$77.2825]$
$97.5390]$	$[$	$87.4108]$
$93.1806]$	$[$	$90.2957]$
$75.5022]$	$[$	$82.8989]$
$89.8089]$	$[$	$86.3539]$
$91.8667]$	$[$	$89.1103]$
$100]$	$[$	$94.5552]$
$94.1176]$	$[$	$94.3364]$
$100]$	$[$	$97.1682]$
$83.6925]$	$[$	$90.4303]$
$76.9231]$	$[$	$83.6767]$
$54.8762]$	$[$	$69.2764]$
$80.6502]$	$[$	$74.9633]$
$84.3328]$	$[$	$79.6481]$

'01-0ct-1996'
'02-0ct-1996'
'03-0ct-1996'
'04-0ct-1996'
'07-0ct-1996'
'08-0ct-1996'
'09-0ct-1996'
'10-0ct-1996'
'11-0ct-1996'
'14-0ct-1996'
'15-Oct-1996'
'16-0ct-1996'
'17-0ct-1996'
'18-0ct-1996'
'21-0ct-1996'
'22-0ct-1996'
'23-0ct-1996'
'24-0ct-1996'
'25-0ct-1996'
'28-0ct-1996'
'29-0ct-1996'
'30-0ct-1996'
'31-0ct-1996'
'01-Nov-1996'
'04-Nov-1996'
' 05-Nov-1996'
'06-Nov-1996'
'07-Nov-1996'
'08-Nov-1996'
'11-Nov-1996'
'12-Nov-1996'
'13-Nov-1996'
'14-Nov-1996'
'15-Nov-1996'
'18-Nov-1996'
'19-Nov-1996'
'20-Nov-1996'

$55.9501]$		
$66.6000]$	$[$	$67.7991]$
$66.6667]$	$[$	$67.1995]$
$80.0192]$	$[$	$66.9331]$
$80.0192]$	$[$	$73.4762]$
$63.9769]$	$[$	$76.7477]$
$60.0384]$	$[$	$70.3623]$
$63.9769]$	$[$	$65.2004]$
$66.6667]$	$[$	$64.5887]$
$72.2667]$	$[$	$68.6277]$
$83.3333]$	$[$	$76.1402]$
$95.6159]$	$[$	$85.8781]$
$68.0115]$	$[$	$76.9448]$
$72.0461]$	$[$	$74.4955]$
$92.0269]$	$[$	$83.2612]$
$96.8492]$	$[$	$90.0552]$
$83.3600]$	$[$	$86.7076]$
$57.7101]$	$[$	$72.2088]$
$84.5799]$	$[$	$78.3944]$
$83.5951]$	$[$	$80.9947]$
$59.5918]$	$[$	$70.2933]$
$46.1255]$	$[$	$58.2094]$
$56.3346]$	$[$	$57.2720]$
$30.2326]$	$[$	$43.7523]$
$93.8438]$	$[$	$68.7981]$
$100]$	$[$	$84.3990]$
$91.6000]$	$[$	$87.9995]$
$100]$	$[$	$93.9998]$
$87.0743]$	$[$	$90.5370]$
$90.2118]$	$[$	$95.2685]$
[$[$	$92.7401]$
$86.3059]$	$[$	$89.5230]$
$86.3059]$	$[$	$87.9144]$
$90.1614]$	$[$	$89.0379]$
$74.5412]$	$[$	$81.7895]$
$68.6588]$	$[$	$75.2242]$
$76.7728]$	$[$	$75.9985]$

18-698

21 -Nov-1996'
'22-Nov-1996'
' 25-Nov-1996'
'26-Nov-1996'
' 27 -Nov-1996'
'28-Nov-1996'
'29-Nov-1996'
'02-Dec-1996'
'03-Dec-1996'
'04-Dec-1996'
'05-Dec-1996'
'06-Dec-1996'
'09-Dec-1996'
'10-Dec-1996'
'11-Dec-1996'
'12-Dec-1996'
'13-Dec-1996'
'16-Dec-1996'
'17-Dec-1996'
'18-Dec-1996'
'19-Dec-1996'
'20-Dec-1996'
'23-Dec-1996'
'24-Dec-1996'
' 25-Dec-1996'
'26-Dec-1996'
'27-Dec-1996'
'30-Dec-1996'
'31-Dec-1996'
'01-Jan-1997'
'02-Jan-1997'
'03-Jan-1997'
'06-Jan-1997'
'07-Jan-1997'
'08-Jan-1997'
'09-Jan-1997'
'10-Jan-1997'

$85.3630]$	$[$	$80.6807]$
$74.4000]$	$[$	$77.5404]$
$96.8516]$	$[$	$87.1960]$
$83.5956]$	$[$	$85.3958]$
$55.7435]$	$[$	$70.5696]$
$\mathrm{NaN}]$	$[$	$\mathrm{NaN}]$
$49.0489]$	$[$	$59.8093]$
$49.0489]$	$[$	$54.4291]$
$18.8406]$	$[$	$36.6348]$
$23.6475]$	$[$	$30.1412]$
$21.8150]$	$[$	$25.9781]$
$25.7840]$	$[$	$25.8810]$
$46.7673]$	$[$	$36.3242]$
$63.8407]$	$[$	$50.0824]$
$52.5210]$	$[$	$51.3017]$
$15.0060]$	$[$	$33.1539]$
$17.0960]$	$[$	$25.1249]$
$9.7718]$	$[$	$17.4484]$
$41.0462]$	$[$	$29.2473]$
$53.8462]$	$[$	$41.5467]$
$71.8154]$	$[$	$56.6810]$
$71.8154]$	$[$	$64.2482]$
$66.7077]$	$[$	$[$

'13-Jan-1997'
'14-Jan-1997'
'15-Jan-1997'
'16-Jan-1997'
'17-Jan-1997'
'20-Jan-1997'
'21-Jan-1997'
'22-Jan-1997'
'23-Jan-1997'
'24-Jan-1997'
'27-Jan-1997'
'28-Jan-1997'
'29-Jan-1997'
'30-Jan-1997'
'31-Jan-1997'
'03-Feb-1997'
'04-Feb-1997'
'05-Feb-1997'
' 06-Feb-1997'
'07-Feb-1997'
'10-Feb-1997'
'11-Feb-1997'
'12-Feb-1997'
'13-Feb-1997'
'14-Feb-1997'
'17-Feb-1997'
'18-Feb-1997'
'19-Feb-1997'
'20-Feb-1997'
'21-Feb-1997'
'24-Feb-1997'
'25-Feb-1997'
'26-Feb-1997'
'27-Feb-1997'
'28-Feb-1997'
'03-Mar-1997'
'04-Mar-1997'

$39.4182]$	$[$	$32.2435]$
$82.0908]$	$[$	$57.1672]$
$78.5775]$	$[$	$67.8724]$
$74.0444]$	$[$	$70.9584]$
$96.6400]$	$[$	$83.7992]$
$91.6667]$	$[$	$87.7329]$
$75]$	$[$	$81.3665]$
$97.2000]$	$[$	$89.2832]$
$76.1714]$	$[$	$82.7273]$
$90]$	$[$	$86.3637]$
$93.5709]$	$[$	$89.9673]$
$66.6353]$	$[$	$78.3013]$
$83.9731]$	$[$	$81.1372]$
$59.5712]$	$[$	$70.3542]$
$65.9215]$	$[$	$68.1378]$
$65.9215]$	$[$	$67.0297]$
$61.3413]$	$[$	$64.1855]$
$61.8857]$	$[$	$63.0356]$
$85.7143]$	$[$	$74.3749]$
$92.1036]$	$[$	$83.2393]$
$72.4655]$	$[$	$77.8524]$
$59.9880]$	$[$	$68.9202]$
$92.5015]$	$[$	$80.7108]$
$78.1850]$	$[$	$79.4479]$
$84.4849]$	$[$	$81.9664]$
NaN]	$[$	
$75.4105]$	$[$	$78.6885]$
$50]$	$[$	$64.3442]$
$10.0180]$	$[$	$37.1811]$
$18.4343]$	$[$	$27.8077]$
$23.6742]$	$[$	$25.7410]$
$34.2172]$	$[$	$29.9791]$
$34.7939]$	$[$	$32.3865]$
$41.3146]$	$[$	$36.8505]$
$16.6667]$	$[$	$26.7586]$
$11.8857]$	$[$	$19.3222]$
$5.2432]$	$[$	$12.2827]$

'05-Mar-1997'
'06-Mar-1997'
'07-Mar-1997'
'10-Mar-1997'
'11-Mar-1997'
'12-Mar-1997'
'13-Mar-1997'
'14-Mar-1997'
'17-Mar-1997'
'18-Mar-1997'
'19-Mar-1997'
'20-Mar-1997'
'21-Mar-1997'
'24-Mar-1997'
'25-Mar-1997'
' 26-Mar-1997'
'27-Mar-1997'
'28-Mar-1997'
'31-Mar-1997'
'01-Apr-1997'
'02-Apr-1997'
'03-Apr-1997'
'04-Apr-1997'
'07-Apr-1997'
'08-Apr-1997'
'09-Apr-1997'
'10-Apr-1997'
'11-Apr-1997'
'14-Apr-1997'
'15-Apr-1997'
'16-Apr-1997'
'17-Apr-1997'
'18-Apr-1997'
'21-Apr-1997'
'22-Apr-1997'
'23-Apr-1997'
'24-Apr-1997'

\(\left.\begin{array}{rlr}34.1335] \& {[} \& 23.2081]

65.8665] \& {[} \& 44.5373]

82.9040] \& {[} \& 63.7206]

95.2000] \& {[} \& 79.4603]

91.4709] \& {[} \& 85.4656]

61.6956] \& {[} \& 73.5806]

25.5363] \& {[} \& 49.5584]

51.0725] \& {[} \& 50.3155]

72.3187] \& {[} \& 61.3171]

63.8407] \& {[} \& 62.5789]

39.9863] \& {[} \& 51.2826]

28.5322] \& {[} \& 39.9074]

17.1468] \& {[} \& 28.5271]

39.9863] \& {[} \& 34.2567]

40] \& {[} \& 37.1283]

61.4958] \& {[} \& 49.3121]

53.8319] \& {[} \& 51.5720]

N a N] \& {[} \& N a N]

14.7495] \& {[} \& 33.1607]

29.7210] \& {[} \& {[}\end{array}\right]\)| $[$ |
| ---: |

'25-Apr-1997'
'28-Apr-1997'
'29-Apr-1997'
'30-Apr-1997'
' 01 -May-1997'
'02-May-1997'
'05-May-1997'
'06-May-1997'
'07-May-1997'
'08-May-1997'
'09-May-1997'
'12-May-1997'
'13-May-1997'
'14-May-1997'
'15-May-1997'
'16-May-1997'
'19-May-1997'
'20-May-1997'
'21-May-1997'
'22-May-1997'
'23-May-1997'
'26-May-1997'
'27-May-1997'
'28-May-1997'
'29-May-1997'
'30-May-1997'
'02-Jun-1997'
'03-Jun-1997'
'04-Jun-1997'
'05-Jun-1997'
'06-Jun-1997'
'09-Jun-1997'
'10-Jun-1997'
'11-Jun-1997'
'12-Jun-1997'
'13-Jun-1997'
'16-Jun-1997'

$73.6975]$	$[$	$80.6925]$
$73.9130]$	$[$	$77.3028]$
$98.3600]$	$[$	$87.8314]$
$89.6566]$	$[$	$88.7440]$
$78.5684]$	$[$	$83.6562]$
$66.0106]$	$[$	$74.8334]$
$93.8786]$	$[$	$84.3560]$
$95.3683]$	$[$	$89.8621]$
$62.7790]$	$[$	$76.3206]$
$76.7299]$	$[$	$76.5252]$
$95.2571]$	$[$	$85.8912]$
$90.9250]$	$[$	$88.4081]$
$72.0982]$	$[$	$80.2531]$
$72.0982]$	$[$	$76.1757]$
$58.1473]$	$[$	$67.1615]$
$20.9263]$	$[$	$44.0439]$
$65.1228]$	$[$	$54.5833]$
$69.7545]$	$[$	$62.1689]$
$44.1964]$	$[$	$53.1827]$
$31.4129]$	$[$	$42.2978]$
$57.1331]$	$[$	$49.7154]$
[$\left[\begin{array}{l}\text { [}\end{array}\right]$	
$77.4593]$	$[$	[

'17-Jun-1997'	[$91.6667]$	[87.7071]
'18-Jun-1997'	[$58.3333]$	[73.0202]
'19-Jun-1997'	[76.4996]	[$74.7599]$
'20-Jun-1997'	[$39.3316]$		57.0458]
'23-Jun-1997'	[3.2508]	[$30.1483]$
'24-Jun-1997'	[$51.6254]$		40.8868]
'25-Jun-1997'	[$38.6997]$	[39.7933]
'26-Jun-1997'	[27.4768]	[$33.6350]$
'27-Jun-1997'	[1.4000]	[$17.5175]$
'30-Jun-1997'	[$26.6667]$	[$22.0921]$
'01-Jul-1997'	[11.9979]	[$17.0450]$
'02-Jul-1997'	[$6.0935]$	[$11.5692]$
'03-Jul-1997'	[$11.7164]$	[11.6428]
'04-Jul-1997'	[$\mathrm{NaN}]$	[$\mathrm{NaN}]$
'07-Jul-1997'	[$11.5641]$	[11.6035]
'08-Jul-1997'	[37.0645]	[$24.3340]$
'09-Jul-1997'	[$27.8381]$		$26.0860]$
'10-Jul-1997'	[$26.3525]$	[$26.2193]$
'11-Jul-1997'	[$25.5580]$		25.8887]
'14-Jul-1997'	[49.3598]	[37.6242]
'15-Jul-1997'	[83.5951]	[$60.6097]$
'16-Jul-1997'	[$85.9364]$	[$73.2731]$
'17-Jul-1997'	[60.5815]	[$66.9273]$
'18-Jul-1997'	[$18.3232]$	[42.6252]
'21-Jul-1997'	[$24.2089]$	[33.4170]
'22-Jul-1997'	[$67.0359]$	[$50.2265]$
'23-Jul-1997'	[$70.9494]$	[60.5879]
'24-Jul-1997'	[$94.6336]$	[$77.6108]$
'25-Jul-1997'	[$89.2157]$	[83.4132]
'28-Jul-1997'	[$96.9000]$	[$90.1566]$
'29-Jul-1997'	[$95.2467]$	[$92.7017]$
'30-Jul-1997'	[$95.8048]$	[$94.2532]$
'31-Jul-1997'	[88.9143]	[91.5838]
'01-Aug-1997'	[$85.7143]$	[$88.6490]$
'04-Aug-1997'	[$88.3504]$	[$88.4997]$
' 05-Aug-1997'	[$66.2811]$	[$77.3904]$
'06-Aug-1997'	[$83.1695]$	[$80.2799]$

18-703

	07-Aug-1997 ${ }^{\prime}$
	'08-Aug-1997'
	'11-Aug-1997'
	'12-Aug-1997'
	'13-Aug-1997'
	'14-Aug-1997'
	'15-Aug-1997'
	'18-Aug-1997'
	'19-Aug-1997'
	'20-Aug-1997'
	'21-Aug-1997'
	'22-Aug-1997'
	'25-Aug-1997'
	26-Aug-1997'
	'27-Aug-1997'
	'28-Aug-1997'
	'29-Aug-1997'
	'01-Sep-1997'
	'02-Sep-1997'
	'03-Sep-1997'
	'04-Sep-1997'
	'05-Sep-1997'
	'08-Sep-1997'
	'09-Sep-1997'
	'10-Sep-1997'
	'11-Sep-1997'
	'12-Sep-1997'
	'15-Sep-1997'
	'16-Sep-1997'
	'17-Sep-1997'
	'18-Sep-1997'
	'19-Sep-1997'
	22-Sep-1997'
	'23-Sep-1997'
	'24-Sep-1997'
	'25-Sep-1997'
	26-Sep-1997'

$25.4799]$	[$52.8799]$
$29.8231]$	[$41.3515]$
$49.2614]$	[$45.3065]$
18.4638]	[$31.8851]$
$37.6479]$	[$34.7665]$
$37.5094]$	[$36.1379]$
$2.5846]$	[19.3613]
50]	[$34.6806]$
$70.2857]$	[$52.4832]$
83.3714]	[67.9273]
$62.1920]$	[$65.0596]$
$45.9792]$	[$55.5194]$
50]	[$52.7597]$
$32.4254]$	[$42.5926]$
$54.0856]$	[$48.3391]$
$37.8729]$	[$43.1060]$
$17.5746]$	[$30.3403]$
$\mathrm{NaN}]$	[NaN]
$57.3564]$	[$43.8483]$
75.8478]	[$59.8481]$
$26.4493]$	[43.1487]
$41.5761]$	[$42.3624]$
$32.0652]$	[37.21381
$50.9964]$	[$44.1051]$
$28.3514]$	[$36.2283]$
$23.0607]$	[29.6445]
$47.2296]$	[$38.4370]$
$48.3377]$	[$43.3874]$
81.3193]	[$62.3533]$
$76.3552]$	[$69.3543]$
83.8926]	[$76.6234]$
$94.6309]$	[85.6272]
88.1776]	[$86.9024]$
$78.4719]$	[82.6871]
$73.1027]$	[$77.8949]$
85.7339]	[$81.8144]$
78.5775]	[80.1960]

'29-Sep-1997'
'30-Sep-1997'
'01-0ct-1997'
'02-0ct-1997'
'03-0ct-1997'
'06-0ct-1997'
'07-0ct-1997'
'08-0ct-1997'
'09-0ct-1997'
'10-0ct-1997'
'13-0ct-1997'
'14-0ct-1997'
'15-0ct-1997'
'16-0ct-1997'
'17-0ct-1997'
'20-0ct-1997'
'21-0ct-1997'
'22-0ct-1997'
'23-0ct-1997'
'24-0ct-1997'
'27-0ct-1997'
'28-0ct-1997'
'29-0ct-1997'
'30-0ct-1997'
'31-0ct-1997'
' 03-Nov-1997'
' 04 -Nov-1997'
' $05-$ Nov-1997'
' 06-Nov-1997'
' 07 -Nov-1997'
'10-Nov-1997'
'11-Nov-1997'
'12-Nov-1997'
'13-Nov-1997'
'14-Nov-1997'
'17-Nov-1997'
'18-Nov-1997'

$72.4338]$	[$76.3149]$
$77.9496]$	[$77.1322]$
$91.8884]$	[84.5103]
$97.8376]$	[$91.1739]$
$80.9996]$	[86.0868]
$62.8322]$	[$74.4595]$
91.7493]	[83.1044]
$76.0413]$	[$79.5728]$
75.7290]	[$77.6509]$
$68.2369]$	[$72.9439]$
$80.4057]$	[$76.6748]$
$92.8218]$	[84.7483]
83.1176]	[$83.9329]$
$43.2464]$	[$63.5897]$
$20.2123]$	[$41.9010]$
$34.6101]$	[$38.2555]$
$36.5482]$	[$37.4019]$
$26.9497]$	[$32.1758]$
15.4130]	[$23.7944]$
$16.3359]$	[$20.0652]$
0]	[10.0326]
$57.0827]$	[$33.5576]$
$67.5517]$	[$50.5547]$
56.9563]	[$53.7555]$
$74.6659]$	[$64.2107]$
100]	[82.1053]
$99.4431]$	[$90.7742]$
89.4988]	[$90.1365]$
$96.8088]$	[$93.4726]$
90.4968]	[$91.9847]$
83.4893]	[87.7370]
$78.5775]$	[83.1573]
$36.6324]$	[$59.8948]$
$51.5996]$	[$55.7472]$
81.6768]	[$68.7120]$
88.7842]	[$78.7481]$
85.3477]	[82.0479]

18-705

'19-Nov-1997'
'20-Nov-1997'
'21-Nov-1997'
'24-Nov-1997'
'25-Nov-1997'
'26-Nov-1997'
' 27 -Nov-1997'
'28-Nov-1997'
'01-Dec-1997'
'02-Dec-1997'
'03-Dec-1997'
'04-Dec-1997'
'05-Dec-1997'
'08-Dec-1997'
'09-Dec-1997'
'10-Dec-1997'
'11-Dec-1997'
'12-Dec-1997'
'15-Dec-1997'
'16-Dec-1997'
'17-Dec-1997'
'18-Dec-1997'
'19-Dec-1997'
'22-Dec-1997'
'23-Dec-1997'
'24-Dec-1997'
'25-Dec-1997'
'26-Dec-1997'
'29-Dec-1997'
'30-Dec-1997'
'31-Dec-1997'
'01-Jan-1998'
'02-Jan-1998'
'05-Jan-1998'
'06-Jan-1998'
'07-Jan-1998'
'08-Jan-1998'

$100]$	$[$	$91.0239]$
$89.0329]$	$[$	$90.0284]$
$100]$	$[$	$95.0142]$
$90.3723]$	$[$	$92.6932]$
$90.3723]$	$[$	$91.5328]$
$92.4235]$	$[$	$91.9781]$
$\mathrm{NaN}]$	$[$	$\mathrm{NaN}]$
$94.2565]$	$[$	$93.1173]$
$96.9376]$	$[$	$95.0274]$
$83.9523]$	$[$	$89.4899]$
$63.0093]$	$[$	$76.2496]$
$36.9650]$	$[$	$56.6073]$
$26.7299]$	$[$	$41.6686]$
$29.6209]$	$[$	$35.6447]$
$26.6100]$	$[$	$31.1273]$
$16.4642]$	$[$	$23.7957]$
$12.7681]$	$[$	$18.2819]$
$26.5577]$	$[$	$22.4198]$
$89.0237]$	$[$	$55.7218]$
$74.9714]$	$[$	$65.3466]$
$90.4571]$	$[$	$77.9019]$
$91.3361]$	$[$	$84.6190]$
$65.2401]$	$[$	$74.9295]$
$90.3984]$	$[$	$82.6640]$
$84.4755]$	$[$	$83.5697]$
$45.6410]$	$[$	$64.6054]$
NaN]	$[$	
$34.5714]$	$[$	$49.5884]$
$71.4286]$	$[$	$60.5085]$
$82.1337]$	$[$	$71.3211]$
$82.1337]$	$[$	$76.7274]$
NaN]	$[$	NaN]
$88.4721]$	$[$	$82.5998]$
$67.4078]$	$[$	$75.0038]$
$61.0915]$	$[$	$68.0476]$
$61.6956]$	$[$	$64.8716]$
$47.9060]$	$[$	$56.3888]$

'09-Jan-1998'
'12-Jan-1998'
'13-Jan-1998'
'14-Jan-1998'
'15-Jan-1998'
'16-Jan-1998'
'19-Jan-1998'
'20-Jan-1998'
'21-Jan-1998'
'22-Jan-1998'
'23-Jan-1998'
'26-Jan-1998'
'27-Jan-1998'
'28-Jan-1998'
'29-Jan-1998'
'30-Jan-1998'
' 02-Feb-1998'
' 03-Feb-1998'
' 04-Feb-1998'
' 05-Feb-1998'
' 06-Feb-1998'
' 09-Feb-1998'
'10-Feb-1998'
'11-Feb-1998'
'12-Feb-1998'
' 13 -Feb-1998'
' 16 -Feb-1998'
' 17 -Feb-1998'
'18-Feb-1998'
'19-Feb-1998'
' 20-Feb-1998'
'23-Feb-1998'
' 24-Feb-1998'
' 25 -Feb-1998'
' 26-Feb-1998'
' 27 -Feb-1998'
'02-Mar-1998'

$9.5429]$	$[$	$32.9658]$
$12.1503]$	$[$	$22.5581]$
$20.0000]$	$[$	$21.2790]$
$40.8768]$	$[$	$31.0779]$
$29.5616]$	$[$	$30.3198]$
$35.6576]$	$[$	$32.9887]$
$\mathrm{NaN}]$	$[$	$\mathrm{NaN}]$
$93.9379]$	$[$	$63.4633]$
$85.8390]$	$[$	$74.6511]$
$47.4782]$	$[$	$61.0647]$
$81.8138]$	$[$	$71.4392]$
$60.4000]$	$[$	$65.9196]$
$86.1715]$	$[$	$76.0456]$
$85.4975]$	$[$	$80.7715]$
$83.8171]$	$[$	$82.2943]$
$87.5653]$	$[$	$84.9298]$
$96.6149]$	$[$	$90.7723]$
$90.3316]$	$[$	$90.5520]$
$92.7429]$	$[$	$91.6474]$
$91.5453]$	$[$	$91.5963]$
$93.4545]$	$[$	$92.5254]$
$81.9754]$	$[$	$87.2504]$
$81.6357]$	$[$	$84.4430]$
$100]$	$[$	$92.2215]$
$87.4591]$	$[$	$89.8403]$
$96.3700]$	$[$	$93.1052]$
NaN]	$[$	
$100]$	$[$	$96.5526]$

'03-Mar-1998'
'04-Mar-1998'
'05-Mar-1998'
'06-Mar-1998'
'09-Mar-1998'
'10-Mar-1998'
'11-Mar-1998'
'12-Mar-1998'
'13-Mar-1998'
'16-Mar-1998'
'17-Mar-1998'
'18-Mar-1998'
'19-Mar-1998'
'20-Mar-1998'
'23-Mar-1998'
'24-Mar-1998'
'25-Mar-1998'
'26-Mar-1998'
'27-Mar-1998'
'30-Mar-1998'
'31-Mar-1998'
'01-Apr-1998'
'02-Apr-1998'
'03-Apr-1998'
'06-Apr-1998'
'07-Apr-1998'
'08-Apr-1998'
'09-Apr-1998'
'10-Apr-1998'
'13-Apr-1998'
'14-Apr-1998'
'15-Apr-1998'
'16-Apr-1998'
'17-Apr-1998'
'20-Apr-1998'
'21-Apr-1998'
'22-Apr-1998'

14.8444]	[18.3596]
$19.7722]$	[19.0659]
$4.5294]$	[11.7976]
8.4622]	[10.1299]
$12.1635]$	[11.1467]
$14.9660]$	[$13.0563]$
$5.3091]$	[$9.1827]$
$18.9455]$	[14.0641]
$21.4597]$	[17.7619]
$83.1749]$	[$50.4684]$
$58.8800]$	[$54.6742]$
$52.2133]$	[53.4438]
34.4533]	[$43.9486]$
46.6667]	[$45.3076]$
$3.4340]$	[$24.3708]$
$57.7576]$	[$41.0642]$
$56.8887]$	[$48.9764]$
$68.1010]$	[$58.5387]$
$62.0604]$	[$60.2996]$
46.9000]	[$53.5998]$
$73.5245]$	[$63.5622]$
$59.7352]$	[$61.6487]$
$98.9821]$	[80.3154]
100]	[$90.1577]$
57.1298]	[$73.6437]$
46.9770]	[$60.3104]$
33.0134]	[$46.6619]$
$65.9789]$	[$56.3204]$
NaN]	[$\mathrm{NaN}]$
84.9808]	[$70.6506]$
$99.2422]$	[84.9464]
$86.6560]$	[85.8012]
69.1650]	[$77.4831]$
84.2538]	[$80.8684]$
$95.0824]$	[$87.9754]$
$98.3467]$	[93.1611]
100]	[$96.5805]$

'23-Apr-1998'
'24-Apr-1998'
' 27-Apr-1998'
' 28-Apr-1998'
' 29-Apr-1998'
'30-Apr-1998'
' 01-May-1998'
' 04 -May-1998'
' 05-May-1998'
' 06-May-1998'
' 07-May-1998'
' 08-May-1998'
'11-May-1998'
'12-May-1998'
' 13-May-1998'
'14-May-1998'
' 15-May-1998'
'18-May-1998'
' 19-May-1998'
' 20-May-1998'
' 21-May-1998'
' 22-May-1998'
' 25-May-1998'
' 26-May-1998'
' 27 -May-1998'
' 28-May-1998'
' 29-May-1998'
'01-Jun-1998'
'02-Jun-1998'
'03-Jun-1998'
'04-Jun-1998'
'05-Jun-1998'
'08-Jun-1998'
'09-Jun-1998'
'10-Jun-1998'
'11-Jun-1998'
'12-Jun-1998'

$78.9212]$	$[$	$87.7509]$
$70.5571]$	$[$	$79.1540]$
$58.5302]$	$[$	$68.8421]$
$74.2220]$	$[$	$71.5320]$
$76.5654]$	$[$	$74.0487]$
$80.8586]$	$[$	$77.4537]$
$86.3396]$	$[$	$81.8966]$
$90.9838]$	$[$	$86.4402]$
$86.6872]$	$[$	$86.5637]$
$54.1091]$	$[$	$70.3364]$
$2.6383]$	$[$	$36.4873]$
$6.5677]$	$[$	$21.5275]$
$21.0609]$	$[$	$21.2942]$
$0.6544]$	$[$	$10.9743]$
$4.8280]$	$[$	$7.9012]$
$4.3802]$	$[$	$6.1407]$
$0.3537]$	$[$	$3.2472]$
$3.3440]$	$[$	$3.2956]$
$10.7131]$	$[$	$7.0043]$
$45.6313]$	$[$	$26.3178]$
$56.4115]$	$[$	$41.3647]$
$59.4881]$	$[$	$50.4264]$
NaN]	$[$	[

'15-Jun-1998'
'16-Jun-1998'
'17-Jun-1998'
'18-Jun-1998'
'19-Jun-1998'
'22-Jun-1998'
'23-Jun-1998'
'24-Jun-1998'
'25-Jun-1998'
'26-Jun-1998'
'29-Jun-1998'
'30-Jun-1998'
'01-Jul-1998'
'02-Jul-1998'
'03-Jul-1998'
'06-Jul-1998'
'07-Jul-1998'
'08-Jul-1998'
'09-Jul-1998'
'10-Jul-1998'
'13-Jul-1998'
'14-Jul-1998'
'15-Jul-1998'
'16-Jul-1998'
'17-Jul-1998'
'20-Jul-1998'
'21-Jul-1998'
'22-Jul-1998'
'23-Jul-1998'
'24-Jul-1998'
'27-Jul-1998'
'28-Jul-1998'
'29-Jul-1998'
'30-Jul-1998'
'31-Jul-1998'
'03-Aug-1998'
'04-Aug-1998'

$35.4839]$	$[$	$52.2851]$
$41.3935]$	$[$	$46.8393]$
$53.7548]$	$[$	$50.2971]$
$0.7743]$	$[$	$25.5357]$
$5.3617]$	$[$	$15.4487]$
$27.9874]$	$[$	$21.7180]$
$34.5645]$	$[$	$28.1413]$
$57.4737]$	$[$	$42.8075]$
$66.6750]$	$[$	$54.7412]$
$51.0595]$	$[$	$52.9004]$
$73.9341]$	$[$	$63.4172]$
$4.7996]$	$[$	$34.1084]$
$17.6275]$	$[$	$25.8680]$
$20.5340]$	$[$	$23.2010]$
$10.9503]$	$[$	$N a N]$
$10.9503]$	$[$	$17.0757]$
$19.1713]$	$[$	$18.1235]$
$38.3427]$	$[$	$28.2331]$
$69.2179]$	$[$	$48.7255]$
$89.4722]$	$[$	$69.0988]$
$95.9351]$	$[$	$82.5170]$
$92.9405]$	$[$	$87.7287]$
$82.5488]$	$[$	$25.1388]$
$81.3953]$	$[$	$[$

18-710
'05-Aug-1998'
'06-Aug-1998'
'07-Aug-1998'
'10-Aug-1998'
'11-Aug-1998'
'12-Aug-1998'
'13-Aug-1998'
'14-Aug-1998'
'17-Aug-1998'
'18-Aug-1998'
'19-Aug-1998'
'20-Aug-1998'
'21-Aug-1998'
'24-Aug-1998'
'25-Aug-1998'
'26-Aug-1998'
'27-Aug-1998'
'28-Aug-1998'
'31-Aug-1998'
'01-Sep-1998'
'02-Sep-1998'
'03-Sep-1998'
'04-Sep-1998'
'07-Sep-1998'
'08-Sep-1998'
'09-Sep-1998'
'10-Sep-1998'
'11-Sep-1998'
'14-Sep-1998'
'15-Sep-1998'
'16-Sep-1998'
'17-Sep-1998'
'18-Sep-1998'
'21-Sep-1998'
'22-Sep-1998'
'23-Sep-1998'
'24-Sep-1998'

$23.3422]$	$[$	$15.3365]$
$22.3789]$	$[$	$18.8577]$
$25.3493]$	$[$	$22.1035]$
$14.4911]$	$[$	$18.2973]$
$15.9323]$	$[$	$17.1148]$
$24.6184]$	$[$	$20.8666]$
$9.2319]$	$[$	$15.0493]$
$12.6968]$	$[$	$13.8730]$
$26.1629]$	$[$	$20.0180]$
$80.8373]$	$[$	$50.4276]$
$69.5652]$	$[$	$59.9964]$
$90.9091]$	$[$	$75.4528]$
$77.2727]$	$[$	$76.3627]$
$79.9858]$	$[$	$78.1743]$
$82.4586]$	$[$	$80.3164]$
$52.6242]$	$[$	$66.4703]$
$21.6533]$	$[$	$44.0618]$
$12.1514]$	$[$	$28.1066]$
$16.5516]$	$[$	$22.3291]$
$50.3568]$	$[$	$36.3429]$
$44.6017]$	$[$	$40.4723]$
$26.6229]$	$[$	$33.5476]$
$25.8978]$	$[$	$29.7227]$
$N a N]$	$[$	
$40.9836]$	$[$	$35.3532]$
$27.8923]$	$[$	$31.6227]$
$18.0936]$	$[$	$24.8582]$
$1.0286]$	$[$	$12.9434]$
$7.0375]$	$[$	$9.9904]$
$20.3125]$	$[$	$15.1515]$
$29.7006]$	$[$	$22.4260]$
$28.7185]$	$[$	$25.5723]$
$26.7385]$	$[$	$26.1554]$
$19.8004]$	$[$	$22.9779]$
$25.3084]$	$[$	$24.1431]$
$72.3111]$	$[$	$48.2271]$
$49.2247]$	$[$	$48.7259]$

18-711

'25-Sep-1998'
'28-Sep-1998'
' 29-Sep-1998'
'30-Sep-1998'
'01-0ct-1998'
'02-0ct-1998'
'05-0ct-1998'
'06-0ct-1998'
'07-0ct-1998'
'08-0ct-1998'
'09-0ct-1998'
'12-0ct-1998'
'13-0ct-1998'
'14-0ct-1998'
'15-0ct-1998'
'16-0ct-1998'
'19-0ct-1998'
'20-0ct-1998'
'21-0ct-1998'
'22-0ct-1998'
'23-0ct-1998'
'26-0ct-1998'
'27-0ct-1998'
'28-0ct-1998'
'29-0ct-1998'
'30-0ct-1998'
' 02 -Nov-1998'
' $03-$ Nov-1998'
' 04-Nov-1998'
' $05-$ Nov-1998'
' 06-Nov-1998'
' 09 -Nov-1998'
'10-Nov-1998'
'11-Nov-1998'
'12-Nov-1998'
'13-Nov-1998'
'16-Nov-1998'

$53.8462]$	$[$	$51.2860]$
$62.1540]$	$[$	$56.7200]$
$22.2222]$	$[$	$53.3600]$
$16.6857]$	$[$	$37.7911]$
$28.5714]$	$[$	$27.2384]$
$21.4476]$	$[$	$27.9049]$
$33.3333]$	$[$	$24.6763]$
$16.6857]$	$[$	$29.0048]$
$22.2194]$	$[$	$22.8453]$
$29.2395]$	$[$	$22.5323]$
$52.3013]$	$[$	$25.8859]$
$81.3449]$	$[$	$39.0936]$
$53.5714]$	$[$	$60.2192]$
$96.4286]$	$[$	$56.8953]$
$85.7143]$	$[$	$76.6620]$
$100]$	$[$	$81.1881]$
$91.2600]$	$[$	$90.5941]$
$96.4381]$	$[$	$90.9270]$
$93.4418]$	$[$	$93.6826]$
$98.3736]$	$[$	$96.8413]$
$68.8615]$	$[$	$95.1415]$
$59.0241]$	$[$	$96.7575]$
$52.1739]$	$[$	$[$

'17-Nov-1998'	[$41.8683]$	[45.3171]
'18-Nov-1998'	[$39.5236]$	[$42.4204]$
'19-Nov-1998'	[$7.5200]$	[24.9702]
'20-Nov-1998'	[15]	[19.9851]
'23-Nov-1998'	[81.4573]	[$50.7212]$
'24-Nov-1998'	[61.3818]	[$56.0515]$
'25-Nov-1998'	[100]	[$78.0258]$
'26-Nov-1998'	[$\mathrm{NaN}]$	[NaN]
'27-Nov-1998'	[$93.7500]$		$85.8879]$
'30-Nov-1998'	[$81.2600]$	[83.5739]
'01-Dec-1998'	[$67.5000]$	[$75.5370]$
'02-Dec-1998'	[$61.2600]$	[$68.3985]$
'03-Dec-1998'	[$55.0000]$	[61.6992]
'04-Dec-1998'	[$61.1111]$	[61.4052]
'07-Dec-1998'	[$44.8276]$	[$53.1164]$
'08-Dec-1998'	[$67.8571]$	[60.4868]
'09-Dec-1998'	[$93.8929]$	[77.1898]
'10-Dec-1998'	[$57.1522]$	[$67.1710]$
'11-Dec-1998'	[42.8478]	[$55.0094]$
'14-Dec-1998'	[$13.7931]$	[34.4013]
'15-Dec-1998'	[$17.2414]$	[25.8213]
'16-Dec-1998'	[$17.2414]$	[21.5313]
'17-Dec-1998'	[$20.6897]$	[$21.1105]$
'18-Dec-1998'	[20.3417]	[20.7261]
'21-Dec-1998'	[$25.4136]$,	$23.0699]$
'22-Dec-1998'	[$0]$	[$11.5349]$
'23-Dec-1998'	[$26.6667]$	[19.1008]
'24-Dec-1998'	[$22.7273]$	[$20.9140]$
'25-Dec-1998'	[$\mathrm{NaN}]$	[NaN]
'28-Dec-1998'	[18.1818]	[$19.5479]$
'29-Dec-1998'	[18.1818]	[$18.8649]$
'30-Dec-1998'	[$4.2546]$	[11.5597]
'31-Dec-1998'	[$13.9840]$	[12.7719]
'01-Jan-1999'	[$\mathrm{NaN}]$	[NaN]
'04-Jan-1999'	[9.1041]	[$10.9380]$
'05-Jan-1999'	[75.0286]	[42.9833]
'06-Jan-1999'	[$96.4571]$	[$69.7202]$

18-713

fpctkd

07-Jan-1999'
'08-Jan-1999'
'11-Jan-1999'
'12-Jan-1999'
'13-Jan-1999'
'14-Jan-1999'
'15-Jan-1999'
'18-Jan-1999'
'19-Jan-1999'
'20-Jan-1999'
'21-Jan-1999'
'22-Jan-1999'
'25-Jan-1999'
26-Jan-1999'
'27-Jan-1999'
'28-Jan-1999'
'29-Jan-1999'
'01-Feb-1999'
'02-Feb-1999'
'03-Feb-1999'
'04-Feb-1999'
'05-Feb-1999'
'08-Feb-1999'
'09-Feb-1999'
'10-Feb-1999'
' 11-Feb-1999'
'12-Feb-1999'
'15-Feb-1999'
'16-Feb-1999'
'17-Feb-1999'
'18-Feb-1999'
' 19-Feb-1999'
22-Feb-1999 '
'23-Feb-1999'
'24-Feb-1999'
' 25-Feb-1999'
'26-Feb-1999'

100]	[84.8601]
$92.9834]$	[88.9218]
$96]$	[$92.4609]$
92.7103]	[$92.5856]$
$72.8438]$	[82.7147]
$72.1869]$	[$77.4508]$
$71.5194]$	[74.4851]
NaN]		$\mathrm{NaN}]$
75.5203]	[75.0027]
69.0608]	[$72.0317]$
$40.0000]$	[$56.0159]$
$18.8800]$	[$37.4479]$
$20.0085]$	[$28.7282]$
16.6815]	[$22.7049]$
$5.4801]$	[$14.0925]$
$19.1059]$	[$16.5992]$
$7.3412]$	[11.9702]
$23.5294]$	[$17.7498]$
16.1647]	[$16.9572]$
$28.2911]$	[$22.6242]$
$16.2635]$	[19.4438]
$58.1317]$	[38.7878]
48.8277]	[$43.8077]$
$40.6000]$	[$42.2039]$
66.6667]	[$54.4353]$
$88.3885]$	[71.4119]
$95.4545]$	[83.4332]
NaN]	[$\mathrm{NaN}]$
68.7667]	[$76.0999]$
$62.5000]$	[$69.3000]$
44.1757]	[56.7378]
$30.2196]$	[43.4787]
$58.1317]$	[$50.8052]$
58.1317]	[54.4685]
$57.1559]$	[$55.8122]$
$25]$	[40.4061]
$59.4000]$	[49.9031]

'02-Mar-1999'
'03-Mar-1999'
'04-Mar-1999'
'05-Mar-1999'
'08-Mar-1999'
'09-Mar-1999'
'10-Mar-1999'
'11-Mar-1999'
'12-Mar-1999'
'15-Mar-1999'
'16-Mar-1999'
'17-Mar-1999'
'18-Mar-1999'
'19-Mar-1999'
'22-Mar-1999'
'23-Mar-1999'
'24-Mar-1999'
'25-Mar-1999'
'26-Mar-1999'
'29-Mar-1999'

$40.6500]$	$[$	$45.2765]$
$9.4000]$	$[$	$27.3383]$
$25]$	$[$	$26.1691]$
$59.4000]$	$[$	$42.7846]$
$90.3459]$	$[$	$66.5652]$
$90.4762]$	$[$	$78.5207]$
$23.8095]$	$[$	$51.1651]$
$16.6476]$	$[$	$33.9064]$
$23.8095]$	$[$	$28.8579]$
$76.1905]$	$[$	$52.5242]$
$69.0286]$	$[$	$60.7764]$
$36.5977]$	$[$	$48.6871]$
$14.6313]$	$[$	$31.6592]$
$51.2290]$	$[$	$41.4441]$
$36.5977]$	$[$	$39.0209]$
$10.2543]$	$[$	$24.6376]$
$10]$	$[$	$17.3188]$
$14.2966]$	$[$	$15.8077]$
$19.0452]$	$[$	$17.4265]$
$7.9482]$	$[$	$12.6873]$
$11.4870]$	$[$	$12.0872]$

fpctkd

[^7]See Also spctkd | stochosc | tsmovavg
Purpose Fractional currency value to decimal value
Syntax Decimal = frac2cur(Fraction, Denominator)
Description Decimal = frac2cur(Fraction, Denominator) converts a fractionalcurrency value to a decimal value. Fraction is the fractional currencyvalue input as a string, and Denominator is the denominator of thefraction.
Examples Convert a Fractional Currency Value to a Decimal ValueThis example shows how to convert a fractional currency value to adecimal value.
Decimal = frac2cur('12.1', 8)
Decimal =12.1250
See Also cur2frac | cur2str

freqnum

Purpose
Convert string frequency indicator to numeric frequency indicator
Syntax
nfreq = freqnum(sfreq)
Arguments

Description

nfreq = freqnum(sfreq) converts a string frequency indicator into a numeric value.

```
String Frequency Indicator Numeric Representation
UNKNOWN, Unknown, unknown, U, u O
DAILY, Daily, daily, D, d 1
WEEKLY, Weekly, weekly, W, w 2
MONTHLY, Monthly, monthly, M, m 3
QUARTERLY, Quarterly, 4
quarterly, Q, q
SEMIANNUAL, Semiannual, 5
semiannual, S, s
ANNUAL, Annual, annual, A, a 6
```

See Also freqstr

freqstr

Purpose Convert numeric frequency indicator to string representation
Syntax \quad sfreq $=$ freqstr $(n f r e q)$
Arguments
nfreq 0
1
2
3
4
5
6

Description
sfreq $=$ freqstr($n f r e q$) converts a numeric frequency indicator into a string representation.

Numeric Frequency Indicator	String Representation
0	Unknown
1	Daily
2	Weekly
3	Monthly
4	Quarterly
5	Semiannual
6	Annual

See Also
freqnum

frontcon

Purpose Mean-variance efficient frontier

Syntax [PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, NumPorts, PortReturn, AssetBounds, Groups, GroupBounds, varargin)

Arguments

$\left.\begin{array}{ll}\text { ExpReturn } & \begin{array}{l}1 \text { by number of assets (NASSETS) vector } \\ \text { specifying the expected (mean) return of each } \\ \text { asset. }\end{array} \\ \text { ExpCovariance } & \begin{array}{l}\text { NASSETS-by-NASSETS matrix specifying the } \\ \text { covariance of asset returns. } \\ \text { (Optional) Number of portfolios generated }\end{array} \\ \text { along the efficient frontier. Returns are equally } \\ \text { spaced between the maximum possible return } \\ \text { and the minimum risk point. If NumPorts is } \\ \text { empty (entered as [], frontcon computes 10 } \\ \text { equally spaced points. When entering a target } \\ \text { rate of return (PortReturn), enter NumPorts } \\ \text { as an empty matrix []. }\end{array}\right\}$

Groups	(Optional) Number of groups (NGROUPS) -by-NASSETS matrix specifying NGROUPS asset groups or classes. Each row specifies a group. $\operatorname{Groups}(i, j)=1(j$ th asset belongs in the i th group). $\operatorname{Groups}(i, j)=0$ (j th asset not a member of the i th group).
GroupBounds	(Optional) NGROUPS-by-2 matrix specifying, for each group, the lower and upper bounds of the total weights of all assets in that group. Default lower bound = all 0s. Default upper bound = all 1s.
varargin	(Optional) varargin supports the following parameter-value pairs:
	- 'algorithm' - Defines which algorithm to use with frontcon. Use either a value of 'lcprog' or 'quadprog' to indicate the algorithm to use. The default is 'lcprog'. - 'maxiter' - Maximum number of iterations before termination of algorithm. The default is 100000 .
	- 'tiebreak' - Method to break ties for pivot selection. This value pair applies only to 'lcprog' algorithm. The default is 'first' Options are:
	- 'first' - Selects pivot with lowest index - 'last' - Selects pivot with highest index.
	- 'random' - Selects pivot at random. - 'tolcon' - Tolerance for constraint violations. This value pair applies only to 'lcprog' algorithm. The default is $1.0 \mathrm{e}-6$.
	- 'tolpiv' - Pivot value below which a number is considered to be zero. This value

frontcon

pair applies only to 'lcprog' algorithm. The default is $1.0 \mathrm{e}-9$.

Description

Examples

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, NumPorts, PortReturn, AssetBounds, Groups, GroupBounds, varargin) returns the mean-variance efficient frontier with user-specified asset constraints, covariance, and returns. For a collection of NASSETS risky assets, computes a portfolio of asset investment weights that minimize the risk for given values of the expected return. The portfolio risk is minimized subject to constraints on the asset weights or on groups of asset weights.

PortRisk is an NPORTS-by-1 vector of the standard deviation of each portfolio.

PortReturn is a NPORTS-by-1 vector of the expected return of each portfolio.

PortWts is an NPORTS-by-NASSETS matrix of weights allocated to each asset. Each row represents a portfolio. The total of all weights in a portfolio is 1 .
frontcon generates a plot of the efficient frontier if you invoke it without output arguments.

The asset returns are assumed to be jointly normal, with expected mean returns of ExpReturn and return covariance ExpCovariance. The variance of a portfolio with 1-by-NASSETS weights PortWts is given by PortVar = PortWts*ExpCovariance*PortWts'. The portfolio expected return is PortReturn $=\operatorname{dot}(E x p R e t u r n$, PortWts).

Compute the Mean-Variance Efficient Frontier

This example shows how to compute the mean-variance efficient frontier for four points, given three assets with expected returns and expected covariance.

ExpReturn $=\left[\begin{array}{lll}0.1 & 0.2 & 0.15\end{array}\right] ;$

```
ExpCovariance = [ 0.0100 -0.0061 0.0042
    -0.0061 0.0400 -0.0252
    0.0042 -0.0252 0.0225];
NumPorts = 4;
[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,...
ExpCovariance, NumPorts)
```

PortRisk =
0.0426
0.0483
0.1089
0.2000
PortReturn =
0.1569
0.1713
0.1856
0.2000
PortWts =

0.2134	0.3518	0.4348
0.0096	0.4352	0.5552
0	0.7128	0.2872
0	1.0000	0

See Also
ewstats | frontier | portopt | portstats

```
Related - "Portfolio Construction Examples" on page 3-5
Examples
- "Portfolio Selection and Risk Aversion" on page 3-8
- "Constraint Specification" on page 3-12
- "Active Returns and Tracking Error Efficient Frontier" on page 3-20
Concepts - "Analyzing Portfolios" on page 3-2
- "Portfolio Optimization Functions" on page 3-3
```


Purpose

Rolling efficient frontier

Syntax
[PortWts, AllMean, AllCovariance] = frontier(Universe, Window, Offset, NumPorts, ActiveMap, ConSet, NumNonNan)

Universe Number of observations (NUMOBS) by number of assets plus one (NASSETS + 1) time series array containing total return data for a group of securities. Each row represents an observation. Column 1 contains MATLAB serial date numbers. The remaining columns contain the total return data for each security.
Window Number of data periods used to calculate each frontier.
Offset Increment in number of periods between each frontier.

NumPorts \quad Number of portfolios to calculate on each frontier.
ActiveMap (Optional) Number of observations (NUMOBS) by number of assets (NASSETS) matrix with Boolean elements corresponding to the Universe. Each element indicates if the asset is part of the Universe on the corresponding date. Default = NUMOBS-by-NASSETS matrix of 1's (all assets active on all dates).

frontier

$$
\begin{array}{ll}
\text { Conset } & \begin{array}{l}
\text { (Optional) Constraint matrix for a portfolio of asset } \\
\text { investments, created using portcons with the } \\
\text { 'Default' constraint type. This single constraint } \\
\text { matrix is applied to each frontier. }
\end{array} \\
\text { NumNonNan } & \begin{array}{l}
\text { (Optional) Minimum number of nonNaN points for } \\
\text { each active asset in each window of data needed } \\
\text { to perform the optimization. The default value is } \\
\text { Window - NASSETS. }
\end{array} \\
&
\end{array}
$$

Description

See Also
Related Examples
[PortWts, AllMean, AllCovariance] = frontier(Universe, Window, Offset, NumPorts, ActiveMap, ConSet, NumNonNan) generates a surface of efficient frontiers showing how asset allocation influences risk and return over time.

PortWts is a number of curves (NCURVES)-by-1 cell array, where each element is a NPORTS-by-NASSETS matrix of weights allocated to each asset.

AllMean is a NCURVES-by- 1 cell array, where each element is a 1-by-NASSETS vector of the expected asset returns used to generate each curve on the surface.

AllCovariance is a NCURVES-by- 1 cell array, where each element is a NASSETS-by-NASSETS vector of the covariance matrix used to generate each curve on the surface.

```
portcons | portopt | portstats
```

- "Portfolio Construction Examples" on page 3-5
- "Portfolio Selection and Risk Aversion" on page 3-8
- "Constraint Specification" on page 3-12
- "Active Returns and Tracking Error Efficient Frontier" on page 3-20

Concepts - "Analyzing Portfolios" on page 3-2

- "Portfolio Optimization Functions" on page 3-3

Purpose Write elements of time series data into ASCII file

Syntax stat $=$ fts2ascii(filename, tsobj, exttext)
stat = fts2ascii(filename, dates, data, colheads, desc, exttext)

Arguments

filename	Name of an ASCII file
tsobj	Financial time series object
exttext	(Optional) Extra text. A string written after the description line (line 2 in the file).
dates	Column vector containing dates. Dates must be in serial date number format and can specify time of day.
data	Column-oriented matrix. Each column is a series. colheads(Optional) Cell array of column headers (names); first cell must always be the one for the dates column. colheads will be written to the file just before the data.
desc	(Optional) Description string, which will be the first line in the file.

Description

stat $=$ fts2ascii(filename, tsobj, exttext) writes the financial time series object tsobj into an ASCII file filename. The data in the file is tab delimited.
stat $=$ fts2ascii(filename, dates, data, colheads, desc, exttext) writes into an ASCII file filename the dates, times, and data contained in the column vector dates and the column-oriented matrix data. The first column in filename contains the dates, followed by times (if specified). Subsequent columns contain the data. The data in the file is tab delimited.
stat indicates whether file creation is successful (1) or not (0).

Examples Use fts2ascii to Write a Time Series to an ASCII File

Create a data file with time information.

```
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
serial_dates_times = [datenum(dates), datenum(times)];
data = round(10*rand(6,2));
```

Use fts2ascii to write the time series to an ascii file.

```
stat = fts2ascii('myfts_file2.txt',serial_dates_times,data, ...
```

\{'dates';'times';'Data1';'Data2'\},'My FTS with Time')
stat $=$
1

Read the data file back and create a financial time series object using ascii2fts.

MyFts = ascii2fts('myfts_file2.txt','t',1,2,1)

MyFts =

freq: Unknown (0)

'dates: (6)'	'times:	(6) '	'Data1:	(6) ${ }^{\prime}$	'Data2:	(6) ${ }^{\prime}$
'01-Jan-2001'	'11:00'		[8]	[3]
"	'12:00'		[$9]$	[5]

02-Jan-2001 ${ }^{\prime}$	'11:00'
' " ।	'12:00'
'03-Jan-2001'	'11:00'
' " '	'12:00'

See Also ascii2fts

fts2mat

Purpose Convert to matrix

Syntax tsmat $=$ fts2mat (tsobj)
tsmat $=$ fts2mat(tsobj, datesflag)
tsmat = fts2mat(tsobj, seriesnames)
tsmat $=$ fts2mat(tsobj, datesflag, seriesnames)

Arguments

tsobj	Financial time series object
datesflag	(Optional) Specifies inclusion of dates vector:
	datesflag $=0$ (default) excludes dates.
	datesflag $=1$ includes dates vector.
seriesnames	(Optional) Specifies the data series to be included in the matrix. Can be a cell array of strings.

Description

tsmat $=$ fts2mat(tsobj) takes the data series in the financial time series object tsobj and puts them into the matrix tsmat as columns. The order of the columns is the same as the order of the data series in the object tsobj.
tsmat $=$ fts2mat(tsobj, datesflag) specifies whether or not you want the dates vector included. The dates vector will be the first column. The dates are represented as serial date numbers. Dates can include time-of-day information.
tsmat $=$ fts2mat(tsobj, seriesnames) extracts the data series named in seriesnames and puts its values into tsmat. The seriesnames argument can be a cell array of strings.
tsmat $=$ fts2mat(tsobj, datesflag, seriesnames) puts into tsmat the specific data series named in seriesnames. The datesflag argument must be specified. If datesflag is set to 1 , the dates vector is included. If you specify an empty matrix ([]) for datesflag, the default behavior is adopted.

See Also
subsref

ftsbound

Purpose Start and end dates

```
Syntax
datesbound = ftsbound(tsobj)
datesbound = ftsbound(tsobj, dateform)
```


Arguments

Description

See Also datestr

Purpose Financial time series GUI
Syntax ftsgui
Description ftsgui displays the financial time series graphical user interface (GUI)main window.
The use of the financial time series GUI is described in "Using theFinancial Time Series GUI" on page 14-7.
Examples ftsgui
4 Financial Time Series GUI - - File Data Analysis Graphs Window HelpSee Alsoftstool
Tutorials - "Financial Time Series Graphical User Interface" on page 14-2

ftsinfo

Purpose Financial time series object information

```
Syntax
ftsinfo(tsobj)
infofts = ftsinfo(tsobj)
```


Arguments

tsobj Financial time series object.

Description

ftsinfo(tsobj) displays information about the financial time series object tsobj.
infofts = ftsinfo(tsobj) stores information about the financial time series object tsobj in the structure infofts.
infofts has these fields.

Field	Contents
version	Financial time series object version.
desc	Description of the time series object (tsobj. desc). freq
Numeric representation of the time series data frequency (tsobj. freq). See freqstr for list of numeric frequencies and what they represent.	
startdate	Earliest date in the time series.
enddate	Latest date in the time series.
seriesnames	Cell array containing the time series data column names.
ndata	Number of data points in the time series.
nseries	Number of columns of time series data.

Examples
Convert the supplied file disney.dat into a financial time series object named dis:

```
dis = ascii2fts('disney.dat', 1, 3);
```

Now use ftsinfo to obtain information about dis:

```
ftsinfo(dis)
```

 FINTS version: 2.0
 Description: Walt Disney Company (DIS)
 Frequency: Unknown
 Start date: 29-Mar-1996
 End date: 29-Mar-1999
 Series names: OPEN
 HIGH
 LOW
 CLOSE
 VOLUME
 \# of data: 782
 \# of series: 5
 Then, executing
infodis = ftsinfo(dis)
creates the structure infodis containing the values
infodis =
ver: '2.0'
desc: 'Walt Disney Company (DIS)'
freq: 0
startdate: '29-Mar-1996'
enddate: '29-Mar-1999'
seriesnames: \{5x1 cell\}
ndata: 782
nseries: 5

ftsinfo

See Also fints | freqnum | freqstr | ftsbound

Purpose Financial Time Series app
Syntax ftstool
Description ftstool creates and manages Financial Time Series objects. ftstoolallows the creation and management of Financial Time Series objectsvia the Financial Time Series app. ftstool can interface with ftsgui,meaning Line Plots generated with ftstool can be analyzed withftsgui. However, ftsgui must be running prior to the generation ofany Line Plots.The use of the Financial Time Series app is described in "GettingStarted with the Financial Time Series App" on page 13-4.
Examples ftstool

ftstool

Alternatively, on the MATLAB desktop toolstrip, click the Apps tab and in the apps gallery, under Computational Finance, click Financial Time Series. The Financial Time Series app opens. For an overview of the Financial Time Series app, see "What Is the Financial Time Series App?" on page 13-2.

See Also | ftsgui

Tutorials
 - "What Is the Financial Time Series App?" on page 13-2

ftsuniq

Purpose Determine uniqueness

```
Syntax
uniq = ftsuniq(dates_and_times)
[uniq, dup] = ftsuniq(dates_and_times)
```


Arguments

Description

See Also fints

Purpose Future value of discounted security

```
Syntax FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)
```


Arguments

fvdisc

- 13 = BUS/252

For more information, see basis on page Glossary-2.
Description FutureVal = fvdisc(Settle, Maturity, Price, Discount,Basis) finds the amount received at maturity for a fully vested security.
Examples Find the Amount Received at Maturity for a Fully-Vested Security
This example shows how to find the amount received at maturity for a fully-vested security, using the following data.

```
Settle = '02/15/2001';
Maturity = '05/15/2001';
Price = 100;
Discount = 0.0575;
Basis = 2;
FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)
```

FutureVal =
101.4420
References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd
edition.
See Also acrudisc | discrate | prdisc | ylddisc

Purpose Future value with fixed periodic payments
Syntax FutureVal = fvfix(Rate, NumPeriods, Payment, PresentVal, Due)

Arguments

Description

Examples

Rate Periodic interest rate, as a decimal fraction.
NumPeriods Number of periods.
Payment Periodic payment.
PresentVal (Optional) Initial value. Default $=0$.
Due (Optional) When payments are due or made: $0=$ end of period (default), or $1=$ beginning of period.

FutureVal = fvfix(Rate, NumPeriods, Payment, PresentVal, Due) returns the future value of a series of equal payments.

Return the Future Value of a Series of Equal Payments

This example shows how to compute the future value of a series of equal payments using a savings account that has a starting balance of $\$ 1500$. $\$ 200$ is added at the end of each month for 10 years and the account pays 9% interest compounded monthly.

FutureVal $=\operatorname{fvfix}(0.09 / 12,12 * 10,200,1500,0)$

FutureVal =
$4.2380 \mathrm{e}+04$

See Also

fvvar | pvfix | pvvar

Purpose Future value of varying cash flow

```
Syntax \(\quad\) FutureVal \(=\) fvvar(CashFlow, Rate, CFDates \()\)
```


Arguments

CashFlow A vector of varying cash flows. Include the initial investment as the initial cash flow value (a negative number).

Rate Periodic interest rate. Enter as a decimal fraction.
CFDates (Optional) For irregular (nonperiodic) cash flows, a vector of dates on which the cash flows occur. Enter dates as serial date numbers or date strings. Default assumes CashFlow contains regular (periodic) cash flows.

Description FutureVal = fvvar(CashFlow, Rate, CFDates) returns the future value of a varying cash flow.
 Examples
 This cash flow represents the yearly income from an initial investment of $\$ 10,000$. The annual interest rate is 8%.

Year 1	$\$ 2000$
Year 2	$\$ 1500$
Year 3	$\$ 3000$
Year 4	$\$ 3800$
Year 5	$\$ 5000$

For the future value of this regular (periodic) cash flow
FutureVal = fvvar([-10000 2000150030003800 5000], 0.08)
returns
FutureVal =
2520.47

An investment of $\$ 10,000$ returns this irregular cash flow. The original investment and its date are included. The periodic interest rate is 9%.

Cash Flow

(\$10000)
$\$ 2500$
$\$ 2000$
\$3000
$\$ 4000$

Dates

January 12, 2000
February 14, 2001
March 3, 2001
June 14, 2001
December 1, 2001

To calculate the future value of this irregular (nonperiodic) cash flow

```
CashFlow = [-10000, 2500, 2000, 3000, 4000];
```

CFDates = ['01/12/2000'
'02/14/2001'
'03/03/2001'
'06/14/2001'
'12/01/2001'];
FutureVal = fvvar(CashFlow, 0.09, CFDates)
returns
FutureVal =

See Also
 fvfix | irr | payuni | pvfix | pvvar

Purpose
Zero curve given forward curve
Syntax
[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates, Settle, Compounding, Basis)

Arguments

ForwardRates	A number of bonds (NUMBONDS)-by-1 vector of annualized implied forward rates, as decimal fractions. In aggregate, the rates in ForwardRates constitute an implied forward curve for the investment horizon represented by CurveDates. The first element pertains to forward rates from the settlement date to the first curve date.
CurveDates	A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the forward rates.
Settle	A serial date number that is the common settlement date for the forward rates. (Optional) Output compounding. A scalar that sets the compounding frequency per year for annualizing
the output zero rates. Allowed values are:	
1	Annual compounding

	$-1 \quad$ Continuous compounding
Basis	(Optional) Output day-count basis for annualizing
the output zero rates.	
- $0=$ actual/actual (default)	
- $1=30 / 360$ (SIA)	
- $2=$ actual/360	
- $3=$ actual/365	
- $4=30 / 360$ (PSA)	
- $5=30 / 360$ (ISDA)	
- $6=30 / 360$ (European)	
- $7=$ actual/365 (Japanese)	
- $8=$ actual/actual (ISMA)	
- $9=$ actual/360 (ISMA)	
- $10=$ actual/365 (ISMA)	
- $11=30 / 360 E$ (ISMA)	
- $12=$ actual/365 (ISDA)	
- $13=$ BUS/252	
For more information, see basis on page Glossary- 2.	

Description \quad| [ZeroRates, CurveDates] $=$ fwd2zero(ForwardRates, |
| :--- |
| CurveDates, Settle, Compounding, Basis) returns a zero curve |
| given an implied forward rate curve and its maturity dates. |

ZeroRates	A NUMBONDS-by-1 vector of decimal fractions. In aggregate, the rates in ZeroRates constitute a zero curve for the investment horizon represented by CurveDates.
CurveDates	A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the zero rates in ZeroRates. This vector is the same as the input vector CurveDates.

Examples Compute the Zero Curve Given the Forward Curve

This example shows how to compute the zero curve, given an implied forward rate curve over a set of maturity dates, a settlement date, and a compounding rate.

```
ForwardRates = [0.0469
    0.0519
    0.0549
    0.0535
    0.0558
    0.0508
    0.0560
    0.0545
    0.0615
    0.0486];
CurveDates = [datenum('06-Nov-2000')
        datenum('11-Dec-2000')
        datenum('15-Jan-2001')
        datenum('05-Feb-2001')
        datenum('04-Mar-2001')
        datenum('02-Apr-2001')
        datenum('30-Apr-2001')
        datenum('25-Jun-2001')
        datenum('04-Sep-2001')
```


fwd2zero

```
            datenum('12-Nov-2001')];
Settle = datenum('03-Nov-2000');
Compounding = 1;
[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,...
Settle, Compounding)
ZeroRates =
    0.0469
    0.0515
    0.0531
    0.0532
    0.0538
    0.0532
    0.0536
    0.0539
    0.0556
    0.0543
CurveDates =
730796
7 3 0 8 3 1
7 3 0 8 6 6
7 3 0 8 8 7
7 3 0 9 1 4
7 3 0 9 4 3
7 3 0 9 7 1
7 3 1 0 2 7
7 3 1 0 9 8
7 3 1 1 6 7
```

This returns the zero curve, ZeroRates, at the maturity dates, CurveDates.

See Also

zero2fwd
How To

- "Term Structure of Interest Rates" on page 2-41

Purpose Create GBM model
Syntax $\quad \begin{aligned} & \text { GBM }=\text { gbm(Return, Sigma) } \\ & \text { GBM }=\text { gbm(Return, Sigma, 'Name1', Value1, 'Name2', Value2, } \\ &\ldots .)\end{aligned}$

Class
 GBM

Description

Input Arguments

This constructor creates and displays GBM objects, which derive from the CEV (constant elasticity of variance) class. Use GBM objects to simulate sample paths of NVARS state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation periods, approximating continuous-time GBM stochastic processes.
This method allows simulation of vector-valued GBM processes of the form:

$$
\begin{equation*}
d X_{t}=\mu(t) X_{t} d t+D\left(t, X_{t}\right) V(t) d W_{t} \tag{18-6}
\end{equation*}
$$

where:

- X_{t} is an NVARS-by- 1 state vector of process variables.
- μ is an NVARS-by-NVARS generalized expected instantaneous rate of return matrix.
- D is an NVARS-by-NVARS diagonal matrix, where each element along the main diagonal is the corresponding element of the state vector X_{t}.
- V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
- $d W_{t}$ is an NBROWNS-by-1 Brownian motion vector.

Specify required input parameters as one of the following types:

- A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric specification. This array fully captures all implementation details, which are clearly associated with a parametric form.
- A MATLAB function. Specifying a function provides indirect support for virtually any static, dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.

The required input parameters are:
Return Return represents the parameter μ. If you specify Return as an array, it must be an NVARS-by-NVARS matrix representing the expected (mean) instantaneous rate of return. If you specify it as a function, Return must return an NVARS-by-NVARS matrix when invoked with two inputs:

- A real-valued scalar observation time t.
- An NVARS-by- 1 state vector X_{t}.

Sigma Sigma represents the parameter V. If you specify Sigma as an array, it must be an NVARS-by-NBROWNS matrix of instantaneous volatility rates. In this case, each row of Sigma corresponds to a particular state variable. Each column corresponds to a particular Brownian source of uncertainty, and associates the magnitude of the exposure of state variables with sources of uncertainty. If you specify it as a function, Sigma must return an NVARS-by-NBROWNS matrix of volatility rates when invoked with two inputs:

- A real-valued scalar observation time t.
- An NVARS-by- 1 state vector X_{t}.

Although the gbm constructor enforces no restrictions on the sign of Sigma volatilities, they are usually specified as positive values.

Optional Input Arguments

Specify optional input arguments as variable-length lists of matching parameter name/value pairs: 'Name1', Value1, 'Name2', Value2, ... and so on. The following rules apply when specifying parameter-name pairs:

- Specify the parameter name as a character string, followed by its corresponding parameter value.
- You can specify parameter name/value pairs in any order.
- Parameter names are case insensitive.
- You can specify unambiguous partial string matches.

Valid parameter names are:

StartTime	Scalar starting time of the first observation, applied to all state variables. If you do not specify a value for StartTime, the default is 0.
StartState	Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of initial values of the state variables. If StartState is a scalar, gbm applies the same initial value to all state variables on all trials.
	If StartState is a column vector, gbm applies a unique initial value to each state variable on all trials.

If StartState is a matrix, gbm applies a unique initial value to each state variable on each trial.

If you do not specify a value for StartState, all variables start at 1 .
$\left.\begin{array}{ll}\text { Correlation } & \begin{array}{l}\text { Correlation between Gaussian random variates } \\ \text { drawn to generate the Brownian motion vector } \\ \text { (Wiener processes). Specify Correlation as an }\end{array} \\ & \begin{array}{l}\text { NBROWNS-by-NBROWNS positive semidefinite matrix, } \\ \text { or as a deterministic function } C(t) \text { that accepts the } \\ \text { current time } t \text { and returns an NBROWNS-by-NBROWNS }\end{array} \\ \text { positive semidefinite correlation matrix.A }\end{array}\right\}$

Output GBM Arguments

Object of class gbm with the following displayed parameters:

- StartTime: Initial observation time
- StartState: Initial state at StartTime
- Correlation: Access function for the Correlation input, callable as a function of time
- Drift: Composite drift-rate function, callable as a function of time and state
- Diffusion: Composite diffusion-rate function, callable as a function of time and state
- Simulation: A simulation function or method
- Return: Access function for the input argument Return, callable as a function of time and state
- Sigma: Access function for the input argument Sigma, callable as a function of time and state

Examples

Algorithms

References

- "Creating Geometric Brownian Motion (GBM) Models" on page 17-27
- Implementing Multidimensional Equity Market Models, Implementation 3: Using SDELD, CEV, and GBM Objects

When you specify the required input parameters as arrays, they are associated with a specific parametric form. By contrast, when you specify either required input parameter as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input specification. Thus, when you invoke these parameters with no inputs, they behave like simple properties and allow you to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of dynamic behavior. The parameters accept the observation time t and a state vector X_{t}, and return an array of appropriate dimension. Even if you originally specified an input as an array, gbm treats it as a static function of time and state, thereby guaranteeing that all parameters are accessible by the same interface.

Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426.

Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.
Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.

Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.

See Also

drift | diffusion | cev

Purpose Geometric to arithmetic moments of asset returns
Syntax $\quad \begin{aligned} {[\mathrm{ma}, \mathrm{Ca}] } & =\text { geom2arith }(\mathrm{mg}, \mathrm{Cg}) \\ {[\mathrm{ma}, \mathrm{Ca}] } & =\text { geom2arith }(\mathrm{mg}, \mathrm{Cg}, \mathrm{t})\end{aligned}$
Arguments

mg	Continuously-compounded or "geometric" mean of asset returns (positive n-vector).
Cg	Continuously-compounded or "geometric" covariance of asset returns (n-by-n symmetric, positive-semidefinite matrix).
t	(Optional) Target period of arithmetic moments in terms of periodicity of geometric moments with default value 1 (positive scalar).

Description

geom2arith transforms moments associated with a continuously-compounded geometric Brownian motion into equivalent moments associated with a simple Brownian motion with a possible change in periodicity.
[ma, Ca] = geom2arith(mg, Cg, t) returns ma, arithmetic mean of asset returns over the target period (n-vector), andCa, which is an arithmetric covariance of asset returns over the target period (n-by-n matrix).

Geometric returns over period t_{G} are modeled as multivariate lognormal random variables with moments

$$
E[\mathrm{Y}]=1+\mathrm{m}_{G}
$$

and

$$
\operatorname{cov}(\mathrm{Y})=\mathrm{C}_{G}
$$

Arithmetic returns over period t_{A} are modeled as multivariate normal random variables with moments

$$
\begin{aligned}
& E[\mathrm{X}]=\mathrm{m}_{A} \\
& \operatorname{cov}(\mathrm{X})=\mathrm{C}_{A}
\end{aligned}
$$

Given $t=t_{A} / t_{G}$, the transformation from geometric to arithmetic moments is

$$
\begin{aligned}
\mathrm{C}_{A_{i j}} & =t \log \left(1+\frac{\mathrm{C}_{G_{i j}}}{\left(1+\mathrm{m}_{G_{i}}\right)\left(1+\mathrm{m}_{G_{j}}\right)}\right) \\
\mathrm{m}_{A_{i}} & =t \log \left(1+\mathrm{m}_{G_{i}}\right)-\frac{1}{2} \mathrm{C}_{A_{i i}} \\
\text { For } i, j & =1, \ldots, n .
\end{aligned}
$$

Note If $t=1$, then $\mathbf{X}=\log (\mathbf{Y})$.

This function requires that the input mean must satisfy $1+\mathrm{mg}>$ 0 and that the input covariance Cg must be a symmetric, positive, semidefinite matrix.

The functions geom2arith and arith2geom are complementary so that, given m, C, and t, the sequence

```
[ma, Ca] = geom2arith(m, C, t);
[mg, Cg] = arith2geom(ma, Ca, 1/t);
```

yields $\mathrm{mg}=\mathrm{m}$ and $\mathrm{Cg}=\mathrm{C}$.
Examples Example 1. Given geometric mean m and covariance C of monthly total returns, obtain annual arithmetic mean ma and covariance Ca. In this
case, the output period (1 year) is 12 times the input period (1 month) so that $\mathrm{t}=12$ with

```
[ma, Ca] = geom2arith(m, C, 12);
```

Example 2. Given annual geometric mean m and covariance C of asset returns, obtain monthly arithmetic mean ma and covariance Ca . In this case, the output period (1 month) is $1 / 12$ times the input period (1 year) so that $\mathrm{t}=1 / 12$ with
[ma, Ca] = geom2arith(m, C, 1/12);
Example 3. Given geometric means m and standard deviations s of daily total returns (derived from 260 business days per year), obtain annualized arithmetic mean ma and standard deviations sa with

```
[ma, Ca] = geom2arith(m, diag(s .^2), 260);
```

sa = sqrt(diag(Ca));

Example 4. Given geometric mean m and covariance C of monthly total returns, obtain quarterly arithmetic return moments. In this case, the output is 3 of the input periods so that $t=3$ with
[ma, Ca] = geom2arith(m, C, 3);
Example 5. Given geometric mean m and covariance C of 1254 observations of daily total returns over a 5 -year period, obtain annualized arithmetic return moments. Since the periodicity of the geometric data is based on 1254 observations for a 5 -year period, a 1 -year period for arithmetic returns implies a target period of $t=$ $1254 / 5$ so that
[ma, Ca] = geom2arith(m, C, 1254/5);
See Also arith2geom

Portfolio.getAssetMoments

Purpose

Obtain mean and covariance of asset returns from Portfolio object

Syntax

Description

Tips

Input
Arguments

Output
 Arguments

```
[AssetMean,AssetCovar] = getAssetMoments(obj)
```

[AssetMean,AssetCovar] = getAssetMoments(obj) obtains the mean and covariance of asset returns from a Portfolio object.

Use dot notation to obtain the mean and covariance of asset returns from a Portfolio object:

```
[AssetMean, AssetCovar] = obj.getAssetMoments;
```


obi

Portfolio object [Portfolio].

AssetMean

Mean of asset returns [vector].

AssetCovar

Covariance of asset returns [matrix].

Attributes

Examples

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Obtain Asset Moment Properties

Given the mean and covariance of asset returns in the variables m and C, the asset moment properties can be set and then obtained using the getAssetMoments method:

Portfolio.getAssetMoments

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
        0.00408 0.0289 0.0204 0.0119;
        0.00192 0.0204 0.0576 0.0336;
        0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
p = Portfolio;
p = p.setAssetMoments(m, C);
[assetmean, assetcovar] = p.getAssetMoments
assetmean =
    0.0042
        0.0083
        0.0100
        0.0150
assetcovar =
\begin{tabular}{rrrr}
0.0005 & 0.0003 & 0.0002 & 0 \\
0.0003 & 0.0024 & 0.0017 & 0.0010 \\
0.0002 & 0.0017 & 0.0048 & 0.0028 \\
0 & 0.0010 & 0.0028 & 0.0102
\end{tabular}
```


See Also setAssetMoments

Related

- "Asset Returns and Moments of Asset Returns" on page 4-42
Examples
- "Estimating Asset Moments from Prices or Returns" on page 4-46
- "Estimating Asset Moments with Missing Data" on page 4-49

Portfolio.getBounds

Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input
Arguments

Output

Arguments

Obtain bounds for portfolio weights from Portfolio object
[LowerBound,UpperBound] = getBounds(obj)
[LowerBound,UpperBound] = getBounds(obj) obtains bounds for portfolio weights from a Portfolio object.

Use dot notation to obtain bounds for portfolio weights from the Portfolio object.

```
[LowerBound, UpperBound] = obj.getBounds;
```

obi
Portfolio object [Portfolio].

LowerBound

Lower-bound weight for each asset [vector].

UpperBound

Upper-bound weight for each asset [vector].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Portfolio.getBounds

Examples Obtain Values for Lower and Upper BoundsGiven portfolio p with the default constraints set, obtain the valuesfor LowerBound and UpperBound.

```
p = Portfolio;
p = p.setDefaultConstraints(5);
[LowerBound, UpperBound] = p.getBounds
```

LowerBound =
0
0
0
0
0
UpperBound =
[]
See Also setBounds
Related

- "Working with Bound Constraints" on page 4-62
Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 4-8

PortfolioCVaR.getBounds

Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input
Arguments

Output

Arguments

Obtain bounds for portfolio weights from PortfolioCVaR object
[LowerBound,UpperBound] = getBounds(obj)
[LowerBound,UpperBound] = getBounds(obj) obtains bounds for portfolio weights from a PortfolioCVaR object.

Use dot notation to obtain bounds for portfolio weights from the PortfolioCVaR object.

```
[LowerBound, UpperBound] = obj.getBounds;
```

obi
CVaR portfolio object [PortfolioCVaR].

LowerBound

Lower-bound weight for each asset [vector].

UpperBound

Upper-bound weight for each asset [vector].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioCVaR.getBounds

Examples Obtain Values for Lower and Upper BoundsGiven a PortfolioCVaR object p with the default constraints set, obtainthe values for LowerBound and UpperBound.

```
p = PortfolioCVaR;
p = p.setDefaultConstraints(5);
[LowerBound, UpperBound] = p.getBounds
```

LowerBound =
0
0
0
0
0
UpperBound =
[]
See Also
setBounds
Related

- "Working with Bound Constraints" on page 5-64
Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 5-8

PortfolioMAD.getBounds

Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input
Arguments

Output

 ArgumentsObtain bounds for portfolio weights from PortfolioMAD object
[LowerBound,UpperBound] = getBounds(obj)
[LowerBound,UpperBound] = getBounds(obj) obtains bounds for PortfolioMAD portfolio weights from a PortfolioMAD object.

Use dot notation to obtain bounds for PortfolioMAD portfolio weights from the PortfolioMAD object.
[LowerBound, UpperBound] = obj.getBounds;
obi
MAD portfolio object [PortfolioMAD].

LowerBound

Lower-bound weight for each asset [vector].

UpperBound

Upper-bound weight for each asset [vector].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioMAD.getBounds

Examples Obtain Values for Lower and Upper BoundsGiven a PortfolioMAD object p with the default constraints set, obtainthe values for LowerBound and UpperBound.
p = PortfolioMAD;
p = p.setDefaultConstraints(5);
[LowerBound, UpperBound] = p.getBounds
LowerBound =
0
0
0
0
0
UpperBound =
[]
See Also
setBounds
Related

- "Working with Bound Constraints" on page 6-64
Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 6-8

Portfolio.getBudget

Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input
Arguments

Output

Arguments

Obtain budget constraint bounds from Portfolio object
[LowerBudget, UpperBudget] = getBudget(obj)
[LowerBudget,UpperBudget] = getBudget(obj) obtains budget constraint bounds from a Portfolio object.

Use dot notation to obtain the budget constraint bounds from the Portfolio object.

```
[LowerBudget, UpperBudget] = obj.getBudget;
```


obi

Portfolio object [Portfolio].

LowerBudget

Lower bound for budget constraint [scalar].

UpperBudget

Upper bound for budget constraint [scalar].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Portfolio.getBudget

Examples Obtain Values for Lower and Upper BudgetsGiven portfolio p with the default constraints set, obtain the values forLowerBudget and UpperBudget.
p = Portfolio;
p = p.setDefaultConstraints(5);
[LowerBudget, UpperBudget] = p.getBudget

LowerBudget =

1

UpperBudget =

1
See Also setBudget
Related Examples

Concepts

- "Portfolio Set for Portfolio Optimization" on page 4-8

PortfolioCVaR.getBudget

Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input
Arguments

Output

Arguments

Obtain budget constraint bounds from PortfolioCVaR object
[LowerBudget,UpperBudget] = getBudget(obj)
[LowerBudget, UpperBudget] = getBudget(obj) obtains budget constraint bounds from a PortfolioCVaR object.

Use dot notation to obtain the budget constraint bounds from the PortfolioCVaR object.

```
[LowerBudget, UpperBudget] = obj.getBudget;
```


obi

CVaR portfolio object [PortfolioCVaR].

LowerBudget

Lower-bound for budget constraint [scalar].

UpperBudget

Upper-bound for budget constraint [scalar].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioCVaR.getBudget

Examples Obtain Values for Lower and Upper BudgetsGiven a PortfolioCVaR object p with the default constraints set, obtainthe values for LowerBudget and UpperBudget.
p = PortfolioCVaR;
p = p.setDefaultConstraints(5);
[LowerBudget, UpperBudget] = p.getBudget
LowerBudget =
1
UpperBudget =
1
See Also setBudget
Related Examples

Concepts

- "Portfolio Set for Portfolio Optimization" on page 5-8

PortfolioMAD.getBudget

Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input
Arguments

Output

 ArgumentsObtain budget constraint bounds from PortfolioMAD object
[LowerBudget, UpperBudget] = getBudget(obj)
[LowerBudget, UpperBudget] = getBudget(obj) obtains budget constraint bounds from a PortfolioMAD object.

Use dot notation to obtain the budget constraint bounds from the PortfolioMAD object.

```
[LowerBudget, UpperBudget] = obj.getBudget;
```


obi

MAD portfolio object [PortfolioMAD].

LowerBudget

Lower-bound for budget constraint [scalar].

UpperBudget

Upper-bound for budget constraint [scalar].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioMAD.getBudget

Examples Obtain Values for Lower and Upper BudgetsGiven a PortfolioMAD object p with the default constraints set, obtainthe values for LowerBudget and UpperBudget.
p = PortfolioMAD;
p = p.setDefaultConstraints(5);
[LowerBudget, UpperBudget] = p.getBudget
LowerBudget =
1
UpperBudget =
1
See Also setBudget
Related Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 6-8

Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input
Arguments

Output

Arguments

Obtain buy and sell transaction costs from Portfolio object
[BuyCost, SellCost] = getCosts(obj)
[BuyCost,SellCost] = getCosts(obj) obtains buy and sell transaction costs from the Portfolio object.

Use dot notation to obtain the buy and sell transaction costs from the Portfolio object.

```
[BuyCost, SellCost] = obj.getCosts;
```


obi

Portfolio object [Portfolio].

BuyCost

Proportional transaction cost to purchase each asset [vector].

SellCost

Proportional transaction cost to sell each asset [vector].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Portfolio.getCosts

Examples Obtain Buy and Sell CostsGiven portfolio p with the costs set, obtain the values for BuyCost andSellCost.
p = Portfolio;
p = p.setCosts(0.001, 0.001, 5);
[BuyCost, SellCost] = p.getCosts
BuyCost =
$1.0000 \mathrm{e}-03$
SellCost =
$1.0000 \mathrm{e}-03$
See Also setcosts
Related - "Working with Transaction Costs" on page 4-54
Examples

PortfolioCVaR.getCosts

Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input
Arguments

Output
 Arguments

Obtain buy and sell transaction costs from PortfolioCVaR object
[BuyCost,SellCost] = getCosts(obj)
[BuyCost,SellCost] = getCosts(obj) obtains buy and sell transaction costs from the PortfolioCVaR object.

Use dot notation to obtain the buy and sell transaction costs from the PortfolioCVaR object.

```
[BuyCost, SellCost] = obj.getCosts;
```

obi
CVaR portfolio object [PortfolioCVaR].

BuyCost

Proportional transaction cost to purchase each asset [vector].

SellCost

Proportional transaction cost to sell each asset [vector].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioCVaR.getCosts

Examples Obtain Buy and Sell CostsGiven a PortfolioCVaR object p with the costs set, obtain the valuesfor BuyCost and SellCost.

```
p = PortfolioCVaR;
p = p.setCosts(0.001, 0.001, 5);
[BuyCost, SellCost] = p.getCosts
```

BuyCost =
$1.0000 \mathrm{e}-03$
SellCost =
$1.0000 \mathrm{e}-03$
See Also setCosts
Related - "Working with Transaction Costs" on page 5-56 Examples

PortfolioMAD.getCosts

Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input
Arguments

Output

Arguments

Obtain buy and sell transaction costs from PortfolioMAD object
[BuyCost,SellCost] = getCosts(obj)
[BuyCost,SellCost] = getCosts(obj) obtains buy and sell transaction costs from the PortfolioMAD object.

Use dot notation to obtain the buy and sell transaction costs from the PortfolioMAD object.

```
[BuyCost, SellCost] = obj.getCosts;
```


obi

MAD portfolio object [PortfolioMAD].

BuyCost

Proportional transaction cost to purchase each asset [vector].

SellCost

Proportional transaction cost to sell each asset [vector].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioMAD.getCosts

Examples Obtain Buy and Sell Costs
Given a PortfolioMAD object p with the costs set, obtain the values for BuyCost and SellCost.
p = PortfolioMAD;
p = p.setCosts(0.001, 0.001, 5);
[BuyCost, SellCost] = p.getCosts
BuyCost =
$1.0000 \mathrm{e}-03$
SellCost =
$1.0000 \mathrm{e}-03$

See Also setcosts

Related
 - "Working with Transaction Costs" on page 6-56 Examples

Superclasses AbstractPortfolio

Purpose
Obtain equality constraint arrays from Portfolio object
Syntax
[AEquality, bEquality] = getEquality(obj)
Description

Tips

Input
Arguments

Output
 Arguments

[AEquality,bEquality] = getEquality(obj) obtains the equality constraint arrays from a Portfolio object.

Use dot notation to obtain the equality constraint arrays from the Portfolio object.

```
[AEquality, bEquality] = obj.getEquality;
```


obi

Portfolio object [Portfolio].

AEquality

Matrix to form linear equality constraints [matrix].

bEquality

Vector to form linear equality constraints [vector].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Portfolio.getEquality

Examples Obtain Equality ConstraintsAEquality and bEquality:

```
A = [ 1 1 1 1 0 0 ];
b = 0.5;
p = Portfolio;
p = p.setEquality(A, b);
[AEquality, bEquality] = p.getEquality
```

AEquality =
$\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}$
bEquality =
0.5000Suppose you have a portfolio of five assets and you want to ensure thatthe first three assets are exactly 50% of your portfolio. Given a Portfolioobject p, set the linear equality constraints and obtain the values for
See Also setEquality
Related - "Working with Linear Equality Constraints" on page 4-73Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 4-8

PortfolioCVaR.getEquality

Superclasses AbstractPortfolio

Purpose
Obtain equality constraint arrays from PortfolioCVaR object
Syntax
[AEquality, bEquality] = getEquality(obj)
Description

Tips
Use dot notation to obtain the equality constraint arrays from a PortfolioCVaR object.

```
[AEquality, bEquality] = obj.getEquality;
```


Input

Arguments

Output
 Arguments

obi

CVaR portfolio object [PortfolioCVaR].

AEquality

Matrix to form linear equality constraints [matrix].

bEquality

Vector to form linear equality constraints [vector].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioCVaR.getEquality

Examples Obtain Equality ConstraintsAEquality and bEquality:

```
A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioCVaR;
p = p.setEquality(A, b);
[AEquality, bEquality] = p.getEquality
```

AEquality =
$\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}$
bEquality =
0.5000Suppose you have a portfolio of five assets and you want to ensure thatthe first three assets are 50% of your portfolio. Given a PortfolioCVaRobject p, set the linear equality constraints and obtain the values for
See Also setEquality
Related - "Working with Linear Equality Constraints" on page 5-75
Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 5-8

PortfolioMAD.getEquality

Superclasses AbstractPortfolio

Purpose
Obtain equality constraint arrays from PortfolioMAD object

Syntax

[AEquality, bEquality] = getEquality(obj)
Description

Tips
Use dot notation to obtain the equality constraint arrays from a PortfolioMAD object.

```
[AEquality, bEquality] = obj.getEquality;
```


Input

Arguments

Output
 Arguments

obi

MAD portfolio object [PortfolioMAD].

AEquality

Matrix to form linear equality constraints [matrix].

bEquality

Vector to form linear equality constraints [vector].

Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioMAD.getEquality

Examples Obtain Equality ConstraintsSuppose you have a portfolio of five assets and you want to ensure thatthe first three assets are 50% of your portfolio. Given a PortfolioMADobject p, set the linear equality constraints and obtain the values forAEquality and bEquality:

```
A = [ 1 1 1 1 0 0 ];
b = 0.5;
p = PortfolioMAD;
p = p.setEquality(A, b);
[AEquality, bEquality] = p.getEquality
```

AEquality =
$\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}$
bEquality =
0.5000
See Also setEquality
Related - "Working with Linear Equality Constraints" on page 6-75Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 6-8

Portfolio.getGroupRatio

Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input
Arguments

Output

Arguments

Obtain group ratio constraint arrays from Portfolio object
[GroupA, GroupB,LowerRatio,UpperRatio] = getGroupRatio(obj)
[GroupA,GroupB,LowerRatio,UpperRatio] = getGroupRatio(obj) obtains the group ratio constraint arrays from a Portfolio object.

Use dot notation to obtain the equality constraint arrays from the Portfolio object.

```
[GroupA, GroupB, LowerRatio, UpperRatio] = obj.getGroupRatio;
```


obi

Portfolio object [Portfolio].

GroupA

Matrix that forms base groups for comparison [matrix].

GroupB

Matrix that forms comparison groups [matrix].

LowerRatio

Lower bound for ratio of GroupB groups to GroupA groups [vector].

UpperRatio

Upper bound for ratio of GroupB groups to GroupA groups [vector].

Attributes

Access	public
Static	false
Hidden	false

Portfolio.getGroupRatio

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Examples Obtain Group Ratio Constraints

Suppose you want to make sure that the ratio of financial to nonfinancial companies in your portfolios never goes above 50\%. Assume you have 6 assets with 3 financial companies (assets 1-3) and 3 nonfinancial companies (assets 4-6). After setting group ratio constraints, obtain the values for GroupA, GroupB, LowerRatio, and UpperRatio.

```
GA = [ true true true false false false ]; % financial companies
GB = [ false false false true true true ]; % nonfinancial companies
p = Portfolio;
p = p.setGroupRatio(GA, GB, [], 0.5);
[GroupA, GroupB, LowerRatio, UpperRatio] = p.getGroupRatio
GroupA =
    1
GroupB =
    0
LowerRatio =
```

 []
 UpperRatio =
0.5000

Portfolio.getGroupRatio

See Also setGroupRatio

Related
Examples
Concepts

- "Working with Group Ratio Constraints" on page 4-69
- "Portfolio Set for Portfolio Optimization" on page 4-8

PortfolioCVaR.getGroupRatio

Superclasses AbstractPortfolio
Purpose Obtain group ratio constraint arrays from PortfolioCVaR object
Syntax [GroupA, GroupB,LowerRatio,UpperRatio] = getGroupRatio(obj)
Description [GroupA,GroupB,LowerRatio,UpperRatio] = getGroupRatio(obj) obtains the group ratio constraint arrays from a CVaR portfolio object.

Tips
Use dot notation to obtain group ratio constraint arrays from the CVaR portfolio object.
[GroupA, GroupB, LowerRatio, UpperRatio] = obj.getGroupRatio;
Input
Arguments
obi
CVaR portfolio object [PortfolioCVaR].

Output

Arguments

GroupA

Matrix that forms base groups for comparison [matrix].

GroupB

Matrix that forms comparison groups [matrix].

LowerRatio

Lower bound for ratio of GroupB groups to GroupA groups [vector].

UpperRatio

Upper bound for ratio of GroupB groups to GroupA groups [vector].

Attributes

Access	public
Static	false
Hidden	false

PortfolioCVaR.getGroupRatio

```
To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.
```


Examples Obtain Group Ratio Constraints

```
Suppose you want to ensure that the ratio of financial to nonfinancial companies in your portfolios never exceeds 50\%. Assume you have six assets with three financial companies (assets 1-3) and three nonfinancial companies (assets 4-6). After setting group ratio constraints, obtain the values for GroupA, GroupB, LowerRatio, and UpperRatio.
```

```
GA = [ true true true false false false ]; % financial companies
```

GA = [true true true false false false]; % financial companies
GB = [false false false true true true]; % nonfinancial companies
GB = [false false false true true true]; % nonfinancial companies
p = PortfolioCVaR;
p = PortfolioCVaR;
p = p.setGroupRatio(GA, GB, [], 0.5);
p = p.setGroupRatio(GA, GB, [], 0.5);
[GroupA, GroupB, LowerRatio, UpperRatio] = p.getGroupRatio
[GroupA, GroupB, LowerRatio, UpperRatio] = p.getGroupRatio
GroupA =
1
GroupB =
0
LowerRatio =
[]
UpperRatio =
0.5000

```

\section*{PortfolioCVaR.getGroupRatio}
See Also setGroupRatio
Related - "Working with Group Constraints" on page 5-68
Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 5-8

\section*{PortfolioMAD.getGroupRatio}

\section*{Superclasses AbstractPortfolio}

Purpose
Syntax
Description

Tips

Input
Arguments

\section*{Output}

Arguments

Obtain group ratio constraint arrays from PortfolioMAD object
[GroupA, GroupB,LowerRatio,UpperRatio] = getGroupRatio(obj)
[GroupA, GroupB,LowerRatio,UpperRatio] = getGroupRatio(obj) obtains the group ratio constraint arrays from a MAD portfolio object.

Use dot notation to obtain group ratio constraint arrays from the MAD portfolio object.
```

[GroupA, GroupB, LowerRatio, UpperRatio] = obj.getGroupRatio;

```

\section*{obi}

MAD portfolio object [PortfolioMAD].

\section*{GroupA}

Matrix that forms base groups for comparison [matrix].

\section*{GroupB}

Matrix that forms comparison groups [matrix].

\section*{LowerRatio}

Lower bound for ratio of GroupB groups to GroupA groups [vector].

\section*{UpperRatio}

Upper bound for ratio of GroupB groups to GroupA groups [vector ].

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

\section*{PortfolioMAD.getGroupRatio}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Obtain Group Ratio Constraints}

Suppose you want to ensure that the ratio of financial to nonfinancial companies in your portfolios never exceeds 50\%. Assume you have six assets with three financial companies (assets 1-3) and three nonfinancial companies (assets 4-6). After setting group ratio constraints, obtain the values for GroupA, GroupB, LowerRatio, and UpperRatio.
```

GA = [true true true false false false]; % financial companies
GB = [false false false true true true]; % nonfinancial companies
p = PortfolioMAD;
p = p.setGroupRatio(GA, GB, [], 0.5);
[GroupA, GroupB, LowerRatio, UpperRatio] = p.getGroupRatio
GroupA =
1
GroupB =
0
LowerRatio =

```
    []
UpperRatio =
    0.5000

\section*{PortfolioMAD.getGroupRatio}

\author{
See Also setGroupRatio \\ Related \\ Examples \\ Concepts - "Portfolio Set for Portfolio Optimization" on page 6-8
}

\section*{Portfolio.getGroups}

Superclasses AbstractPortfolio

\section*{Purpose Obtain group constraint arrays from Portfolio object}
Syntax [GroupMatrix,LowerGroup,UpperGroup] = getGroups(obj)

Description [GroupMatrix,LowerGroup,UpperGroup] = getGroups(obj) obtains the group constraint arrays from a Portfolio object.

Tips
Use dot notation to obtain the group constraint arrays from the Portfolio object.
[GroupMatrix, LowerGroup, UpperGroup] = obj.getGroups;

Input
Arguments

\section*{Output}

Arguments

\section*{obj}

Portfolio object [Portfolio].

\section*{GroupMatrix}

Group constraint matrix [matrix].

\section*{LowerGroup}

Lower bound for group constraints [vector].

\section*{UpperGroup}

Upper bound for group constraints [vector].

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Portfolio.getGroups}

\section*{Examples Obtain Group Constraints}

Suppose you have a portfolio of five assets and you want to ensure that the first three assets constitute no more than \(30 \%\) of your portfolio. Given a Portfolio object \(p\) with the group constraints set, obtain the values for GroupMatrix, LowerGroup, and UpperGroup.
```

G = [true true true false false];
p = Portfolio;
p = p.setGroups(G, [], 0.3);
[GroupMatrix, LowerGroup, UpperGroup] = p.getGroups

```
GroupMatrix =
    \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
LowerGroup =
    []
UpperGroup =
    0.3000
Related - "Working with Group Constraints" on page 4-66
Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 4-8

\section*{PortfolioCVaR.getGroups}

Superclasses AbstractPortfolio
Purpose Obtain group constraint arrays from PortfolioCVaR object
Syntax [GroupMatrix, LowerGroup,UpperGroup] = getGroups(obj)
Description [GroupMatrix, LowerGroup,UpperGroup] = getGroups(obj) obtains the group constraint arrays from a PortfolioCVaR object.

Tips
Use dot notation to obtain the group constraint arrays from a PortfolioCVaR object.
[GroupMatrix, LowerGroup, UpperGroup] = obj.getGroups;

Input
Arguments

\section*{Output}

Arguments

\section*{obi}

CVaR portfolio object [PortfolioCVaR].

\section*{GroupMatrix}

Group constraint matrix [matrix].

\section*{LowerGroup}

Lower bound for group constraints [vector].

\section*{UpperGroup}

Upper bound for group constraints [vector].

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{PortfolioCVaR.getGroups}

\section*{Examples Obtain Group Constraints}

Suppose you have a portfolio of five assets and you want to ensure that the first three assets constitute at most \(30 \%\) of your portfolio. Given a PortfolioCVaR object \(p\) with the group constraints set, obtain the values for GroupMatrix, LowerGroup, and UpperGroup.
```

G = [true true true false false];
p = PortfolioCVaR;
p = p.setGroups(G, [], 0.3);
[GroupMatrix, LowerGroup, UpperGroup] = p.getGroups

```
GroupMatrix =
    \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
LowerGroup =
    []
UpperGroup =
0.3000
Related - "Working with Group Constraints" on page 5-68
Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 5-8

\section*{PortfolioMAD.getGroups}

Superclasses AbstractPortfolio

Purpose Obtain group constraint arrays from PortfolioMAD object
Syntax [GroupMatrix,LowerGroup,UpperGroup] = getGroups(obj)
Description [GroupMatrix,LowerGroup,UpperGroup] = getGroups(obj) obtains the group constraint arrays from a PortfolioMAD object.

Tips
Use dot notation to obtain the group constraint arrays from a PortfolioMAD object.
[GroupMatrix, LowerGroup, UpperGroup] = obj.getGroups;
Input
Arguments

\section*{Output}

Arguments

\section*{obj}

MAD portfolio object [PortfolioMAD].

\section*{GroupMatrix}

Group constraint matrix [matrix].

\section*{LowerGroup}

Lower bound for group constraints [vector].

\section*{UpperGroup}

Upper bound for group constraints [vector].

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{PortfolioMAD.getGroups}

\section*{Examples Obtain Group Constraints}

Suppose you have a portfolio of five assets and you want to ensure that the first three assets constitute at most \(30 \%\) of your portfolio. Given a PortfolioMAD object \(p\) with the group constraints set, obtain the values for GroupMatrix, LowerGroup, and UpperGroup.
```

G = [true true true false false];
p = PortfolioMAD;
p = p.setGroups(G, [], 0.3);
[GroupMatrix, LowerGroup, UpperGroup] = p.getGroups

```
GroupMatrix =
    \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
LowerGroup =
    []
UpperGroup =
0.3000
Related - "Working with Group Constraints" on page 6-68
Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 6-8

\section*{PortfolioCVaR.getScenarios}

Superclasses AbstractPortfolio

\section*{Purpose Obtain scenarios from PortfolioCVaR object}

Syntax \(\quad Y=\) getScenarios (obj)
Description \(\quad Y=\) getScenarios (obj) obtains scenarios from a PortfolioCVaR object.
Tips Use dot notation to obtain scenarios from a PortfolioCVaR object.
Y = obj.getScenarios;
Input obi
Arguments
Output \(\quad \mathbf{Y}\)
Arguments
Scenarios matrix [NumScenarios]-by-[NumAssets].

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Obtain Scenarios for a CVaR Portfolio Object}

For a given PortfolioCVaR object p, display the defined scenarios.
\[
\begin{aligned}
& \text { m = [ 0.05; 0.1; 0.12; 0.18 ]; } \\
& C=[0.00640 .004080 .001920 \text {; } \\
& 0.004080 .02890 .02040 .0119 \text {; } \\
& 0.001920 .02040 .05760 .0336 \text {; } \\
& 00.01190 .03360 .1225 \text { ]; }
\end{aligned}
\]
```

m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 10);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
Y = getScenarios(p)
Y =

-0.0056	0.0440	0.1186	0.0488
-0.0368	-0.0753	0.0087	0.1124
0.0025	0.0856	0.0484	0.1404
0.0318	0.0826	0.0377	0.0404
0.0013	-0.0561	-0.1466	-0.0621
0.0035	0.0310	-0.0183	0.1225
-0.0519	-0.1634	-0.0526	0.1528
0.0029	-0.1163	-0.0627	-0.0760
0.0192	-0.0182	-0.1243	-0.1346
0.0440	0.0189	0.0098	0.0821

```

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

\section*{See Also}
setScenarios | rng

\section*{PortfolioCVaR.getScenarios}

\author{
Related Examples \\ - "Setting Scenarios Using the PortfolioCVaR Constructor" on page 5-46 \\ Concepts - "How Stochastic Optimization Works" on page 5-44
}

\section*{PortfolioMAD.getScenarios}

\section*{Superclasses AbstractPortfolio}

Purpose
Obtain scenarios from PortfolioMAD object
Syntax \(\quad Y=\) getScenarios (obj)
Description \(\quad Y=\) getScenarios (obj) obtains scenarios from a PortfolioMAD object.
Tips Use dot notation to obtain scenarios from a PortfolioMAD object.
Y = obj.getScenarios;
Input obi
Arguments

Output \(\quad\) Y
Arguments

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Obtain Scenarios for a MAD Portfolio Object}

For a given PortfolioMAD object p, display the defined scenarios.
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

```

\section*{PortfolioMAD.getScenarios}
```

m = m/12;
C = C/12;
rng(11);
AssetScenarios = mvnrnd(m, C, 10);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
Y = getScenarios(p)
Y =

-0.0056	0.0440	0.1186	0.0488
-0.0368	-0.0753	0.0087	0.1124
0.0025	0.0856	0.0484	0.1404
0.0318	0.0826	0.0377	0.0404
0.0013	-0.0561	-0.1466	-0.0621
0.0035	0.0310	-0.0183	0.1225
-0.0519	-0.1634	-0.0526	0.1528
0.0029	-0.1163	-0.0627	-0.0760
0.0192	-0.0182	-0.1243	-0.1346
0.0440	0.0189	0.0098	0.0821

```

The function rng(seed) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

\section*{See Also}

\section*{setScenarios | rng}

\section*{Related Examples}
- "Setting Scenarios Using the PortfolioMAD Constructor" on page 6-46
- "Setting Scenarios Using the setScenarios Method" on page 6-47

\author{
Concepts \\ - "How Stochastic Optimization Works" on page 6-44
}

\section*{Purpose Content of specific field}
```

Syntax fieldval = getfield(tsobj, field)
fieldval = getfield(tsobj, field, {dates})

```

\section*{Arguments}
\[
\begin{array}{ll}
\text { tsobj } & \text { Financial time series object. } \\
\text { field } & \text { Field name within tsobj. } \\
\text { dates } & \begin{array}{l}
\text { Date range. Dates can be expanded to include } \\
\text { time-of-day information. }
\end{array}
\end{array}
\]

\section*{Description}

\section*{Examples}
getfield treats the contents of a financial times series object tsobj as fields in a structure.
fieldval = getfield(tsobj, field) returns the contents of the specified field. This is equivalent to the syntax fieldval = tsobj field.
fieldval = getfield(tsobj, field, \{dates\}) returns the contents of the specified field for the specified dates. dates can be individual cells of date strings or a cell of a date string range using the :: operator, such as '03/01/99::03/31/99'.

Create a financial time series object containing both date and time-of-day information:
```

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),···.
times]);
AnFts = fints(dates_times,[(1:4)'; nan; 6],{'Data1'},1,...
'Yet Another Financial Time Series')

```

AnFts =
desc: Yet Another Financial
freq: Time Series
Daily (1)

Example 1. Get the contents of the times field in AnFts:
```

F = datestr(getfield(AnFts, 'times'))

```
F =
11:00 AM
12:00 PM
11:00 AM
12:00 PM
11:00 AM
12:00 PM

Example 2. Extract the contents of specific data fields within AnFts:
```

FF = getfield(AnFts,'Data1',...
'01-Jan-2001 12:00::02-Jan-2001 12:00')

```
FF =
    2
    3
    4

See Also chfield | fieldnames | isfield | rmfield | setfield

Superclasses AbstractPortfolio

Purpose
Syntax
[AInequality,bInequality] = getInequality(obj)
Description

Tips

Input
Arguments

\section*{Output}

Arguments
Obtain inequality constraint arrays from Portfolio object
[AInequality,bInequality] = getInequality(obj) obtains the inequality constraint arrays from a Portfolio object.

Use dot notation to obtain the inequality constraint arrays from the Portfolio object.
```

[AInequality, bInequality] = obj.getInequality;

```

\section*{obi}

Portfolio object [Portfolio].

\section*{Alnequality}

Matrix to form linear inequality constraints [matrix].

\section*{bInequality}

Vector to form linear inequality constraints [vector].

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Portfolio.getInequality}
Examples Obtain Inequality ConstraintsSuppose you have a portfolio of five assets and you want to ensure thatthe first three assets are no more than \(50 \%\) of your portfolio. Given aPortfolio object p, set the linear inequality constraints and then obtainvalues for AInequality and bInequality.
```

A = [1 1 1 1 0 0];
b = 0.5;
p = Portfolio;
p = p.setInequality(A, b);
[AInequality, bInequality] = p.getInequality

```
AInequality =
    \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
bInequality =
    0.5000
See Also setInequality
Related - "Working with Linear Inequality Constraints" on page 4-75
Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 4-8

\section*{PortfolioCVaR.getInequality}

\section*{Superclasses AbstractPortfolio}

Purpose
Syntax
[AInequality,bInequality] = getInequality(obj)
Description

Tips

Input
Arguments

\section*{Output}

Arguments
Obtain inequality constraint arrays from PortfolioCVaR object
[AInequality,bInequality] = getInequality(obj) obtains the inequality constraint arrays from a PortfolioCVaR object.

Use dot notation to obtain the inequality constraint arrays from a PortfolioCVaR object.
```

[AInequality, bInequality] = obj.getInequality;

```

\section*{obi}

CVaR portfolio object [PortfolioCVaR].

\section*{Alnequality}

Matrix to form linear inequality constraints [matrix].

\section*{bInequality}

Vector to form linear inequality constraints [vector].

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{PortfolioCVaR.getInequality}

\section*{Examples Obtain Inequality Constraints}
Suppose you have a portfolio of five assets and you want to ensure that the first three assets constitute at most \(50 \%\) of your portfolio. Given a PortfolioCVaR object \(p\), set the linear inequality constraints and then obtain values for AInequality and bInequality.
A = [ 1 1 1 1 0 0 ];
A = [ 1 1 1 1 0 0 ];
b = 0.5;
b = 0.5;
p = PortfolioCVaR;
p = PortfolioCVaR;
p = p.setInequality(A, b);
p = p.setInequality(A, b);
[AInequality, bInequality] = p.getInequality
[AInequality, bInequality] = p.getInequality
AInequality =
bInequality =
    0.5000

See Also setInequality
Related - "Working with Linear Inequality Constraints" on page 5-77
Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 5-8

\section*{PortfolioMAD.getInequality}

\section*{Superclasses AbstractPortfolio}

Purpose
Syntax
[AInequality,bInequality] = getInequality(obj)
Description

Tips

Input
Arguments

\section*{Output}

Arguments
Obtain inequality constraint arrays from PortfolioMAD object
[AInequality,bInequality] = getInequality(obj) obtains the inequality constraint arrays from a PortfolioMAD object.

Use dot notation to obtain the inequality constraint arrays from a PortfolioMAD object.
```

[AInequality, bInequality] = obj.getInequality;

```

\section*{obi}

MAD portfolio object [PortfolioMAD].

\section*{Alnequality}

Matrix to form linear inequality constraints [matrix].

\section*{bInequality}

Vector to form linear inequality constraints [vector].

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{PortfolioMAD.getInequality}
Examples Obtain Inequality ConstraintsSuppose you have a portfolio of five assets and you want to ensure thatthe first three assets constitute at most \(50 \%\) of your portfolio. Given aPortfolioMAD object \(p\), set the linear inequality constraints and thenobtain values for AInequality and bInequality.
```

A = [1 1 1 1 0 0];
b = 0.5;
p = PortfolioMAD;
p = p.setInequality(A, b);
[AInequality, bInequality] = p.getInequality

```
AInequality =
    \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
bInequality =
    0.5000
See Also setInequality
Related - "Working with Linear Inequality Constraints" on page 6-77
Examples

Concepts - "Portfolio Set for Portfolio Optimization" on page 6-8

\section*{Portfolio.getOneWayTurnover}


\section*{Portfolio.getOneWayTurnover}
- \(\mathrm{x}_{0}\) - Initial portfolio (NumAssets vector)
- \(\tau_{B}\) - Upper-bound for turnover constraint on purchases (scalar)
- \(\tau_{S}\) - Upper-bound for turnover constraint on sales (scalar)

Specify one-way turnover constraints using the following properties in the Portfolio object: BuyTurnover for \(\tau_{B}\), SellTurnover for \(\tau_{S}\), and InitPort for \(\mathrm{x}_{0}\).

Note The average turnover constraint (which is set using setTurnover) is not just the combination of the one-way turnover constraints with the same value for the constraint.

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Obtain One-Way Turnover Costs}

Set one-way turnover costs.
```

p = Portfolio('AssetMean',[0.1, 0.2, 0.15], 'AssetCovar',...
[0.005, -0.010, 0.004; -0.010, 0.040, -0.002; 0.004, -0.002, 0.023])
p = p.setBudget(1, 1);
p = p.setOneWayTurnover(1.3, 0.3, 0); %130-30 portfolio
p.plotFrontier;

```

\section*{Portfolio.getOneWayTurnover}


Obtain one-way turnover costs.
[BuyTurnover,SellTurnover] = p.getOneWayTurnover

BuyTurnover =
1.3000

\section*{Portfolio.getOneWayTurnover}

\section*{SellTurnover = \\ 0.3000}
\begin{tabular}{ll} 
See Also & setOneWayTurnover I setTurnover | Portfolio \\
Related & - "Working with One-Way Turnover Constraints" on page 4-79 \\
Examples & \\
Concepts & - "Portfolio Set for Portfolio Optimization" on page 4-8
\end{tabular}

\section*{PortfolioCVaR.getOneWayTurnover}
\begin{tabular}{|c|c|}
\hline Purpose & Obtain one-way turnover constraints from PortfolioCVaR object \\
\hline Syntax & [BuyTurnover, SellTurnover] = getOneWayTurnover(obj) \\
\hline Description & [BuyTurnover,SellTurnover] = getOneWayTurnover(obj) obtains one-way turnover constraints from a PortfolioCVaR object. \\
\hline Tips & \begin{tabular}{l}
Use dot notation to get the one-way turnover constraints from a PortfolioCVaR object. \\
[BuyTurnover,SellTurnover] = obj.getOneWayTurnover
\end{tabular} \\
\hline Input Arguments & obi CVaR portfolio object [PortfolioCVaR]. \\
\hline Output Arguments & \begin{tabular}{l}
BuyTurnover \\
Turnover constraint on purchases [scalar].
\end{tabular} \\
\hline & SellTurnover Turnover constraint on sales [scalar]. \\
\hline Definitions & One-Way Turnover Constraint \\
\hline & One-way turnover constraints ensure that estimated optimal CVaR portfolios differ from an initial portfolio by no more than specified amounts according to whether the differences are purchases or sales. The constraints take the form
\[
1^{T} \times \max \left\{0, x-x_{0}\right\} \leq \tau_{B}
\] \\
\hline & \begin{tabular}{l}
\[
1^{T} \times \max \left\{0, x_{0}-x\right\} \leq \tau_{S}
\] \\
with
\end{tabular} \\
\hline & \\
\hline
\end{tabular}

\section*{PortfolioCVaR.getOneWayTurnover}
- \(\mathrm{x}_{0}\) - Initial portfolio (NumAssets vector)
- \(\tau_{B}\) - Upper bound for turnover constraint on purchases (scalar)
- \(\tau_{S}\) - Upper bound for turnover constraint on sales (scalar)

Specify one-way turnover constraints using these properties in the CVaR portfolio object: BuyTurnover for \(\tau_{B}\), SellTurnover for \(\tau_{S}\), and InitPort for \(\mathrm{x}_{0}\).

> Note The average turnover constraint (which is set using setTurnover) is not just the combination of the one-way turnover constraints with the same value for the constraint.

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Obtain One-Way Turnover Costs}

Set one-way turnover costs and obtain the buy and sell turnover values.
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);

```

\section*{PortfolioCVaR.getOneWayTurnover}
```

p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
p = p.setBudget(1, 1);
p = p.setOneWayTurnover(1.3, 0.3, 0); %130-30 portfolio
[BuyTurnover,SellTurnover] = p.getOneWayTurnover

```

\section*{BuyTurnover =}
1.3000

\section*{SellTurnover =}
0.3000
\begin{tabular}{ll} 
See Also & setOneWayTurnover I PortfolioCVaR \\
Related & - "Working with One-Way Turnover Constraints" on page 5-82 \\
Examples & \\
Concepts & - "Portfolio Set for Portfolio Optimization" on page 5-8
\end{tabular}

\section*{PortfolioMAD.getOneWayTurnover}

\section*{Purpose Obtain one-way turnover constraints from PortfolioMAD object}

Syntax [BuyTurnover,SellTurnover] = getOneWayTurnover (obj)

Description

Tips

Input
Arguments

\section*{Output}

Arguments

\section*{Definitions}
[BuyTurnover,SellTurnover] = getOneWayTurnover(obj) obtains one-way turnover constraints from a PortfolioMAD object.

Use dot notation to get the one-way turnover constraints from a PortfolioMAD object.
[BuyTurnover,SellTurnover] = obj.getOneWayTurnover
obi
MAD portfolio object [PortfolioMAD].

\section*{BuyTurnover}

Turnover constraint on purchases [scalar].

\section*{SellTurnover}

Turnover constraint on sales [scalar].

\section*{One-Way Turnover Constraint}

One-way turnover constraints ensure that estimated optimal MAD portfolios differ from an initial portfolio by no more than specified amounts according to whether the differences are purchases or sales. The constraints take the form
\[
\begin{aligned}
& 1^{T} \times \max \left\{0, x-x_{0}\right\} \leq \tau_{B} \\
& 1^{T} \times \max \left\{0, x_{0}-x\right\} \leq \tau_{S}
\end{aligned}
\]
with
- x - The portfolio (NumAssets vector)

\section*{PortfolioMAD.getOneWayTurnover}
- \(\mathrm{x}_{0}\) - Initial portfolio (NumAssets vector)
- \(\tau_{B}\) - Upper bound for turnover constraint on purchases (scalar)
- \(\tau_{S}\) - Upper bound for turnover constraint on sales (scalar)

Specify one-way turnover constraints using these properties in the MAD portfolio object: BuyTurnover for \(\tau_{B}\), SellTurnover for \(\tau_{S}\), and InitPort for \(\mathrm{x}_{0}\).

Note The average turnover constraint (which is set using setTurnover) is not just the combination of the one-way turnover constraints with the same value for the constraint.

\section*{Attributes}

\section*{Examples Obtain One-Way Turnover Costs}

Set one-way turnover costs and obtain the buy and sell turnover values.
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);

```

\section*{PortfolioMAD.getOneWayTurnover}
```

p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setBudget(1, 1);
p = p.setOneWayTurnover(1.3, 0.3, 0); %130-30 portfolio
[BuyTurnover,SellTurnover] = p.getOneWayTurnover
BuyTurnover =
1.3000

```
SellTurnover =
    0.3000
See Also setOneWayTurnover | PortfolioCVaR
Related - "Working with One-Way Turnover Constraints" on page 6-82
Concepts- "Portfolio Set for Portfolio Optimization" on page 6-8

\section*{Purpose Find name in list}

Syntax nameidx = getnameidx(list, name)
Arguments

\section*{Description}

\section*{Examples Given}
```

poultry = {'duck', 'chicken'}
animals = {'duck', 'cow', 'sheep', 'horse', 'chicken'}
nameidx = getnameidx(animals, poultry)
ans =
1 5

```

Given
```

poultry = {'duck', 'goose', 'chicken'}

```

\section*{getnameidx}
```

animals = {'duck', 'cow', 'sheep', 'horse', 'chicken'}
nameidx = getnameidx(animals, poultry)
ans =
10 5

```

\section*{See Also \\ strcmp | strfind}

\section*{Purpose}

Create Heston model

Syntax

\section*{Class}

Description

\section*{Input Arguments}
```

heston = heston(Return, Speed, Level, Volatility)
heston = heston(Return, Speed, Level, Volatility, 'Name1',
Value1, 'Name2', Value2, ...)

```

Heston

This constructor creates and displays heston objects, which derive from the SDEDDO (SDE from drift and diffusion objects) class. Use heston objects to simulate sample paths of two state variables. Each state variable is driven by a single Brownian motion source of risk over NPERIODS consecutive observation periods, approximating continuous-time stochastic volatility processes.
Heston models are bivariate composite models. Each Heston model consists of two coupled univariate models:
- A geometric Brownian motion (GBM) model with a stochastic volatility function.
\[
d X_{1 t}=B(t) X_{1 t} d t+\sqrt{X_{2 t}} X_{1 t} d W_{1 t}
\]

This model usually corresponds to a price process whose volatility (variance rate) is governed by the second univariate model.
- A Cox-Ingersoll-Ross (CIR) square root diffusion model.
\[
d X_{2 t}=S(t)\left[L(t)-X_{2 t}\right] d t+V(t) \sqrt{X_{2 t}} d W_{2 t}
\]

This model describes the evolution of the variance rate of the coupled GBM price process.

Specify required input parameters as one of the following types:
- A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric specification. This array fully

\section*{heston}
captures all implementation details, which are clearly associated with a parametric form.
- A MATLAB function. Specifying a function provides indirect support for virtually any static, dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.

The required input parameters are:
Return If you specify Return as a scalar, it represents the expected (mean) instantaneous rate of return of the univariate GBM price model. If you specify it as a function, Return calculates the instantaneous rate of return of the GBM price model. This function generates a scalar when invoked with two inputs:
- A real-valued scalar observation time \(t\).
- A 2-by-1 bivariate state vector \(X_{t}\).

Speed If you specify Speed as a scalar, it represents the mean-reversion speed of the univariate CIR stochastic variance model (the speed at which the CIR variance reverts to its long-run average level). If you specify it as a function, Speed calculates the speed of mean reversion of the CIR variance model. This function generates a scalar when invoked with two inputs:
- A real-valued scalar observation time \(t\).
- A 2-by-1 state vector \(X_{t}\).

> Level If you specify Level as a scalar, it represents the reversion level of the univariate CIR stochastic variance model. If you specify it as a function, Level calculates the reversion level of the CIR variance model. This function generates a scalar when invoked with two inputs:
> - A real-valued scalar observation time \(t\).
> - A 2-by-1 state vector \(X_{t}\).

> Volatility If you specify Volatility as a scalar, it represents the instantaneous volatility of the CIR stochastic variance model, often called the volatility of volatility or volatility of variance. If you specify it as a function, Volatility generates a scalar when invoked with two inputs:
> - A real-valued scalar observation time \(t\).
> - A 2-by-1 state vector \(X_{t}\).

Note Although the constructor does not enforce restrictions on the signs of any of these input arguments, each argument is usually specified as a positive value.

Optional Input Arguments

Specify optional input arguments as variable-length lists of matching parameter name/value pairs: 'Name1', Value1, 'Name2', Value2, ... and so on. The following rules apply when specifying parameter-name pairs:
- Specify the parameter name as a character string, followed by its corresponding parameter value.
- You can specify parameter name/value pairs in any order.
- Parameter names are case insensitive.
- You can specify unambiguous partial string matches.

The following table lists valid parameter names.

\section*{heston}

StartTime Scalar starting time of the first observation, applied to all state variables. If you do not specify a value for StartTime, the default is 0 .

StartState Scalar, 2-by-1 column vector, or 2-by-NTRIALS matrix of initial values of the state variables. If StartState is a scalar, heston applies the same initial value to both state variables on all trials.

If StartState is a bivariate column vector, heston applies a unique initial value to each state variable on all trials.

If StartState is a matrix, heston applies a unique initial value to each state variable on each trial.

If you do not specify a value for StartState, all variables start at 1 .

Correlation Correlation between Gaussian random variates drawn to generate the Brownian motion vector (Wiener processes). Specify Correlation as a scalar, a 2-by-2 positive semidefinite matrix, or as a deterministic function \(C(t)\) that accepts the current time \(t\) and returns an 2 -by- 2 positive semidefinite correlation matrix. A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation structure.

If you do not specify a value for Correlation, the default is a 2 -by- 2 identity matrix representing independent Gaussian processes.

Simulation A user-defined simulation function or SDE simulation method. If you do not specify a value for Simulation, the default method is simulation by Euler approximation (simByEuler).

\section*{Output Arguments}

\section*{Examples}

References
heston
Object of class heston with the following displayed parameters:
- StartTime: Initial observation time
- StartState: Initial state at StartTime
- Correlation: Access function for the Correlation input, callable as a function of time
- Drift: Composite drift-rate function, callable as a function of time and state
- Diffusion: Composite diffusion-rate function, callable as a function of time and state
- Simulation: A simulation function or method
- Return: Access function for the input argument Return, callable as a function of time and state
- Speed: Access function for the input argument Speed, callable as a function of time and state
- Level: Access function for the input argument Level, callable as a function of time and state
- Volatility: Access function for the input argument Volatility, callable as a function of time and state

See "Creating Heston Stochastic Volatility Models" on page 17-33.
Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426.
Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999.

\section*{heston}

Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.
Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.

Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.

\section*{See Also}
cir | gbm | sdeddo

\section*{Purpose Highest high}

Syntax \(\quad\) hhv \(=\) hhigh (data)
hhv = hhigh(data, nperiods, dim)
hhvts = hhigh(tsobj, nperiods)
hhvts = hhigh(tsobj, nperiods, ParameterName, ParameterValue)

\section*{Arguments}
\begin{tabular}{ll} 
data & Data series matrix. \\
nperiods & (Optional) Number of periods. Default \(=14\). \\
dim & (Optional) Dimension. \\
tsobj & Financial time series object. \\
ParameterName & The valid parameter name is: \\
& - HighName: high prices series name \\
Parametervalue & \begin{tabular}{l} 
The parameter value is a string that represents \\
the valid parameter name.
\end{tabular}
\end{tabular}

\section*{Description}
hhv = hhigh(data) generates a vector of highest high values for the past 14 periods from the matrix data.
hhv = hhigh(data, nperiods, dim) generates a vector of highest high values for the past nperiods periods. dim indicates the direction in which the highest high is to be searched. If you input [ ] for nperiods, the default is 14 .
hhvts = hhigh(tsobj, nperiods) generates a vector of highest high values from tsobj, a financial time series object. tsobj must include at least the series High. The output hhvts is a financial time series object with the same dates as tsobj and data series named HighestHigh. If nperiods is specified, hhigh generates a financial time series object of highest high values for the past nperiods periods.
hhvts \(=\) hhigh(tsobj, nperiods, ParameterName, ParameterValue) specifies the name for the required data series when it is different from the default name. The valid parameter name isHighName. The parameter value is a string that represents the valid parameter name.

\section*{Examples Compute the Highest High Price}

This example shows how to compute the highest high price for Disney stock and plot the results.
```

load disney.mat
dis_HHigh = hhigh(dis)
plot(dis_HHigh)
title('Highest High for Disney')
dis_HHigh =
desc: HHigh: Walt Disney Company (DIS)
freq: Unknown (0)
'dates: (782)' 'HighestHigh: (782)'
'29-Mar-1996' [21.8750]
'01-Apr-1996' [21.8750]
'02-Apr-1996' [21.8750]
'03-Apr-1996' [21.8750]
'04-Apr-1996' [21.8750]
'05-Apr-1996' [21.8750]
'08-Apr-1996' [21.8750]
'09-Apr-1996' [21.8750]
'10-Apr-1996' [21.8750]
'11-Apr-1996' [21.8750]
'12-Apr-1996' [21.8750]
'15-Apr-1996' [21.8750]
'16-Apr-1996' [21.8750]
'17-Apr-1996' [21.8750]

```
\begin{tabular}{|c|c|c|}
\hline '18-Apr-1996' & [ & 21.8750 ] \\
\hline '19-Apr-1996' & [ & \(21.8750]\) \\
\hline '22-Apr-1996' & [ & \(21.8750]\) \\
\hline '23-Apr-1996' & [ & 21.8750 ] \\
\hline '24-Apr-1996' & [ & 21.6670 ] \\
\hline '25-Apr-1996' & [ & 21.6670 ] \\
\hline '26-Apr-1996' & [ & \(21.5420]\) \\
\hline '29-Apr-1996' & [ & \(21.2080]\) \\
\hline '30-Apr-1996' & [ & \(21.2080]\) \\
\hline '01-May-1996' & [ & \(21.2080]\) \\
\hline '02-May-1996' & [ & \(21.2080]\) \\
\hline '03-May-1996' & [ & \(21.2080]\) \\
\hline '06-May-1996' & [ & \(21.2080]\) \\
\hline '07-May-1996' & [ & \(21.2080]\) \\
\hline '08-May-1996' & [ & \(21.2080]\) \\
\hline '09-May-1996' & [ & \(21.2080]\) \\
\hline '10-May-1996' & [ & 20.9170 ] \\
\hline '13-May-1996' & [ & \(20.9170]\) \\
\hline '14-May-1996' & [ & \(20.9170]\) \\
\hline '15-May-1996' & [ & \(20.9170]\) \\
\hline '16-May-1996' & [ & \(20.7080]\) \\
\hline '17-May-1996' & [ & \(20.7080]\) \\
\hline '20-May-1996' & [ & 20.6670 ] \\
\hline '21-May-1996' & [ & \(20.8330]\) \\
\hline '22-May-1996' & [ & \(20.9580]\) \\
\hline '23-May-1996' & [ & \(21.0830]\) \\
\hline '24-May-1996' & [ & \(21.0830]\) \\
\hline '27-May-1996' & [ & \(21.0830]\) \\
\hline '28-May-1996' & [ & \(21.0830]\) \\
\hline '29-May-1996' & [ & \(21.0830]\) \\
\hline '30-May-1996' & [ & \(21.0830]\) \\
\hline '31-May-1996' & [ & \(21.0830]\) \\
\hline '03-Jun-1996' & [ & \(21.0830]\) \\
\hline '04-Jun-1996' & [ & \(21.0830]\) \\
\hline '05-Jun-1996' & [ & \(21.0830]\) \\
\hline '06-Jun-1996' & [ & \(21.2500]\) \\
\hline '07-Jun-1996' & [ & \(21.2500]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '10-Jun-1996' & [ & \(21.2500]\) \\
\hline '11-Jun-1996' & [ & \(21.2500]\) \\
\hline '12-Jun-1996' & [ & \(21.2500]\) \\
\hline '13-Jun-1996' & [ & \(21.2500]\) \\
\hline '14-Jun-1996' & [ & \(21.2500]\) \\
\hline '17-Jun-1996' & [ & \(21.2500]\) \\
\hline '18-Jun-1996' & [ & \(21.2500]\) \\
\hline '19-Jun-1996' & [ & \(21.2500]\) \\
\hline '20-Jun-1996' & [ & \(21.2500]\) \\
\hline '21-Jun-1996' & [ & \(21.2500]\) \\
\hline '24-Jun-1996' & [ & \(21.2500]\) \\
\hline '25-Jun-1996' & [ & \(21.2500]\) \\
\hline '26-Jun-1996' & [ & \(21.1250]\) \\
\hline '27-Jun-1996' & [ & \(21.1250]\) \\
\hline '28-Jun-1996' & [ & \(21.2500]\) \\
\hline '01-Jul-1996' & [ & \(21.2500]\) \\
\hline '02-Jul-1996' & [ & \(21.2500]\) \\
\hline '03-Jul-1996' & [ & \(21.2500]\) \\
\hline '04-Jul-1996' & [ & \(21.2500]\) \\
\hline '05-Jul-1996' & [ & \(21.2500]\) \\
\hline '08-Jul-1996' & [ & \(21.2500]\) \\
\hline '09-Jul-1996' & [ & \(21.2500]\) \\
\hline '10-Jul-1996' & [ & \(21.2500]\) \\
\hline '11-Jul-1996' & [ & \(21.2500]\) \\
\hline '12-Jul-1996' & [ & \(21.2500]\) \\
\hline '15-Jul-1996' & [ & \(21.2500]\) \\
\hline '16-Jul-1996' & [ & \(21.2500]\) \\
\hline '17-Jul-1996' & [ & \(21.2500]\) \\
\hline '18-Jul-1996' & [ & \(20.9170]\) \\
\hline '19-Jul-1996' & [ & \(20.7920]\) \\
\hline '22-Jul-1996' & [ & 20.4580 ] \\
\hline '23-Jul-1996' & [ & \(20.1250]\) \\
\hline '24-Jul-1996' & [ & \(20.1250]\) \\
\hline '25-Jul-1996' & [ & 20.0420] \\
\hline '26-Jul-1996' & [ & \(19.7500]\) \\
\hline '29-Jul-1996' & [ & 19.4170] \\
\hline '30-Jul-1996' & [ & \(19.3750]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '31-Jul-1996' & [ & \(19.3750]\) \\
\hline '01-Aug-1996' & [ & \(19.3750]\) \\
\hline '02-Aug-1996' & [ & 19.5830] \\
\hline '05-Aug-1996' & [ & \(19.5830]\) \\
\hline '06-Aug-1996' & [ & 19.7080] \\
\hline '07-Aug-1996' & [ & 19.7080] \\
\hline '08-Aug-1996' & [ & 19.7080] \\
\hline '09-Aug-1996' & [ & 19.7080] \\
\hline '12-Aug-1996' & [ & 19.7080] \\
\hline '13-Aug-1996' & [ & 19.7080] \\
\hline '14-Aug-1996' & [ & 19.7080] \\
\hline '15-Aug-1996' & [ & 19.7080] \\
\hline '16-Aug-1996' & [ & 19.7080] \\
\hline '19-Aug-1996' & [ & 19.7080] \\
\hline '20-Aug-1996' & [ & 19.7080] \\
\hline '21-Aug-1996' & [ & 19.7080] \\
\hline '22-Aug-1996' & [ & 19.7080] \\
\hline '23-Aug-1996' & [ & 19.7080] \\
\hline '26-Aug-1996' & [ & 19.7920] \\
\hline '27-Aug-1996' & [ & 19.9170] \\
\hline '28-Aug-1996' & [ & 19.9170] \\
\hline '29-Aug-1996' & [ & \(19.9170]\) \\
\hline '30-Aug-1996' & [ & \(19.9170]\) \\
\hline '02-Sep-1996' & [ & 19.9170] \\
\hline '03-Sep-1996' & [ & \(19.9170]\) \\
\hline '04-Sep-1996' & [ & 19.9170] \\
\hline '05-Sep-1996' & [ & \(19.9170]\) \\
\hline '06-Sep-1996' & [ & 19.9170] \\
\hline '09-Sep-1996' & [ & \(19.9170]\) \\
\hline '10-Sep-1996' & [ & 19.9170] \\
\hline '11-Sep-1996' & [ & \(19.9170]\) \\
\hline '12-Sep-1996' & [ & \(20.2080]\) \\
\hline '13-Sep-1996' & [ & \(20.3750]\) \\
\hline '16-Sep-1996' & [ & \(20.5830]\) \\
\hline '17-Sep-1996' & [ & \(20.5830]\) \\
\hline '18-Sep-1996' & [ & \(20.5830]\) \\
\hline '19-Sep-1996' & [ & \(21.1670]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline '20-Sep-1996' \\
\hline '23-Sep-1996' \\
\hline '24-Sep-1996' \\
\hline '25-Sep-1996' \\
\hline '26-Sep-1996' \\
\hline '27-Sep-1996' \\
\hline '30-Sep-1996' \\
\hline '01-0ct-1996' \\
\hline '02-0ct-1996' \\
\hline '03-0ct-1996' \\
\hline '04-0ct-1996' \\
\hline '07-0ct-1996' \\
\hline '08-0ct-1996' \\
\hline '09-0ct-1996' \\
\hline '10-Oct-1996' \\
\hline '11-0ct-1996' \\
\hline '14-0ct-1996' \\
\hline '15-0ct-1996' \\
\hline '16-0ct-1996' \\
\hline '17-0ct-1996' \\
\hline '18-Oct-1996' \\
\hline '21-0ct-1996' \\
\hline '22-0ct-1996' \\
\hline '23-0ct-1996' \\
\hline '24-0ct-1996' \\
\hline '25-0ct-1996' \\
\hline '28-0ct-1996' \\
\hline '29-0ct-1996' \\
\hline '30-0ct-1996' \\
\hline '31-Oct-1996' \\
\hline '01-Nov-1996' \\
\hline ' 04 -Nov-1996' \\
\hline ' 05 -Nov-1996' \\
\hline '06-Nov-1996' \\
\hline ' 07-Nov-1996' \\
\hline '08-Nov-1996' \\
\hline '11-Nov-1996' \\
\hline
\end{tabular}
\(21.1670]\)
21.2080]
\(21.2500]\)
\(21.2500]\)
\(21.2500]\)
\(21.2500]\)
\(21.2920]\)
\(21.2920]\)
21.2920]
21.2920]
\(21.5830]\)
\(21.5830]\)
\(21.5830]\)
\(21.5830]\)
\(21.5830]\)
\(21.5830]\)
\(21.5830]\)
\(21.5830]\)
\(21.8750]\)
\(21.9580]\)
\(21.9580]\)
\(21.9580]\)
\(22.2500]\)
\(22.2500]\)
\(22.2500]\)
\(22.2500]\)
\(22.3130]\)
\(22.3130]\)
22.3130 ]
\(22.3130]\)
\(22.3130]\)
22.3330 ]
22.5420 ]
22.6670]

23]
23]
23.4580 ]
\begin{tabular}{|c|c|c|}
\hline '12-Nov-1996' & [ & \(23.8330]\) \\
\hline '13-Nov-1996' & [ & \(23.8330]\) \\
\hline '14-Nov-1996' & [ & \(23.8330]\) \\
\hline '15-Nov-1996' & [ & \(24.3330]\) \\
\hline '18-Nov-1996' & [ & \(24.3330]\) \\
\hline '19-Nov-1996' & [ & \(24.3330]\) \\
\hline '20-Nov-1996' & [ & \(24.3330]\) \\
\hline '21-Nov-1996' & [ & \(24.3330]\) \\
\hline '22-Nov-1996' & [ & \(24.4580]\) \\
\hline '25-Nov-1996' & [ & \(24.5420]\) \\
\hline '26-Nov-1996' & [ & \(25.7500]\) \\
\hline '27-Nov-1996' & [ & \(25.7500]\) \\
\hline '28-Nov-1996' & [ & \(25.7500]\) \\
\hline '29-Nov-1996' & [ & \(25.7500]\) \\
\hline '02-Dec-1996' & [ & \(25.7500]\) \\
\hline '03-Dec-1996' & [ & \(25.7500]\) \\
\hline '04-Dec-1996' & [ & \(25.7500]\) \\
\hline '05-Dec-1996' & [ & \(25.7500]\) \\
\hline '06-Dec-1996' & [ & \(25.7500]\) \\
\hline '09-Dec-1996' & [ & \(25.7500]\) \\
\hline '10-Dec-1996' & [ & \(25.7500]\) \\
\hline '11-Dec-1996' & [ & \(25.7500]\) \\
\hline '12-Dec-1996' & [ & \(25.7500]\) \\
\hline '13-Dec-1996' & [ & \(25.7500]\) \\
\hline '16-Dec-1996' & [ & \(25.1250]\) \\
\hline '17-Dec-1996' & [ & \(24.8330]\) \\
\hline '18-Dec-1996' & [ & \(24.8330]\) \\
\hline '19-Dec-1996' & [ & \(24.8330]\) \\
\hline '20-Dec-1996' & [ & 24.6670 ] \\
\hline '23-Dec-1996' & [ & \(24.5830]\) \\
\hline '24-Dec-1996' & [ & \(24.5830]\) \\
\hline '25-Dec-1996' & [ & \(24.5830]\) \\
\hline '26-Dec-1996' & [ & \(24.5830]\) \\
\hline '27-Dec-1996' & [ & \(24.5830]\) \\
\hline '30-Dec-1996' & [ & \(24.5830]\) \\
\hline '31-Dec-1996' & [ & \(24.5830]\) \\
\hline '01-Jan-1997' & [ & \(24.5830]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 02-Jan-1997' & [ & \(24.5830]\) \\
\hline '03-Jan-1997' & [ & \(24.5830]\) \\
\hline '06-Jan-1997' & [ & \(24.5830]\) \\
\hline '07-Jan-1997' & [ & \(24.5830]\) \\
\hline '08-Jan-1997' & [ & \(24.5830]\) \\
\hline '09-Jan-1997' & [ & \(24.1250]\) \\
\hline '10-Jan-1997' & [ & \(24.0830]\) \\
\hline '13-Jan-1997' & [ & \(24.0420]\) \\
\hline '14-Jan-1997' & [ & \(24.0420]\) \\
\hline '15-Jan-1997' & [ & \(24.0420]\) \\
\hline '16-Jan-1997' & [ & \(23.8750]\) \\
\hline '17-Jan-1997' & [ & \(23.5000]\) \\
\hline '20-Jan-1997' & [ & \(23.6250]\) \\
\hline '21-Jan-1997' & [ & \(23.6250]\) \\
\hline '22-Jan-1997' & [ & \(23.6250]\) \\
\hline ' 23-Jan-1997' & [ & \(23.8750]\) \\
\hline '24-Jan-1997' & [ & \(23.8750]\) \\
\hline '27-Jan-1997' & [ & \(23.9580]\) \\
\hline '28-Jan-1997' & [ & \(24.9170]\) \\
\hline '29-Jan-1997' & [ & \(24.9170]\) \\
\hline '30-Jan-1997' & [ & 24.9170 ] \\
\hline '31-Jan-1997' & [ & \(24.9170]\) \\
\hline '03-Feb-1997' & [ & \(24.9170]\) \\
\hline '04-Feb-1997' & [ & \(24.9170]\) \\
\hline '05-Feb-1997' & [ & \(24.9170]\) \\
\hline '06-Feb-1997' & [ & \(24.9170]\) \\
\hline '07-Feb-1997' & [ & \(25.1250]\) \\
\hline '10-Feb-1997' & [ & 25.6670 ] \\
\hline '11-Feb-1997' & [ & 25.6670 ] \\
\hline '12-Feb-1997' & [ & 25.6670 ] \\
\hline '13-Feb-1997' & [ & \(26.2920]\) \\
\hline '14-Feb-1997' & [ & \(26.4170]\) \\
\hline '17-Feb-1997' & [ & 26.4170 ] \\
\hline '18-Feb-1997' & [ & \(26.4170]\) \\
\hline '19-Feb-1997' & [ & \(26.4170]\) \\
\hline '20-Feb-1997' & [ & 26.4170] \\
\hline '21-Feb-1997' & [ & 26.4170 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '24-Feb-1997' & [ & \(26.4170]\) \\
\hline '25-Feb-1997' & [ & \(26.4170]\) \\
\hline '26-Feb-1997' & [ & \(26.4170]\) \\
\hline '27-Feb-1997' & [ & \(26.4170]\) \\
\hline '28-Feb-1997' & [ & \(26.4170]\) \\
\hline '03-Mar-1997' & [ & 26.4170 ] \\
\hline '04-Mar-1997' & [ & \(26.4170]\) \\
\hline '05-Mar-1997' & [ & \(26.4170]\) \\
\hline '06-Mar-1997' & [ & 26] \\
\hline '07-Mar-1997' & [ & \(26]\) \\
\hline '10-Mar-1997' & [ & \(25.7500]\) \\
\hline '11-Mar-1997' & [ & \(25.8750]\) \\
\hline '12-Mar-1997' & [ & \(25.8750]\) \\
\hline '13-Mar-1997' & [ & \(25.8750]\) \\
\hline '14-Mar-1997' & [ & \(25.8750]\) \\
\hline '17-Mar-1997' & [ & \(25.8750]\) \\
\hline '18-Mar-1997' & [ & \(25.8750]\) \\
\hline '19-Mar-1997' & [ & \(25.8750]\) \\
\hline '20-Mar-1997' & [ & \(25.8750]\) \\
\hline '21-Mar-1997' & [ & \(25.8750]\) \\
\hline '24-Mar-1997' & [ & \(25.8750]\) \\
\hline '25-Mar-1997' & [ & \(25.8750]\) \\
\hline '26-Mar-1997' & [ & \(25.8750]\) \\
\hline '27-Mar-1997' & [ & \(25.8750]\) \\
\hline '28-Mar-1997' & [ & \(25.8750]\) \\
\hline '31-Mar-1997' & [ & \(25.6670]\) \\
\hline '01-Apr-1997' & [ & \(25.5000]\) \\
\hline '02-Apr-1997' & [ & \(25.5000]\) \\
\hline '03-Apr-1997' & [ & \(25.5000]\) \\
\hline '04-Apr-1997' & [ & \(25.5000]\) \\
\hline '07-Apr-1997' & [ & \(25.2080]\) \\
\hline '08-Apr-1997' & [ & \(25.2080]\) \\
\hline '09-Apr-1997' & [ & \(25.2080]\) \\
\hline '10-Apr-1997' & [ & \(25.2080]\) \\
\hline '11-Apr-1997' & [ & \(25.2080]\) \\
\hline '14-Apr-1997' & I & \(25.2080]\) \\
\hline '15-Apr-1997' & [ & \(25.2080]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '16-Apr-1997' & [ & \(25.2080]\) \\
\hline '17-Apr-1997' & [ & \(25.4580]\) \\
\hline '18-Apr-1997' & [ & 25.6670 ] \\
\hline '21-Apr-1997' & [ & \(25.9580]\) \\
\hline '22-Apr-1997' & [ & \(26.2920]\) \\
\hline '23-Apr-1997' & [ & \(26.5420]\) \\
\hline '24-Apr-1997' & [ & \(26.6250]\) \\
\hline ' 25-Apr-1997' & [ & \(26.6250]\) \\
\hline ' 28-Apr-1997' & [ & \(26.6250]\) \\
\hline ' 29-Apr-1997' & [ & \(26.9580]\) \\
\hline '30-Apr-1997' & [ & \(27.5000]\) \\
\hline ' \(01-\mathrm{May}\)-1997' & [ & 27.5000 ] \\
\hline '02-May-1997' & [ & \(27.5000]\) \\
\hline '05-May-1997' & [ & \(27.5000]\) \\
\hline '06-May-1997' & [ & \(27.5000]\) \\
\hline '07-May-1997' & [ & \(27.5000]\) \\
\hline '08-May-1997' & [ & \(27.5000]\) \\
\hline '09-May-1997' & [ & \(27.5000]\) \\
\hline '12-May-1997' & [ & \(28.3750]\) \\
\hline '13-May-1997' & [ & \(28.3750]\) \\
\hline '14-May-1997' & [ & \(28.3750]\) \\
\hline '15-May-1997' & [ & \(28.3750]\) \\
\hline '16-May-1997' & [ & \(28.3750]\) \\
\hline '19-May-1997' & [ & \(28.3750]\) \\
\hline '20-May-1997' & [ & \(28.3750]\) \\
\hline '21-May-1997' & [ & \(28.3750]\) \\
\hline '22-May-1997' & [ & \(28.3750]\) \\
\hline ' 23-May-1997' & [ & 28.3750 ] \\
\hline ' 26-May-1997' & [ & 28.3750 ] \\
\hline ' 27-May-1997' & [ & 28.3750 ] \\
\hline ' 28-May-1997' & [ & 28.3750 ] \\
\hline '29-May-1997' & [ & \(28.3750]\) \\
\hline '30-May-1997' & [ & \(28.2080]\) \\
\hline '02-Jun-1997' & [ & \(28.2080]\) \\
\hline '03-Jun-1997' & [ & \(28.0420]\) \\
\hline '04-Jun-1997' & [ & \(28.0420]\) \\
\hline '05-Jun-1997' & [ & \(28.0420]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 06-Jun-1997 \({ }^{\text {' }}\) & [ & \(28.0420]\) \\
\hline '09-Jun-1997' & [ & \(28.0420]\) \\
\hline '10-Jun-1997' & [ & \(28.0420]\) \\
\hline '11-Jun-1997' & [ & \(28.0420]\) \\
\hline '12-Jun-1997' & [ & \(28.0420]\) \\
\hline '13-Jun-1997' & [ & \(28.0420]\) \\
\hline '16-Jun-1997' & [ & \(28.0420]\) \\
\hline '17-Jun-1997' & [ & \(28.1250]\) \\
\hline '18-Jun-1997' & [ & \(28.1250]\) \\
\hline '19-Jun-1997' & [ & \(28.1250]\) \\
\hline '20-Jun-1997' & [ & \(28.1250]\) \\
\hline '23-Jun-1997' & [ & \(28.1250]\) \\
\hline '24-Jun-1997' & [ & \(28.1250]\) \\
\hline '25-Jun-1997' & [ & \(28.1250]\) \\
\hline '26-Jun-1997' & [ & \(28.1250]\) \\
\hline '27-Jun-1997' & [ & \(28.1250]\) \\
\hline '30-Jun-1997' & [ & \(28.1250]\) \\
\hline '01-Jul-1997' & [ & \(28.1250]\) \\
\hline '02-Jul-1997' & [ & \(28.1250]\) \\
\hline '03-Jul-1997' & [ & \(28.1250]\) \\
\hline '04-Jul-1997' & [ & \(28.1250]\) \\
\hline '07-Jul-1997' & [ & \(27.8750]\) \\
\hline '08-Jul-1997' & [ & \(27.8750]\) \\
\hline '09-Jul-1997' & [ & 27.7920] \\
\hline '10-Jul-1997' & [ & \(27.7190]\) \\
\hline '11-Jul-1997' & [ & \(27.7190]\) \\
\hline '14-Jul-1997' & [ & \(27.7190]\) \\
\hline '15-Jul-1997' & [ & \(27.4170]\) \\
\hline '16-Jul-1997' & [ & \(27.3130]\) \\
\hline '17-Jul-1997' & [ & \(26.8130]\) \\
\hline '18-Jul-1997' & [ & \(26.5830]\) \\
\hline '21-Jul-1997' & [ & \(26.5000]\) \\
\hline '22-Jul-1997' & [ & \(26.5000]\) \\
\hline '23-Jul-1997' & [ & \(26.5420]\) \\
\hline '24-Jul-1997' & [ & \(26.5420]\) \\
\hline '25-Jul-1997' & [ & \(26.5420]\) \\
\hline '28-Jul-1997' & [ & \(26.6040]\) \\
\hline
\end{tabular}
\begin{tabular}{ccc} 
'29-Jul-1997' & {\([\)} & \(26.8130]\) \\
'30-Jul-1997' & {\([\)} & \(27.0830]\) \\
'31-Jul-1997' & {\([\)} & \(27.2290]\) \\
'01-Aug-1997' & {\([\)} & \(27.2290]\) \\
'04-Aug-1997' & {\([\)} & \(27.2290]\) \\
'05-Aug-1997' & {\([\)} & \(27.2290]\) \\
'06-Aug-1997' & {\([\)} & \(27.2290]\) \\
'07-Aug-1997' & {\([\)} & \(27.2290]\) \\
'08-Aug-1997' & {\([\)} & \(27.2290]\) \\
'11-Aug-1997' & {\([\)} & \(27.2290]\) \\
'12-Aug-1997' & {\([\)} & \(27.2290]\) \\
'13-Aug-1997' & {\([\)} & \(27.2290]\) \\
'14-Aug-1997' & {\([\)} & \(27.2290]\) \\
'15-Aug-1997' & {\([\)} & \(27.2290]\) \\
'18-Aug-1997' & {\([\)} & \(27.2290]\) \\
'19-Aug-1997' & {\([\)} & \(27.2290]\) \\
'20-Aug-1997' & {\([\)} & \(27.1250]\) \\
'21-Aug-1997' & {\([\)} & \(27.1250]\) \\
'22-Aug-1997' & {\([\)} & \(27.0830]\) \\
'25-Aug-1997' & {\([\)} & \(27.0830]\) \\
'26-Aug-1997' & {\([\)} & \(27.0830]\) \\
'27-Aug-1997' & {\([\)} & \(26.8750]\) \\
'28-Aug-1997' & {\([\)} & {\([\)}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '18-Sep-1997' & [ & \(26.7500]\) \\
\hline '19-Sep-1997' & [ & \(26.7500]\) \\
\hline '22-Sep-1997' & [ & \(26.7500]\) \\
\hline '23-Sep-1997' & [ & \(26.7500]\) \\
\hline '24-Sep-1997' & [ & \(26.7500]\) \\
\hline '25-Sep-1997' & [ & \(26.7500]\) \\
\hline '26-Sep-1997' & [ & \(26.7500]\) \\
\hline '29-Sep-1997' & [ & \(27]\) \\
\hline '30-Sep-1997' & [ & \(27.1460]\) \\
\hline '01-0ct-1997' & [ & \(27.4580]\) \\
\hline '02-0ct-1997' & [ & \(27.9790]\) \\
\hline '03-0ct-1997' & [ & \(28.6040]\) \\
\hline '06-0ct-1997' & [ & \(28.6040]\) \\
\hline '07-0ct-1997' & [ & \(28.6040]\) \\
\hline '08-0ct-1997' & [ & \(28.6040]\) \\
\hline '09-0ct-1997' & [ & \(28.6040]\) \\
\hline '10-0ct-1997' & [ & \(28.6040]\) \\
\hline '13-0ct-1997' & [ & \(28.6040]\) \\
\hline '14-0ct-1997' & [ & \(28.9580]\) \\
\hline '15-0ct-1997' & [ & \(29.2710]\) \\
\hline '16-0ct-1997' & [ & \(29.2710]\) \\
\hline '17-0ct-1997' & [ & \(29.2710]\) \\
\hline '20-0ct-1997' & [ & \(29.2710]\) \\
\hline '21-0ct-1997' & [ & \(29.2710]\) \\
\hline '22-0ct-1997' & [ & \(29.2710]\) \\
\hline '23-0ct-1997' & [ & \(29.2710]\) \\
\hline '24-0ct-1997' & [ & \(29.2710]\) \\
\hline '27-0ct-1997' & [ & 29.2710] \\
\hline '28-0ct-1997' & [ & \(29.2710]\) \\
\hline '29-0ct-1997' & [ & \(29.2710]\) \\
\hline '30-0ct-1997' & [ & \(29.2710]\) \\
\hline '31-0ct-1997' & [ & 29.2710] \\
\hline '03-Nov-1997' & [ & 29.2710] \\
\hline '04-Nov-1997' & [ & \(28.9170]\) \\
\hline '05-Nov-1997' & [ & \(28.7710]\) \\
\hline '06-Nov-1997' & [ & \(28.9170]\) \\
\hline '07-Nov-1997' & [ & \(29.1670]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '10-Nov-1997' & [ & 29.1670 ] \\
\hline '11-Nov-1997' & [ & \(29.1670]\) \\
\hline '12-Nov-1997' & [ & 29.1670 ] \\
\hline '13-Nov-1997' & [ & 29.1670 ] \\
\hline '14-Nov-1997' & [ & 29.1670 ] \\
\hline '17-Nov-1997' & [ & \(29.9170]\) \\
\hline '18-Nov-1997' & [ & 30.1040 ] \\
\hline '19-Nov-1997' & [ & \(30.4580]\) \\
\hline ' 20-Nov-1997' & [ & 30.5420 ] \\
\hline '21-Nov-1997' & [ & \(31.5830]\) \\
\hline '24-Nov-1997' & [ & 31.5830 ] \\
\hline ' 25-Nov-1997' & [ & \(31.5830]\) \\
\hline '26-Nov-1997' & [ & 31.7920 ] \\
\hline '27-Nov-1997' & [ & \(31.7920]\) \\
\hline '28-Nov-1997' & [ & 31.7920 ] \\
\hline '01-Dec-1997' & [ & 32.6460 ] \\
\hline '02-Dec-1997' & [ & \(32.6460]\) \\
\hline '03-Dec-1997' & [ & 32.6460 ] \\
\hline '04-Dec-1997' & [ & \(32.6460]\) \\
\hline '05-Dec-1997' & [ & 32.6460 ] \\
\hline '08-Dec-1997' & [ & 32.6460 ] \\
\hline '09-Dec-1997' & [ & 32.6460 ] \\
\hline '10-Dec-1997' & [ & \(32.6460]\) \\
\hline '11-Dec-1997' & [ & 32.6460 ] \\
\hline '12-Dec-1997' & [ & \(32.6460]\) \\
\hline '15-Dec-1997' & [ & 32.6460 ] \\
\hline '16-Dec-1997' & [ & \(32.6460]\) \\
\hline '17-Dec-1997' & [ & 32.6460 ] \\
\hline '18-Dec-1997' & [ & \(32.6460]\) \\
\hline '19-Dec-1997' & [ & 32.6040 ] \\
\hline '22-Dec-1997' & [ & 32.6460 ] \\
\hline '23-Dec-1997' & [ & \(32.8330]\) \\
\hline '24-Dec-1997' & [ & \(32.8330]\) \\
\hline '25-Dec-1997' & [ & \(32.8330]\) \\
\hline '26-Dec-1997' & [ & \(32.8330]\) \\
\hline '29-Dec-1997' & [ & \(32.8330]\) \\
\hline '30-Dec-1997' & [ & 33.4170 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '31-Dec-1997' & [ & \(33.4170]\) \\
\hline '01-Jan-1998' & [ & \(33.4170]\) \\
\hline '02-Jan-1998' & [ & \(33.4170]\) \\
\hline '05-Jan-1998' & [ & \(33.5830]\) \\
\hline '06-Jan-1998' & [ & \(33.5830]\) \\
\hline '07-Jan-1998' & [ & \(33.5830]\) \\
\hline '08-Jan-1998' & [ & \(33.5830]\) \\
\hline '09-Jan-1998' & [ & \(33.5830]\) \\
\hline '12-Jan-1998' & [ & \(33.5830]\) \\
\hline '13-Jan-1998' & [ & \(33.5830]\) \\
\hline '14-Jan-1998' & [ & \(33.5830]\) \\
\hline '15-Jan-1998' & [ & \(33.5830]\) \\
\hline '16-Jan-1998' & [ & \(33.5830]\) \\
\hline '19-Jan-1998' & [ & \(33.5830]\) \\
\hline '20-Jan-1998' & [ & \(33.5830]\) \\
\hline '21-Jan-1998' & [ & \(33.5830]\) \\
\hline '22-Jan-1998' & [ & \(33.5830]\) \\
\hline '23-Jan-1998' & [ & \(33.2500]\) \\
\hline '26-Jan-1998' & [ & \(33.2500]\) \\
\hline '27-Jan-1998' & [ & \(34.7080]\) \\
\hline '28-Jan-1998' & [ & \(35.5830]\) \\
\hline '29-Jan-1998' & [ & \(36.1250]\) \\
\hline '30-Jan-1998' & [ & \(36.1250]\) \\
\hline '02-Feb-1998' & [ & \(36.4170]\) \\
\hline '03-Feb-1998' & [ & 36.4170 ] \\
\hline '04-Feb-1998' & [ & \(36.4170]\) \\
\hline '05-Feb-1998' & [ & \(36.4580]\) \\
\hline ' 06-Feb-1998' & [ & \(36.4580]\) \\
\hline '09-Feb-1998' & [ & 36.5420 ] \\
\hline '10-Feb-1998' & [ & \(36.5420]\) \\
\hline '11-Feb-1998' & [ & \(36.9380]\) \\
\hline '12-Feb-1998' & [ & \(36.9380]\) \\
\hline '13-Feb-1998' & 「 & \(37.2080]\) \\
\hline '16-Feb-1998' & [ & \(37.2080]\) \\
\hline '17-Feb-1998' & [ & 37.6670 ] \\
\hline '18-Feb-1998' & [ & \(38.4170]\) \\
\hline '19-Feb-1998' & [ & \(38.5000]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '20-Feb-1998' & [ & 38.50001 \\
\hline '23-Feb-1998' & [ & \(38.5830]\) \\
\hline '24-Feb-1998' & [ & 38.5830 ] \\
\hline '25-Feb-1998' & [ & 38.58301 \\
\hline '26-Feb-1998' & [ & \(38.5830]\) \\
\hline '27-Feb-1998' & [ & 38.58301 \\
\hline '02-Mar-1998' & [ & \(38.5830]\) \\
\hline '03-Mar-1998' & [ & 38.5830 ] \\
\hline '04-Mar-1998' & [ & 38.5830 ] \\
\hline '05-Mar-1998' & [ & \(38.5830]\) \\
\hline '06-Mar-1998' & [ & 38.5830 ] \\
\hline '09-Mar-1998' & [ & 38.5830 ] \\
\hline '10-Mar-1998' & [ & \(38.5830]\) \\
\hline '11-Mar-1998' & [ & \(38.5830]\) \\
\hline '12-Mar-1998' & [ & 38.5830 ] \\
\hline '13-Mar-1998' & [ & 37.9790 ] \\
\hline '16-Mar-1998' & [ & \(37.5420]\) \\
\hline '17-Mar-1998' & [ & 37.5420 ] \\
\hline '18-Mar-1998' & [ & \(37.5420]\) \\
\hline '19-Mar-1998' & [ & \(37.3130]\) \\
\hline '20-Mar-1998' & [ & \(36.8960]\) \\
\hline '23-Mar-1998' & [ & 36.6670 ] \\
\hline '24-Mar-1998' & [ & 36.66701 \\
\hline '25-Mar-1998' & [ & 36.6670 ] \\
\hline '26-Mar-1998' & [ & 36.66701 \\
\hline '27-Mar-1998' & [ & 36.6670 ] \\
\hline '30-Mar-1998' & [ & 36.6670 ] \\
\hline '31-Mar-1998' & [ & 36.6670 ] \\
\hline '01-Apr-1998' & [ & 36.6670 ] \\
\hline '02-Apr-1998' & [ & 36.6670 ] \\
\hline '03-Apr-1998' & [ & 36.9790 ] \\
\hline '06-Apr-1998' & [ & 37.0630 ] \\
\hline '07-Apr-1998' & [ & 37.0630 ] \\
\hline '08-Apr-1998' & [ & 37.0630 ] \\
\hline '09-Apr-1998' & [ & \(37.0630]\) \\
\hline '10-Apr-1998' & [ & 37.0630 ] \\
\hline '13-Apr-1998' & [ & 37.0630 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{' 14-Apr-1998} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Ap} \\
\hline \multicolumn{2}{|l|}{20-Apr-1998} \\
\hline & \\
\hline \multicolumn{2}{|l|}{22-Apr-1998'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{27-Apr-1998} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'30-Apr-1998'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{05-May-1998} \\
\hline \multicolumn{2}{|l|}{ay -} \\
\hline & \\
\hline \multicolumn{2}{|l|}{08-May-1998'} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline & \\
\hline \multicolumn{2}{|l|}{13-May-1998} \\
\hline \multicolumn{2}{|l|}{14-May-1998'} \\
\hline \multicolumn{2}{|l|}{15-May-1998} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{19-May-1998} \\
\hline \multicolumn{2}{|l|}{20-May-1998} \\
\hline \multicolumn{2}{|l|}{21-May-1998} \\
\hline \multicolumn{2}{|l|}{22-May-1998} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{'26-May-1998'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{28-May-1998} \\
\hline \multicolumn{2}{|l|}{-May-1998} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{- Jun-1998} \\
\hline \multicolumn{2}{|l|}{03-Jun-1998} \\
\hline
\end{tabular}
\(37.7500]\)
\(38.2710]\)
\(38.2710]\)
\(38.2710]\)
38.6250 ]
38.9790 ]
40.6670 ]
\(42.5420]\)
\(42.5420]\)
\(42.5420]\)
\(42.5420]\)
42.5420 ]
\(42.5420]\)
\(42.5420]\)
42.7920 ]
\(42.7920]\)
42.7920 ]
42.7920 ]
\(42.7920]\)
42.7920 ]
42.7920 ]
42.7920]
42.7920 ]
42.7920 ]
42.7920 ]
\(42.7920]\)
42.7920 ]
\(42.7920]\)
\(42.6040]\)
42.1880 ]
\(40.4170]\)
40.4170 ]
40.4170 ]
\(40.2080]\)
\(39.8750]\)
\(39.1250]\)
38.9170 ]
\begin{tabular}{|c|c|c|}
\hline '04-Jun-1998' & [ & 38.91701 \\
\hline '05-Jun-1998' & [ & \(38.9170]\) \\
\hline '08-Jun-1998' & [ & 38.91701 \\
\hline '09-Jun-1998' & [ & \(38.9170]\) \\
\hline '10-Jun-1998' & [ & \(39.8960]\) \\
\hline '11-Jun-1998' & [ & \(39.8960]\) \\
\hline '12-Jun-1998' & [ & \(39.8960]\) \\
\hline '15-Jun-1998' & [ & \(39.8960]\) \\
\hline '16-Jun-1998' & [ & \(39.8960]\) \\
\hline '17-Jun-1998' & [ & \(39.8960]\) \\
\hline '18-Jun-1998' & [ & \(39.8960]\) \\
\hline '19-Jun-1998' & [ & \(39.8960]\) \\
\hline '22-Jun-1998' & [ & \(39.8960]\) \\
\hline '23-Jun-1998' & [ & \(39.8960]\) \\
\hline '24-Jun-1998' & [ & \(39.8960]\) \\
\hline '25-Jun-1998' & [ & \(39.8960]\) \\
\hline '26-Jun-1998' & [ & \(39.8960]\) \\
\hline '29-Jun-1998' & [ & \(39.8960]\) \\
\hline '30-Jun-1998' & [ & \(39.5830]\) \\
\hline '01-Jul-1998' & [ & \(38.8330]\) \\
\hline '02-Jul-1998' & [ & 38.75001 \\
\hline '03-Jul-1998' & [ & 38.7500 ] \\
\hline '06-Jul-1998' & [ & 38.75001 \\
\hline '07-Jul-1998' & [ & 38.1460 ] \\
\hline '08-Jul-1998' & [ & 37.9790 ] \\
\hline '09-Jul-1998' & [ & 37.9790 ] \\
\hline '10-Jul-1998' & [ & 38.5000 ] \\
\hline '13-Jul-1998' & [ & 39.56301 \\
\hline '14-Jul-1998' & [ & 40.2500 ] \\
\hline '15-Jul-1998' & [ & 40.3130 ] \\
\hline '16-Jul-1998' & [ & \(40.3130]\) \\
\hline '17-Jul-1998' & [ & \(40.3130]\) \\
\hline '20-Jul-1998' & [ & \(40.3130]\) \\
\hline '21-Jul-1998' & [ & \(40.3130]\) \\
\hline '22-Jul-1998' & [ & \(40.3130]\) \\
\hline '23-Jul-1998' & [ & \(40.3130]\) \\
\hline '24-Jul-1998' & [ & 40.3130 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '27-Jul-1998' & [ & 40.3130 ] \\
\hline '28-Jul-1998' & [ & 40.3130 ] \\
\hline '29-Jul-1998' & [ & \(40.3130]\) \\
\hline '30-Jul-1998' & [ & 40.3130 ] \\
\hline '31-Jul-1998' & [ & 40.3130 ] \\
\hline '03-Aug-1998' & [ & 40.3130 ] \\
\hline '04-Aug-1998' & [ & \(39.7500]\) \\
\hline '05-Aug-1998' & [ & 39.7500 ] \\
\hline '06-Aug-1998' & [ & \(39.7500]\) \\
\hline '07-Aug-1998' & [ & 38.5630 ] \\
\hline '10-Aug-1998' & [ & 38] \\
\hline '11-Aug-1998' & [ & 37.8750 ] \\
\hline '12-Aug-1998' & [ & \(37]\) \\
\hline '13-Aug-1998' & [ & 36.6880 ] \\
\hline '14-Aug-1998' & [ & \(36.5630]\) \\
\hline '17-Aug-1998' & [ & 35.7500 ] \\
\hline '18-Aug-1998' & [ & \(35.5000]\) \\
\hline '19-Aug-1998' & [ & \(35.5000]\) \\
\hline '20-Aug-1998' & [ & 35.1880 ] \\
\hline '21-Aug-1998' & [ & 35.1880 ] \\
\hline '24-Aug-1998' & [ & 34.0630 ] \\
\hline '25-Aug-1998' & [ & 34.6880 ] \\
\hline '26-Aug-1998' & [ & 34.6880 ] \\
\hline '27-Aug-1998' & [ & 34.6880 ] \\
\hline '28-Aug-1998' & [ & 34.6880 ] \\
\hline '31-Aug-1998' & [ & 34.6880 ] \\
\hline '01-Sep-1998' & [ & 34.6880 ] \\
\hline '02-Sep-1998' & [ & 34.6880 ] \\
\hline '03-Sep-1998' & [ & 34.6880 ] \\
\hline '04-Sep-1998' & [ & 34.6880 ] \\
\hline '07-Sep-1998' & [ & 34.6880 ] \\
\hline '08-Sep-1998' & [ & 34.6880 ] \\
\hline '09-Sep-1998' & [ & 34.6880 ] \\
\hline '10-Sep-1998' & [ & 34.6880 ] \\
\hline '11-Sep-1998' & [ & 34.6880 ] \\
\hline '14-Sep-1998' & [ & \(33.6250]\) \\
\hline '15-Sep-1998' & [ & 32.5000 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '16-Sep-1998' & [ & \(31.8750]\) \\
\hline '17-Sep-1998' & [ & \(31.8750]\) \\
\hline '18-Sep-1998' & [ & \(31.8750]\) \\
\hline '21-Sep-1998' & [ & \(31.8750]\) \\
\hline '22-Sep-1998' & [ & \(30.1880]\) \\
\hline '23-Sep-1998' & [ & 30.1880 ] \\
\hline '24-Sep-1998' & [ & \(30.1880]\) \\
\hline '25-Sep-1998' & [ & \(30.1880]\) \\
\hline '28-Sep-1998' & [ & \(29.0630]\) \\
\hline '29-Sep-1998' & [ & \(27.9380]\) \\
\hline '30-Sep-1998' & [ & \(27.9380]\) \\
\hline '01-0ct-1998' & [ & \(27.1250]\) \\
\hline '02-Oct-1998' & [ & \(27.1250]\) \\
\hline '05-0ct-1998' & [ & \(27.1250]\) \\
\hline '06-0ct-1998' & [ & \(27.1250]\) \\
\hline '07-0ct-1998' & [ & \(27.1250]\) \\
\hline '08-0ct-1998' & [ & \(27.1250]\) \\
\hline '09-0ct-1998' & [ & \(27.1250]\) \\
\hline '12-0ct-1998' & [ & \(27.1250]\) \\
\hline '13-0ct-1998' & [ & \(27.1250]\) \\
\hline '14-0ct-1998' & [ & \(26.5630]\) \\
\hline '15-0ct-1998' & [ & \(26.5630]\) \\
\hline '16-0ct-1998' & [ & \(26.5630]\) \\
\hline '19-0ct-1998' & [ & \(26.1880]\) \\
\hline '20-0ct-1998' & [ & \(27.5000]\) \\
\hline '21-0ct-1998' & [ & \(27.7500]\) \\
\hline '22-0ct-1998' & [ & 28] \\
\hline '23-0ct-1998' & [ & \(28]\) \\
\hline '26-0ct-1998' & [ & \(28]\) \\
\hline '27-0ct-1998' & [ & \(28]\) \\
\hline '28-0ct-1998' & [ & 28] \\
\hline '29-0ct-1998' & [ & 28] \\
\hline '30-0ct-1998' & [ & 28] \\
\hline '02-Nov-1998' & [ & \(29.1250]\) \\
\hline '03-Nov-1998' & [ & \(29.7500]\) \\
\hline '04-Nov-1998' & [ & \(30.2500]\) \\
\hline '05-Nov-1998' & [ & \(30.2500]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 06-Nov-1998' & [ & \(30.6250]\) \\
\hline 09-Nov-1998' & [ & \(30.6250]\) \\
\hline 10-Nov-1998' & [ & \(30.6250]\) \\
\hline '11-Nov-1998' & [ & \(30.6250]\) \\
\hline '12-Nov-1998' & [ & \(30.6250]\) \\
\hline 13-Nov-1998' & [ & \(30.6250]\) \\
\hline '16-Nov-1998' & [ & \(30.6250]\) \\
\hline 17-Nov-1998' & [ & \(30.6250]\) \\
\hline 18-Nov-1998' & [ & \(30.6250]\) \\
\hline 19-Nov-1998' & [ & \(30.6250]\) \\
\hline 20-Nov-1998' & [ & \(30.6250]\) \\
\hline 23-Nov-1998' & [ & \(30.6250]\) \\
\hline '24-Nov-1998' & [ & \(30.8750]\) \\
\hline 25-Nov-1998' & [ & \(30.9380]\) \\
\hline '26-Nov-1998' & [ & \(30.9380]\) \\
\hline 27-Nov-1998' & [ & \(32.1250]\) \\
\hline 30-Nov-1998' & [ & \(33.1250]\) \\
\hline 01-Dec-1998' & [ & \(33.1250]\) \\
\hline 02-Dec-1998' & [ & \(33.1250]\) \\
\hline 03-Dec-1998' & [ & \(33.1250]\) \\
\hline 04-Dec-1998' & [ & \(33.1250]\) \\
\hline 07-Dec-1998' & [ & \(33.1250]\) \\
\hline 08-Dec-1998' & [ & \(33.1250]\) \\
\hline 09-Dec-1998' & [ & \(33.7500]\) \\
\hline '10-Dec-1998' & [ & \(33.7500]\) \\
\hline '11-Dec-1998' & [ & \(33.7500]\) \\
\hline '14-Dec-1998' & [ & \(33.7500]\) \\
\hline '15-Dec-1998' & [ & \(33.7500]\) \\
\hline 16-Dec-1998' & [ & \(33.7500]\) \\
\hline '17-Dec-1998' & [ & \(33.7500]\) \\
\hline 18-Dec-1998' & [ & \(33.7500]\) \\
\hline '21-Dec-1998' & [ & \(33.7500]\) \\
\hline 22-Dec-1998' & [ & \(33.7500]\) \\
\hline '23-Dec-1998' & [ & \(33.7500]\) \\
\hline '24-Dec-1998' & [ & \(33.7500]\) \\
\hline '25-Dec-1998' & [ & \(33.7500]\) \\
\hline '28-Dec-1998' & [ & \(33.7500]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '29-Dec-1998' & [ & \(33.6880]\) \\
\hline '30-Dec-1998' & [ & \(32.6880]\) \\
\hline '31-Dec-1998' & [ & \(32.6880]\) \\
\hline '01-Jan-1999' & [ & \(32.6880]\) \\
\hline '04-Jan-1999' & [ & \(32.6880]\) \\
\hline '05-Jan-1999' & [ & \(32.6880]\) \\
\hline '06-Jan-1999' & [ & \(32.6880]\) \\
\hline '07-Jan-1999' & [ & \(32.6880]\) \\
\hline '08-Jan-1999' & [ & \(32.8130]\) \\
\hline '11-Jan-1999' & [ & \(35.5000]\) \\
\hline '12-Jan-1999' & [ & \(38.6880]\) \\
\hline '13-Jan-1999' & [ & \(38.6880]\) \\
\hline '14-Jan-1999' & [ & \(38.6880]\) \\
\hline '15-Jan-1999' & [ & \(38.6880]\) \\
\hline '18-Jan-1999' & [ & \(38.6880]\) \\
\hline '19-Jan-1999' & [ & \(38.6880]\) \\
\hline '20-Jan-1999' & [ & \(38.6880]\) \\
\hline '21-Jan-1999' & [ & \(38.6880]\) \\
\hline '22-Jan-1999' & [ & \(38.6880]\) \\
\hline '25-Jan-1999' & [ & \(38.6880]\) \\
\hline '26-Jan-1999' & [ & \(38.6880]\) \\
\hline '27-Jan-1999' & [ & \(38.6880]\) \\
\hline '28-Jan-1999' & [ & \(38.6880]\) \\
\hline '29-Jan-1999' & [ & \(38.6880]\) \\
\hline '01-Feb-1999' & [ & \(37.3750]\) \\
\hline '02-Feb-1999' & [ & \(37.2500]\) \\
\hline '03-Feb-1999' & [ & \(36.9380]\) \\
\hline '04-Feb-1999' & [ & \(36.9380]\) \\
\hline '05-Feb-1999' & [ & \(36.9380]\) \\
\hline '08-Feb-1999' & [ & \(36.9380]\) \\
\hline '09-Feb-1999' & [ & 36] \\
\hline '10-Feb-1999' & [ & \(35.3750]\) \\
\hline '11-Feb-1999' & [ & \(35.5000]\) \\
\hline '12-Feb-1999' & [ & \(35.5630]\) \\
\hline '15-Feb-1999' & [ & \(35.5630]\) \\
\hline '16-Feb-1999' & [ & 36] \\
\hline '17-Feb-1999' & [ & 36] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '18-Feb-1999' & [ & 36] \\
\hline '19-Feb-1999' & [ & \(36]\) \\
\hline '22-Feb-1999' & [ & \(36]\) \\
\hline '23-Feb-1999' & [ & \(36]\) \\
\hline '24-Feb-1999' & [ & 36] \\
\hline '25-Feb-1999' & [ & \(36]\) \\
\hline '26-Feb-1999' & [ & \(36]\) \\
\hline '01-Mar-1999' & [ & \(36]\) \\
\hline '02-Mar-1999' & [ & \(36]\) \\
\hline '03-Mar-1999' & [ & 36] \\
\hline '04-Mar-1999' & [ & \(36]\) \\
\hline '05-Mar-1999' & [ & 36] \\
\hline '08-Mar-1999' & [ & \(36.6880]\) \\
\hline '09-Mar-1999' & [ & 36.6880 ] \\
\hline '10-Mar-1999' & [ & 36.6880 ] \\
\hline '11-Mar-1999' & [ & \(36.6880]\) \\
\hline '12-Mar-1999' & [ & 36.6880 ] \\
\hline '15-Mar-1999' & [ & 36.6880 ] \\
\hline '16-Mar-1999' & [ & 36.6880 ] \\
\hline '17-Mar-1999' & [ & 36.6880 ] \\
\hline '18-Mar-1999' & [ & 36.6880 ] \\
\hline '19-Mar-1999' & [ & 36.6880 ] \\
\hline '22-Mar-1999' & [ & 36.6880 ] \\
\hline '23-Mar-1999' & [ & \(36.6880]\) \\
\hline '24-Mar-1999' & [ & 36.6880 ] \\
\hline '25-Mar-1999' & [ & \(36.6880]\) \\
\hline '26-Mar-1999' & [ & \(36.5630]\) \\
\hline '29-Mar-1999' & [ & \(36.5630]\) \\
\hline
\end{tabular}

Highest High for Disney


See Also
llow

\section*{Purpose}

Time series High-Low plot
Syntax
highlow(tsobj) highlow(tsobj, color) highlow(tsobj, color, dateform) highlow(tsobj, color, dateform, ParameterName, ParameterValue, ...) hll = highlow(tsobj, color, dateform, ParameterName, ParameterValue, ...)

\section*{Arguments}
\begin{tabular}{ll} 
tsobj & Financial time series object. \\
color & \begin{tabular}{l} 
(Optional) A three-element row vector \\
representing RGB or a color identifier. (See \\
plot in the MATLAB documentation.)
\end{tabular} \\
dateform & \begin{tabular}{l} 
(Optional) Date string format used as the \\
\\
(-axis tick labels. (See datetick in the
\end{tabular} \\
& \begin{tabular}{l} 
MATLAB documentation.) You can specify a \\
dateform only when tsobj does not contain \\
time-of-day data. If tsobj contains time-of-day \\
data, dateform is restricted to 'dd-mmm-yyyy
\end{tabular} \\
& \begin{tabular}{l} 
HH:MM'.
\end{tabular} \\
ParameterName & ParameterName can be: \\
& - HighName: high prices series name
\end{tabular}

\section*{highlow (fts)}

Description

\section*{Examples}
highlow(tsobj) generates a High-Low plot of the data in the financial time series object tsobj. tsobj must contain at least four data series representing the high, low, open, and closing prices. These series must have the names High, Low, Open, and Close (case-insensitive).
highlow(tsobj, color) additionally specifies the color of the plot.
highlow(tsobj, color, dateform) additionally specifies the date string format used as the \(x\)-axis tick labels. See datestr for a list of date string formats.
highlow(tsobj, color, dateform, ParameterName, ParameterValue, ...) indicates the actual name(s) of the required data series if the data series do not have the default names.

You can specify open prices as optional by providing the parameter name 'OpenName' and the parameter value ' ' (empty string).
highlow(tsobj, color, dateform, 'OpenName', '')
hhll = highlow(tsobj, color, dateform, ParameterName, ParameterValue, ...) returns the handle to the line object that makes up the High-Low plot.

\section*{Generate a High-Low Plot}

This example shows how to generate a High-Low plot for Disney stock for the dates May 28 to June 18, 1998.
```

load disney.mat
highlow(dis('28-May-1998::18-Jun-1998'))
title('High-Low Plot for Disney')

```

High-Low Plot for Disney


See Also candle

Purpose
High, low, open, close chart

\section*{Syntax}
```

highlow(High, Low, Close, Open, Color)
highlow(High, Low, Close, Open, Color, Dates, Dateform)
Handles = highlow(High, Low, Close, Open, Color, Dates, Dateform)

```

\section*{Arguments}
\(\left.\begin{array}{ll}\text { High } & \text { High prices for a security. A column vector. } \\
\text { Low } & \text { Low prices for a security. A column vector. } \\
\text { Close } & \begin{array}{l}\text { Closing prices for a security. A column vector. } \\
\text { Open }\end{array} \\
\text { (Optional) Opening prices for a security. A column } \\
\text { vector. To specify Color when Open is unknown, } \\
\text { enter Open as an empty matrix [ ]. }\end{array}\right]\)\begin{tabular}{l} 
(Optional) Vertical line color. A string. MATLAB \\
software supplies a default color if none is \\
specified. The default color differs depending on \\
the background color of the figure window. See \\
ColorSpec in the MATLAB documentation for color \\
names.
\end{tabular}

\section*{Description}
highlow(High, Low, Close, Open, Color) plots the high, low, opening, and closing prices of an asset. Plots are vertical lines whose top is the high, bottom is the low, open is a short horizontal tick to the left, and close is a short horizontal tick to the right.
highlow(High, Low, Close, Open, Color, Dates, Dateform) plots the high, low, opening, and closing prices of an asset. Plots are vertical lines whose top is the high, bottom is the low, open is a short horizontal
tick to the left, and close is a short horizontal tick to the right. The plot also contains user-defined dates and date string format for tick labels.

Handles = highlow(High, Low, Close, Open, Color, Dates, Dateform) plots the figure and returns the handles of the lines.

\section*{Examples}

\section*{Create a HighLow Chart}

The high, low, open, and closing prices for the equity DIS are stored in equal-length vectors dis_HIGH, dis_LOW, dis_OPEN, and dis_CLOSE respectively and highlow plots the price data using blue lines.
```

load disney.mat
range = 1:25;
highlow(dis_HIGH(range), dis_LOW(range), dis_CLOSE(range),...
dis_OPEN(range),'blue',dis.dates(range));

```

\section*{highlow}

| | । |
See Also bolling | candle \| dateaxis \| highlow \| movavg | pointfig
Related - "High-Low-Close Chart Example" on page 2-14
Examples

\section*{Purpose Histogram}
```

Syntax hist(tsobj, numbins)
ftshist = hist(tsobj, numbins)
[ftshist, binpos] = hist(tsobj, numbins)

```

\section*{Arguments}
\begin{tabular}{ll} 
tsobj & Financial time series object. \\
numbins & (Optional) Number of histogram bins. Default \(=10\).
\end{tabular}

\section*{Description}
hist(tsobj, numbins) calculates and displays the histogram of the data series contained in the financial time series object tsobj.
ftshist = hist(tsobj, numbins) calculates, but does not display, the histogram of the data series contained in the financial time series object tsobj. The output ftshist is a structure with field names similar to the data series names of tsobj.
[ftshist, binpos] = hist(tsobj, numbins) additionally returns the bin positions binpos. The positions are the centers of each bin. binpos is a column vector.

\section*{Examples Create a Histogram}

This example shows how to generate a histogram of Disney open, high, low, and close prices.
```

load disney.mat
dis = rmfield(dis,'VOLUME') % Remove VOLUME field
hist(dis)
title('Disney Histogram')

```
```

desc: Walt Disney Company (DIS)
freq: Unknown (0)

```

Columns 1 through 4
\begin{tabular}{|c|c|c|c|}
\hline dates: (782) & OPEN: (782) \({ }^{\prime}\) & HIGH: (782)' & 'LOW: (782)' \\
\hline '29-Mar-1996' & 21.1938] & \(21.6250]\) & \(21.2920]\) \\
\hline '01-Apr-1996' & \(21.1120]\) & \(21.6250]\) & \(21.4170]\) \\
\hline '02-Apr-1996' & 21.3165] & \(21.8750]\) & \(21.6670]\) \\
\hline '03-Apr-1996' & \(21.4802]\) & \(21.8750]\) & \(21.7500]\) \\
\hline '04-Apr-1996' & [ 21.4393] & \(21.8750]\) & \(21.5000]\) \\
\hline '05-Apr-1996' & \(\mathrm{NaN}]\) & \(\mathrm{NaN}]\) & \(\mathrm{NaN}]\) \\
\hline '08-Apr-1996' & [ 20.9483] & \(21.6670]\) & \(21.2080]\) \\
\hline '09-Apr-1996' & \(21.1529]\) & \(21.5420]\) & \(21.2080]\) \\
\hline '10-Apr-1996' & [ 20.7387] & \(21.1670]\) & \(20.2500]\) \\
\hline '11-Apr-1996' & \(20.0829]\) & \(20.5000]\) & \(20.0420]\) \\
\hline '12-Apr-1996' & [ 19.9189] & \(20.5830]\) & \(20.0830]\) \\
\hline '15-Apr-1996' & \(20.2878]\) & \(20.7920]\) & \(20.3750]\) \\
\hline '16-Apr-1996' & \(20.3698]\) & \(20.9170]\) & \(20.1670]\) \\
\hline '17-Apr-1996' & \(20.4927]\) & \(20.9170]\) & \(20.7080]\) \\
\hline '18-Apr-1996' & \(20.4927]\) & \(21.0420]\) & \(20.7920]\) \\
\hline '19-Apr-1996' & \(20.6977]\) & \(21.1670]\) & \(20.9170]\) \\
\hline '22-Apr-1996' & \(20.8206]\) & \(21.2080]\) & \(20.7080]\) \\
\hline '23-Apr-1996' & 20.5337] & \(20.8750]\) & \(20.4170]\) \\
\hline '24-Apr-1996' & 20.2058] & \(20.5420]\) & \(19.9170]\) \\
\hline '25-Apr-1996' & \(19.9599]\) & \(20.5830]\) & \(20.2080]\) \\
\hline '26-Apr-1996' & \(20.2468]\) & \(20.9170]\) & \(20.5000]\) \\
\hline '29-Apr-1996' & \(20.2468]\) & \(20.7080]\) & \(20.5420]\) \\
\hline '30-Apr-1996' & 20.3698] & \(20.7080]\) & \(20.5420]\) \\
\hline '01-May-1996' & \(20.2058]\) & \(20.5830]\) & \(20.1670]\) \\
\hline '02-May-1996' & \(19.8780]\) & \(20.2500]\) & \(19.8750]\) \\
\hline '03-May-1996' & [ 19.9189] & \(20.2500]\) & \(19.5000]\) \\
\hline '06-May-1996' & \(19.4681]\) & \(20.0830]\) & \(19.5420]\) \\
\hline '07-May-1996' & [ 19.6730] & \(20]\) & \(19.7500]\) \\
\hline '08-May-1996' & [ 19.2632] & \(19.7080]\) & \(19.2920]\) \\
\hline '09-May-1996' & \(19.4271]\) & \(19.8330]\) & \(19.2920]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '10-May-1996' & [ & \(19.3452]\) & [ & \(19.8750]\) & [ & 19.45 \\
\hline '13-May-1996' & [ & 19.5911] & [ & 20.2920] & [ & 19.83 \\
\hline '14-May-1996' & [ & 20.0829] & [ & 20.4170] & [ & 20.20 \\
\hline '15-May-1996' & [ & 20.0419] & [ & 20.4580] & [ & \\
\hline '16-May-1996' & [ & \(19.6730]\) & [ & \(20.3750]\) & [ & 19.95 \\
\hline '17-May-1996' & [ & 20.0009] & [ & \(20.5420]\) & [ & 20.33 \\
\hline '20-May-1996' & [ & 20.2058] & [ & \(20.6670]\) & [ & 20.37 \\
\hline '21-May-1996' & [ & \(20.4518]\) & [ & \(20.8330]\) & [ & 20.37 \\
\hline '22-May-1996' & [ & \(20.6157]\) & [ & \(20.9580]\) & [ & 20.79 \\
\hline '23-May-1996' & [ & \(20.6157]\) & [ & \(21.0830]\) & [ & 20.62 \\
\hline '24-May-1996' & [ & \(20.5337]\) & [ & \(20.9580]\) & [ & 20.70 \\
\hline '27-May-1996' & [ & NaN ] & [ & \(\mathrm{NaN}]\) & [ & \\
\hline '28-May-1996' & [ & \(20.6157]\) & [ & \(21]\) & [ & 20.54 \\
\hline '29-May-1996' & [ & \(20.3698]\) & [ & \(20.7080]\) & [ & 20.16 \\
\hline '30-May-1996' & [ & 19.9189] & [ & \(20.4580]\) & & 20.08 \\
\hline '31-May-1996' & [ & \(20.1649]\) & [ & \(20.5830]\) & [ & 20.20 \\
\hline '03-Jun-1996' & [ & 19.8370] & [ & \(20.2500]\) & & 20.08 \\
\hline '04-Jun-1996' & [ & 19.8370] & [ & 20.1670 ] & [ & 19.87 \\
\hline '05-Jun-1996' & [ & \(19.6730]\) & [ & 20.2080] & [ & 19.83 \\
\hline '06-Jun-1996' & [ & 20.4518] & [ & \(21.2500]\) & [ & 20.58 \\
\hline '07-Jun-1996' & [ & 20.2878] & [ & \(21.0830]\) & [ & 20.41 \\
\hline '10-Jun-1996' & [ & \(20.7796]\) & [ & \(21.1250]\) & [ & 20.79 \\
\hline '11-Jun-1996' & [ & \(20.4927]\) & [ & \(20.9580]\) & [ & 20.70 \\
\hline '12-Jun-1996' & [ & \(20.4518]\) & [ & \(20.9580]\) & [ & 20.70 \\
\hline '13-Jun-1996' & [ & \(20.4518]\) & [ & \(20.8330]\) & [ & 20.58 \\
\hline '14-Jun-1996' & [ & 20.2058] & [ & \(20.5830]\) & [ & 20.29 \\
\hline '17-Jun-1996' & [ & 20.2468] & [ & \(20.7080]\) & [ & 20.45 \\
\hline '18-Jun-1996' & [ & 20.2468] & [ & \(20.7080]\) & [ & 20.29 \\
\hline '19-Jun-1996' & [ & 20.0419] & [ & \(20.4580]\) & [ & 20.29 \\
\hline '20-Jun-1996' & [ & \(20.1649]\) & [ & \(20.6250]\) & [ & 20.29 \\
\hline '21-Jun-1996' & [ & \(20.3288]\) & [ & \(21.0420]\) & & 20.50 \\
\hline '24-Jun-1996' & [ & \(20.6157]\) & [ & \(20.9580]\) & [ & 20.70 \\
\hline '25-Jun-1996' & [ & \(20.4927]\) & [ & \(21.1250]\) & [ & 20.83 \\
\hline '26-Jun-1996' & [ & 20.5747] & [ & \(20.9580]\) & [ & 20.62 \\
\hline '27-Jun-1996' & [ & \(20.4927]\) & [ & \(21.0830]\) & [ & 20.79 \\
\hline '28-Jun-1996' & [ & \(20.8206]\) & [ & \(21.2500]\) & [ & 20.87 \\
\hline '01-Jul-1996' & [ & \(20.5337]\) & [ & \(20.9170]\) & [ & 20.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '02-Jul-1996' & [ & 20.4518] & [ & 20.7920] & [ & \(20.3750]\) \\
\hline '03-Jul-1996' & [ & \(20.1239]\) & [ & \(20.4580]\) & [ & 20] \\
\hline '04-Jul-1996' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) & [ & NaN ] \\
\hline '05-Jul-1996' & [ & \(19.7550]\) & [ & \(20.1250]\) & [ & \(19.7920]\) \\
\hline '08-Jul-1996' & [ & \(19.4271]\) & [ & \(20.0420]\) & [ & \(19.5830]\) \\
\hline '09-Jul-1996' & [ & \(19.3452]\) & [ & 19.7500] & [ & 19.1670 ] \\
\hline '10-Jul-1996' & [ & \(19.0537]\) & [ & 19.4170] & & \(19.0830]\) \\
\hline '11-Jul-1996' & [ & 19.0127] & [ & \(19.3330]\) & [ & 18.6670 ] \\
\hline '12-Jul-1996' & [ & 18.4378] & [ & 19.1670] & [ & \(18.7080]\) \\
\hline '15-Jul-1996' & [ & \(19.0537]\) & [ & \(19.3750]\) & [ & \(18.2080]\) \\
\hline '16-Jul-1996' & [ & \(18.0682]\) & [ & 18.7920] & & \(17.9580]\) \\
\hline '17-Jul-1996' & [ & 18.8073] & [ & 19.1250] & [ & \(18.6250]\) \\
\hline '18-Jul-1996' & [ & \(18.6020]\) & [ & 19.1250] & [ & \(18.7500]\) \\
\hline '19-Jul-1996' & [ & \(18.8484]\) & [ & 19.2500] & [ & \(18.8750]\) \\
\hline '22-Jul-1996' & [ & \(18.7252]\) & [ & \(19.0420]\) & [ & \(18.6670]\) \\
\hline '23-Jul-1996' & [ & 18.4788] & [ & 18.7920] & [ & \(18.4580]\) \\
\hline '24-Jul-1996' & [ & \(17.9039]\) & [ & 18.4580] & [ & \(18.0420]\) \\
\hline '25-Jul-1996' & [ & \(17.9450]\) & [ & \(18.3750]\) & [ & \(18.0420]\) \\
\hline '26-Jul-1996' & [ & \(17.8629]\) & [ & 18.2500] & [ & \(17.8330]\) \\
\hline '29-Jul-1996' & [ & \(17.6986]\) & [ & 18.2500] & [ & 17.7500 ] \\
\hline '30-Jul-1996' & [ & \(17.5754]\) & [ & 18.4580] & [ & \(17.7920]\) \\
\hline '31-Jul-1996' & [ & \(18.0682]\) & [ & \(18.6250]\) & [ & \(18.2500]\) \\
\hline '01-Aug-1996' & [ & \(18.3967]\) & [ & \(19.2080]\) & [ & 18.6670 ] \\
\hline '02-Aug-1996' & [ & \(19.3001]\) & [ & 19.5830] & [ & \(19.2920]\) \\
\hline '05-Aug-1996' & [ & \(19.1769]\) & [ & 19.5830] & [ & \(19.3750]\) \\
\hline '06-Aug-1996' & [ & \(19.2590]\) & [ & 19.7080] & [ & \(19.4580]\) \\
\hline '07-Aug-1996' & [ & \(19.3822]\) & [ & \(19.6670]\) & [ & \(19.3330]\) \\
\hline '08-Aug-1996' & [ & 19.1358] & [ & 19.4580] & [ & \(19.1250]\) \\
\hline '09-Aug-1996' & [ & 18.8895] & [ & 19.1670] & [ & \(18.9580]\) \\
\hline '12-Aug-1996' & [ & \(18.8484]\) & [ & 19.5000] & I & \(18.8330]\) \\
\hline '13-Aug-1996' & [ & \(19.2180]\) & [ & \(19.5000]\) & [ & \(19.2080]\) \\
\hline '14-Aug-1996' & [ & 19.0537] & [ & \(19.3750]\) & [ & \(19.2500]\) \\
\hline '15-Aug-1996' & [ & 19.0537] & [ & \(19.6250]\) & [ & 19.1670 ] \\
\hline '16-Aug-1996' & [ & 19.0537] & [ & \(19.3750]\) & [ & \(19.2500]\) \\
\hline '19-Aug-1996' & [ & \(19.2590]\) & [ & 19.5420] & [ & \(19.2500]\) \\
\hline '20-Aug-1996' & [ & \(19.0537]\) & [ & \(19.3330]\) & [ & \(19.0830]\) \\
\hline '21-Aug-1996' & [ & 18.8073] & [ & 19.3330] & [ & \(18.9580]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '22-Aug-1996' & [ & \(19.0127]\) & [ & \(19.5830]\) & [ & 19.25 \\
\hline '23-Aug-1996' & [ & \(19.0127]\) & [ & \(19.5000]\) & [ & 19.12 \\
\hline '26-Aug-1996' & [ & 19.2180] & [ & 19.7920] & [ & 19.417 \\
\hline '27-Aug-1996' & [ & \(19.5465]\) & [ & \(19.9170]\) & [ & 19.58 \\
\hline '28-Aug-1996' & [ & \(19.3822]\) & [ & 19.6670] & [ & 19.33 \\
\hline '29-Aug-1996' & [ & 19.0948] & [ & \(19.4580]\) & [ & 18.91 \\
\hline '30-Aug-1996' & [ & \(18.9305]\) & [ & \(19.2080]\) & [ & 18.79 \\
\hline '02-Sep-1996' & [ & \(\mathrm{NaN}]\) & [ & NaN] & [ & N \\
\hline '03-Sep-1996' & [ & 18.6020] & [ & 19] & [ & 18.79 \\
\hline '04-Sep-1996' & [ & 18.6841] & [ & 19] & [ & 18.79 \\
\hline '05-Sep-1996' & [ & \(18.6020]\) & [ & \(18.9580]\) & & 18.54 \\
\hline '06-Sep-1996' & [ & \(18.3967]\) & [ & \(19.0830]\) & [ & 18.54 \\
\hline '09-Sep-1996' & [ & \(18.8484]\) & [ & \(19.4170]\) & & 19.04 \\
\hline '10-Sep-1996' & [ & \(19.1358]\) & [ & 19.4170] & [ & 19.12 \\
\hline '11-Sep-1996' & [ & 18.9716] & [ & 19.5420] & - & 19.208 \\
\hline '12-Sep-1996' & [ & 19.3822] & [ & \(20.2080]\) & [ & 19.62 \\
\hline '13-Sep-1996' & [ & \(19.9982]\) & [ & \(20.3750]\) & [ & 20.12 \\
\hline '16-Sep-1996' & [ & 20.0803] & [ & \(20.5830]\) & [ & 20.08 \\
\hline '17-Sep-1996' & [ & \(19.8339]\) & [ & \(20.5000]\) & [ & 19.95 \\
\hline '18-Sep-1996' & [ & 20.0803] & [ & \(20.5000]\) & [ & 20.25 \\
\hline '19-Sep-1996' & [ & \(20.1214]\) & [ & \(21.1670]\) & [ & 20.29 \\
\hline '20-Sep-1996' & [ & 20.7373] & [ & \(21.1250]\) & [ & 20.79 \\
\hline '23-Sep-1996' & [ & 20.73731 & [ & \(21.2080]\) & [ & 20.958 \\
\hline '24-Sep-1996' & [ & \(20.7784]\) & [ & \(21.2500]\) & [ & 20.87 \\
\hline '25-Sep-1996' & [ & \(20.6552]\) & [ & \(21.0420]\) & [ & 20.87 \\
\hline '26-Sep-1996' & [ & \(20.6142]\) & [ & \(21.2080]\) & [ & 20.62 \\
\hline '27-Sep-1996' & [ & \(20.4088]\) & [ & 21] & [ & 20.54 \\
\hline '30-Sep-1996' & [ & \(20.6142]\) & [ & \(21.2920]\) & [ & 20.917 \\
\hline '01-Oct-1996' & [ & \(20.8605]\) & [ & \(21.2080]\) & [ & 20.83 \\
\hline '02-Oct-1996' & [ & \(20.5320]\) & [ & \(21.1670]\) & [ & 20.83 \\
\hline '03-0ct-1996' & [ & 20.8195] & [ & \(21.1250]\) & [ & 20.91 \\
\hline '04-0ct-1996' & [ & 20.9016] & [ & \(21.5830]\) & [ & 21.12 \\
\hline '07-0ct-1996' & [ & \(21.0248]\) & [ & \(21.4580]\) & [ & 21.29 \\
\hline '08-0ct-1996' & [ & \(20.9427]\) & [ & \(21.4580]\) & [ & 21.16 \\
\hline '09-0ct-1996' & [ & \(20.8144]\) & [ & \(21.2500]\) & [ & 20.917 \\
\hline '10-0ct-1996' & [ & \(20.8967]\) & [ & \(21.2500]\) & [ & \\
\hline '11-0ct-1996' & [ & \(21.0612]\) & [ & \(21.4580]\) & [ & 21.208 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline '14-0ct-1996' \\
\hline '15-0ct-1996' \\
\hline '16-0ct-1996' \\
\hline '17-0ct-1996' \\
\hline '18-0ct-1996' \\
\hline '21-0ct-1996' \\
\hline '22-0ct-1996' \\
\hline '23-0ct-1996' \\
\hline '24-0ct-1996' \\
\hline '25-0ct-1996' \\
\hline '28-0ct-1996' \\
\hline '29-0ct-1996' \\
\hline '30-0ct-1996' \\
\hline '31-0ct-1996' \\
\hline ' 01 -Nov-1996' \\
\hline ' 04 -Nov-1996' \\
\hline ' \(05-\) Nov-1996' \\
\hline ' 06-Nov-1996' \\
\hline ' 07 -Nov-1996' \\
\hline '08-Nov-1996' \\
\hline '11-Nov-1996' \\
\hline '12-Nov-1996' \\
\hline '13-Nov-1996' \\
\hline '14-Nov-1996' \\
\hline '15-Nov-1996' \\
\hline '18-Nov-1996' \\
\hline '19-Nov-1996' \\
\hline '20-Nov-1996' \\
\hline '21-Nov-1996' \\
\hline '22-Nov-1996' \\
\hline ' 25 -Nov-1996' \\
\hline '26-Nov-1996' \\
\hline ' 27-Nov-1996' \\
\hline '28-Nov-1996' \\
\hline '29-Nov-1996' \\
\hline ' 02-Dec-1996' \\
\hline '03-Dec-1996' \\
\hline
\end{tabular}
\begin{tabular}{llrl}
\(21.1023]\) & {\([\)} & \(21.5420]\) & {\([\)} \\
\(21.1435]\) & {\([\)} & \(21.5420]\) & {\([\)} \\
\(21.1023]\) & {\([\)} & \(21.8750]\) & {\([\)} \\
\(21.6371]\) & {\([\)} & \(21.9580]\) & {\([\)} \\
\(21.3080]\) & {\([\)} & \(21.6670]\) & {\([\)} \\
\(21.3903]\) & {\([\)} & \(21.9580]\) & {\([\)} \\
\(21.5960]\) & {\([\)} & \(22.2500]\) & {\([\)} \\
\(21.8839]\) & {\([\)} & \(22.1670]\) & {\([\)} \\
\(21.7194]\) & {\([\)} & \(22.1250]\) & {\([\)} \\
\(21.4314]\) & {\([\)} & \(22.0830]\) & {\([\)} \\
\(21.8016]\) & {\([\)} & \(22.3130]\) & {\([\)} \\
\(21.9250]\) & {\([\)} & \(22.2080]\) & {\([\)} \\
\(21.6782]\) & {\([\)} & \(22.0420]\) & {\([\)} \\
\(21.6371]\) & {\([\)} & \(22]\) & {\([\)} \\
\(21.8016]\) & {\([\)} & \(22.1250]\) & {\([\)} \\
\(21.5137]\) & {\([\)} & \(22.3330]\) & {\([\)} \\
\(22.0073]\) & {\([\)} & \(22.5420]\) & {\([\)} \\
\(22.1307]\) & {\([\)} & \(22.6670]\) & {\([\)} \\
\(22.3364]\) & {\([\)} & \(23]\) & {\([\)} \\
\(22.5832]\) & {\([\)} & \(22.9170]\) & {\([\)} \\
\(22.5421]\) & {\([\)} & \(23.4580]\) & {\([\)} \\
\(23.1180]\) & {\([\)} & \(23.8330]\) & {\([\)} \\
\(23.2414]\) & {\([\)} & \(23.7500]\) & {\([\)} \\
\(22.9534]\) & {\([\)} & \(23.6250]\) & {\([\)} \\
\(23.3236]\) & {\([\)} & \(24.3330]\) & {\([\)} \\
\(23.6939]\) & {\([\)} & \(24]\) & {\([\)} \\
\(23.4882]\) & {\([\)} & \(24]\) & {\([\)} \\
\(23.2414]\) & {\([\)} & \(23.9170]\) & {\([\)} \\
\(23.6939]\) & {\([\)} & \(24.1250]\) & {\([\)} \\
\(23.8584]\) & {\([\)} & \(24.4580]\) & {\([\)} \\
\(23.7350]\) & {\([\)} & \(24.5420]\) & {\([\)} \\
\(24.4754]\) & {\([\)} & \(25.7500]\) & {\([\)} \\
\(24.7634]\) & {\([\)} & \(25.1250]\) & {\([\)} \\
NaN] & {\([\)} & NaN] & {\([\)} \\
\(24.1875]\) & {\([\)} & \(24.6670]\) & {\([\)} \\
\(24.3520]\) & {\([\)} & \(24.8330]\) & {\([\)} \\
\(24.3109]\) & {\([\)} & \(24.6670]\) & {\([\)}
\end{tabular}
\(21.3750]\)
21.1670]
\(21.3330]\)
\(21.5830]\)
\(21.5000]\)
21.6250]
\(21.8750]\)
21.9170 ]
21.6670] \(21.7080]\)
\(22.0420]\)
21.9170]
21.8750]
\(21.7080]\)
21.7080]
\(21.7920]\)
\(22.2500]\)
\(22.2080]\)
\(22.5420]\)
22.6250 ]
\(22.8330]\)
23 . 2920]
\(23.3750]\)
23 . 2080]
\(23.5830]\)
23.6670]
\(23.5420]\)
\(23.5420]\)
23.7920] 24 ] \(23.8330]\) \(24.7920]\) \(24.5420]\) \(\mathrm{NaN}]\) 24.3330] \(24.3330]\) 23.9170 ]
\begin{tabular}{|c|}
\hline '04-Dec-1996' \\
\hline '05-Dec-1996' \\
\hline '06-Dec-1996' \\
\hline '09-Dec-1996' \\
\hline '10-Dec-1996' \\
\hline '11-Dec-1996' \\
\hline '12-Dec-1996' \\
\hline '13-Dec-1996' \\
\hline '16-Dec-1996' \\
\hline '17-Dec-1996' \\
\hline '18-Dec-1996' \\
\hline '19-Dec-1996' \\
\hline '20-Dec-1996' \\
\hline '23-Dec-1996' \\
\hline '24-Dec-1996' \\
\hline '25-Dec-1996' \\
\hline '26-Dec-1996' \\
\hline '27-Dec-1996' \\
\hline '30-Dec-1996' \\
\hline '31-Dec-1996' \\
\hline '01-Jan-1997' \\
\hline '02-Jan-1997' \\
\hline '03-Jan-1997' \\
\hline '06-Jan-1997' \\
\hline '07-Jan-1997' \\
\hline '08-Jan-1997' \\
\hline '09-Jan-1997' \\
\hline '10-Jan-1997' \\
\hline '13-Jan-1997' \\
\hline '14-Jan-1997' \\
\hline '15-Jan-1997' \\
\hline '16-Jan-1997' \\
\hline '17-Jan-1997' \\
\hline '20-Jan-1997' \\
\hline '21-Jan-1997' \\
\hline '22-Jan-1997' \\
\hline '23-Jan-1997' \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 23.6527] & [ & \(24]\) \\
\hline \(23.6527]\) & [ & \(23.9580]\) \\
\hline \(23.1180]\) & [ & \(23.8750]\) \\
\hline \(23.5293]\) & [ & \(24.4580]\) \\
\hline 23.9818 ] & [ & \(24.5830]\) \\
\hline 23.7761] & [ & \(24.3330]\) \\
\hline 23.7761] & [ & \(24.0830]\) \\
\hline \(22.8712]\) & [ & \(23.5830]\) \\
\hline \(23.1591]\) & [ & \(23.6670]\) \\
\hline \(22.8300]\) & [ & \(23.7500]\) \\
\hline \(23.3236]\) & [ & \(24]\) \\
\hline \(23.5705]\) & [ & \(24.1250]\) \\
\hline \(24.2697]\) & [ & \(24.5830]\) \\
\hline \(23.7350]\) & [ & \(24.1250]\) \\
\hline \(23.6939]\) & [ & \(24.0830]\) \\
\hline \(\mathrm{NaN}]\) & [ & NaN] \\
\hline \(23.4882]\) & [ & \(23.9580]\) \\
\hline 23.6116] & [ & \(24.0420]\) \\
\hline \(23.5293]\) & [ & \(23.8750]\) \\
\hline \(23.0357]\) & [ & \(23.5000]\) \\
\hline \(\mathrm{NaN}]\) & [ & NaN] \\
\hline \(22.9534]\) & [ & \(23.2920]\) \\
\hline \(22.6243]\) & [ & 23.1250] \\
\hline \(22.8712]\) & [ & \(23.2500]\) \\
\hline \(22.7066]\) & [ & 23] \\
\hline \(22.7429]\) & [ & \(23.1250]\) \\
\hline \(22.3721]\) & [ & \(22.9170]\) \\
\hline 21.9189] & [ & \(22.6250]\) \\
\hline \(22.5781]\) & [ & \(22.8330]\) \\
\hline \(22.5781]\) & [ & \(23.1670]\) \\
\hline 22.7429] & [ & \(23.2500]\) \\
\hline \(22.8665]\) & [ & \(23.1250]\) \\
\hline \(22.7429]\) & [ & \(23.3750]\) \\
\hline \(23.3609]\) & [ & \(23.6250]\) \\
\hline \(22.8665]\) & [ & \(23.2920]\) \\
\hline \(23.0313]\) & [ & \(23.6250]\) \\
\hline \(23.2991]\) & [ & \(23.8750]\) \\
\hline
\end{tabular}
23.45
23.66
23.16
23.66
24.25
23.79
23.37
23.12
22.95
23.08
23.62
23.75
23.87
23.66
23.62
23.66
23.29
23.12
22.25
22.70
22.87
22.75
22.50
22.41
22.12
22.62
22.66
22.79
22.83
22.95
23.41
23.08
23.08
23.45
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '24-Jan-1997' & [ & 23.23731 & [ & \(23.8330]\) & [ & \(23.1670]\) \\
\hline '27-Jan-1997' & [ & \(23.5258]\) & [ & \(23.9580]\) & [ & \(23.5420]\) \\
\hline '28-Jan-1997' & [ & \(24.3910]\) & [ & \(24.9170]\) & [ & \(24.1250]\) \\
\hline '29-Jan-1997' & [ & \(24.1026]\) & [ & \(24.5830]\) & [ & \(24.2500]\) \\
\hline '30-Jan-1997' & [ & \(24.3910]\) & [ & \(24.7080]\) & [ & \(24.0420]\) \\
\hline '31-Jan-1997' & [ & \(23.9790]\) & [ & \(24.4580]\) & [ & \(24.2080]\) \\
\hline '03-Feb-1997' & [ & 23.9378] & [ & \(24.2920]\) & & \(24]\) \\
\hline '04-Feb-1997' & [ & \(24.0202]\) & [ & \(24.3330]\) & [ & \(24.1670]\) \\
\hline '05-Feb-1997' & [ & \(24.1850]\) & [ & \(24.7500]\) & [ & \(24.0420]\) \\
\hline ' 06-Feb-1997' & [ & 24.1026] & [ & \(24.7080]\) & [ & \(24.3330]\) \\
\hline '07-Feb-1997' & [ & 24.5146] & [ & \(25.1250]\) & [ & \(24.7500]\) \\
\hline '10-Feb-1997' & [ & \(25.0090]\) & [ & \(25.6670]\) & [ & \(25.2080]\) \\
\hline '11-Feb-1997' & [ & \(25.0090]\) & [ & \(25.3330]\) & [ & \(24.8750]\) \\
\hline '12-Feb-1997' & [ & 24.7618] & [ & \(25.6250]\) & [ & \(25.0420]\) \\
\hline '13-Feb-1997' & [ & \(25.3798]\) & [ & 26.2920] & [ & \(25.5000]\) \\
\hline '14-Feb-1997' & [ & \(25.7094]\) & [ & \(26.4170]\) & [ & \(25.8750]\) \\
\hline '17-Feb-1997' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) & [ & NaN ] \\
\hline '18-Feb-1997' & [ & \(25.3798]\) & [ & \(26]\) & [ & \(25.5830]\) \\
\hline '19-Feb-1997' & [ & \(25.0502]\) & [ & \(25.7500]\) & [ & \(25.3330]\) \\
\hline '20-Feb-1997' & [ & \(25.0914]\) & [ & \(25.5000]\) & [ & \(24.8330]\) \\
\hline '21-Feb-1997' & [ & 24.7618] & [ & \(25.3750]\) & [ & \(25]\) \\
\hline '24-Feb-1997' & [ & 24.6382] & [ & \(25.3750]\) & [ & \(24.8330]\) \\
\hline '25-Feb-1997' & [ & \(25.2974]\) & [ & \(25.6250]\) & [ & \(25]\) \\
\hline '26-Feb-1997' & [ & \(25.1738]\) & [ & \(25.4580]\) & [ & \(24.5000]\) \\
\hline '27-Feb-1997' & [ & \(24.9266]\) & [ & \(25.3750]\) & [ & 25.1670 ] \\
\hline ' 28-Feb-1997' & [ & \(24.5970]\) & [ & \(25.0830]\) & [ & \(24.7500]\) \\
\hline '03-Mar-1997' & [ & \(23.9790]\) & [ & \(24.9580]\) & [ & \(24.2500]\) \\
\hline '04-Mar-1997' & [ & \(24.2262]\) & [ & \(24.5000]\) & [ & \(24.1670]\) \\
\hline '05-Mar-1997' & [ & 23.9378] & [ & \(24.7080]\) & [ & \(23.9170]\) \\
\hline '06-Mar-1997' & [ & 24.3498] & [ & \(25.1670]\) & [ & \(24.4580]\) \\
\hline '07-Mar-1997' & [ & 24.9266] & [ & 25.4580] & [ & \(25.1250]\) \\
\hline '10-Mar-1997' & [ & \(25.0090]\) & [ & 25.6670 ] & [ & \(25.0830]\) \\
\hline '11-Mar-1997' & [ & \(25.5446]\) & [ & \(25.8750]\) & [ & \(25.5830]\) \\
\hline '12-Mar-1997' & [ & \(25.3386]\) & [ & \(25.6670]\) & [ & \(25.0420]\) \\
\hline '13-Mar-1997' & [ & \(24.6794]\) & [ & \(25.0830]\) & [ & \(24.4170]\) \\
\hline '14-Mar-1997' & [ & 24.3086] & [ & \(25.0830]\) & [ & \(24.5420]\) \\
\hline '17-Mar-1997' & [ & \(24.5970]\) & [ & \(25.4170]\) & [ & \(24.7080]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '18-Mar-1997' & [ & 25.0090 ] & [ & \(25.5000]\) & [ & 24.95 \\
\hline '19-Mar-1997' & [ & 24.6382] & [ & \(25.0830]\) & [ & 24.66 \\
\hline '20-Mar-1997' & [ & \(24.7206]\) & [ & \(25.0420]\) & [ & 24.70 \\
\hline '21-Mar-1997' & [ & \(24.5970]\) & [ & \(24.8750]\) & [ & 24.58 \\
\hline '24-Mar-1997' & [ & \(24.3910]\) & [ & \(25.0420]\) & [ & 24.62 \\
\hline '25-Mar-1997' & [ & 24.7618] & [ & \(25.1670]\) & [ & 24.83 \\
\hline '26-Mar-1997' & [ & \(24.8030]\) & [ & \(25.2080]\) & [ & 24.87 \\
\hline '27-Mar-1997' & [ & \(24.8442]\) & [ & \(25.2080]\) & [ & 24.41 \\
\hline '28-Mar-1997' & [ & NaN ] & [ & \(\mathrm{NaN}]\) & [ & \\
\hline '31-Mar-1997' & [ & \(24.3910]\) & [ & \(24.6670]\) & [ & 24.08 \\
\hline '01-Apr-1997' & [ & 23.5670 ] & [ & \(24.5000]\) & [ & 23.66 \\
\hline '02-Apr-1997' & [ & \(23.7318]\) & [ & \(24.6250]\) & [ & 23.70 \\
\hline '03-Apr-1997' & [ & \(23.6906]\) & [ & \(24.2500]\) & [ & 23.75 \\
\hline '04-Apr-1997' & [ & \(23.8142]\) & [ & \(24.5830]\) & [ & 23.95 \\
\hline '07-Apr-1997' & [ & \(24.3910]\) & [ & \(24.7080]\) & [ & 24.45 \\
\hline '08-Apr-1997' & [ & \(24.3086]\) & [ & \(24.6250]\) & [ & 24.33 \\
\hline '09-Apr-1997' & [ & \(24.3934]\) & [ & \(24.7080]\) & [ & 24.45 \\
\hline '10-Apr-1997' & [ & \(24.4759]\) & [ & \(25.0420]\) & [ & 24.62 \\
\hline '11-Apr-1997' & [ & \(23.9806]\) & [ & \(24.8750]\) & [ & 24.12 \\
\hline '14-Apr-1997' & [ & \(23.7742]\) & [ & \(24.0420]\) & [ & 23.45 \\
\hline '15-Apr-1997' & [ & 23.7742] & [ & \(24.7080]\) & [ & 23.75 \\
\hline '16-Apr-1997' & [ & 24.3108] & [ & \(25.2080]\) & [ & 24.45 \\
\hline '17-Apr-1997' & [ & \(24.9712]\) & [ & \(25.4580]\) & [ & 25.08 \\
\hline '18-Apr-1997' & [ & 25.0125] & [ & \(25.6670]\) & [ & 25.16 \\
\hline '21-Apr-1997' & [ & \(25.3427]\) & [ & \(25.9580]\) & [ & 25.41 \\
\hline '22-Apr-1997' & [ & 25.3840 ] & [ & \(26.2920]\) & [ & 25.45 \\
\hline '23-Apr-1997' & [ & \(25.9205]\) & [ & \(26.5420]\) & [ & 26.08 \\
\hline '24-Apr-1997' & [ & \(26.2920]\) & [ & \(26.6250]\) & [ & 25.91 \\
\hline '25-Apr-1997' & [ & \(25.6729]\) & [ & \(26.0830]\) & [ & 25.70 \\
\hline '28-Apr-1997' & [ & 25.5078] & [ & \(26.0830]\) & [ & 25.75 \\
\hline '29-Apr-1997' & [ & \(25.9205]\) & [ & \(26.9580]\) & [ & 26.08 \\
\hline '30-Apr-1997' & [ & \(26.4158]\) & [ & \(27.5000]\) & [ & 26.66 \\
\hline '01-May-1997' & [ & 26.9111] & [ & \(27.3330]\) & [ & 26.75 \\
\hline '02-May-1997' & [ & 26.7873] & [ & 27.1670 ] & [ & 26.79 \\
\hline '05-May-1997' & [ & \(26.3745]\) & [ & \(27.4170]\) & [ & 26.58 \\
\hline '06-May-1997' & [ & \(26.9937]\) & [ & \(27.4580]\) & [ & 27.12 \\
\hline '07-May-1997' & [ & 27.1588] & [ & \(27.4170]\) & [ & 26.75 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 08-May-1997' & [ & 26.4158] & [ & \(27.2920]\) & [ & \(26.5830]\) \\
\hline 09-May-1997' & [ & \(26.8698]\) & , & \(27.4170]\) & [ & \(27]\) \\
\hline '12-May-1997' & [ & \(27.2000]\) & [ & \(28.3750]\) & [ & \(27.4580]\) \\
\hline 13-May-1997' & [ & \(27.8192]\) & [ & \(28.1250]\) & [ & \(27.6250]\) \\
\hline 14-May-1997' & [ & \(27.8192]\) & [ & 28.2080] & [ & \(27.7920]\) \\
\hline 15-May-1997' & [ & \(27.4890]\) & [ & \(27.7920]\) & [ & \(27.5420]\) \\
\hline 16-May-1997' & [ & \(27.2000]\) & [ & \(27.5420]\) & & \(26.9580]\) \\
\hline 19-May-1997' & [ & \(26.7460]\) & [ & \(27.7920]\) & [ & \(26.9170]\) \\
\hline '20-May-1997' & [ & \(27.3239]\) & [ & \(27.8750]\) & [ & \(27.2080]\) \\
\hline '21-May-1997' & [ & \(27.5302]\) & [ & \(27.9170]\) & [ & \(27.2920]\) \\
\hline '22-May-1997' & [ & 27.2413] & [ & \(27.5830]\) & & \(27.2500]\) \\
\hline 23-May-1997' & [ & \(27.3239]\) & [ & \(27.8750]\) & [ & \(27.4580]\) \\
\hline 26-May-1997' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) & & NaN] \\
\hline 27-May-1997' & [ & 27.2826] & [ & \(27.9580]\) & [ & \(27.3750]\) \\
\hline 28-May-1997' & [ & 27.5715] & [ & \(28.0420]\) & & \(27.5830]\) \\
\hline 29-May-1997' & [ & \(27.7366]\) & [ & 28] & [ & \(27.4580]\) \\
\hline 30-May-1997' & [ & 26.7873] & [ & \(27.4170]\) & [ & \(26.7080]\) \\
\hline 02-Jun-1997' & [ & \(27.2000]\) & [ & \(27.4580]\) & [ & \(26.9170]\) \\
\hline 03-Jun-1997' & [ & 26.6635] & [ & \(27]\) & [ & \(26.7920]\) \\
\hline 04-Jun-1997' & [ & \(26.5396]\) & [ & \(26.8750]\) & & \(26.6250]\) \\
\hline 05-Jun-1997' & [ & \(26.4984]\) & [ & \(27.2080]\) & [ & \(26.6250]\) \\
\hline 06-Jun-1997' & [ & 26.7873] & [ & \(27.1670]\) & & \(26.7080]\) \\
\hline 09-Jun-1997' & [ & 26.8698] & [ & \(27.3330]\) & [ & \(26.9580]\) \\
\hline 10-Jun-1997' & [ & \(26.8286]\) & [ & \(27.3330]\) & [ & \(27]\) \\
\hline 11-Jun-1997' & [ & \(27.0349]\) & [ & \(27.2920]\) & [ & \(26.9580]\) \\
\hline 12-Jun-1997' & [ & \(26.9937]\) & [ & \(27.2920]\) & [ & \(27.0830]\) \\
\hline 13-Jun-1997' & [ & 27.0762 ] & [ & 28] & [ & \(27.2920]\) \\
\hline 16-Jun-1997' & [ & \(27.5715]\) & [ & \(27.9580]\) & & \(27.6670]\) \\
\hline 17-Jun-1997' & [ & \(27.7366]\) & [ & \(28.1250]\) & & \(27.5830]\) \\
\hline '18-Jun-1997' & [ & \(27.4064]\) & [ & \(27.7920]\) & & \(27.5000]\) \\
\hline 19-Jun-1997' & [ & 27.2413] & [ & \(27.8750]\) & & \(27.1250]\) \\
\hline 20-Jun-1997' & [ & 27.4477 ] & [ & \(27.7920]\) & & \(27.3330]\) \\
\hline 23-Jun-1997' & [ & \(27.1588]\) & [ & \(27.4580]\) & [ & \(26.8330]\) \\
\hline '24-Jun-1997' & [ & \(26.7460]\) & [ & \(27.5000]\) & & \(26.8330]\) \\
\hline 25-Jun-1997' & [ & \(27.1588]\) & [ & \(27.7190]\) & [ & \(26.9580]\) \\
\hline '26-Jun-1997' & [ & \(27.0762]\) & [ & \(27.4170]\) & [ & \(27]\) \\
\hline 27-Jun-1997' & [ & \(27.0556]\) & [ & \(27.3130]\) & [ & \(26.6250]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline '30-Jun-1997' & [ & 26.4158] & [ & \(26.8130]\) \\
\hline '01-Jul-1997' & [ & \(26.3333]\) & [ & \(26.5830]\) \\
\hline '02-Jul-1997' & [ & \(25.6110]\) & [ & 25.9170 ] \\
\hline '03-Jul-1997' & [ & \(25.7141]\) & [ & 26.1670 ] \\
\hline '04-Jul-1997' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) \\
\hline '07-Jul-1997' & [ & 25.7348] & [ & \(26.0830]\) \\
\hline '08-Jul-1997' & [ & 25.4252] & [ & \(26.1250]\) \\
\hline '09-Jul-1997' & [ & 25.9438] & [ & \(26.1670]\) \\
\hline '10-Jul-1997' & [ & 25.4683] & [ & \(25.9790]\) \\
\hline '11-Jul-1997' & [ & \(25.3236]\) & [ & \(25.6670]\) \\
\hline '14-Jul-1997' & [ & 25.2616] & [ & \(25.8750]\) \\
\hline '15-Jul-1997' & [ & \(25.6337]\) & [ & \(25.9790]\) \\
\hline '16-Jul-1997' & [ & \(25.8404]\) & [ & \(26.5000]\) \\
\hline '17-Jul-1997' & [ & 26.0678] & [ & 26.2920] \\
\hline '18-Jul-1997' & [ & 25.4683] & [ & 25.6670] \\
\hline '21-Jul-1997' & [ & 25.0962] & [ & 25.3130] \\
\hline '22-Jul-1997' & [ & 25.2616] & [ & \(26]\) \\
\hline '23-Jul-1997' & [ & 26.1918] & [ & \(26.5420]\) \\
\hline '24-Jul-1997' & [ & 25.7784] & [ & \(26.5420]\) \\
\hline '25-Jul-1997' & [ & 26.2125] & [ & \(26.4170]\) \\
\hline '28-Jul-1997' & [ & 26.1298] & [ & \(26.6040]\) \\
\hline '29-Jul-1997' & [ & \(26.3365]\) & [ & \(26.8130]\) \\
\hline '30-Jul-1997' & [ & \(26.6880]\) & [ & \(27.0830]\) \\
\hline '31-Jul-1997' & [ & \(26.9154]\) & [ & \(27.2290]\) \\
\hline '01-Aug-1997' & [ & 26.7293] & [ & \(27.1040]\) \\
\hline '04-Aug-1997' & [ & \(26.5846]\) & [ & \(27.1250]\) \\
\hline '05-Aug-1997' & [ & 26.7913] & [ & \(27]\) \\
\hline '06-Aug-1997' & [ & \(26.3985]\) & [ & \(27]\) \\
\hline '07-Aug-1997' & [ & 26.7913] & [ & \(27.0830]\) \\
\hline '08-Aug-1997' & [ & 25.9644] & [ & \(26.4790]\) \\
\hline '11-Aug-1997' & [ & 26.1918] & [ & \(26.7290]\) \\
\hline '12-Aug-1997' & [ & 26.3365] & [ & \(26.7920]\) \\
\hline '13-Aug-1997' & [ & 26.1918] & [ & \(26.6460]\) \\
\hline '14-Aug-1997' & [ & 26.2125] & [ & \(26.6880]\) \\
\hline '15-Aug-1997' & [ & \(25.6750]\) & [ & \(26.2080]\) \\
\hline '18-Aug-1997' & [ & 25.5923] & [ & \(26.2710]\) \\
\hline '19-Aug-1997' & [ & 26.0264] & [ & \(26.5630]\) \\
\hline
\end{tabular}
26.25
25.95
25.47
25.70
25.02
25.62
25.60
25.54
25.25
25.41
25.52
26.02
25.45
25.08
24.60
25.08
25.91
25.50
26.08
26.33
26.50
26.81
26.93
26.75
26.60
26.60
26.54
26.31
26.04
25.87
26.08
25.79
25.87
25.50
25.33

\begin{tabular}{rrrr}
\(26.3572]\) & {\([\)} & \(26.8750]\) & {\([\)} \\
\(26.5433]\) & {\([\)} & \(26.8130]\) & {\([\)} \\
\(25.5303]\) & {\([\)} & \(26.1040]\) & {\([\)} \\
\(25.9024]\) & {\([\)} & \(26.3540]\) & {\([\)} \\
\(25.9231]\) & {\([\)} & \(26.2290]\) & {\([\)} \\
\(25.6750]\) & {\([\)} & \(26.3330]\) & {\([\)} \\
\(25.9644]\) & {\([\)} & \(26.2920]\) & {\([\)} \\
\(25.5096]\) & {\([\)} & \(26.0420]\) & {\([\)} \\
NaN] & {\([\)} & \(N a N]\) & {\([\)} \\
\(25.4683]\) & {\([\)} & \(26.3330]\) & {\([\)} \\
\(26.1298]\) & {\([\)} & \(26.7080]\) & {\([\)} \\
\(26.2745]\) & {\([\)} & \(26.5000]\) & {\([\)} \\
\(25.9231]\) & {\([\)} & \(26.2080]\) & {\([\)} \\
\(26.1918]\) & {\([\)} & \(26.3960]\) & {\([\)} \\
\(25.7577]\) & {\([\)} & \(26.3750]\) & {\([\)} \\
\(25.8817]\) & {\([\)} & \(26.1460]\) & {\([\)} \\
\(25.3856]\) & {\([\)} & \(25.6250]\) & {\([\)} \\
\(25.1996]\) & {\([\)} & \(25.7710]\) & {\([\)} \\
\(25.5717]\) & {\([\)} & \(25.8540]\) & {\([\)} \\
\(25.6130]\) & {\([\)} & \(26.4580]\) & {\([\)} \\
\(26.5433]\) & {\([\)} & \(26.7500]\) & {\([\)} \\
\(26.0471]\) & {\([\)} & \(26.6040]\) & {\([\)} \\
\(26.3779]\) & {\([\)} & \(26.6460]\) & {\([\)} \\
\(26.4606]\) & {\([\)} & \(26.7290]\) & {\([\)} \\
\(26.3572]\) & {\([\)} & \(26.5630]\) & {\([\)} \\
\(26.1505]\) & {\([\)} & \(26.6460]\) & {\([\)} \\
\(26.0471]\) & {\([\)} & \(26.5420]\) & {\([\)} \\
\(26.2538]\) & {\([\)} & \(26.7290]\) & {\([\)} \\
\(26.2125]\) & {\([\)} & \(27.1460]\) & {\([\)} \\
\(26.3779]\) & {\([\)} & 27. \\
\(26.7913]\) & {\([\)} & \(27.4580]\) & {\([\)} \\
\(27.2668]\) & {\([\)} & \(27.9790]\) & {\([\)} \\
\(28.3831]\) & {\([\)} & \(28.6040]\) & {\([\)} \\
\(27.9076]\) & {\([\)} & \(28.1670]\) & {\([\)} \\
\(27.6389]\) & {\([\)} & \(28.4790]\) & {\([\)} \\
\(28.0730]\) & {\([\)} & \(28.3130]\) & {\([\)} \\
\(27.7009]\) & {\([\)} & \(28.1460]\) & {\([\)}
\end{tabular}
\(26.4170]\) \(26.1460]\) \(25.7290]\) \(25.9580]\) \(25.8330]\) \(25.6250]\)
25.7080]
\(25.6040]\) \(\mathrm{NaN}]\) \(25.6670]\) \(26.3330]\) \(25.7710]\) \(25.8330]\) 25.9580] 25.8130] 25.8960] 24.8130] \(25.2920]\) 25.5830] \(25.7920]\) \(26.1670]\) \(25.9170]\) \(26.4170]\) \(26.5000]\) \(26.2080]\) \(26.2290]\) \(26.0830]\) \(26.3960]\) \(26.3750]\) \(26.5830]\) \(26.9380]\) \(27.4170]\) 28] \(27.5830]\) \(27.7500]\) \(27.7080]\) \(27.7710]\)
\begin{tabular}{|c|c|c|c|c|}
\hline '10-0ct-1997' & [ & \(27.7009]\) & [ & \(28.0210]\) \\
\hline '13-0ct-1997' & [ & \(27.8456]\) & [ & \(28.2920]\) \\
\hline '14-0ct-1997' & [ & \(28.1970]\) & [ & \(28.9580]\) \\
\hline '15-0ct-1997' & [ & \(28.5714]\) & [ & \(29.2710]\) \\
\hline '16-0ct-1997' & [ & \(28.6957]\) & [ & \(28.9170]\) \\
\hline '17-0ct-1997' & [ & \(27.9503]\) & [ & \(28.1670]\) \\
\hline '20-0ct-1997' & [ & \(27.5569]\) & [ & \(27.8750]\) \\
\hline '21-0ct-1997' & [ & 27.7640 ] & [ & \(28.0420]\) \\
\hline '22-0ct-1997' & [ & 27.7226] & [ & \(28.1250]\) \\
\hline '23-0ct-1997' & [ & 27.2878 ] & [ & \(27.6460]\) \\
\hline '24-Oct-1997' & [ & \(27.8882]\) & [ & \(28.2920]\) \\
\hline '27-0ct-1997' & [ & \(27.1222]\) & [ & 27.6040 ] \\
\hline '28-Oct-1997' & [ & 24.8447] & [ & \(27.5830]\) \\
\hline '29-0ct-1997' & [ & \(27.2671]\) & [ & 27.9170 ] \\
\hline '30-0ct-1997' & [ & \(27.0807]\) & [ & \(27.7080]\) \\
\hline '31-0ct-1997' & [ & \(27.1014]\) & [ & \(27.7500]\) \\
\hline '03-Nov-1997' & [ & \(27.6190]\) & [ & \(28.5000]\) \\
\hline '04-Nov-1997' & [ & \(28.3851]\) & [ & \(28.7710]\) \\
\hline '05-Nov-1997' & [ & 28.3023] & [ & \(28.7710]\) \\
\hline '06-Nov-1997' & [ & 28.1573] & [ & \(28.9170]\) \\
\hline '07-Nov-1997' & [ & \(28.1573]\) & [ & \(29.1670]\) \\
\hline '10-Nov-1997' & [ & \(28.8820]\) & [ & \(29.0830]\) \\
\hline '11-Nov-1997' & [ & \(28.4679]\) & [ & \(28.8960]\) \\
\hline '12-Nov-1997' & [ & \(28.3230]\) & [ & \(28.7710]\) \\
\hline '13-Nov-1997' & [ & \(27.7640]\) & [ & \(28.4380]\) \\
\hline '14-Nov-1997' & [ & \(28.2609]\) & [ & \(29.1670]\) \\
\hline '17-Nov-1997' & [ & 29.1511] & [ & \(29.9170]\) \\
\hline '18-Nov-1997' & [ & \(29.2340]\) & [ & \(30.1040]\) \\
\hline '19-Nov-1997' & [ & \(29.7101]\) & [ & \(30.4580]\) \\
\hline '20-Nov-1997' & [ & \(30.2277]\) & [ & \(30.5420]\) \\
\hline '21-Nov-1997' & [ & \(30.1863]\) & [ & \(31.5830]\) \\
\hline '24-Nov-1997' & [ & \(31.2008]\) & [ & \(31.3960]\) \\
\hline ' 25-Nov-1997' & [ & \(30.9731]\) & [ & 31.4170 ] \\
\hline '26-Nov-1997' & [ & 31.1387] & [ & \(31.7920]\) \\
\hline '27-Nov-1997' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) \\
\hline '28-Nov-1997' & [ & \(31.3872]\) & [ & \(31.7710]\) \\
\hline '01-Dec-1997' & [ & \(31.2629]\) & [ & \(32.6460]\) \\
\hline
\end{tabular}
27.75
28.04
28.29
28.58
27.85
27.10
27.50
27.68
27.66
27.20
27.37
25.91
27.08
26.83
27.22
27.72
28.37
28.313
28.16
28.16
28.45
28.50
27.68
27.93
28.37
29.29
29.25
29.79
30.16
30.33
30.85
30.95
31.31
31.54
31.37
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{02}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'04-Dec-1997'} \\
\hline \multicolumn{2}{|l|}{05-Dec-1997'} \\
\hline & 08 -De \\
\hline \multicolumn{2}{|l|}{09-Dec-1997'} \\
\hline & 0-Dec-19 \\
\hline \multicolumn{2}{|l|}{11-Dec-1997'} \\
\hline & -Dec-19 \\
\hline \multicolumn{2}{|l|}{15-Dec-1997'} \\
\hline & De \\
\hline \multicolumn{2}{|l|}{17-Dec-1997'} \\
\hline & De \\
\hline \multicolumn{2}{|l|}{19-Dec-1997'} \\
\hline & 22-Dec-1997 \\
\hline \multicolumn{2}{|l|}{23-Dec-1997'} \\
\hline & 24-Dec-1997 \\
\hline \multicolumn{2}{|l|}{'25-Dec-1997'} \\
\hline & 26-Dec \\
\hline \multicolumn{2}{|l|}{29-Dec-1997} \\
\hline & 30-Dec-1997 \\
\hline \multicolumn{2}{|l|}{'31-Dec-1997'} \\
\hline & - J \\
\hline \multicolumn{2}{|l|}{'02-Jan-1998'} \\
\hline & - \\
\hline \multicolumn{2}{|l|}{'06-Jan-1998'} \\
\hline & 07-Jan-1998 \\
\hline \multicolumn{2}{|l|}{'08-Jan-1998'} \\
\hline & - J \\
\hline \multicolumn{2}{|l|}{'12-Jan-1998'} \\
\hline \multicolumn{2}{|l|}{'13-Jan-1998'} \\
\hline \multicolumn{2}{|l|}{'14-Jan-1998'} \\
\hline \multicolumn{2}{|l|}{15-Jan-1998'} \\
\hline \multicolumn{2}{|l|}{'16-Jan-1998'} \\
\hline \multicolumn{2}{|l|}{'19-Jan-1998'} \\
\hline & -Jan-1998 \\
\hline & 21-Jan-1998 \\
\hline
\end{tabular}
'02-Dec-1997'
'03-Dec-1997'
'04-Dec-1997'
'05-Dec-1997'
'08-Dec-1997'
'09-Dec-1997'
'10-Dec-1997'
'11-Dec-1997'
'12-Dec-1997'
'15-Dec-1997'
'16-Dec-1997'
'17-Dec-1997'
'18-Dec-1997'
'19-Dec-1997'
'22-Dec-1997'
'23-Dec-1997'
'24-Dec-1997'
'25-Dec-1997'
'26-Dec-1997'
'29-Dec-1997'
'30-Dec-1997'
'31-Dec-1997'
'01-Jan-1998'
'02-Jan-1998'
'05-Jan-1998'
'06-Jan-1998'
'07-Jan-1998'
'08-Jan-1998'
'09-Jan-1998'
'12-Jan-1998'
'13-Jan-1998'
'14-Jan-1998'
'15-Jan-1998'
'16-Jan-1998'
'19-Jan-1998'
'21-Jan-1998'
\begin{tabular}{rlrl}
\(32.2774]\) & {\([\)} & \(32.5830]\) & {\([\)} \\
\(31.9048]\) & {\([\)} & \(32.2500]\) & {\([\)} \\
\(30.9938]\) & {\([\)} & \(31.3130]\) & {\([\)} \\
\(30.8075]\) & {\([\)} & \(31.4790]\) & {\([\)} \\
\(31.3665]\) & {\([\)} & \(31.5630]\) & {\([\)} \\
\(31.2836]\) & {\([\)} & \(31.7710]\) & {\([\)} \\
\(31.0352]\) & {\([\)} & \(31.3330]\) & {\([\)} \\
\(30.8075]\) & {\([\)} & \(31.0830]\) & {\([\)} \\
\(30.8489]\) & {\([\)} & \(31.5210]\) & {\([\)} \\
\(31.2836]\) & {\([\)} & \(32.4380]\) & {\([\)} \\
\(32.1739]\) & {\([\)} & \(32.3750]\) & {\([\)} \\
\(31.9669]\) & {\([\)} & \(32.3130]\) & {\([\)} \\
\(32.1325]\) & {\([\)} & \(32.6040]\) & {\([\)} \\
\(31.9048]\) & {\([\)} & \(32.1250]\) & {\([\)} \\
\(31.7391]\) & {\([\)} & \(32.6460]\) & {\([\)} \\
\(32.3602]\) & {\([\)} & \(32.8330]\) & {\([\)} \\
\(32.2981]\) & {\([\)} & \(32.5630]\) & {\([\)} \\
NaN \(]\) & {\([\)} & \(N a N]\) & {\([\)} \\
\(31.6563]\) & {\([\)} & \(32.0630]\) & {\([\)} \\
\(31.7598]\) & {\([\)} & \(32.4790]\) & {\([\)} \\
\(32.5052]\) & {\([\)} & \(33.4170]\) & {\([\)} \\
\(32.8364]\) & {\([\)} & \(33.4170]\) & {\([\)} \\
NaN \(]\) & {\([\)} & \(N a N]\) & {\([\)} \\
\(33.0642]\) & {\([\)} & \(33.2710]\) & {\([\)} \\
\(33.2919]\) & {\([\)} & \(33.5830]\) & {\([\)} \\
\(32.6294]\) & {\([\)} & \(32.8960]\) & {\([\)} \\
\(32.5281]\) & {\([\)} & \(32.8330]\) & {\([\)} \\
\(32.6110]\) & {\([\)} & \(32.8130]\) & {\([\)} \\
\(32.4037]\) & {\([\)} & \(32.5830]\) & {\([\)} \\
\(31.2013]\) & {\([\)} & \(32.0420]\) & {\([\)} \\
\(31.3049]\) & {\([\)} & \(31.8330]\) & {\([\)} \\
\(31.5330]\) & {\([\)} & \(32.3750]\) & {\([\)} \\
\(31.7610]\) & {\([\)} & \(32.0210]\) & {\([\)} \\
\(31.9269]\) & {\([\)} & \(32.1880]\) & {\([\)} \\
NaN] & {\([\)} & NaN] & {\([\)} \\
\(32.1756]\) & {\([\)} & \(33.2500]\) & {\([\)} \\
\(32.8391]\) & {\([\)} & \(33.1670]\) & {\([\)}
\end{tabular}

31 . 8960] 31 . 3960] 31 . 0830] 31]
\(31.3130]\) 31 .1460] \(31.0830]\) \(30.6880]\) 30.9580 ] \(31.3960]\) \(31.8960]\) 32 .1040] \(32.0830]\) \(31.0830]\) \(31.9170]\) \(32.4790]\)
            NaN ]
\(31.6250]\)
31 . 8330]
32.6670 ]
\(32.8960]\)
    NaN ]
\(32.8750]\)
\(32.5630]\)
\(32.6670]\)
32.4580 ]
\(32.3130]\)
32]
31 . 1880]
31 . 2500]
31 .3960]
\(31.5630]\)
31.7500 ]
    NaN ]
\(32.2500]\)
\(32.6880]\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '22-Jan-1998' & [ & \(32.7147]\) & [ & \(32.8750]\) & [ & 32.10 \\
\hline '23-Jan-1998' & [ & \(32.3415]\) & [ & \(33.0630]\) & [ & 32.27 \\
\hline '26-Jan-1998' & [ & \(32.7976]\) & [ & \(33.1040]\) & [ & 32.33 \\
\hline '27-Jan-1998' & [ & \(32.8183]\) & [ & 34.7080 ] & [ & 32.95 \\
\hline '28-Jan-1998' & [ & 34.4769 ] & [ & \(35.5830]\) & [ & 34.50 \\
\hline '29-Jan-1998' & [ & \(34.7464]\) & [ & \(36.1250]\) & [ & 34.87 \\
\hline '30-Jan-1998' & [ & 35.1818 ] & [ & 35.9580 ] & [ & 35.10 \\
\hline '02-Feb-1998' & [ & \(35.4513]\) & [ & 36.4170 ] & [ & 35.60 \\
\hline '03-Feb-1998' & [ & \(35.7415]\) & [ & \(36.0830]\) & [ & 35.58 \\
\hline '04-Feb-1998' & [ & 35.6378 ] & [ & \(36.2500]\) & & 35.77 \\
\hline '05-Feb-1998' & [ & \(36.0732]\) & [ & \(36.4580]\) & [ & 35.81 \\
\hline ' 06-Feb-1998' & [ & 35.9281 ] & [ & \(36.3750]\) & [ & 36.02 \\
\hline '09-Feb-1998' & [ & \(36.2183]\) & [ & \(36.5420]\) & [ & 35.85 \\
\hline '10-Feb-1998' & [ & \(35.8866]\) & [ & \(36.3750]\) & [ & 35.50 \\
\hline '11-Feb-1998' & [ & \(35.9903]\) & [ & 36.9380 ] & & 36.10 \\
\hline '12-Feb-1998' & [ & 36.4878 ] & [ & \(36.8130]\) & [ & 36.29 \\
\hline '13-Feb-1998' & [ & \(36.2598]\) & [ & 37.2080 ] & & 36.43 \\
\hline '16-Feb-1998' & [ & \(\mathrm{NaN}]\) & [ & NaN ] & [ & \\
\hline '17-Feb-1998' & [ & \(37.2135]\) & [ & 37.6670 ] & [ & 37.25 \\
\hline '18-Feb-1998' & [ & \(37.4622]\) & [ & \(38.4170]\) & [ & 37.37 \\
\hline '19-Feb-1998' & [ & \(38.0427]\) & [ & \(38.5000]\) & [ & 37.83 \\
\hline '20-Feb-1998' & [ & \(37.8769]\) & [ & \(38.2920]\) & [ & 37.75 \\
\hline '23-Feb-1998' & [ & 38.00131 & [ & 38.5830 ] & [ & 37.83 \\
\hline '24-Feb-1998' & [ & \(37.7110]\) & [ & 37.9790 ] & [ & 37.18 \\
\hline '25-Feb-1998' & [ & \(36.9647]\) & [ & \(37.3750]\) & [ & \\
\hline ' 26-Feb-1998' & [ & 36.4878 ] & [ & \(37.0420]\) & [ & 36.33 \\
\hline ' 27-Feb-1998' & [ & \(36.1561]\) & [ & 37.5420 ] & [ & 36.33 \\
\hline '02-Mar-1998' & [ & \(36.9025]\) & [ & \(37.3130]\) & [ & 36.33 \\
\hline '03-Mar-1998' & [ & \(36.2598]\) & [ & 36.8960 ] & [ & 36.33 \\
\hline '04-Mar-1998' & [ & \(35.4513]\) & [ & 35.6460 ] & [ & 34.89 \\
\hline '05-Mar-1998' & [ & 34.8293] & [ & \(35.2920]\) & [ & 34.91 \\
\hline '06-Mar-1998' & [ & \(35.2025]\) & [ & 35.4790 ] & [ & 35.04 \\
\hline '09-Mar-1998' & [ & \(34.9537]\) & [ & 35.4790 ] & [ & 35.08 \\
\hline '10-Mar-1998' & [ & \(35.2232]\) & [ & 35.3960 ] & [ & 35.16 \\
\hline '11-Mar-1998' & [ & \(34.9952]\) & [ & 35.1880 ] & [ & 34.79 \\
\hline '12-Mar-1998' & [ & 34.8915] & [ & 35.4380 ] & [ & 34.85 \\
\hline '13-Mar-1998' & [ & \(35.7830]\) & [ & 35.9580 ] & [ & 35.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline '16-Mar-1998' \\
\hline '17-Mar-1998' \\
\hline '18-Mar-1998' \\
\hline '19-Mar-1998' \\
\hline '20-Mar-1998' \\
\hline '23-Mar-1998' \\
\hline '24-Mar-1998' \\
\hline '25-Mar-1998' \\
\hline '26-Mar-1998' \\
\hline '27-Mar-1998' \\
\hline '30-Mar-1998' \\
\hline '31-Mar-1998' \\
\hline '01-Apr-1998' \\
\hline '02-Apr-1998' \\
\hline '03-Apr-1998' \\
\hline '06-Apr-1998' \\
\hline '07-Apr-1998' \\
\hline '08-Apr-1998' \\
\hline '09-Apr-1998' \\
\hline '10-Apr-1998' \\
\hline '13-Apr-1998' \\
\hline '14-Apr-1998' \\
\hline '15-Apr-1998' \\
\hline '16-Apr-1998' \\
\hline '17-Apr-1998' \\
\hline '20-Apr-1998' \\
\hline '21-Apr-1998' \\
\hline '22-Apr-1998' \\
\hline '23-Apr-1998' \\
\hline '24-Apr-1998' \\
\hline '27-Apr-1998' \\
\hline '28-Apr-1998' \\
\hline '29-Apr-1998' \\
\hline '30-Apr-1998' \\
\hline '01-May-1998' \\
\hline '04-May-1998' \\
\hline '05-May-1998' \\
\hline
\end{tabular}
\begin{tabular}{rrrr}
\(35.3061]\) & {\([\)} & \(36.6670]\) & {\([\)} \\
\(35.9903]\) & {\([\)} & \(36.2500]\) & {\([\)} \\
\(35.5757]\) & {\([\)} & \(35.8330]\) & {\([\)} \\
\(35.6378]\) & {\([\)} & \(35.8960]\) & {\([\)} \\
\(35.3269]\) & {\([\)} & \(35.6670]\) & {\([\)} \\
\(34.6635]\) & {\([\)} & \(35.2500]\) & {\([\)} \\
\(34.8293]\) & {\([\)} & \(35.7710]\) & {\([\)} \\
\(35.4927]\) & {\([\)} & \(35.7920]\) & {\([\)} \\
\(35.2025]\) & {\([\)} & \(36.0420]\) & {\([\)} \\
\(35.8037]\) & {\([\)} & \(36.0630]\) & {\([\)} \\
\(35.4927]\) & {\([\)} & \(35.8330]\) & {\([\)} \\
\(35.1403]\) & {\([\)} & \(35.8330]\) & {\([\)} \\
\(35.4927]\) & {\([\)} & \(35.6670]\) & {\([\)} \\
\(35.1610]\) & {\([\)} & \(36.3130]\) & {\([\)} \\
\(36.4671]\) & {\([\)} & \(36.9790]\) & {\([\)} \\
\(36.8818]\) & {\([\)} & \(37.0630]\) & {\([\)} \\
\(35.9598]\) & {\([\)} & \(36.1460]\) & {\([\)} \\
\(35.8767]\) & {\([\)} & \(36]\) \\
\(35.6484]\) & {\([\)} & \(36.4790]\) & {\([\)} \\
\(36.2297]\) & {\([\)} & 36
\end{tabular}
\(35.3960]\) 35.5630 ] \(35.3330]\) 35 . 2500] 35 . 1250] 34 . 2500] 34 . 8750] 35 . 2920] 35.3750 ] 35.6670 ] 35.1670 ] 35.1670 ] 34 .9790] \(35.1460]\) 36.0420 ] 36.0830 ] \(35.6880]\) 35 . 2290] 35.5000 ] \(\mathrm{NaN}]\) 36.3130 ] 37.1670 ] 37 .5000] \(37.3130]\) 37 .2080] \(37.8130]\) 38.1670 ] \(38.5630]\) \(41.1460]\) 39 . 9380] \(39.7500]\) 40.8330 ] 41 ] 41.3540 ] 41.4580 ] 42.1040 ] 41.5830 ]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '06-May-1998' & [ & 42.0223] & [ & 42.1880] & [ & 41.33 \\
\hline '07-May-1998' & [ & \(40.0291]\) & [ & 40.1880 ] & [ & 39.64 \\
\hline '08-May-1998' & [ & \(39.6139]\) & [ & \(39.9790]\) & [ & 39.62 \\
\hline '11-May-1998' & [ & \(39.8215]\) & [ & 40.4170 ] & [ & 39.87 \\
\hline '12-May-1998' & [ & \(40.0707]\) & [ & \(40.2080]\) & [ & 39.58 \\
\hline '13-May-1998' & [ & \(39.4686]\) & [ & \(39.8750]\) & [ & 39.33 \\
\hline '14-May-1998' & [ & \(38.6796]\) & [ & \(39.1250]\) & [ & 38.50 \\
\hline '15-May-1998' & [ & \(38.0360]\) & [ & \(38.1880]\) & [ & 36.85 \\
\hline '18-May-1998' & [ & 36.87331 & [ & \(37.5000]\) & [ & 36.35 \\
\hline '19-May-1998' & [ & \(36.9564]\) & [ & \(37.2710]\) & [ & 36.708 \\
\hline '20-May-1998' & [ & \(37.0394]\) & [ & \(38.3960]\) & [ & 37.12 \\
\hline '21-May-1998' & [ & \(38.1606]\) & [ & \(38.9170]\) & [ & 38.208 \\
\hline '22-May-1998' & [ & \(38.6588]\) & [ & \(38.9170]\) & [ & 38.500 \\
\hline '25-May-1998' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) & [ & N \\
\hline '26-May-1998' & [ & \(38.7627]\) & [ & \(38.9170]\) & [ & 37.02 \\
\hline '27-May-1998' & [ & \(36.8526]\) & [ & \(38.2920]\) & [ & 36.89 \\
\hline '28-May-1998' & [ & \(37.9737]\) & [ & \(38.1250]\) & [ & 37.33 \\
\hline '29-May-1998' & [ & \(37.8699]\) & [ & \(38.0830]\) & [ & 37.708 \\
\hline '01-Jun-1998' & [ & \(37.8284]\) & [ & \(37.9580]\) & [ & 36.79 \\
\hline '02-Jun-1998' & [ & \(37.1432]\) & [ & \(37.3330]\) & [ & 36.52 \\
\hline '03-Jun-1998' & [ & \(36.8110]\) & [ & \(37.1250]\) & [ & 36.35 \\
\hline '04-Jun-1998' & [ & \(36.3127]\) & [ & \(36.6250]\) & [ & 36.02 \\
\hline '05-Jun-1998' & [ & \(37.5169]\) & [ & \(38.3130]\) & [ & 37.33 \\
\hline '08-Jun-1998' & [ & \(38.0983]\) & [ & \(38.6460]\) & [ & 37.87 \\
\hline '09-Jun-1998' & [ & \(38.5135]\) & [ & \(38.8330]\) & [ & 38.250 \\
\hline '10-Jun-1998' & [ & \(39.0326]\) & [ & \(39.8960]\) & [ & \\
\hline '11-Jun-1998' & [ & \(39.3232]\) & [ & \(39.5830]\) & [ & 38.688 \\
\hline '12-Jun-1998' & [ & 38.61731 & [ & \(38.8330]\) & [ & 37.75 \\
\hline '15-Jun-1998' & [ & 37.7661 ] & [ & \(38.3330]\) & [ & 37.39 \\
\hline '16-Jun-1998' & [ & 37.5377 ] & [ & \(38.0420]\) & [ & 37.417 \\
\hline '17-Jun-1998' & [ & 37.8699 ] & [ & \(38.7500]\) & [ & 37.66 \\
\hline '18-Jun-1998' & [ & \(37.9737]\) & [ & \(38.1460]\) & [ & 37.313 \\
\hline '19-Jun-1998' & [ & \(36.3958]\) & [ & \(36.6250]\) & [ & 35.62 \\
\hline '22-Jun-1998' & [ & 35.0878 ] & [ & \(36.3130]\) & [ & 34.83 \\
\hline '23-Jun-1998' & [ & \(36.4996]\) & [ & \(36.7920]\) & [ & 36.208 \\
\hline '24-Jun-1998' & [ & \(36.5204]\) & [ & \(37.7710]\) & [ & 36.56 \\
\hline '25-Jun-1998' & [ & \(37.5169]\) & [ & \(37.9790]\) & [ & 37.188 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { '26-Jun-1998' } \\
& \text { '29-Jun-1998' } \\
& \text { '30-Jun-1998' } \\
& \text { '01-Jul-1998' } \\
& \text { '02-Jul-1998' } \\
& \text { '03-Jul-1998' } \\
& \text { '06-Jul-1998' } \\
& \text { '07-Jul-1998' } \\
& \text { '08-Jul-1998' } \\
& \text { '09-Jul-1998' } \\
& \text { '10-Jul-1998' } \\
& \text { '13-Jul-1998' } \\
& \text { '14-Jul-1998' } \\
& \text { '15-Jul-1998' } \\
& \text { '16-Jul-1998' } \\
& \text { '17-Jul-1998' } \\
& \text { '20-Jul-1998' } \\
& \text { '21-Jul-1998' } \\
& \text { '22-Jul-1998' } \\
& \text { '23-Jul-1998' } \\
& \text { '24-Jul-1998' } \\
& \text { '27-Jul-1998' } \\
& \text { '28-Jul-1998' } \\
& \text { '29-Jul-1998' } \\
& \text { '30-Jul-1998' } \\
& \text { '31-Jul-1998' } \\
& \text { '03-Aug-1998' } \\
& \text { '04-Aug-1998' } \\
& \text { '05-Aug-1998' } \\
& \text { ' 06-Aug-1998' } \\
& \text { '07-Aug-1998' } \\
& \text { '10-Aug-1998' } \\
& \text { '11-Aug-1998' } \\
& \text { '12-Aug-1998' } \\
& \text { '13-Aug-1998' } \\
& \text { '14-Aug-1998' } \\
& \text { '17-Aug-1998' }
\end{aligned}
\]
\begin{tabular}{rrrr}
\(37.2886]\) & {\([\)} & \(37.4580]\) & {\([\)} \\
\(37.2886]\) & {\([\)} & \(37.9170]\) & {\([\)} \\
\(36.2505]\) & {\([\)} & \(36.5830]\) & {\([\)} \\
\(35.3785]\) & {\([\)} & \(35.8330]\) & {\([\)} \\
\(35.2331]\) & {\([\)} & \(35.4790]\) & {\([\)} \\
NaN \(]\) & {\([\)} & \(\mathrm{NaN}]\) & {\([\)} \\
\(35.2954]\) & {\([\)} & \(35.4380]\) & {\([\)} \\
\(35.3785]\) & {\([\)} & \(35.6670]\) & {\([\)} \\
\(35.3992]\) & {\([\)} & \(36.3130]\) & {\([\)} \\
\(36.1466]\) & {\([\)} & \(37.1460]\) & {\([\)} \\
\(37.1225]\) & {\([\)} & \(38.5000]\) & {\([\)} \\
\(38.8665]\) & {\([\)} & \(39.5630]\) & {\([\)} \\
\(39.6762]\) & {\([\)} & \(40.2500]\) & {\([\)} \\
\(39.9253]\) & {\([\)} & \(40.3130]\) & {\([\)} \\
\(38.3059]\) & {\([\)} & \(39.4380]\) & {\([\)} \\
\(39.1779]\) & {\([\)} & \(39.5630]\) & {\([\)} \\
\(39.2402]\) & {\([\)} & \(39.7500]\) & {\([\)} \\
\(38.4305]\) & {\([\)} & \(38.5630]\) & {\([\)} \\
\(37.0489]\) & {\([\)} & \(38]\) & {\([\)} \\
\(37.1113]\) & {\([\)} & \(37.8750]\) & {\([\)} \\
\(36.5499]\) & {\([\)} & \(37]\) & {\([\)} \\
\(36.5499]\) & {\([\)} & \(36.6880]\) & {\([\)} \\
\(36.1133]\) & {\([\)} & \(36.5630]\) & {\([\)} \\
\(35.4273]\) & {\([\)} & \(35.7500]\) & {\([\)} \\
\(35.3649]\) & {\([\)} & \(35.5000]\) & {\([\)} \\
\(35.2401]\) & {\([\)} & \(35.5000]\) & {\([\)} \\
\(34.4917]\) & {\([\)} & \(35]\) & {\([\)} \\
\(34.8659]\) & {\([\)} & \(35.1880]\) & {\([\)} \\
\(33.3066]\) & {\([\)} & \(34.0630]\) & {\([\)} \\
\(33.6185]\) & {\([\)} & \(34]\) & {\([\)} \\
\(33.3690]\) & {\([\)} & \(33.5630]\) & {\([\)} \\
\(33.3690]\) & {\([\)} & \(33.6250]\) & {\([\)} \\
\(32.2463]\) & {\([\)} & \(32.5000]\) & {\([\)} \\
\(32.0592]\) & {\([\)} & \(32.9380]\) & {\([\)} \\
\(32.4334]\) & {\([\)} & \(33.4380]\) & {\([\)} \\
\(32.3087]\) & {\([\)} & \(32.4380]\) & {\([\)} \\
\(31.4978]\) & {\([\)} & \(32.2500]\) & {\([\)}
\end{tabular}
\(36.7920]\)
37 . 2920]
\(35.0210]\)
\(35.3540]\)
\(35.0830]\)
NaN ]
\(34.9380]\)
\(35.3330]\)
\(35.5210]\)
\(36.1670]\)
\(36.5000]\)
\(38.3750]\)
\(39.6250]\) \(39.1880]\) \(38.0630]\) \(38.8130]\) \(38.5000]\) 37.4380 ] \(36.8130]\) 36] \(36.0630]\) 36] \(35.0630]\) \(35.0630]\) 34] \(34.2500]\) \(34.5000]\) \(32.7500]\) \(32.2500]\) \(33.0630]\) \(32.8750]\) \(32.5630]\) \(31.4380]\) 32] \(31.5630]\) 31.2500 ] \(31.1250]\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{25-Aug-1998'} \\
\hline \multicolumn{2}{|l|}{6-Aug-1998'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{28-Aug-1998} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-1998'} \\
\hline \multicolumn{2}{|l|}{-1998 '} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-1998'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{0-Sep-1998'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-Sep-1998'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-} \\
\hline & \\
\hline \multicolumn{2}{|l|}{18-Sep-1998'} \\
\hline \multicolumn{2}{|l|}{Sep-1998'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Sep-1998'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{25-Sep-1998'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{29-Sep-1998'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{- 1} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{05-0ct-1998'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline
\end{tabular}
'18-Aug-1998'
'19-Aug-1998'
'20-Aug-1998'
'21-Aug-1998'
'24-Aug-1998'
'25-Aug-1998
'26-Aug-1998'
'27-Aug-1998'
'28-Aug-1998'
'31-Aug-1998'
'01-Sep-1998'
'02-Sep-1998'
'03-Sep-1998'
04-Sep-1998'
07-Sep-1998
'08-Sep-1998'
'09-Sep-1998'
'10-Sep-1998'
'11-Sep-1998'
'14-Sep-1998'
'15-Sep-1998'
'16-Sep-1998'
'17-Sep-1998'
'18-Sep-1998'
'21-Sep-1998
'22-Sep-1998'
'23-Sep-1998'
'24-Sep-1998'
'25-Sep-1998'
'28-Sep-1998'
'29-Sep-1998'
'30-Sep-1998'
01-0ct-1998'
02-Oct-1998
05-0ct-1998'
'07-0ct-1998'
\begin{tabular}{rrrr}
\(32.6205]\) & {\([\)} & \(33.6250]\) & {\([\)} \\
\(33.6808]\) & {\([\)} & \(33.8130]\) & {\([\)} \\
\(33.0571]\) & {\([\)} & \(33.8750]\) & {\([\)} \\
\(33.1819]\) & {\([\)} & \(33.4380]\) & {\([\)} \\
\(33.8680]\) & {\([\)} & \(33.9380]\) & {\([\)} \\
\(33.7432]\) & {\([\)} & \(34.6880]\) & {\([\)} \\
\(33.1195]\) & {\([\)} & \(33.6250]\) & {\([\)} \\
\(31.9344]\) & {\([\)} & \(32.5000]\) & {\([\)} \\
\(30.9988]\) & {\([\)} & \(31.6880]\) & {\([\)} \\
\(30.8117]\) & {\([\)} & \(31.2500]\) & {\([\)} \\
\(28.4416]\) & {\([\)} & \(30.5000]\) & {\([\)} \\
\(30.9365]\) & {\([\)} & \(31.8750]\) & {\([\)} \\
\(29.4395]\) & {\([\)} & \(29.7500]\) & {\([\)} \\
\(28.5663]\) & {\([\)} & \(28.7500]\) & {\([\)} \\
NaN] & {\([\)} & \(N a N]\) & {\([\)} \\
\(29.6890]\) & {\([\)} & \(30.1880]\) & {\([\)} \\
\(29.0029]\) & {\([\)} & \(29.0630]\) & {\([\)} \\
\(27.2565]\) & {\([\)} & \(27.7500]\) & {\([\)} \\
\(27.0694]\) & {\([\)} & \(27.9380]\) & {\([\)} \\
\(25.1983]\) & {\([\)} & \(25.2500]\) & {\([\)} \\
\(24.9488]\) & {\([\)} & \(25.5000]\) & {\([\)} \\
\(25.3230]\) & {\([\)} & \(26]\) & {\([\)} \\
\(24.9488]\) & {\([\)} & \(25.7500]\) & {\([\)} \\
\(25.5725]\) & {\([\)} & \(25.8750]\) & {\([\)} \\
\(24.9488]\) & {\([\)} & \(25.3750]\) & {\([\)} \\
\(25.0735]\) & {\([\)} & \(25.5000]\) & {\([\)} \\
\(26.2586]\) & {\([\)} & \(27]\) & {\([\)} \\
\(26.7576]\) & {\([\)} & \(27.1250]\) & {\([\)} \\
\(25.4477]\) & {\([\)} & \(26]\) & {\([\)} \\
\(26.1338]\) & {\([\)} & \(26.3130]\) & {\([\)} \\
\(26.1962]\) & {\([\)} & \(26.5630]\) & {\([\)} \\
\(25.8843]\) & {\([\)} & \(26.1880]\) & {\([\)} \\
\(24.9488]\) & {\([\)} & \(25.2500]\) & {\([\)} \\
\(24.8864]\) & {\([\)} & \(25.7500]\) & {\([\)} \\
\(25.1983]\) & {\([\)} & \(25.5000]\) & {\([\)} \\
\(25.8220]\) & {\([\)} & \(26]\) & {\([\)} \\
\(25.3750]\) & {\([\)} & \(25.9380]\) & {\([\)}
\end{tabular}
32.12
32.62
32.93
32.31
32.81
33.62
32.50
30.93
30.06
27.75 29.56
27.50
28.12
27.56
26.62
25.75
\(23.87!\)
24.81 25.18
25.12
24.87
24.93
25.75
25.75
25.50
25.81
25.75
25.06
24.50
24.50
24.75
24.93
24.56
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '08-0ct-1998' & [ & \(24.3750]\) & [ & 24.8130] & [ & \(22.6250]\) \\
\hline '09-0ct-1998' & [ & \(23.7500]\) & [ & \(23.8130]\) & [ & \(22.5000]\) \\
\hline '12-Oct-1998' & [ & \(24.7500]\) & [ & \(25.0630]\) & [ & \(24.4380]\) \\
\hline '13-0ct-1998' & [ & \(24.5000]\) & [ & \(25.6250]\) & [ & \(24.1880]\) \\
\hline '14-Oct-1998' & [ & \(25.1250]\) & [ & \(25.6250]\) & [ & \(24.2500]\) \\
\hline '15-0ct-1998' & [ & \(24.4375]\) & [ & \(26]\) & [ & \(24.1880]\) \\
\hline '16-0ct-1998' & [ & \(25.9375]\) & [ & 26] & [ & \(25.1250]\) \\
\hline '19-0ct-1998' & [ & \(25.1250]\) & [ & \(26.0630]\) & [ & \(25.1250]\) \\
\hline '20-0ct-1998' & [ & \(26.3750]\) & [ & \(27.5000]\) & [ & \(26.1880]\) \\
\hline '21-0ct-1998' & [ & \(27.1250]\) & [ & \(27.7500]\) & [ & \(26.9380]\) \\
\hline '22-Oct-1998' & [ & 27.8125] & [ & 28] & [ & \(27.0630]\) \\
\hline '23-0ct-1998' & [ & \(27.8125]\) & [ & \(27.8130]\) & [ & \(27.0630]\) \\
\hline '26-0ct-1998' & [ & \(27.9375]\) & [ & 28] & [ & \(27.5000]\) \\
\hline '27-Oct-1998' & [ & \(27.7500]\) & [ & \(27.7500]\) & [ & \(26.7500]\) \\
\hline '28-0ct-1998' & [ & 27] & [ & \(27.0630]\) & [ & 25.7500 ] \\
\hline '29-0ct-1998' & [ & \(26.7500]\) & [ & \(26.8750]\) & [ & \(26.1250]\) \\
\hline '30-0ct-1998' & [ & \(26.8125]\) & [ & \(27.3130]\) & [ & \(26.5630]\) \\
\hline '02-Nov-1998' & [ & \(27.5000]\) & [ & \(29.1250]\) & [ & \(27.4380]\) \\
\hline '03-Nov-1998' & [ & \(28.9375]\) & [ & \(29.7500]\) & [ & \(28.8750]\) \\
\hline '04-Nov-1998' & [ & 30] & [ & \(30.2500]\) & [ & \(28.5630]\) \\
\hline '05-Nov-1998' & [ & \(28.4375]\) & [ & \(30.1880]\) & [ & \(27.9380]\) \\
\hline '06-Nov-1998' & [ & \(30.0625]\) & [ & \(30.6250]\) & [ & \(29.8130]\) \\
\hline '09-Nov-1998' & [ & \(30.5000]\) & [ & \(30.6250]\) & [ & \(29.3130]\) \\
\hline '10-Nov-1998' & [ & 29.1875] & [ & \(29.3750]\) & [ & \(28.6880]\) \\
\hline '11-Nov-1998' & [ & \(29.0625]\) & [ & \(29.3130]\) & [ & \(28.8130]\) \\
\hline '12-Nov-1998' & [ & \(28.6875]\) & [ & \(28.8130]\) & [ & \(28.1250]\) \\
\hline '13-Nov-1998' & [ & \(28.7500]\) & [ & \(29.3750]\) & [ & \(28.2500]\) \\
\hline '16-Nov-1998' & [ & \(29.3125]\) & [ & \(29.8130]\) & [ & \(28.8750]\) \\
\hline '17-Nov-1998' & [ & \(29.0625]\) & [ & \(29.2500]\) & [ & \(28.5630]\) \\
\hline '18-Nov-1998' & [ & \(28.5625]\) & [ & \(29.1250]\) & [ & \(28.2500]\) \\
\hline '19-Nov-1998' & [ & \(28.4375]\) & [ & \(28.8750]\) & [ & \(28.1250]\) \\
\hline '20-Nov-1998' & [ & \(28.4375]\) & [ & \(28.6880]\) & [ & \(28.1250]\) \\
\hline '23-Nov-1998' & [ & \(28.6875]\) & [ & \(29.5000]\) & [ & \(28.6250]\) \\
\hline '24-Nov-1998' & [ & \(29.6875]\) & [ & \(30.8750]\) & [ & \(29.5000]\) \\
\hline '25-Nov-1998' & [ & \(29.8125]\) & [ & \(30.9380]\) & [ & \(29.6250]\) \\
\hline '26-Nov-1998' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) & [ & NaN ] \\
\hline '27-Nov-1998' & [ & 31] & [ & \(32.1250]\) & [ & \(30.8130]\) \\
\hline
\end{tabular}

'30-Nov-1998'
'01-Dec-1998'
'02-Dec-1998'
'03-Dec-1998'
'04-Dec-1998'
'07-Dec-1998'
'08-Dec-1998'
'09-Dec-1998'
'10-Dec-1998'
'11-Dec-1998'
'14-Dec-1998'
'15-Dec-1998'
'16-Dec-1998'
'17-Dec-1998'
'18-Dec-1998'
'21-Dec-1998
'22-Dec-1998'
'23-Dec-1998'
'24-Dec-1998'
'25-Dec-1998'
'28-Dec-1998'
'29-Dec-1998'
'30-Dec-1998'
'31-Dec-1998'
'01-Jan-1999
'04-Jan-1999'
'05-Jan-1999'
'06-Jan-1999'
'07-Jan-1999'
'08-Jan-1999'
'11-Jan-1999'
'12-Jan-1999'
'13-Jan-1999'
'14-Jan-1999'
'15-Jan-1999'
'19-Jan-1999'

\begin{tabular}{rr}
\(33.1250]\) & {\([\)} \\
\(32]\) & {\([\)} \\
\(31.4380]\) & {\([\)} \\
\(31.9380]\) & {\([\)} \\
\(31.7500]\) & {\([\)} \\
\(31.9380]\) & {\([\)} \\
\(32.3750]\) & {\([\)} \\
\(33.7500]\) & {\([\)} \\
\(33.6880]\) & {\([\)} \\
\(32.0630]\) & {\([\)} \\
\(31.5000]\) & {\([\)} \\
\(31.3750]\) & {\([\)} \\
\(31.4380]\) & {\([\)} \\
\(31.1880]\) & {\([\)} \\
\(30.9380]\) & {\([\)} \\
\(31.3750]\) & {\([\)} \\
\(32.6880]\) & {\([\)} \\
\(31]\) & {\([\)} \\
\(31]\) & {\([\)} \\
NaN] & {\([\)} \\
\(31]\) & {\([\)} \\
\(30.6880]\) & {\([\)} \\
\(30.5000]\) & {\([\)} \\
\(30.1250]\) & {\([\)} \\
\(N a N]\) & {\([\)} \\
\(30.6880]\) & {\([\)} \\
\(30.6250]\) & {\([\)} \\
\(31]\) & {\([\)} \\
\(31.7500]\) & {\([\)} \\
\(32.8130]\) & {\([\)} \\
\(35.5000]\) & {\([\)} \\
\(38.6880]\) & {\([\)} \\
\(37.3750]\) & {\([\)} \\
\(37.2500]\) & {\([\)} \\
\(36.6880]\) & {\([\)} \\
NaN] & {\([\)} \\
\(36.6250]\) & {\([\)}
\end{tabular}
31.56
31.12
30.68
30.81
31.25
30.87
31.31
32.06
32.25
31.43
30.12
30.68
30.56
30.75
30.06
30.31
29.93
30.18
30.50
30.25
30.25
29.75
29.56
29.25
29.68
29.75
31.81
33.06
37.18
34.37
35.81
35.62
35.81
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{22} \\
\hline \multicolumn{2}{|l|}{25-Jan-1999'} \\
\hline & -Ja \\
\hline \multicolumn{2}{|l|}{-Jan-1999'} \\
\hline \multicolumn{2}{|l|}{'28-Jan-1999'} \\
\hline & '9- \({ }^{\text {2 }}\) \\
\hline \multicolumn{2}{|l|}{'01-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{'02-Feb-1999'} \\
\hline & 03-Feb-1999 \\
\hline \multicolumn{2}{|l|}{'04-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{'05-Feb-1999'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'09-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{'10-Feb-1999'} \\
\hline & 11-Feb-1999 \\
\hline \multicolumn{2}{|l|}{'12-Feb-1999'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{16-Feb-1999'} \\
\hline & 17-Feb-1999 \\
\hline \multicolumn{2}{|l|}{'18-Feb-1999'} \\
\hline & Feb-1999 \\
\hline \multicolumn{2}{|l|}{'22-Feb-1999'} \\
\hline & Feb \\
\hline \multicolumn{2}{|l|}{'24-Feb-1999'} \\
\hline & eb \\
\hline \multicolumn{2}{|l|}{'26-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{01-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'02-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{03-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'04-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{05-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'08-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{09-Mar-1999'} \\
\hline & Mar-1999 \\
\hline & \\
\hline
\end{tabular}
'20-Jan-1999'
'21-Jan-1999'
'22-Jan-1999'
'25-Jan-1999'
'26-Jan-1999'
'27-Jan-1999'
'28-Jan-1999'
'29-Jan-1999'
'01-Feb-1999'
'02-Feb-1999'
'03-Feb-1999'
'04-Feb-1999'
'05-Feb-1999'
'08-Feb-1999'
09-Feb-1999'
10-Feb-1999'
'11-Feb-1999'
'12-Feb-1999'
'15-Feb-1999'
'16-Feb-1999'
'17-Feb-1999'
18-Feb-1999'
19-Feb-1999'
22-Feb-1999'
23-Feb-1999'
'24-Feb-1999'
25-Feb-1999'
'26-Feb-1999'
'01-Mar-1999'
'02-Mar-1999'
'03-Mar-1999'
'04-Mar-1999'
-Mar-1999
08-Mar-1999
09-Mar-1999'
'11-Mar-1999'
\begin{tabular}{rrrr}
\(36.8125]\) & {\([\)} & \(36.9380]\) & {\([\)} \\
\(35.9375]\) & {\([\)} & \(36]\) & {\([\)} \\
\(34.1250]\) & {\([\)} & \(34.5630]\) & {\([\)} \\
\(34.1875]\) & {\([\)} & \(35]\) & {\([\)} \\
\(34.9375]\) & {\([\)} & \(35.3750]\) & {\([\)} \\
\(34.2500]\) & {\([\)} & \(34.3750]\) & {\([\)} \\
\(33.9375]\) & {\([\)} & \(34.3750]\) & {\([\)} \\
\(33.6875]\) & {\([\)} & \(34]\) & {\([\)} \\
\(33.8125]\) & {\([\)} & \(33.9380]\) & {\([\)} \\
\(33.5000]\) & {\([\)} & \(33.6880]\) & {\([\)} \\
\(33.3750]\) & {\([\)} & \(33.8750]\) & {\([\)} \\
\(33.6250]\) & {\([\)} & \(34.0630]\) & {\([\)} \\
\(33.8750]\) & {\([\)} & \(34.6880]\) & {\([\)} \\
\(34.2500]\) & {\([\)} & \(34.2500]\) & {\([\)} \\
\(34.1875]\) & {\([\)} & \(34.6250]\) & {\([\)} \\
\(33.6250]\) & {\([\)} & \(34.1880]\) & {\([\)} \\
\(34]\) & {\([\)} & \(35.5000]\) & {\([\)} \\
\(35.4375]\) & {\([\)} & \(35.5630]\) & {\([\)} \\
NaN] & {\([\)} & \(\mathrm{NaN}]\) & {\([\)} \\
\(35.9375]\) & {\([\)} & \(36]\) & {\([\)} \\
\(34.7500]\) & {\([\)} & \(35.2500]\) & {\([\)} \\
\(34.6875]\) & {\([\)} & \(34.8750]\) & {\([\)} \\
\(34.2500]\) & {\([\)} & \(34.5000]\) & {\([\)} \\
\(34.1250]\) & {\([\)} & \(35.1250]\) & {\([\)} \\
\(35.1875]\) & {\([\)} & \(35.5000]\) & {\([\)} \\
\(35]\) & {\([\)} & \(36]\) & {\([\)} \\
\(35]\) & {\([\)} & \(35.2500]\) & {\([\)} \\
\(34.6250]\) & {\([\)} & \(35.6880]\) & {\([\)} \\
\(35.2500]\) & {\([\)} & \(35.2500]\) & {\([\)} \\
\(35.1875]\) & {\([\)} & \(35.1880]\) & {\([\)} \\
\(34.5625]\) & {\([\)} & \(35.1250]\) & {\([\)} \\
\(34.6250]\) & {\([\)} & \(35.3130]\) & {\([\)} \\
\(35.8125]\) & {\([\)} & \(36]\) & {\([\)} \\
\(35.9375]\) & {\([\)} & \(36.6880]\) & {\([\)} \\
\(35.7500]\) & {\([\)} & \(35.8130]\) & {\([\)} \\
\(34.6875]\) & {\([\)} & \(35.0630]\) & {\([\)} \\
\(34.1250]\) & {\([\)} & \(34.9380]\) & {\([\)}
\end{tabular}
\(35.8750]\) \(34.1250]\) 34] \(34.0630]\) \(34.1880]\) 32.6880 ] \(33.3130]\) 33] \(33.2500]\) \(32.8130]\) \(33.2500]\) 33] \(33.5630]\) \(33.8130]\) 33.4380 ] 33.3130] \(33.8130]\) \(34.5630]\) NaN ] \(34.6250]\) \(34.5630]\) 34 .2500] 34] \(34.1250]\) \(34.8750]\) 34.9380 ] \(34.0630]\) \(34.0630]\) \(34.5630]\) \(34.0630]\) \(34.3750]\) \(34.5630]\) \(35.5630]\) 35.9380 ] \(34.3130]\) 34.3750 ] \(34.1250]\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\[
\text { ' } 15 \text {-Mar-1999 ' }
\]} \\
\hline \multicolumn{2}{|l|}{ar} \\
\hline \multicolumn{2}{|l|}{7} \\
\hline \multicolumn{2}{|l|}{18-Mar-1999} \\
\hline \multicolumn{2}{|l|}{19-Mar-1999} \\
\hline \multicolumn{2}{|l|}{'22-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'23-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{' 24-Mar-1999} \\
\hline \multicolumn{2}{|l|}{'25-Mar-1999'} \\
\hline & 6-Mar-1999 \\
\hline & \\
\hline
\end{tabular}

Column 5
'CLOSE: (782)
\begin{tabular}{cr}
{\(\left[\begin{array}{l}\text { CLOSE }\end{array}\right.\)} \\
{\([\)} & \(21.2920]\) \\
{\([\)} & \(21.6250]\) \\
{\([\)} & \(21.8330]\) \\
{\([\)} & \(21.8750]\) \\
{\([\)} & \(21.6670]\) \\
{\([\)} & \(21.4580]\) \\
{\([\)} & \(21.2080]\) \\
{\([\)} & \(20.2920]\) \\
{\([\)} & \(20.1250]\) \\
{\([\)} & \(20.4580]\) \\
{\([\)} & \(20.6250]\) \\
{\([\)} & \(20.7500]\) \\
{\([\)} & \(20.7920]\) \\
{\([\)} & \(20.9580]\) \\
{\([\)} & \(21.0420]\) \\
{\([\)} & \(20.8750]\) \\
{\([\)} & \(20.5830]\) \\
{\([\)} & \(20.2080]\) \\
{\([\)} & \(20.4170]\) \\
{\([\)} & \(20.6250]\)
\end{tabular}
\begin{tabular}{llrl}
\(35.6250]\) & {\([\)} & \(36.4380]\) & {\([\)} \\
\(36.1250]\) & {\([\)} & \(36.5630]\) & {\([\)} \\
\(35.7500]\) & {\([\)} & \(36.4380]\) & {\([\)} \\
\(35.2500]\) & {\([\)} & \(35.5630]\) & {\([\)} \\
\(34.8125]\) & {\([\)} & \(35.6880]\) & {\([\)} \\
\(35.7500]\) & {\([\)} & \(35.8130]\) & {\([\)} \\
\(34.9375]\) & {\([\)} & \(35]\) & {\([\)} \\
\(34.1250]\) & {\([\)} & \(34.1880]\) & {\([\)} \\
\(33.0625]\) & {\([\)} & \(33.2500]\) & {\([\)} \\
\(33.5000]\) & {\([\)} & \(33.6250]\) & {\([\)} \\
\(33.3125]\) & {\([\)} & \(33.3750]\) & {\([\)} \\
\(33.0625]\) & {\([\)} & \(33.1880]\) & {\([\)}
\end{tabular}
35.62
35.12
35.06
34.50
34.68
34.87
34.25
32.813
32.62
32.87
32.75
32.75

\section*{hist}

\begin{tabular}{rr}
{\([\)} & \(20.3750]\) \\
{\([\)} & \(20.5830]\) \\
{\([\)} & \(21]\) \\
{\([\)} & \(20.7500]\) \\
{\([\)} & \(21.0830]\) \\
{\([\)} & \(20.7920]\) \\
{\([\)} & \(21.0420]\) \\
{\([\)} & \(20.9580]\) \\
{\([\)} & \(20.7500]\) \\
{\([\)} & \(20.4170]\) \\
{\([\)} & \(20.3330]\) \\
{\([\)} & \(\mathrm{NaN}]\) \\
{\([\)} & \(19.7920]\) \\
{\([\)} & \(19.6670]\) \\
{\([\)} & \(19.1670]\) \\
{\([\)} & \(19.3750]\) \\
{\([\)} & \(18.7080]\) \\
{\([\)} & \(18.9580]\) \\
{\([\)} & \(18.2920]\) \\
{\([\)} & \(18.6670]\) \\
{\([\)} & \(18.6670]\) \\
{\([\)} & \(19.0830]\) \\
{\([\)} & \(19.1250]\) \\
{\([\)} & \(18.6670]\) \\
{\([\)} & \(18.5000]\) \\
{\([\)} & \(18.1250]\) \\
{\([\)} & \(18.1250]\) \\
{\([\)} & \(18.0420]\) \\
{\([\)} & \(17.7920]\) \\
{\([\)} & \(18.4170]\) \\
{\([\)} & \(18.5420]\) \\
{\([\)} & \(19.1250]\) \\
{\([\)} & \(19.3330]\) \\
{\([\)} & \(19.4580]\) \\
{\([\)} & \(19.6670]\) \\
{\([\)} & \(19.4580]\) \\
{\([\)} & \(19.1670]\)
\end{tabular}

\section*{hist}
\begin{tabular}{rr}
{\([\)} & \(19.0420]\) \\
{\([\)} & \(19.5000]\) \\
{\([\)} & \(19.3330]\) \\
{\([\)} & \(19.3750]\) \\
{\([\)} & \(19.2920]\) \\
{\([\)} & \(19.3750]\) \\
{\([\)} & \(19.3330]\) \\
{\([\)} & \(19.0830]\) \\
{\([\)} & \(19.2920]\) \\
{\([\)} & \(19.3750]\) \\
{\([\)} & \(19.4580]\) \\
{\([\)} & \(19.7920]\) \\
{\([\)} & \(19.4170]\) \\
{\([\)} & \(19.2500]\) \\
{\([\)} & \(19]\) \\
{\([\)} & NaN] \\
{\([\)} & \(19]\) \\
{\([\)} & \(18.9170]\) \\
{\([\)} & \(18.5420]\) \\
{\([\)} & \(19.4170]\) \\
{\([\)} & \(19.2920]\) \\
{\([\)} & \(19.5420]\) \\
{\([\)} & \(20.1670]\) \\
{\([\)} & \(20.2500]\) \\
{\([\)} & \(20.0830]\) \\
{\([\)} & \(20.3750]\) \\
{\([\)} & \(20.4170]\) \\
{\([\)} & \(21.1670]\) \\
{\([\)} & \(21.0420]\) \\
{\([\)} & \(21.2080]\) \\
{\([\)} & \(20.9170]\) \\
{\([\)} & \(20.8750]\) \\
{\([\)} & \(20.6670]\) \\
{\([\)} & \(21.0830]\) \\
{\([\)} & \(21]\)
\end{tabular}
\begin{tabular}{ll}
{\([\)} & \(20.8330]\) \\
{\([\)} & \(20.9580]\) \\
{\([\)} & \(21.0420]\) \\
{\([\)} & \(21.3750]\) \\
{\([\)} & \(21.3750]\) \\
{\([\)} & \(21.2080]\) \\
{\([\)} & \(21.1670]\) \\
{\([\)} & \(21.2080]\) \\
{\([\)} & \(21.3330]\) \\
{\([\)} & \(21.3750]\) \\
{\([\)} & \(21.4580]\) \\
{\([\)} & \(21.8330]\) \\
{\([\)} & \(21.6250]\) \\
{\([\)} & \(21.6670]\) \\
{\([\)} & \(21.8750]\) \\
{\([\)} & \(22.2080]\) \\
{\([\)} & \(22.0420]\) \\
{\([\)} & \(21.7920]\) \\
{\([\)} & \(22.0830]\) \\
{\([\)} & \(22.1250]\) \\
{\([\)} & \(21.9170]\) \\
{\([\)} & \(21.8750]\) \\
{\([\)} & \(21.9580]\) \\
{\([\)} & \(21.8330]\) \\
{\([\)} & \(22.2920]\) \\
{\([\)} & \(22.5420]\) \\
{\([\)} & \(22.5830]\) \\
{\([\)} & \(223]\) \\
{\([\)} & \(22.8330]\) \\
{\([\)} & \(23.4580]\) \\
{\([\)} & \(23.6250]\) \\
{\([\)} & \(23.5420]\) \\
{\([\)} & \(23.5420]\) \\
{\([\)} & \(24.0830]\) \\
{\([\)} & \(23.7920]\) \\
{\([\)} & \(23.6670]\) \\
{\([\)} & \(23.9170]\)
\end{tabular}

\section*{hist}
\begin{tabular}{|c|}
\hline \(24.0830]\) \\
\hline \(24.0420]\) \\
\hline \(24.5000]\) \\
\hline \(25.3330]\) \\
\hline \(24.6250]\) \\
\hline NaN ] \\
\hline \(24.6250]\) \\
\hline \(24.6250]\) \\
\hline \(23.9580]\) \\
\hline \(24]\) \\
\hline \(23.9580]\) \\
\hline \(23.8330]\) \\
\hline \(24.3750]\) \\
\hline \(24.4170]\) \\
\hline \(24.0420]\) \\
\hline \(23.4170]\) \\
\hline \(23.4170]\) \\
\hline \(23.1250]\) \\
\hline \(23.6250]\) \\
\hline \(23.8330]\) \\
\hline \(24.1250]\) \\
\hline \(24.1250]\) \\
\hline \(24.0420]\) \\
\hline \(23.8330]\) \\
\hline NaN ] \\
\hline \(23.7920]\) \\
\hline \(23.7500]\) \\
\hline \(23.3330]\) \\
\hline \(23.2500]\) \\
\hline NaN ] \\
\hline \(22.4580]\) \\
\hline \(23.0830]\) \\
\hline 23] \\
\hline \(22.9580]\) \\
\hline \(22.6250]\) \\
\hline \(22.5000]\) \\
\hline \(22.6250]\) \\
\hline
\end{tabular}
\begin{tabular}{rr}
{\([\)} & \(22.6670]\) \\
{\([\)} & \(23.0830]\) \\
{\([\)} & \(23.0420]\) \\
{\([\)} & \(22.9580]\) \\
{\([\)} & \(23.3330]\) \\
{\([\)} & \(23.5000]\) \\
{\([\)} & \(23.2500]\) \\
{\([\)} & \(23.5830]\) \\
{\([\)} & \(23.4580]\) \\
{\([\)} & \(23.7500]\) \\
{\([\)} & \(23.8750]\) \\
{\([\)} & \(24.2080]\) \\
{\([\)} & \(24.5830]\) \\
{\([\)} & \(24.1250]\) \\
{\([\)} & \(24.2920]\) \\
{\([\)} & \(24.2920]\) \\
{\([\)} & \(24.2080]\) \\
{\([\)} & \(24.2500]\) \\
{\([\)} & \(24.6670]\) \\
{\([\)} & \(25]\) \\
{\([\)} & \(25.2080]\) \\
{\([\)} & \(25]\) \\
{\([\)} & \(25.5420]\) \\
{\([\)} & \(25.7920]\) \\
{\([\)} & \(26.0420]\) \\
{\([\)} & \(25 a N]\) \\
{\([\)} & \(25.8330]\) \\
{\([\)} & \(25.3750]\) \\
{\([\)} & \(24.9170]\) \\
{\([\)} & \(25.1250]\) \\
{\([\)} & \(25.2080]\) \\
{\([\)} & \(25.3750]\) \\
{\([\)} & \(25.1670]\) \\
{\([\)} & \(25.2920]\) \\
{\([\)} & \(24.7500]\) \\
{\([\)} & \(24.4580]\) \\
{\([\)} & \(24.2500]\)
\end{tabular}

\section*{hist}
\begin{tabular}{rr}
{\([\)} & \(24.5000]\) \\
{\([\)} & \(25.0420]\) \\
{\([\)} & \(25.3330]\) \\
{\([\)} & \(25.5830]\) \\
{\([\)} & \(25.7080]\) \\
{\([\)} & \(25.1250]\) \\
{\([\)} & \(24.4170]\) \\
{\([\)} & \(24.9170]\) \\
{\([\)} & \(25.3330]\) \\
{\([\)} & \(25.1670]\) \\
{\([\)} & \(24.8330]\) \\
{\([\)} & \(24.6670]\) \\
{\([\)} & \(25]\) \\
{\([\)} & \(24.9170]\) \\
{\([\)} & \(25.0830]\) \\
{\([\)} & \(25]\) \\
{\([\)} & \(24.0 N]\) \\
{\([\)} & \(24.2920]\) \\
{\([\)} & \(24.1250]\) \\
{\([\)} & \(24.1250]\) \\
{\([\)} & \(24.2080]\) \\
{\([\)} & \(24.5830]\) \\
{\([\)} & \(24.5830]\) \\
{\([\)} & \(24.6250]\) \\
{\([\)} & \(24.5830]\) \\
{\([\)} & \(24.6670]\) \\
{\([\)} & \(24.1250]\) \\
{\([\)} & \(23.7080]\) \\
{\([\)} & \(24.6250]\) \\
{\([\)} & \(25.2080]\) \\
{\([\)} & \(25.2500]\) \\
{\([\)} & \(25.5830]\) \\
{\([\)} & \(25.6250]\) \\
{\([\)} & \(26.0830]\) \\
{\([\)} & \(26.3750]\) \\
{\([\)} & \(26.0830]\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(25.7920]\) \\
\hline [ & \(25.8750]\) \\
\hline [ & \(26.9170]\) \\
\hline [ & \(27.2500]\) \\
\hline [ & \(27]\) \\
\hline [ & \(26.7920]\) \\
\hline [ & \(27.3750]\) \\
\hline [ & \(27.4170]\) \\
\hline [ & \(26.8330]\) \\
\hline [ & \(27.0830]\) \\
\hline [ & \(27.4170]\) \\
\hline [ & \(28.1670]\) \\
\hline [ & \(27.8750]\) \\
\hline [ & \(27.8750]\) \\
\hline [ & \(27.6250]\) \\
\hline [ & \(26.9580]\) \\
\hline [ & \(27.7500]\) \\
\hline [ & \(27.8330]\) \\
\hline [ & \(27.3750]\) \\
\hline [ & \(27.3750]\) \\
\hline [ & \(27.7500]\) \\
\hline [ & NaN] \\
\hline [ & \(27.9170]\) \\
\hline [ & \(27.9580]\) \\
\hline [ & \(27.6250]\) \\
\hline [ & \(27.2920]\) \\
\hline [ & \(26.9580]\) \\
\hline [ & \(26.8750]\) \\
\hline [ & \(26.6250]\) \\
\hline [ & \(26.9170]\) \\
\hline & \(27.1250]\) \\
\hline [ & \(27]\) \\
\hline [ & \(27.2920]\) \\
\hline [ & \(27.1250]\) \\
\hline [ & \(27.2080]\) \\
\hline [ & \(27.8330]\) \\
\hline [ & \(27.9580]\) \\
\hline
\end{tabular}

\section*{hist}
\begin{tabular}{|c|}
\hline 28] \\
\hline \(27.5000]\) \\
\hline \(27.7920]\) \\
\hline \(27.4170]\) \\
\hline \(26.8750]\) \\
\hline \(27.5000]\) \\
\hline \(27.3330]\) \\
\hline \(27.1880]\) \\
\hline \(26.6460]\) \\
\hline \(26.7500]\) \\
\hline \(26.1880]\) \\
\hline \(25.6250]\) \\
\hline \(25.7500]\) \\
\hline NaN ] \\
\hline \(25.3330]\) \\
\hline \(26.0210]\) \\
\hline \(25.6880]\) \\
\hline \(25.6250]\) \\
\hline \(25.4790]\) \\
\hline \(25.7920]\) \\
\hline \(25.9790]\) \\
\hline \(26.2920]\) \\
\hline \(25.9170]\) \\
\hline \(25.2920]\) \\
\hline \(25.0630]\) \\
\hline \(25.8750]\) \\
\hline \(25.9790]\) \\
\hline \(26.4380]\) \\
\hline \(26.3330]\) \\
\hline \(26.5420]\) \\
\hline \(26.7080]\) \\
\hline \(26.9790]\) \\
\hline \(26.9380]\) \\
\hline \(26.8540]\) \\
\hline \(26.9790]\) \\
\hline \(26.6460]\) \\
\hline \(26.9380]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(26.3750]\) \\
\hline [ & \(26.3960]\) \\
\hline [ & \(26.5420]\) \\
\hline [ & \(26.1250]\) \\
\hline [ & \(26.3330]\) \\
\hline [ & \(26.2920]\) \\
\hline [ & \(25.5420]\) \\
\hline [ & \(26.2080]\) \\
\hline [ & \(26.5630]\) \\
\hline [ & \(26.7920]\) \\
\hline [ & \(26.2920]\) \\
\hline [ & \(26.0420]\) \\
\hline [ & \(26.1040]\) \\
\hline [ & \(25.8330]\) \\
\hline [ & \(26.1670]\) \\
\hline [ & \(25.9170]\) \\
\hline [ & 25.6040 ] \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(26.3330]\) \\
\hline [ & \(26.5210]\) \\
\hline [ & \(25.8960]\) \\
\hline [ & \(26.0630]\) \\
\hline [ & \(25.9580]\) \\
\hline [ & \(26.1670]\) \\
\hline [ & \(25.9170]\) \\
\hline [ & \(25.2500]\) \\
\hline [ & \(25.7080]\) \\
\hline [ & \(25.7290]\) \\
\hline [ & \(26.3540]\) \\
\hline [ & \(26.2920]\) \\
\hline [ & \(26.4380]\) \\
\hline [ & \(26.6460]\) \\
\hline [ & \(26.5210]\) \\
\hline [ & \(26.3330]\) \\
\hline [ & \(26.2290]\) \\
\hline [ & \(26.5420]\) \\
\hline [ & \(26.5000]\) \\
\hline
\end{tabular}

\section*{hist}
\begin{tabular}{|c|c|}
\hline [ & \(26.6670]\) \\
\hline [ & \(26.8750]\) \\
\hline [ & \(27.3330]\) \\
\hline [ & \(27.9380]\) \\
\hline [ & \(28.1250]\) \\
\hline [ & 27.6670 ] \\
\hline [ & \(28.3960]\) \\
\hline [ & \(28]\) \\
\hline [ & \(28.0630]\) \\
\hline [ & \(27.8960]\) \\
\hline [ & \(28.2080]\) \\
\hline [ & \(28.8130]\) \\
\hline [ & \(28.9580]\) \\
\hline [ & \(28.3130]\) \\
\hline [ & \(27.5420]\) \\
\hline [ & \(27.8540]\) \\
\hline [ & \(27.8960]\) \\
\hline [ & \(27.6880]\) \\
\hline [ & \(27.4380]\) \\
\hline [ & \(27.4580]\) \\
\hline [ & \(25.9170]\) \\
\hline [ & 27.4380 ] \\
\hline [ & 27.6460 ] \\
\hline [ & \(26.8750]\) \\
\hline [ & \(27.4580]\) \\
\hline [ & 28.5000] \\
\hline [ & \(28.7500]\) \\
\hline [ & \(28.3750]\) \\
\hline [ & 28.7920] \\
\hline [ & \(28.7710]\) \\
\hline [ & 28.4790 ] \\
\hline [ & \(28.6670]\) \\
\hline [ & 27.6880 ] \\
\hline [ & \(28.2290]\) \\
\hline [ & \(28.8960]\) \\
\hline [ & \(29.6670]\) \\
\hline [ & \(29.7500]\) \\
\hline
\end{tabular}
\begin{tabular}{rr}
{\([\)} & \(30.4580]\) \\
{\([\)} & \(30.2290]\) \\
{\([\)} & \(31.5830]\) \\
{\([\)} & \(31.2080]\) \\
{\([\)} & \(31.2080]\) \\
{\([\)} & \(31.5000]\) \\
{\([\)} & \(\mathrm{NaN}]\) \\
{\([\)} & \(31.6460]\) \\
{\([\)} & \(32.5420]\) \\
{\([\)} & \(32.1880]\) \\
{\([\)} & \(31.7290]\) \\
{\([\)} & \(31.3830]\) \\
{\([\)} & \(31.4580]\) \\
{\([\)} & \(31.4380]\) \\
{\([\)} & \(31.2710]\) \\
{\([\)} & \(30.9380]\) \\
{\([\)} & \(31.2080]\) \\
{\([\)} & \(32.3750]\) \\
{\([\)} & \(32]\) \\
{\([\)} & \(32.2710]\) \\
{\([\)} & \(32.4380]\) \\
{\([\)} & \(31.9380]\) \\
{\([\)} & \(32.4580]\) \\
{\([\)} & \(32.5000]\) \\
{\([\)} & \(31.6670]\) \\
{\([\)} & NaN]
\end{tabular}

\section*{hist}

32]
[ 31.4790]
31.6670 ]
32.1670 ]
\(31.8960]\)
\(32.0420]\)
\(\mathrm{NaN}]\)
\(33.1250]\)
\(32.9580]\)
\(32.1670]\)
32.8750 ]
32.4580 ]
34.2500 ]

35]
35.4170 ]
35.6250 ]
\(36.2710]\)
36]
\(36.1040]\)
36.1040 ]
36.1880 ]
35.8960 ]
36.1670 ]
\(36.9380]\)
\(36.7080]\)
\(37.1460]\)
\(\mathrm{NaN}]\)
37.6670 ]
\(38.2920]\)
38.0630 ]
38.1250 ]
38.0210 ]
\(37.3130]\)
\(37.0830]\)
36.6670 ]
\(37.3130]\)

18-902
\begin{tabular}{|c|c|}
\hline [ & \(36.6670]\) \\
\hline [ & \(35.6250]\) \\
\hline [ & \(35.0630]\) \\
\hline [ & \(35.2080]\) \\
\hline [ & \(35.2710]\) \\
\hline [ & \(35.2920]\) \\
\hline [ & \(34.9380]\) \\
\hline [ & \(35.3130]\) \\
\hline [ & \(35.3330]\) \\
\hline [ & \(36.5420]\) \\
\hline [ & \(35.8960]\) \\
\hline [ & \(35.7710]\) \\
\hline [ & \(35.4380]\) \\
\hline [ & 35.6670 ] \\
\hline [ & \(34.3330]\) \\
\hline [ & \(35.6460]\) \\
\hline [ & \(35.6250]\) \\
\hline [ & \(35.8960]\) \\
\hline [ & \(35.7500]\) \\
\hline [ & \(35.1880]\) \\
\hline [ & \(35.5830]\) \\
\hline [ & \(35.3330]\) \\
\hline [ & \(36.2920]\) \\
\hline [ & \(36.9790]\) \\
\hline [ & \(36.1250]\) \\
\hline [ & \(35.9580]\) \\
\hline [ & 35.6670 ] \\
\hline [ & \(36.3540]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(36.7500]\) \\
\hline [ & \(37.7290]\) \\
\hline [ & \(37.8540]\) \\
\hline [ & \(37.3330]\) \\
\hline [ & \(37.7920]\) \\
\hline [ & \(38.4580]\) \\
\hline [ & \(38.9170]\) \\
\hline [ & 40.6670 ] \\
\hline
\end{tabular}

\section*{hist}
\begin{tabular}{|c|c|}
\hline & \(41.2290]\) \\
\hline [ & 40.7080] \\
\hline [ & \(40.3130]\) \\
\hline [ & 41.1670 ] \\
\hline [ & \(41.2920]\) \\
\hline [ & \(41.5210]\) \\
\hline [ & \(41.8960]\) \\
\hline [ & \(42.3750]\) \\
\hline [ & \(42.2290]\) \\
\hline [ & \(41.3960]\) \\
\hline [ & \(39.7290]\) \\
\hline [ & \(39.8330]\) \\
\hline [ & \(40.2920]\) \\
\hline [ & 39.6040 ] \\
\hline [ & \(39.5000]\) \\
\hline [ & 38.6880 ] \\
\hline [ & \(36.8750]\) \\
\hline [ & \(36.5630]\) \\
\hline [ & \(36.9790]\) \\
\hline [ & \(38.2080]\) \\
\hline [ & \(38.6460]\) \\
\hline [ & \(38.7710]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(37.2500]\) \\
\hline [ & 38.1040 ] \\
\hline [ & \(37.7920]\) \\
\hline [ & 37.7500 ] \\
\hline [ & \(36.9380]\) \\
\hline [ & \(36.7080]\) \\
\hline [ & \(36.5210]\) \\
\hline [ & \(36.5210]\) \\
\hline [ & \(38.2290]\) \\
\hline [ & \(38.6250]\) \\
\hline [ & \(38.8330]\) \\
\hline & 39.4380 ] \\
\hline & \(38.7290]\) \\
\hline & \(38.3540]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & 37.3960 ] \\
\hline [ & \(37.6250]\) \\
\hline [ & 38.1040 ] \\
\hline [ & \(37.3330]\) \\
\hline [ & \(35.8540]\) \\
\hline [ & \(36.2500]\) \\
\hline [ & \(36.5830]\) \\
\hline [ & 37.5630 ] \\
\hline [ & \(37.5000]\) \\
\hline [ & 36.8330 ] \\
\hline [ & \(37.7290]\) \\
\hline [ & \(35.0210]\) \\
\hline [ & 35.4170 ] \\
\hline [ & 35.4790 ] \\
\hline [ & NaN ] \\
\hline [ & \(35.2710]\) \\
\hline [ & \(35.5210]\) \\
\hline [ & 36.1040 ] \\
\hline [ & 37] \\
\hline [ & \(38.1250]\) \\
\hline [ & \(39.3750]\) \\
\hline [ & \(39.8750]\) \\
\hline [ & \(39.3750]\) \\
\hline [ & \(39.3130]\) \\
\hline [ & \(39.3750]\) \\
\hline [ & \(38.5630]\) \\
\hline [ & 37.7500 ] \\
\hline [ & 37.1880 ] \\
\hline [ & \(36.2500]\) \\
\hline [ & \(36.8130]\) \\
\hline [ & \(36.6250]\) \\
\hline [ & 35.3750 ] \\
\hline [ & 35.3750 ] \\
\hline [ & \(35.3130]\) \\
\hline [ & 34.4380 ] \\
\hline [ & 34.6880 ] \\
\hline [ & \(32.8130]\) \\
\hline
\end{tabular}

\section*{hist}
\begin{tabular}{|c|c|}
\hline [ & \(33.5630]\) \\
\hline [ & \(33.3130]\) \\
\hline [ & \(33.3750]\) \\
\hline [ & \(32.8750]\) \\
\hline [ & \(32.1250]\) \\
\hline [ & \(32.4380]\) \\
\hline [ & \(31.8130]\) \\
\hline [ & \(31.7500]\) \\
\hline [ & \(32.1880]\) \\
\hline [ & \(33.5000]\) \\
\hline [ & \(33.1250]\) \\
\hline [ & \(33.6250]\) \\
\hline [ & \(33.2500]\) \\
\hline [ & \(33.3750]\) \\
\hline [ & \(34.0630]\) \\
\hline [ & 33] \\
\hline [ & \(31.7500]\) \\
\hline [ & \(30.6250]\) \\
\hline [ & \(27.4380]\) \\
\hline [ & \(30.3750]\) \\
\hline [ & \(29.8750]\) \\
\hline [ & \(28.3130]\) \\
\hline [ & \(28.2500]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(29.1250]\) \\
\hline [ & \(27.8130]\) \\
\hline [ & \(27.0630]\) \\
\hline [ & \(25.8130]\) \\
\hline [ & \(24.4380]\) \\
\hline [ & \(25.5000]\) \\
\hline [ & \(25.7500]\) \\
\hline [ & \(25.6880]\) \\
\hline [ & \(25.5630]\) \\
\hline [ & \(25.1250]\) \\
\hline [ & \(25.1880]\) \\
\hline [ & \(26.8130]\) \\
\hline [ & \(25.8750]\) \\
\hline
\end{tabular}
\begin{tabular}{rr}
{\([\)} & \(25.6250]\) \\
{\([\)} & \(26.2500]\) \\
{\([\)} & \(26]\) \\
{\([\)} & \(25.3750]\) \\
{\([\)} & \(24.9380]\) \\
{\([\)} & \(25.2500]\) \\
{\([\)} & \(25.0630]\) \\
{\([\)} & \(25.3750]\) \\
{\([\)} & \(24.9380]\) \\
{\([\)} & \(23.5000]\) \\
{\([\)} & \(23.6880]\) \\
{\([\)} & \(24.6250]\) \\
{\([\)} & \(25.5000]\) \\
{\([\)} & \(24.3750]\) \\
{\([\)} & \(25.8750]\) \\
{\([\)} & \(25.5000]\) \\
{\([\)} & \(26.0630]\) \\
{\([\)} & \(27.0630]\) \\
{\([\)} & \(27.5630]\) \\
{\([\)} & \(28]\) \\
{\([\)} & \(27.7500]\) \\
{\([\)} & \(27.9380]\) \\
{\([\)} & \(26.8130]\) \\
{\([\)} & \(26.4380]\) \\
{\([\)} & \(26.6250]\) \\
{\([\)} & \(26.9380]\) \\
{\([\)} & \(28.8130]\) \\
{\([\)} & \(29.5630]\) \\
{\([\)} & \(28.6250]\) \\
{\([\)} & \(30.1880]\) \\
{\([\)} & \(30.2500]\) \\
{\([\)} & \(29.5630]\) \\
{\([\)} & \(28.8750]\) \\
{\([\)} & \(28.8750]\) \\
{\([\)} & \(28.5630]\) \\
{\([\)} & \(29.1250]\) \\
{\([\)} & \(29.0630]\)
\end{tabular}

\section*{hist}
\begin{tabular}{rr}
{\([\)} & \(29.0630]\) \\
{\([\)} & \(29]\) \\
{\([\)} & \(28.3130]\) \\
{\([\)} & \(28.5000]\) \\
{\([\)} & \(29.5000]\) \\
{\([\)} & \(29.8130]\) \\
{\([\)} & \(30.9380]\) \\
{\([\)} & \(31.8750]\) \\
{\([\)} & \(32.1880]\) \\
{\([\)} & \(31.5000]\) \\
{\([\)} & \(31.1880]\) \\
{\([\)} & \(30.8750]\) \\
{\([\)} & \(31.3750]\) \\
{\([\)} & \(31.1250]\) \\
{\([\)} & \(32]\) \\
{\([\)} & \(33.5630]\) \\
{\([\)} & \(32.4380]\) \\
{\([\)} & \(32]\) \\
{\([\)} & \(30.6250]\) \\
{\([\)} & \(30.7500]\) \\
{\([\)} & \(30.7500]\) \\
{\([\)} & \(30.8750]\) \\
{\([\)} & \(30.8130]\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(31.7500]\) \\
\hline [ & \(32.5630]\) \\
\hline [ & \(35.2500]\) \\
\hline [ & \(38]\) \\
\hline [ & \(36.1250]\) \\
\hline [ & \(36.0630]\) \\
\hline [ & 36] \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(36.5000]\) \\
\hline [ & \(36]\) \\
\hline [ & \(34.5630]\) \\
\hline [ & \(34.1250]\) \\
\hline [ & \(34.9380]\) \\
\hline [ & \(34.5630]\) \\
\hline [ & \(32.9380]\) \\
\hline [ & \(33.5000]\) \\
\hline [ & \(33]\) \\
\hline [ & \(33.6880]\) \\
\hline [ & \(33.3750]\) \\
\hline [ & \(33.6250]\) \\
\hline [ & \(33.1250]\) \\
\hline [ & \(34.2500]\) \\
\hline [ & \(34]\) \\
\hline [ & \(33.5000]\) \\
\hline [ & \(34.0630]\) \\
\hline [ & 35.1880 ] \\
\hline [ & \(35.4380]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(35.0630]\) \\
\hline [ & \(34.8750]\) \\
\hline [ & \(34.5000]\) \\
\hline [ & \(34.1250]\) \\
\hline [ & \(34.8750]\) \\
\hline [ & \(34.8750]\) \\
\hline [ & \(35.0630]\) \\
\hline [ & \(34.5000]\) \\
\hline [ & \(35.1880]\) \\
\hline
\end{tabular}

\section*{hist}
\begin{tabular}{ll}
{\([\)} & \(34.8130]\) \\
{\([\)} & \(34.1880]\) \\
{\([\)} & \(34.5000]\) \\
{\([\)} & \(35.1880]\) \\
{\([\)} & \(35.8130]\) \\
{\([\)} & \(36.4380]\) \\
{\([\)} & \(34.6880]\) \\
{\([\)} & \(34.5000]\) \\
{\([\)} & \(34.6880]\) \\
{\([\)} & \(36.0630]\) \\
{\([\)} & \(35.8750]\) \\
{\([\)} & \(35.0630]\) \\
{\([\)} & \(34.5000]\) \\
{\([\)} & \(35.4380]\) \\
{\([\)} & \(35.0630]\) \\
{\([\)} & \(34.3750]\) \\
{\([\)} & \(33.1880]\) \\
{\([\)} & \(33.1880]\) \\
[ & \(33.3750]\) \\
[ & \(32.9380]\) \\
{\([\)} & \(33.0630]\)
\end{tabular}


See Also
mean | std | hist

\section*{Purpose Create HWV model}

Syntax

\section*{Class}

Description

\section*{Input \\ Arguments}

HWV = hwv(Speed, Level, Sigma)
HWV = hwv(Speed, Level, Sigma, 'Name1', Value1, 'Name2', Value2, ...)

HWV

This constructor creates and displays HWV objects, which derive from the SDEMRD (SDE with drift rate expressed in mean-reverting form) class. Use HWV objects to simulate sample paths of NVARS state variables expressed in mean-reverting drift-rate form. These state variables are driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation periods, approximating continuous-time HWV stochastic processes with Gaussian diffusions.
This method allows you to simulate vector-valued HWV processes of the form:
\[
\begin{equation*}
d X_{t}=S(t)\left[L(t)-X_{t}\right] d t+V(t) d W_{t} \tag{18-7}
\end{equation*}
\]
where:
- \(X_{t}\) is an NVARS-by- 1 state vector of process variables.
- \(S\) is an NVARS-by-NVARS of mean reversion speeds (the rate of mean reversion).
- \(L\) is an NVARS-by- 1 vector of mean reversion levels (long-run mean or level).
- \(V\) is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
- \(d W_{t}\) is an NBROWNS-by-1 Brownian motion vector.

Specify required input parameters as one of the following types:
- A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric specification. This array fully
captures all implementation details, which are clearly associated with a parametric form.
- A MATLAB function. Specifying a function provides indirect support for virtually any static, dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.

The required input parameters are:
Speed Speed represents the function \(S\). If you specify Speed as an array, it must be an NVARS-by-NVARS matrix of mean-reversion speeds (the rate at which the state vector reverts to its long-run average Level). If you specify Speed as a function, it calculates the speed of mean reversion. This function must generate an NVARS-by-NVARS matrix of reversion rates when called with two inputs:
- A real-valued scalar observation time \(t\).
- An NVARS-by- 1 state vector \(X_{t}\).

Level Level represents the function \(L\). If you specify Level as an array, it must be an NVARS-by- 1 column vector of reversion levels. If you specify Level as a function, it must generate an NVARS-by- 1 column vector of reversion levels when called with two inputs:
- A real-valued scalar observation time \(t\).
- An NVARS-by- 1 state vector \(X_{t}\).

Sigma Sigma represents the parameter \(V\). If you specify Sigma as an array, it must be an NVARS-by-NBROWNS matrix of
instantaneous volatility rates. In this case, each row of Sigma corresponds to a particular state variable. Each column corresponds to a particular Brownian source of uncertainty, and associates the magnitude of the exposure of state variables with sources of uncertainty. If you specify it as a function, Sigma must return an NVARS-by-NBROWNS matrix of volatility rates when invoked with two inputs:
- A real-valued scalar observation time \(t\).
- An NVARS-by- 1 state vector \(X_{t}\).

Note Although the constructor does not enforce restrictions on the signs of any of these input arguments, each argument is usually specified as a positive value.

\section*{Optional Input Arguments}

Specify optional input arguments as variable-length lists of matching parameter name/value pairs: 'Name1', Value1, 'Name2', Value2, ... and so on. The following rules apply when specifying parameter-name pairs:
- Specify the parameter name as a character string, followed by its corresponding parameter value.
- You can specify parameter name/value pairs in any order.
- Parameter names are case insensitive.
- You can specify unambiguous partial string matches.

Valid parameter names are:

StartTime Scalar starting time of the first observation, applied to all state variables. If you do not specify a value for StartTime, the default is 0 .

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of initial values of the state variables. If StartState is a scalar, hwv applies the same initial value to all state variables on all trials.

If StartState is a column vector, hwv applies a unique initial value to each state variable on all trials.

If StartState is a matrix, hwv applies a unique initial value to each state variable on each trial.

If you do not specify a value for StartState, all variables start at 1 .

Correlation Correlation between Gaussian random variates drawn to generate the Brownian motion vector (Wiener processes). Specify Correlation as an NBROWNS-by-NBROWNS positive semidefinite matrix, or as a deterministic function \(C(t)\) that accepts the current time \(t\) and returns an NBROWNS-by-NBROWNS positive semidefinite correlation matrix. A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation structure.
If you do not specify a value for Correlation, the default is an NBROWNS-by-NBROWNS identity matrix representing independent Gaussian processes.
Simulation A user-defined simulation function or SDE simulation method. If you do not specify a value for Simulation, the default method is simulation by Euler approximation (simByEuler).

\section*{Output Arguments}

\author{
Examples
}

Algorithms
"Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models" on page 17-31

When you specify the required input parameters as arrays, they are associated with a specific parametric form. By contrast, when you specify either required input parameter as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input specification. Thus, when you invoke these parameters with no inputs, they behave like simple properties and allow you to test the data type (double vs. function, or equivalently, static vs. dynamic)
of the original input specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of dynamic behavior. The parameters accept the observation time \(t\) and a state vector \(X_{t}\), and return an array of appropriate dimension. Even if you originally specified an input as an array, hwv treats it as a static function of time and state, thereby guaranteeing that all parameters are accessible by the same interface.

\section*{References}

Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426.

Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.

Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.

Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.

\author{
See Also \\ drift | diffusion | sdeddo
}

\section*{holdings2weights}

Purpose Portfolio holdings into weights
```

Syntax Weights = holdings2weights(Holdings, Prices, Budget)

```

\section*{Arguments}

\section*{Description}

Weights = holdings2weights(Holdings, Prices, Budget) converts portfolio holdings into portfolio weights. The weights must satisfy a budget constraint such that the weights sum to Budget for each portfolio.

Weights is a NPORTS by NASSETS matrix containing the normalized weights of NPORTS portfolios containing NASSETS assets.

\section*{Notes}
- Holdings may be negative to indicate a short position, but the overall portfolio weights must satisfy a nonzero budget constraint.
- The weights in each portfolio sum to the Budget value (which is 1 if Budget is unspecified.)

\footnotetext{
See Also weights2holdings
}

Purpose Holidays and nontrading days
Syntax
H = holidays
H = holidays(StartDate, EndDate)
H = holidays(AltHolidays)

Description

Input
Arguments

\section*{Output \\ Arguments}

\section*{Definitions}
\(H=\) holidays returns a vector of serial date numbers corresponding to all holidays and nontrading days.
H = holidays(StartDate, EndDate) returns a vector of serial date numbers corresponding to the holidays and nontrading days between StartDate and EndDate, inclusive.

H = holidays(AltHolidays) returns a vector of serial date numbers corresponding to the alternate list of holidays and nontrading days.

\section*{StartDate}

Start date. Enter as a serial date number or date string.

\section*{EndDate}

End date. Enter as a serial date number or date string.

\section*{AltHolidays}

Alternate list of holidays and nontrading days stored as serial date numbers.

\section*{H}

Returns a vector of serial date numbers corresponding to all holidays and nontrading days.
holidays is based on a modern 5-day workweek. This function contains all holidays and special nontrading days for the New York Stock Exchange from January 1, 1885 to December 31, 2050. Since the New York Stock Exchange was open on Saturdays before September 29, 1952, exact closures from 1885 to 2050 should include Saturday

\section*{holidays}
trading days. To capture these dates, use the function nyseclosures. The results from holidays and nyseclosures are identical if the WorkWeekFormat in nyseclosures is 'Modern'.

\section*{Examples}

Create a vector of serial date numbers corresponding to all holidays and nontrading dates between a specified StartDate and EndDate:
```

H = holidays('jan 1 2001', 'jun 23 2001')

```

This returns:
H =
730852
730866
730901
730954
730999

The serial date numbers for these values are:
```

01-Jan-2001 (New Year's Day)
15-Jan-2001 (Martin Luther King Day)
19-Feb-2001 (President's Day)
13-Apr-2001 (Good Friday)
28-May-2001 (Memorial Day)

```

See Also busdate | createholidays | fbusdate | isbusday | lbusdate | nyseclosures

\section*{Purpose}

Concatenate financial time series objects horizontally

\section*{Syntax}

Description

\section*{Examples}
horzcat
horzcat implements horizontal concatenation of financial time series objects. horzcat essentially merges the data columns of the financial time series objects. The time series objects must contain the exact same dates and times.

When multiple instances of a data series name occur, concatenation adds a suffix to the current names of the data series. The suffix has the format _objectname<n>, where n is a number indicating the position of the time series, from left to right, in the concatenation command. The \(n\) part of the suffix appears only when there is more than one instance of a particular data series name.

The description fields are concatenated as well. They are separated by two forward slashes (//).

Construct three financial time series, each containing a data series named DataSeries:
```

firstfts = fints((today:today+4)', (1:5)','DataSeries','d');
secondfts = fints((today:today+4)', (11:15)','DataSeries','d');
thirdfts = fints((today:today+4)', (21:25)','DataSeries','d');

```

Concatenate the time series horizontally into a new financial time series newfts:
```

newfts = [firstfts secondfts thirdfts secondfts];

```

The resulting object newfts has data series names DataSeries_firstfts, DataSeries_secondfts2, DataSeries_thirdfts, and DataSeries_secondfts4.

Verify this with the command
```

fieldnames(newfts)

```

\section*{horzcat}
```

ans =
'desc'
'freq'
'dates
'DataSeries_firstfts'
'DataSeries_secondfts2'
'DataSeries_thirdfts'
'DataSeries_secondfts4'
'times'

```

Use chfield to change the data series names.

Note If all input objects have the same frequency, the new object has that frequency as well. However, if one of the objects concatenated has a different frequency from the others, the frequency indicator of the resulting object is set to Unknown (0).

\section*{See Also}
vertcat
```

Purpose Hour of date or time
Syntax Hour = hour(Date)
Description Hour = hour(Date) returns the hour of the day given a serial date
number or a date string.
Examples Hour = hour(730473.5584278936)
or
Hour = hour('19-dec-1999, 13:24:08.17')
returns
Hour =
1 3

```

See Also datevec | minute | second

\section*{inforatio}

Purpose Calculate information ratio for one or more assets
```

Syntax inforatio(Asset, Benchmark)
Ratio = inforatio(Asset, Benchmark)
[Ratio, TE] = inforatio(Asset, Benchmark)

```

\section*{Arguments}
\begin{tabular}{ll} 
Asset & \begin{tabular}{l} 
NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES \\
observations of asset returns for NUMSERIES asset \\
return series.
\end{tabular} \\
Benchmark & \begin{tabular}{l} 
NUMSAMPLES vector of returns for a benchmark asset. \\
The periodicity must be the same as the periodicity
\end{tabular} \\
of Asset. For example, if Asset is monthly data, \\
then Benchmark must be monthly returns.
\end{tabular}

\section*{Description}

Given NUMSERIES assets with NUMSAMPLES returns for each asset in a NUMSAMPLES x NUMSERIES matrix Asset and given a NUMSAMPLES vector of benchmark returns in Benchmark, inforatio computes the information ratio and tracking error for each asset relative to the Benchmark.

To summarize the outputs of inforatio:
- Ratio is a \(1 \times\) NUMSERIES row vector of information ratios for each series in Asset. Any series in Asset with a tracking error of 0 will have a \(N a N\) value for its information ratio.
- TE is a \(1 \times\) NUMSERIES row vector of tracking errors, that is, the standard deviation of Asset relative to Benchmark returns, for each series.

\title{
Note NaN values in the data are ignored. If the Asset and Benchmark series are identical, the information ratio will be NaN since the tracking error is 0 . The information ratio and the Sharpe ratio of an Asset versus a riskless Benchmark (a Benchmark with standard deviation of returns equal to 0 ) are equivalent. This equivalence is not necessarily true if the Benchmark is risky.
}

\section*{Examples \\ See "Information Ratio" on page 7-8.}
\(\begin{array}{ll}\text { References } & \begin{array}{l}\text { Richard C. Grinold and Ronald N. Kahn, Active Portfolio Management, } \\ \text { 2nd. ed., McGraw-Hill, 2000. }\end{array} \\ & \text { Jack Treynor and Fischer Black, "How to Use Security Analysis to } \\ & \text { Improve Portfolio Selection," Journal of Business, Vol. 46, No. 1, } \\ & \text { January 1973, pp. 66-86. }\end{array}\)
See Also portalpha | sharpe

\section*{interpolate}

Purpose Brownian interpolation of stochastic differential equations
\(\left.\begin{array}{ll}\text { Syntax } & {[\mathrm{XT}, \mathrm{T}]=\text { SDE.interpolate }(\mathrm{T}, \text { Paths })} \\ & {[\mathrm{XT}, \mathrm{T}]=\text { SDE.interpolate }(\mathrm{T}, \text { Paths, 'Name1', Value1, }} \\ \text { 'Name2', Value2, ...) }\end{array}\right] \begin{array}{ll}\text { All classes in "SDE Class Hierarchy" on page 17-5. }\end{array}\)
Consider a vector-valued SDE of the form:
\[
d X_{t}=F\left(t, X_{t}\right) d t+G\left(t, X_{t}\right) d W_{t}
\]
where:
- \(X\) is an \(N V A R S\)-by- 1 state vector.
- \(F\) is an \(N V A R S\)-by- 1 drift-rate vector-valued function.
- \(G\) is an NVARS-by-NBROWNS diffusion-rate matrix-valued function.
- \(W\) is an NBROWNS-by- 1 Brownian motion vector.

Given a user-specified time series array associated with this equation, this method performs a Brownian (stochastic) interpolation by sampling from a conditional Gaussian distribution. This sampling technique is sometimes called a Brownian bridge.

Note Unlike simulation methods, the interpolate method does not support user-specified noise processes.

\section*{Input Arguments}

\section*{Optional Input Arguments}
\begin{tabular}{ll} 
SDE & Stochastic differential equation model. \\
T & \begin{tabular}{l} 
NTIMES element vector of interpolation times. The length \\
of this vector determines the number of rows in the \\
interpolated output time series XT.
\end{tabular} \\
Paths & \begin{tabular}{l} 
NPERIODS-by-NVARS-by-NTRIALS time series array of
\end{tabular} \\
\begin{tabular}{l} 
sample paths of correlated state variables. For a given \\
trial, each row of this array is the transpose of the
\end{tabular} \\
\begin{tabular}{l} 
state vector \(X_{t}\) at time \(t\). Paths is the initial time series \\
array into which interpolate performs the Brownian \\
interpolation.
\end{tabular}
\end{tabular}

Specify optional input arguments as variable-length lists of matching parameter name/value pairs: 'Name1', Value1, 'Name2', Value2, ... and so on. The following rules apply when specifying parameter-name pairs:
- Specify the parameter name as a character string, followed by its corresponding parameter value.
- You can specify parameter name/value pairs in any order.
- Parameter names are case insensitive.
- You can specify unambiguous partial string matches.

Valid parameter names are:
Times Vector of monotonically increasing observation times associated with the time series input Paths. If you do not specify a value for this parameter, Times is a zero-based, unit-increment column vector of length NPERIODS.

Refine Scalar logical flag that indicates whether interpolate uses the interpolation times you request (see \(T\) ) to refine the interpolation as new information becomes available. If you do not specify a value for this argument or set it to FALSE (the default value), interpolate bases the interpolation only on the state information specified in Paths. If you set Refine to TRUE, interpolate inserts

\section*{interpolate}
all new interpolated states into the existing Paths array as they become available. This refines the interpolation grid available to subsequent interpolation times for the duration of the current trial.
Processes Function or cell array of functions that indicates a sequence of background processes or state vector adjustments of the form
\[
X_{t}=P\left(t, X_{t}\right)
\]

The interpolate method runs processing functions at each interpolation time. They must accept the current interpolation time \(t\), and the current state vector \(X_{t}\), and return a state vector that may be an adjustment to the input state. If you specify more than one processing function, interpolate invokes the functions in the order in which they appear in the cell array. You can use this argument to specify boundary conditions, prevent negative prices, accumulate statistics, plot graphs, and so on.

If you do not specify a processing function, interpolate makes no adjustments and performs no processing.

\section*{Output Arguments}

NTIMES-by-NVARS-by-NTRIALS time series array of interpolated state variables. For a given trial, each row of this array is the transpose of the interpolated state vector \(X_{t}\) at time \(t\). XT is the interpolated time series formed by interpolating into the input Paths time series array.
NTIMES-by- 1 column vector of interpolation times associated with the output time series XT. If the input interpolation time vector \(T\) contains no missing observations ( NaNs ), this output is the same time vector
as T, but with the NaNs removed. This reduces the length of \(T\) and the number of rows of \(X T\).

\section*{Examples Stochastic Interpolation Without Refinement}

Many applications require knowledge of the state vector at intermediate sample times that are initially unavailable. One way to approximate these intermediate states is to perform a deterministic interpolation. However, deterministic interpolation techniques fail to capture the correct probability distribution at these intermediate times. Brownian (or stochastic) interpolation captures the correct joint distribution by sampling from a conditional Gaussian distribution. This sampling technique is sometimes referred to as a Brownian Bridge.
The default stochastic interpolation technique is designed to interpolate into an existing time series and ignore new interpolated states as additional information becomes available. This technique is the usual notion of interpolation, which is called Interpolation without refinement.

Alternatively, the interpolation technique may insert new interpolated states into the existing time series upon which subsequent interpolation is based, thereby refining information available at subsequent interpolation times. This technique is called interpolation with refinement.
Interpolation without refinement is a more traditional technique, and is most useful when the input series is closely spaced in time. In this situation, interpolation without refinement is a good technique for inferring data in the presence of missing information, but is inappropriate for extrapolation. Interpolation with refinement is more suitable when the input series is widely spaced in time, and is useful for extrapolation.
The stochastic interpolation method is available to any model. It is best illustrated, however, by way of a constant-parameter Brownian motion process. Consider a correlated, bivariate Brownian motion (BM) model of the form:

\section*{interpolate}
\[
\begin{aligned}
& d X_{1 t}=0.3 d t+0.2 d W_{1 t}-0.1 d W_{2 t} \\
& d X_{2 t}=0.4 d t+0.1 d W_{1 t}-0.2 d W_{2 t} \\
& E\left[d W_{1 t} d W_{2 t}\right]=\rho d t=0.5 d t
\end{aligned}
\]

1 Create a BM object to represent the bivariate model:
```

mu = [0.3 ; 0.4];
sigma = [0.2 -0.1 ; 0.1 -0.2];
rho = [1 0.5 ; 0.5 1];
obj = bm(mu, sigma, 'Correlation', rho);

```

2 Assuming that the drift ( Mu ) and diffusion (Sigma) parameters are annualized, simulate a single Monte Carlo trial of daily observations for one calendar year (250 trading days):
```

rng('default') % make output reproducible
dt = 1/250; % 1 trading day = 1/250 years
[X,T] = obj.simulate(250, 'DeltaTime', dt);

```

3 At this point, it is helpful to examine a small interval in detail.
a Interpolate into the simulated time series with a Brownian bridge:
```

t = ((T(1) + dt/2) : (dt/2) : (T(end) - dt/2));
x = obj.interpolate(t, X, 'Times', T);

```
b Plot both the simulated and interpolated values:
```

plot(T, X(:,1), '.-red', T, X(:,2), '.-blue'), ...
grid('on'), hold('on')
plot(t, x(:,1), 'o red', t, x(:,2), 'o blue'), ...
hold('off')
xlabel('Time (Years)'), ylabel('State')
title('Bi-Variate Brownian Motion: \rho = 0.5')
axis([0.4999 0.6001 0.25 0.4])

```


In this plot:
- The solid red and blue dots indicate the simulated states of the bivariate model.
- The straight lines that connect the solid dots indicate intermediate states that would be obtained from a deterministic linear interpolation.
- Open circles indicate interpolated states.

\section*{interpolate}
- Open circles associated with every other interpolated state encircle solid dots associated with the corresponding simulated state. However, interpolated states at the midpoint of each time increment typically deviate from the straight line connecting each solid dot.

\section*{Simulation of Conditional Gaussian Distributions}

You can gain additional insight into the behavior of stochastic interpolation by regarding a Brownian bridge as a Monte Carlo simulation of a conditional Gaussian distribution.

This example examines the behavior of a Brownian bridge over a single time increment.

1 Divide a single time increment of length dt into 10 subintervals:
```

mu = [0.3 ; 0.4];
sigma = [0.2 -0.1 ; 0.1 -0.2];
rho = [1 0.5 ; 0.5 1];
obj = bm(mu, sigma, 'Correlation', rho);
rng('default')
% make output reproducible
dt = 1/250; % 1 trading day = 1/250 years
[X,T] = obj.simulate(250, 'DeltaTime', dt);
n = 125; % index of simulated state near middle
times = (T(n) : (dt/10) : T(n + 1));nTrials = 25000; % \# of Trials

```

2 In each subinterval, take 25000 independent draws from a Gaussian distribution, conditioned on the simulated states to the left and right:
```

average = zeros(length(times),1);
variance = zeros(length(times),1);
for i = 1:length(times)
t = times(i);
x = obj.interpolate(t(ones(nTrials,1)),...
X, 'Times', T);

```
```

 average(i) = mean(x(:,1));
 variance(i) = var(x(:,1));
 end

```

3 Plot the sample mean and variance of each state variable:

Note The following graph plots the sample statistics of the first state variable only, but similar results hold for any state variable.
```

subplot(2,1,1), hold('on'), grid('on')
plot([T(n) T(n + 1)], [X(n,1) X(n + 1,1)], '.-b')
plot(times, average, 'or'), hold('off')
title('Brownian Bridge without Refinement: Sample Mean')
ylabel('Mean')
limits = axis; axis([T(n) T(n + 1) limits(3:4)])
subplot(2,1,2), hold('on'), grid('on')
plot(T(n), 0, '.-b', T(n + 1), 0, '.-b')
plot(times, variance, '.-r'), hold('off')
title('Brownian Bridge without Refinement: Sample Variance')
xlabel('Time (Years)'), ylabel('Variance')
limits = axis; axis([T(n) T(n + 1) limits(3:4)])

```

\section*{interpolate}


The Brownian interpolation within the chosen interval, \(d t\), illustrates the following:
- The conditional mean of each state variable lies on a straight line segment between the original simulated states at each endpoint.
- The conditional variance of each state variable is a quadratic function. This function attains its maximum midway between the interval endpoints, and is zero at each endpoint.

\section*{interpolate}
- The maximum variance, although dependent upon the actual model diffusion-rate function \(G(t, X)\), is the variance of the sum of NBROWNS correlated Gaussian variates scaled by the factor \(d t / 4\).

The previous plot highlights interpolation without refinement, in that none of the interpolated states take into account new information as it becomes available. If you had performed interpolation with refinement, new interpolated states would have been inserted into the time series and made available to subsequent interpolations on a trial-by-trial basis. In this case, all random draws for any given interpolation time would be identical. Also, the plot of the sample mean would exhibit greater variability, but would still cluster around the straight line segment between the original simulated states at each endpoint. The plot of the sample variance, however, would be zero for all interpolation times, exhibiting no variability.

\section*{Algorithms}
- The interpolate method assumes that all model parameters are piecewise-constant, and evaluates them from the most recent observation time in Times that precedes a specified interpolation time in T. This is consistent with the Euler approach of Monte Carlo simulation.
- When an interpolation time falls outside the interval specified by Times, an Euler simulation extrapolates the time series by using the nearest available observation.
- The user-defined time series Paths and corresponding observation Times must be fully observed (no missing observations denoted by NaNs ).
- The interpolate method assumes that the user-specified time series array Paths is associated with the SDE object. For example, the Times/Paths input pair is the result of an initial course-grained simulation. However, the interpolation ignores the initial conditions of the SDE object (StartTime and StartState), allowing the user-specified Times/Paths input series to take precedence.

\section*{interpolate}
\begin{tabular}{ll} 
References & \begin{tabular}{l} 
Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest \\
Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, \\
pp. 385-426.
\end{tabular} \\
& Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other \\
& Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August \\
& 1999. \\
& Glasserman, P., Monte Carlo Methods in Financial Engineering, New \\
& York: Springer-Verlag, 2004. \\
& Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood \\
& Cliffs, NJ: Prentice Hall, 2002. \\
& Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate \\
& \begin{tabular}{l} 
Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.
\end{tabular} \\
& Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time \\
Models, New York: Springer-Verlag, 2004.
\end{tabular}

\section*{Purpose Internal rate of return}
\begin{tabular}{ll} 
Syntax & Return \(=\operatorname{irr}(\) CashFlow \()\) \\
& {\([\) Return, AllRates \(]=\operatorname{irr}(\) CashFlow \()\)}
\end{tabular}

Description Return = irr(CashFlow) calculates the internal rate of return for a series of periodic cash flows.
[Return, AllRates] = irr(CashFlow) calculates the internal rate of return and a vector of all internal rates for a series of periodic cash flows.

\section*{Input \\ Arguments}

\section*{Output \\ Arguments}

\section*{Definitions}

\section*{CashFlow}

A vector containing a stream of periodic cash flows. The first entry in CashFlow is the initial investment. If CashFlow is a matrix, irr handles each column of CashFlow as a separate cash-flow stream.

\section*{Return}

An internal rate of return associated to CashFlow. If CashFlow is a matrix, then Return is a vector whose entry \(j\) is an internal rate of return for column j in CashFlow.

\begin{abstract}
AllRates
A vector containing all the internal rates of return associated with CashFlow. If CashFlow is a matrix, then AllRates is also a matrix, with the same number of columns as CashFlow and one less row. Also, column j in AllRates contains all the rates of return associated to column j in CashFlow (including complex-valued rates).
\end{abstract}
irr uses the following conventions:
- If one or more internal rate of returns (warning if multiple) are strictly positive rates, Return sets to the minimum.
- If no strictly positive rate of returns, but one or multiple (warning if multiple) returns are nonpositive rates, Return sets to the maximum.
- If no real-valued rates exist, Return sets to NaN (no warnings).

Examples Find the internal rate of return for a simple investment with a unique positive rate of return. The initial investment is \(\$ 100,000\) and the following cash flows represent the yearly income from the investment.
- Year 1 - \$10,000
- Year 2 - \$20,000
- Year 3 - \$30,000
- Year 4 - \$40,000
- Year 5 - \$50,000

Calculate the internal rate of return on the investment:
Return \(=\operatorname{irr}([-10000010000200003000040000\) 50000])
This returns:

\section*{Return =}
0.1201

If the cash flow payments were monthly, then the resulting rate of return is multiplied by 12 for the annual rate of return.

Find the internal rate of return for multiple rates of return. The project has the following cash flows and a market rate of \(10 \%\).
```

CashFlow = [-1000 6000 -10900 5800]

```

Use irr with a single output argument:
Return \(=\) irr(CashFlow)
A warning appears and irr returns a \(100 \%\) rate of return. The \(100 \%\) rate on the project looks attractive:

Warning: Multiple rates of return
```

> In irr at 166

```

\section*{Return =}
1.0000

Use irr with two output arguments:
```

[Return, AllRates] = irr(CashFlow)

```

This returns:
```

>> [Return, AllRates] = irr(CashFlow)

```
Return =
1.0000

AllRates =
-0.0488
1.0000
2.0488

The rates of return in AllRates are \(-4.88 \%, 100 \%\), and \(204.88 \%\). Though some rates are lower and some higher than the market rate, based on the work of Hazen, any rate gives a consistent recommendation on the project. However, you can use a present value analysis in these kinds of situations. To check the present value of the project, use pvvar:

PV = pvvar(CashFlow,0.10)

This returns:
PV =
-196.0932

\section*{irr}

The second argument is the \(10 \%\) market rate. The present value is -196.0932, negative, so the project is undesirable.

\author{
References Brealey and Myers, Principles of Corporate Finance, McGraw-Hill Higher Education, Chapter 5, 2003. \\ Hazen G., "A New Perspective on Multiple Internal Rates of Return," The Engineering Economist, Vol. 48-1, 2003, pp. 31-51.
}

\author{
See Also \\ effrr | mirr | nomrr | xirr | pvvar \\ How To \\ - "Interest Rates/Rates of Return" on page 2-17
}
\begin{tabular}{ll} 
Purpose & True for dates that are business days \\
Syntax & Busday = isbusday (Date, Holiday, Weekend) \\
Arguments &
\end{tabular}
\begin{tabular}{|c|c|}
\hline Date & Date(s) being checked. Enter as a vector of serial date numbers or date strings. Date can contain multiple dates, but they must all be in the same format. Dates are assumed to be whole date numbers or date stamps with no fractional or time values. \\
\hline Holiday & (Optional) Vector of holidays and nontrading-day dates. All dates in Holiday must be the same format: either serial date numbers or date strings. (Using date numbers improves performance.) The holidays function supplies the default vector. \\
\hline Weekend & (Optional) Vector of length 7, containing 0 and 1 , the value 1 indicating weekend days. The first element of this vector corresponds to Sunday. Thus, when Saturday and Sunday form the weekend (default), then Weekend \(=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\). \\
\hline
\end{tabular}

Description Busday = isbusday (Date, Holiday, Weekend) returns logical true (1) if Date is a business day and logical false (0) otherwise.

\section*{Examples Example 1:}
```

Busday = isbusday('16 jun 2001')
Busday =

```
    0
Date = ['15 feb 2001'; '16 feb 2001'; '17 feb 2001'];

\section*{isbusday}
```

Busday = isbusday(Date)
Busday =
1
1
0

```

Example 2: Set June 21, 2003 (a Saturday) as a business day.
Weekend \(=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\);
isbusday('June 21, 2003', [], Weekend)
ans =
1

Note If the second argument, Holiday, is empty ([ ]), the default Holidays vector (generated with holidays and then associated to the NYSE calendar) is used. To consider a calendar without holidays (except for weekends as controlled by third input), use a serial (or text date) out of your range. For example 0-Jan-0 or the value0 are with high probabilities out of the range. This value overwrites the default calendar allowing you to remove any specific country holiday:
```

isbusday(datenum('06092010','ddmmyyyy'),0)

```
ans =

\section*{See Also}
```

busdate | fbusdate | holidays | lbusdate

```

\section*{iscompatible}
\begin{tabular}{ll} 
Purpose & Structural equality \\
Syntax & iscomp = iscompatible(tsobj_1, tsobj_2) \\
Arguments &
\end{tabular}
tsobj_1, tsobj_2 A pair of financial time series objects.

\section*{Description iscomp = iscompatible(tsobj_1, tsobj_2) returns 1 if both} financial time series objects tsobj_1 and tsobj_2 have the same dates and data series names. It returns 0 if any component is different.
iscomp \(=1\) indicates that the two objects contain the same number of data points and equal number of data series. However, the values contained in the data series can be different.

Note Data series names are case-sensitive.

\section*{See Also \\ isequal}

Purpose Multiple object equality
Syntax iseq = isequal(tsobj_1, tsobj_2, ...)
Arguments
tsobj_1... A list of financial time series objects.

Description iseq \(=\) isequal(tsobj_1, tsobj_2, \(\ldots\) ) returns 1 if all listed financial time series objects have the same dates, data series names, and values contained in the data series. It returns 0 if any of those components is different.

Note Data series names are case-sensitive.
iseq \(=1\) implies that each object contains the same number of dates and the same data. Only the descriptions can differ.

\section*{See Also}

\title{
Purpose True for empty financial time series objects
}

Syntax \(\quad\) tf \(=\) isempty (fts)
Arguments
\[
\text { fts } \quad \text { Financial time series object. }
\]

Description isempty for financial times series objects is based on the MATLAB isempty function. See isempty in the MATLAB documentation.
\(\mathrm{tf}=\) isempty (fts) returns true (1) if fts is an empty financial time series object and false (0) otherwise. An empty financial times series object has no elements, that is, length \((\mathrm{fts})=0\).

See Also nanmax | nanmean | nanmedian | nanmin | nanstd | nanvar

\section*{isfield}

Purpose Check whether string is field name

\section*{Syntax \(\quad F=\) isfield(tsobj, name)}

Description \(\quad\) = isfield(tsobj, name) returns true (1) if name is the name of a data series in tsobj. Otherwise, isfield returns false (0).

See Also fieldnames | getfield \| setfield

Purpose
Check whether dates and times are monotonically increasing
Syntax monod = issorted (tsobj)
Arguments

Purpose Kagi chart
Syntax kagi(X)
Arguments

Description kagi(X) plots asset price with respect to dates.

\section*{Examples Create a Kagi Chart}

This example shows how to generate a Kagi chart for asset X that is an M-by-2 matrix of date numbers and asset prices.
\[
x=[\ldots
\]
733299.00
733300.00
733303.00
733304.00
733305.00
733306.00
733307.00
733310.00
733311.00
733312.00
733313.00
733314.00
733317.00
733318.00
41.99; ...
42.14; ...
41.93; ...
41.98; ...
41.75; ..
41.61;...
42.29; ...
42.19;...
41.82;...
41.93;...
41.81;...
41.37;...
41.17; ...
42.02]
kagi(X)

M-by-2 matrix where the first column contains date numbers and the second column is the asset price.
```

X =
1.0e+05 *
7.3330 0.0004
7.3330 0.0004
7.3330 0.0004
7.3330 0.0004
7.3331 0.0004
7.3331 0.0004
7.3331 0.0004
7.3331 0.0004
7.3331 0.0004
7.3331 0.0004
7.3331 0.0004
7.3331 0.0004
7.3332 0.0004
7.3332 0.0004

```



See Also bolling | candle | highlow | linebreak | movavg | pointfig |

\section*{Purpose Lag time series object}
```

Syntax newfts = lagts(oldfts)
newfts = lagts(oldfts, lagperiod)
newfts = lagts(oldfts, lagperiod, padmode)

```

\section*{Arguments}

\section*{Description \\ lagts delays a financial time series object by a specified time step. \\ newfts = lagts(oldfts) delays the data series in oldfts by one time series date entry and returns the result in the object newfts. The end will be padded with zeros, by default. \\ newfts = lagts(oldfts, lagperiod) shifts time series values to the right on an increasing time scale. lagts delays the data series to happen at a later time. lagperiod is the number of lag periods expressed in the frequency of the time series object oldfts. For example, if oldfts is a daily time series, lagperiod is specified in days. lagts pads the data with zeros (default). \\ newfts = lagts(oldfts, lagperiod, padmode) lets you pad the data with an arbitrary value, NaN , or Inf rather than zeros by setting padmode to the desired value.}

\section*{See Also \\ leadts}

\section*{Ibusdate}

\section*{Purpose Last business date of month}
```

Syntax Date = lbusdate(Year, Month, Holiday, Weekend)

```

\section*{Arguments}
\begin{tabular}{ll} 
Year & Enter as four-digit integer. \\
Month & Enter as integer from 1 through 12. \\
Holiday & \begin{tabular}{l} 
(Optional) Vector of holidays and nontrading-day \\
dates. All dates in Holiday must be the same format: \\
either serial date numbers or date strings. (Using \\
date numbers improves performance.) The holidays \\
function supplies the default vector.
\end{tabular} \\
Weekend & \begin{tabular}{l} 
(Optional) Vector of length 7, containing 0 and 1, the \\
value 1 indicating weekend days. The first element \\
of this vector corresponds to Sunday. Thus, when \\
Saturday and Sunday form the weekend (default), \\
then Weekend \(=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right]\).
\end{tabular}.
\end{tabular}

Description Date \(=\) lbusdate (Year, Month, Holiday, Weekend) returns the serial date number for the last business date of the given year and month. Holiday specifies nontrading days.
Year and Month can contain multiple values. If one contains multiple values, the other must contain the same number of values or a single value that applies to all. For example, if Year is a 1 -by-n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. Date is then a 1-by-n vector of date numbers.

Use the function datestr to convert serial date numbers to formatted date strings.

\section*{Examples Example 1.}

Date \(=\) lbusdate \((2001,5)\)
```

Date =
7 3 1 0 0 2
datestr(Date)
ans =
31-May-2001

```

Example 2. You can indicate that Saturday is a business day by appropriately setting the Weekend argument.

Weekend = \(\left.\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0\end{array}\right]\);
May 31, 2003, is a Saturday. Use lbusdate to check that this Saturday is actually the last business day of the month.
```

Date = datestr(lbusdate(2003, 5, [], Weekend))
Date =

```

31-May-2003

\section*{leadts}
```

Purpose Lead time series object
Syntax newfts = leadts(oldfts)
newfts = leadts(oldfts, leadperiod)
newfts = leadts(oldfts, leadperiod, padmode)

```

\section*{Arguments}

\section*{Description}
leadts advances a financial time series object by a specified time step. newfts = leadts(oldfts) advances the data series in oldfts by one time series date entry and returns the result in the object newfts. The end will be padded with zeros, by default.
newfts = leadts(oldfts, leadperiod) shifts time series values to the left on an increasing time scale. leadts advances the data series to happen at an earlier time. leadperiod is the number of lead periods expressed in the frequency of the time series object oldfts. For example, if oldfts is a daily time series, leadperiod is specified in days. leadts pads the data with zeros (default).
newfts = leadts(oldfts, leadperiod, padmode) lets you pad the data with an arbitrary value, NaN , or Inf rather than zeros by setting padmode to the desired value.

\section*{See Also \\ lagts}
Purpose Get number of dates (rows)
Syntax lenfts = length(tsobj)
Description lenfts = length(tsobj) returns the number of dates (rows) in thefinancial time series object tsobj. This is the same as issuing lenfts\(=\) size(tsobj, 1).
See Also ..... size | length

\section*{linebreak}

Purpose Line break chart
Syntax linebreak(X)
Arguments
X M -by-2 matrix where the first column contains date numbers and the second column is the asset price.

Description linebreak \((X)\) plots asset price with respect to dates.

\section*{Examples Create a Line Break Chart}

This example shows how to generate a line break chart for asset X that is an M-by-2 matrix of date numbers and asset prices.
\(\mathrm{X}=[.\).
\begin{tabular}{ll}
733299.00 & \(41.99 ; \ldots\) \\
733300.00 & \(42.14 ; \ldots\) \\
733303.00 & \(41.93 ; \ldots\) \\
733304.00 & \(41.98 ; \ldots\) \\
733305.00 & \(41.75 ; \ldots\) \\
733306.00 & \(41.61 ; \ldots\) \\
733307.00 & \(42.29 ; \ldots\) \\
733310.00 & \(42.19 ; \ldots\) \\
733311.00 & \(41.82 ; \ldots\) \\
733312.00 & \(41.93 ; \ldots\) \\
733313.00 & \(41.81 ; \ldots\) \\
733314.00 & \(41.37 ; \ldots\) \\
73331.00 & \(41.17 ; \ldots\) \\
733318.00 & \(42.02]\) \\
&
\end{tabular}
```

X =
1.0e+05 *
7.3330 0.0004
7.3330 0.0004
7.3330 0.0004
7.3330 0.0004
7.3331 0.0004
7.3331 0.0004
7.3331 0.0004
7.3331 0.0004
7.3331 0.0004
7.3331 0.0004
7.3331 0.0004
7.3331 0.0004
7.3332 0.0004
7.3332 0.0004

```

\section*{linebreak}


See Also
bolling | candle | highlow | kagi | movavg | pointfig | priceandvol | renko | volarea

\section*{Purpose}

Lowest low

\section*{Syntax}
```

llv = llow(data)
llv = llow(data, nperiods, dim)
llvts = llow(tsobj, nperiods)
llvts = llow(tsobj, nperiods, ParameterName, ParameterValue)

```

\section*{Arguments}
\begin{tabular}{ll} 
data & \begin{tabular}{l} 
Data series matrix. \\
(Optional) Number of periods. Default \(=14\).
\end{tabular} \\
nperiods & Dimension. \\
tsobj & Financial time series object. \\
ParameterName & The valid parameter name is: \\
& - LowName: low prices series name \\
ParameterValue & \begin{tabular}{l} 
The parameter value is a string that represents \\
the valid parameter name.
\end{tabular}
\end{tabular}

Description
llv = llow(data) generates a vector of lowest low values for the past 14 periods from the matrix data.
llv = llow(data, nperiods, dim) generates a vector of lowest low values for the past nperiods periods. dim indicates the direction in which the lowest low is to be searched. If you input [ ] for nperiods, the default is 14 .
llvts = llow(tsobj, nperiods) generates a vector of lowest low values from tsobj, a financial time series object. tsobj must include at least the series Low. The output llvts is a financial time series object with the same dates as tsobj and data series named LowestLow. If nperiods is specified, llow generates a financial time series object of lowest low values for the past nperiods periods.
llvts = llow(tsobj, nperiods, ParameterName, Parametervalue) specifies the name for the required data series when it is different from the default name. The parameter value is a string that represents the valid parameter name.

\section*{Examples}

\section*{Compute the Lowest Low Price}

This example shows how to compute the lowest low price for Disney stock and plot the results.
```

load disney.mat
dis_LLow = llow(dis)
plot(dis_LLow)
title('Lowest Low for Disney')

```
dis_LLow =
    desc: LLow: Walt Disney Company (DIS)
    freq: Unknown (0)
    'dates: (782)' 'LowestLow: (782)'
    '29-Mar-1996' [ 20.0420]
    '01-Apr-1996' [ 20.0420]
    '02-Apr-1996' [ 20.0420]
    '03-Apr-1996' [ 20.0420]
    '04-Apr-1996' [ 20.0420]
    '05-Apr-1996' [ 20.0420]
    '08-Apr-1996' [ 20.0420]
    '09-Apr-1996' [ 20.0420]
    '10-Apr-1996' [ 20.0420]
    '11-Apr-1996' [ 20.0420]
    '12-Apr-1996' [ 20.0420]
    '15-Apr-1996' [ 20.0420]
    '16-Apr-1996' [ 20.0420]
    '17-Apr-1996' [ 20.0420]
    '18-Apr-1996' [ 20.0420]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{23-Apr-1996} \\
\hline \multicolumn{2}{|l|}{24-Apr-1996} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{-Apr-1996} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'30-Apr-1996} \\
\hline \multicolumn{2}{|l|}{-1-May-1996} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'03-May-1996'} \\
\hline \multicolumn{2}{|l|}{06-May-1996} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{- May - 1} \\
\hline & \\
\hline \multicolumn{2}{|l|}{May} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline & \\
\hline \multicolumn{2}{|l|}{16-May-1996} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline & \\
\hline \multicolumn{2}{|l|}{21-May-1996} \\
\hline \multicolumn{2}{|l|}{22-May-1996} \\
\hline \multicolumn{2}{|l|}{23-May-1996 \({ }^{\prime}\)} \\
\hline \multicolumn{2}{|l|}{' 24 -May-1996} \\
\hline \multicolumn{2}{|l|}{-May-1996} \\
\hline \multicolumn{2}{|l|}{'28-May-1996'} \\
\hline \multicolumn{2}{|l|}{' 29-May-1996} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{-May-199} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{05-Jun-1996'} \\
\hline \multicolumn{2}{|l|}{Jun-1996} \\
\hline \multicolumn{2}{|l|}{'07-Jun-1996'} \\
\hline & \\
\hline
\end{tabular}
20.0420]
20.0420]
\(20.0420]\)
\(19.9170]\)
19.9170]
\(19.9170]\)
\(19.9170]\)
19.9170 ]
\(19.9170]\)
\(19.8750]\)
19.5000]
\(19.5000]\)
19.5000]
\(19.2920]\)
19.2920]
19.2920]
\(19.2920]\)
\(19.2920]\)
19.2920]
19.2920]
19.2920]
19.2920]
\(19.2920]\)
19.2920]
19.2920]
19.2920]
19.2920]
19.2920]
19.4580]
19.8330]
19.9580]
\(19.9580]\)
\(19.8750]\)
\(19.8330]\)
\(19.8330]\)
\(19.8330]\)
19.8330 ]
'11-Jun-1996'
'12-Jun-1996'
'13-Jun-1996'
'14-Jun-1996'
'17-Jun-1996'
'18-Jun-1996'
'19-Jun-1996'
'20-Jun-1996'
'21-Jun-1996'
'24-Jun-1996'
'25-Jun-1996'
'26-Jun-1996'
'27-Jun-1996'
'28-Jun-1996'
'01-Jul-1996'
'02-Jul-1996'
'03-Jul-1996'
'04-Jul-1996'
'05-Jul-1996'
'08-Jul-1996'
'09-Jul-1996'
'10-Jul-1996'
'11-Jul-1996'
'12-Jul-1996'
'15-Jul-1996'
'16-Jul-1996'
'17-Jul-1996'
'18-Jul-1996'
'19-Jul-1996'
'22-Jul-1996'
'23-Jul-1996'
'24-Jul-1996'
'25-Jul-1996'
'26-Jul-1996'
'29-Jul-1996'
'30-Jul-1996'
'31-Jul-1996'
19.8330]
19.8330]
19.8330]
19.8330]
19.8330]
19.8330]
19.8330]
19.8330]
19.8330]
19.8330]
20.2920]
20.2920]
20.2920]
20.2920]
20.2920]
20.2920]

20]
20]
19.7920]
19.5830]
19.1670]
19.0830]
18.6670]
18.6670]
18.2080]
17.9580]
\(17.9580]\)
\(17.9580]\)
17.9580]
\(17.9580]\)
\(17.9580]\)
17.9580 ]
\(17.9580]\)
\(17.8330]\)
\(17.7500]\)
\(17.7500]\)
17.7500]
\begin{tabular}{|c|c|c|}
\hline 01-Aug-1996 \({ }^{\text {' }}\) & [ & 17.7500] \\
\hline 02-Aug-1996' & [ & 17.7500] \\
\hline 05-Aug-1996' & [ & 17.7500] \\
\hline 06-Aug-1996' & [ & 17.7500] \\
\hline 07-Aug-1996' & [ & 17.7500] \\
\hline 08-Aug-1996' & [ & 17.7500] \\
\hline 09-Aug-1996' & [ & 17.7500] \\
\hline 12-Aug-1996 ' & [ & 17.7500] \\
\hline '13-Aug-1996' & [ & 17.7500] \\
\hline 14-Aug-1996' & [ & 17.7500] \\
\hline 15-Aug-1996' & [ & 17.7500] \\
\hline 16-Aug-1996 ' & [ & 17.7920] \\
\hline 19-Aug-1996 ' & [ & 18.2500] \\
\hline 20-Aug-1996 ' & [ & 18.6670 ] \\
\hline 21-Aug-1996 \({ }^{\prime}\) & [ & \(18.8330]\) \\
\hline 22-Aug-1996' & [ & \(18.8330]\) \\
\hline '23-Aug-1996' & [ & \(18.8330]\) \\
\hline 26-Aug-1996 \({ }^{\prime}\) & [ & \(18.8330]\) \\
\hline 27-Aug-1996 \({ }^{\prime}\) & [ & \(18.8330]\) \\
\hline 28-Aug-1996' & [ & \(18.8330]\) \\
\hline 29-Aug-1996 ' & [ & \(18.8330]\) \\
\hline 30-Aug-1996' & [ & 18.7920] \\
\hline 02-Sep-1996' & [ & 18.7920] \\
\hline 03-Sep-1996' & [ & 18.7920] \\
\hline 04-Sep-1996' & [ & 18.7920] \\
\hline 05-Sep-1996' & [ & 18.5420] \\
\hline 06-Sep-1996' & [ & 18.5420] \\
\hline 09-Sep-1996' & [ & 18.5420] \\
\hline 10-Sep-1996' & [ & 18.5420] \\
\hline '11-Sep-1996' & [ & 18.5420] \\
\hline '12-Sep-1996' & [ & 18.5420] \\
\hline '13-Sep-1996' & [ & \(18.5420]\) \\
\hline 16-Sep-1996' & [ & 18.5420] \\
\hline '17-Sep-1996' & [ & \(18.5420]\) \\
\hline 18-Sep-1996' & [ & 18.5420] \\
\hline '19-Sep-1996' & [ & \(18.5420]\) \\
\hline 20-Sep-1996 \({ }^{\prime}\) & [ & 18.5420] \\
\hline
\end{tabular}
'23-Sep-1996'
18.5420]
'24-Sep-1996'
'25-Sep-1996'
'26-Sep-1996'
'27-Sep-1996'
'30-Sep-1996'
'01-0ct-1996'
'02-0ct-1996'
'03-0ct-1996'
'04-0ct-1996'
'07-0ct-1996'
'08-0ct-1996'
'09-0ct-1996'
'10-0ct-1996'
'11-0ct-1996'
'14-0ct-1996'
'15-0ct-1996'
'16-0ct-1996'
'17-0ct-1996'
'18-0ct-1996'
'21-0ct-1996'
'22-0ct-1996'
'23-0ct-1996'
'24-0ct-1996'
'25-0ct-1996'
'28-0ct-1996'
'29-0ct-1996'
'30-0ct-1996'
'31-0ct-1996'
'01-Nov-1996'
'04-Nov-1996'
'05-Nov-1996'
'06-Nov-1996'
' 07 -Nov-1996'
'08-Nov-1996'
'11-Nov-1996'
'12-Nov-1996'
18.5420]
18.5420]
19.0420]
19.1250]
19.2080]
19.6250]
19.9580]
19.9580]
19.9580]
20.2500]
20.2920]
20.5420]
20.5420]
20.5420]
20.5420]
20.5420]
20.5420]
20.8330]
20.8330]
20.8330]
20.9170]
20.9170]
20.9170]
20.9170]
20.9170]

21]
21.1670]
21.1670]
21.1670]
21.3330]
21.5000 ]
\(21.5000]\)
21.6250]
\(21.6670]\)
21.6670]
21.6670]
\begin{tabular}{|c|c|c|}
\hline '13-Nov-1996' & [ & \(21.7080]\) \\
\hline '14-Nov-1996' & [ & \(21.7080]\) \\
\hline '15-Nov-1996' & [ & \(21.7080]\) \\
\hline '18-Nov-1996' & [ & \(21.7080]\) \\
\hline '19-Nov-1996' & [ & \(21.7080]\) \\
\hline '20-Nov-1996' & [ & \(21.7080]\) \\
\hline '21-Nov-1996' & [ & \(21.7920]\) \\
\hline '22-Nov-1996' & [ & \(22.2080]\) \\
\hline '25-Nov-1996' & [ & \(22.2080]\) \\
\hline '26-Nov-1996' & [ & \(22.5420]\) \\
\hline '27-Nov-1996' & [ & \(22.6250]\) \\
\hline '28-Nov-1996' & [ & \(22.8330]\) \\
\hline '29-Nov-1996' & [ & \(23.2080]\) \\
\hline '02-Dec-1996' & [ & \(23.2080]\) \\
\hline '03-Dec-1996' & [ & \(23.2080]\) \\
\hline '04-Dec-1996' & [ & \(23.4580]\) \\
\hline '05-Dec-1996' & [ & \(23.4580]\) \\
\hline '06-Dec-1996' & [ & \(23.1670]\) \\
\hline '09-Dec-1996' & [ & \(23.1670]\) \\
\hline '10-Dec-1996' & [ & \(23.1670]\) \\
\hline '11-Dec-1996' & [ & \(23.1670]\) \\
\hline '12-Dec-1996' & [ & \(23.1670]\) \\
\hline '13-Dec-1996' & [ & \(23.1250]\) \\
\hline '16-Dec-1996' & [ & \(22.9580]\) \\
\hline '17-Dec-1996' & [ & \(22.9580]\) \\
\hline '18-Dec-1996' & [ & \(22.9580]\) \\
\hline '19-Dec-1996' & [ & \(22.9580]\) \\
\hline '20-Dec-1996' & [ & \(22.9580]\) \\
\hline '23-Dec-1996' & [ & \(22.9580]\) \\
\hline '24-Dec-1996' & [ & \(22.9580]\) \\
\hline '25-Dec-1996' & [ & \(22.9580]\) \\
\hline '26-Dec-1996' & [ & \(22.9580]\) \\
\hline '27-Dec-1996' & [ & \(22.9580]\) \\
\hline '30-Dec-1996' & [ & \(22.9580]\) \\
\hline '31-Dec-1996' & [ & \(22.9580]\) \\
\hline '01-Jan-1997' & [ & \(22.9580]\) \\
\hline '02-Jan-1997' & [ & \(22.2500]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 03-Jan-1997' & [ & \(22.2500]\) \\
\hline 06-Jan-1997' & [ & \(22.2500]\) \\
\hline 07-Jan-1997' & [ & \(22.2500]\) \\
\hline 08-Jan-1997' & [ & \(22.2500]\) \\
\hline '09-Jan-1997' & [ & \(22.2500]\) \\
\hline '10-Jan-1997' & [ & \(22.1250]\) \\
\hline '13-Jan-1997' & [ & \(22.1250]\) \\
\hline '14-Jan-1997' & [ & \(22.1250]\) \\
\hline '15-Jan-1997' & [ & \(22.1250]\) \\
\hline '16-Jan-1997' & [ & \(22.1250]\) \\
\hline '17-Jan-1997' & [ & \(22.1250]\) \\
\hline '20-Jan-1997' & [ & \(22.1250]\) \\
\hline '21-Jan-1997' & [ & \(22.1250]\) \\
\hline '22-Jan-1997' & [ & \(22.1250]\) \\
\hline '23-Jan-1997' & [ & \(22.1250]\) \\
\hline '24-Jan-1997' & [ & \(22.1250]\) \\
\hline '27-Jan-1997' & [ & \(22.1250]\) \\
\hline '28-Jan-1997' & [ & \(22.1250]\) \\
\hline '29-Jan-1997' & [ & \(22.1250]\) \\
\hline '30-Jan-1997' & [ & \(22.6250]\) \\
\hline '31-Jan-1997' & [ & 22.6670 ] \\
\hline '03-Feb-1997' & [ & \(22.7920]\) \\
\hline '04-Feb-1997' & [ & \(22.8330]\) \\
\hline ' 05-Feb-1997' & [ & \(22.9580]\) \\
\hline '06-Feb-1997' & [ & \(23.0830]\) \\
\hline ' 07-Feb-1997' & [ & \(23.0830]\) \\
\hline '10-Feb-1997' & [ & \(23.0830]\) \\
\hline '11-Feb-1997' & [ & \(23.1670]\) \\
\hline '12-Feb-1997' & [ & 23.1670 ] \\
\hline '13-Feb-1997' & [ & \(23.5420]\) \\
\hline '14-Feb-1997' & [ & \(24]\) \\
\hline '17-Feb-1997' & [ & \(24]\) \\
\hline '18-Feb-1997' & [ & \(24]\) \\
\hline '19-Feb-1997' & [ & \(24]\) \\
\hline ' 20-Feb-1997' & [ & \(24]\) \\
\hline '21-Feb-1997' & [ & \(24.0420]\) \\
\hline '24-Feb-1997' & [ & \(24.0420]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 25-Feb-1997' & [ & \(24.3330]\) \\
\hline '26-Feb-1997' & [ & \(24.5000]\) \\
\hline '27-Feb-1997' & [ & \(24.5000]\) \\
\hline ' 28-Feb-1997' & [ & \(24.5000]\) \\
\hline '03-Mar-1997' & [ & \(24.2500]\) \\
\hline '04-Mar-1997' & [ & \(24.1670]\) \\
\hline '05-Mar-1997' & [ & \(23.9170]\) \\
\hline '06-Mar-1997' & [ & \(23.9170]\) \\
\hline '07-Mar-1997' & [ & \(23.9170]\) \\
\hline '10-Mar-1997' & [ & \(23.9170]\) \\
\hline '11-Mar-1997' & [ & \(23.9170]\) \\
\hline '12-Mar-1997' & [ & \(23.9170]\) \\
\hline '13-Mar-1997' & [ & \(23.9170]\) \\
\hline '14-Mar-1997' & [ & \(23.9170]\) \\
\hline '17-Mar-1997' & [ & \(23.9170]\) \\
\hline '18-Mar-1997' & [ & \(23.9170]\) \\
\hline '19-Mar-1997' & [ & \(23.9170]\) \\
\hline '20-Mar-1997' & [ & \(23.9170]\) \\
\hline '21-Mar-1997' & [ & \(23.9170]\) \\
\hline '24-Mar-1997' & [ & \(23.9170]\) \\
\hline '25-Mar-1997' & [ & \(24.4170]\) \\
\hline '26-Mar-1997' & [ & 24.4170] \\
\hline '27-Mar-1997' & [ & 24.4170 ] \\
\hline '28-Mar-1997' & [ & \(24.4170]\) \\
\hline '31-Mar-1997' & [ & \(24.0830]\) \\
\hline '01-Apr-1997' & [ & \(23.6670]\) \\
\hline '02-Apr-1997' & [ & \(23.6670]\) \\
\hline '03-Apr-1997' & [ & \(23.6670]\) \\
\hline '04-Apr-1997' & [ & \(23.6670]\) \\
\hline '07-Apr-1997' & [ & \(23.6670]\) \\
\hline '08-Apr-1997' & [ & \(23.6670]\) \\
\hline '09-Apr-1997' & [ & \(23.6670]\) \\
\hline '10-Apr-1997' & [ & \(23.6670]\) \\
\hline '11-Apr-1997' & [ & \(23.6670]\) \\
\hline '14-Apr-1997' & [ & \(23.4580]\) \\
\hline '15-Apr-1997' & [ & \(23.4580]\) \\
\hline '16-Apr-1997' & [ & \(23.4580]\) \\
\hline
\end{tabular}
'17-Apr-1997'
23.4580]
'18-Apr-1997'
'21-Apr-1997'
'22-Apr-1997'
'23-Apr-1997'
'24-Apr-1997'
'25-Apr-1997'
'28-Apr-1997'
'29-Apr-1997'
'30-Apr-1997'
'01-May-1997'
'02-May-1997'
'05-May-1997'
' 06-May-1997'
' 07 -May-1997'
'08-May-1997'
' 09 -May-1997'
'12-May-1997'
'13-May-1997'
'14-May-1997'
'15-May-1997'
'16-May-1997'
'19-May-1997'
'20-May-1997'
'21-May-1997'
'22-May-1997'
'23-May-1997'
'26-May-1997'
'27-May-1997'
'28-May-1997'
'29-May-1997'
'30-May-1997'
'02-Jun-1997'
'03-Jun-1997'
'04-Jun-1997'
'05-Jun-1997'
'06-Jun-1997'
23.4580]
23.4580]
23.4580]
23.4580]
23.4580]
23.4580]
23.4580]
23.4580]
23.4580]
23.4580]
23.7500]
24.4580]
25.0830]
25.1670]
25.4170]
25.4580]
25.7080]
25.7080]
25.7080]
25.7500]
26.0830]
\(26.5830]\)
26.5830]
26.5830]
26.5830]
\(26.5830]\)
26.5830]
26.5830]
26.9170]
26.9170]
26.7080]
26.7080]
26.7080]
\(26.6250]\)
26.6250 ]
26.6250]
\begin{tabular}{|c|c|c|}
\hline 09-Jun-1997 ' & [ & \(26.6250]\) \\
\hline 10-Jun-1997' & [ & \(26.6250]\) \\
\hline 11-Jun-1997' & [ & \(26.6250]\) \\
\hline 12-Jun-1997' & [ & \(26.6250]\) \\
\hline '13-Jun-1997' & [ & \(26.6250]\) \\
\hline 16-Jun-1997' & [ & \(26.6250]\) \\
\hline '17-Jun-1997' & [ & \(26.6250]\) \\
\hline '18-Jun-1997' & [ & \(26.6250]\) \\
\hline '19-Jun-1997' & [ & \(26.6250]\) \\
\hline 20-Jun-1997' & [ & \(26.6250]\) \\
\hline 23-Jun-1997' & [ & \(26.6250]\) \\
\hline 24-Jun-1997' & [ & \(26.6250]\) \\
\hline 25-Jun-1997' & [ & \(26.7080]\) \\
\hline 26-Jun-1997' & [ & \(26.8330]\) \\
\hline 27-Jun-1997' & [ & \(26.6250]\) \\
\hline 30-Jun-1997' & [ & \(26.2500]\) \\
\hline '01-Jul-1997' & [ & \(25.9580]\) \\
\hline 02-Jul-1997' & [ & 25.4790 ] \\
\hline 03-Jul-1997' & [ & 25.4790] \\
\hline 04-Jul-1997' & [ & 25.4790 ] \\
\hline 07-Jul-1997' & [ & \(25.0210]\) \\
\hline 08-Jul-1997' & [ & \(25.0210]\) \\
\hline 09-Jul-1997' & [ & \(25.0210]\) \\
\hline 10-Jul-1997' & [ & \(25.0210]\) \\
\hline 11-Jul-1997' & [ & \(25.0210]\) \\
\hline '14-Jul-1997' & [ & \(25.0210]\) \\
\hline '15-Jul-1997' & [ & \(25.0210]\) \\
\hline '16-Jul-1997' & [ & \(25.0210]\) \\
\hline '17-Jul-1997' & [ & \(25.0210]\) \\
\hline '18-Jul-1997' & [ & \(25.0210]\) \\
\hline '21-Jul-1997' & [ & 24.6040 ] \\
\hline '22-Jul-1997' & [ & 24.6040 ] \\
\hline 23-Jul-1997' & [ & 24.6040 ] \\
\hline '24-Jul-1997' & [ & 24.6040 ] \\
\hline '25-Jul-1997' & [ & 24.6040 ] \\
\hline '28-Jul-1997' & [ & 24.6040 ] \\
\hline '29-Jul-1997' & [ & 24.6040 ] \\
\hline
\end{tabular}
'30-Jul-1997'
'31-Jul-1997'
'01-Aug-1997'
' 04-Aug-1997'
' 05-Aug-1997'
'06-Aug-1997'
'07-Aug-1997'
'08-Aug-1997'
'11-Aug-1997'
'12-Aug-1997'
'13-Aug-1997'
'14-Aug-1997'
'15-Aug-1997'
'18-Aug-1997'
'19-Aug-1997'
'20-Aug-1997'
'21-Aug-1997'
'22-Aug-1997'
'25-Aug-1997'
'26-Aug-1997'
'27-Aug-1997'
'28-Aug-1997'
'29-Aug-1997'
'01-Sep-1997'
'02-Sep-1997'
'03-Sep-1997'
'04-Sep-1997'
'05-Sep-1997'
'08-Sep-1997'
'09-Sep-1997'
'10-Sep-1997'
'11-Sep-1997'
'12-Sep-1997'
'15-Sep-1997'
'16-Sep-1997'
'17-Sep-1997'
'18-Sep-1997'
24.6040]
24.6040]
24.6040]
24.6040]
24.6040]
24.6040]
24.6040]
25.0830]
25.5000]
25.5000]
25.7920]
25.7920]
25.5000]
25.3330]
25.3330]
25.3330]
25.3330]
25.3330]
25.3330]
25.3330]
25.3330]
25.3330]
25.3330]
25.3330]
25.3330]
25.3330]
25.3330]
25.6040]
25.6040]
25.6040]
25.6040]
24.8130]
24.8130]
24.8130]
24.8130]
24.8130]
24.8130]
\begin{tabular}{|c|c|c|}
\hline '19-Sep-1997' & [ & \(24.8130]\) \\
\hline '22-Sep-1997' & [ & \(24.8130]\) \\
\hline '23-Sep-1997' & [ & \(24.8130]\) \\
\hline '24-Sep-1997' & [ & \(24.8130]\) \\
\hline '25-Sep-1997' & [ & \(24.8130]\) \\
\hline '26-Sep-1997' & [ & \(24.8130]\) \\
\hline '29-Sep-1997' & [ & \(24.8130]\) \\
\hline '30-Sep-1997' & [ & \(24.8130]\) \\
\hline '01-0ct-1997' & [ & \(25.2920]\) \\
\hline '02-0ct-1997' & [ & \(25.5830]\) \\
\hline '03-0ct-1997' & [ & \(25.7920]\) \\
\hline '06-0ct-1997' & [ & 25.9170 ] \\
\hline '07-Oct-1997' & [ & \(25.9170]\) \\
\hline '08-0ct-1997' & [ & \(26.0830]\) \\
\hline '09-0ct-1997' & [ & \(26.0830]\) \\
\hline '10-0ct-1997' & [ & \(26.0830]\) \\
\hline '13-0ct-1997' & [ & \(26.0830]\) \\
\hline '14-0ct-1997' & [ & \(26.0830]\) \\
\hline '15-0ct-1997' & [ & \(26.3750]\) \\
\hline '16-0ct-1997' & [ & \(26.3750]\) \\
\hline '17-0ct-1997' & [ & \(26.5830]\) \\
\hline '20-0ct-1997' & [ & \(26.9380]\) \\
\hline '21-0ct-1997' & [ & 27.1040 ] \\
\hline '22-0ct-1997' & [ & \(27.1040]\) \\
\hline '23-0ct-1997' & [ & 27.1040 ] \\
\hline '24-0ct-1997' & [ & 27.1040 ] \\
\hline '27-0ct-1997' & [ & 25.9170 ] \\
\hline '28-0ct-1997' & [ & 25] \\
\hline '29-0ct-1997' & [ & \(25]\) \\
\hline '30-0ct-1997' & [ & \(25]\) \\
\hline '31-0ct-1997' & [ & \(25]\) \\
\hline '03-Nov-1997' & [ & 25] \\
\hline '04-Nov-1997' & [ & \(25]\) \\
\hline '05-Nov-1997' & [ & \(25]\) \\
\hline '06-Nov-1997' & [ & \(25]\) \\
\hline '07-Nov-1997' & [ & \(25]\) \\
\hline '10-Nov-1997' & [ & \(25]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '11-Nov-1997' & [ & 25] \\
\hline '12-Nov-1997' & [ & \(25]\) \\
\hline '13-Nov-1997' & [ & \(25]\) \\
\hline '14-Nov-1997' & [ & \(25]\) \\
\hline '17-Nov-1997' & [ & \(26.8330]\) \\
\hline '18-Nov-1997' & [ & \(26.8330]\) \\
\hline '19-Nov-1997' & [ & \(27.2290]\) \\
\hline '20-Nov-1997' & [ & \(27.6880]\) \\
\hline '21-Nov-1997' & [ & \(27.6880]\) \\
\hline '24-Nov-1997' & [ & \(27.6880]\) \\
\hline '25-Nov-1997' & [ & \(27.6880]\) \\
\hline '26-Nov-1997' & [ & \(27.6880]\) \\
\hline '27-Nov-1997' & [ & \(27.6880]\) \\
\hline '28-Nov-1997' & [ & \(27.6880]\) \\
\hline '01-Dec-1997' & [ & \(27.6880]\) \\
\hline '02-Dec-1997' & [ & \(27.9380]\) \\
\hline '03-Dec-1997' & [ & \(28.3750]\) \\
\hline '04-Dec-1997' & [ & 29.2500] \\
\hline '05-Dec-1997' & [ & 29.2500] \\
\hline '08-Dec-1997' & [ & 29.7920] \\
\hline '09-Dec-1997' & [ & \(30.1670]\) \\
\hline '10-Dec-1997' & [ & \(30.3330]\) \\
\hline '11-Dec-1997' & [ & \(30.6880]\) \\
\hline '12-Dec-1997' & [ & 30.6880 ] \\
\hline '15-Dec-1997' & [ & \(30.6880]\) \\
\hline '16-Dec-1997' & [ & \(30.6880]\) \\
\hline '17-Dec-1997' & [ & \(30.6880]\) \\
\hline '18-Dec-1997' & [ & \(30.6880]\) \\
\hline '19-Dec-1997' & [ & \(30.6880]\) \\
\hline '22-Dec-1997' & [ & \(30.6880]\) \\
\hline '23-Dec-1997' & [ & 30.6880 ] \\
\hline '24-Dec-1997' & [ & \(30.6880]\) \\
\hline '25-Dec-1997' & [ & 30.6880 ] \\
\hline '26-Dec-1997' & [ & \(30.6880]\) \\
\hline '29-Dec-1997' & [ & \(30.6880]\) \\
\hline '30-Dec-1997' & [ & \(30.6880]\) \\
\hline '31-Dec-1997' & [ & \(30.9580]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '01-Jan-1998' & [ & \(31.0830]\) \\
\hline '02-Jan-1998' & [ & \(31.0830]\) \\
\hline '05-Jan-1998' & [ & \(31.0830]\) \\
\hline '06-Jan-1998' & [ & \(31.0830]\) \\
\hline '07-Jan-1998' & [ & \(31.0830]\) \\
\hline '08-Jan-1998' & [ & 31.6040 ] \\
\hline '09-Jan-1998' & [ & \(31.6040]\) \\
\hline '12-Jan-1998' & [ & \(31.1880]\) \\
\hline '13-Jan-1998' & [ & \(31.1880]\) \\
\hline '14-Jan-1998' & [ & \(31.1880]\) \\
\hline '15-Jan-1998' & [ & \(31.1880]\) \\
\hline '16-Jan-1998' & [ & 31.1880 ] \\
\hline '19-Jan-1998' & [ & \(31.1880]\) \\
\hline '20-Jan-1998' & [ & \(31.1880]\) \\
\hline '21-Jan-1998' & [ & \(31.1880]\) \\
\hline '22-Jan-1998' & [ & \(31.1880]\) \\
\hline '23-Jan-1998' & [ & \(31.1880]\) \\
\hline '26-Jan-1998' & [ & \(31.1880]\) \\
\hline '27-Jan-1998' & [ & \(31.1880]\) \\
\hline '28-Jan-1998' & [ & \(31.1880]\) \\
\hline '29-Jan-1998' & [ & \(31.1880]\) \\
\hline '30-Jan-1998' & [ & \(31.2500]\) \\
\hline '02-Feb-1998' & [ & \(31.3960]\) \\
\hline '03-Feb-1998' & [ & \(31.5630]\) \\
\hline '04-Feb-1998' & [ & \(31.7500]\) \\
\hline '05-Feb-1998' & [ & \(32.1040]\) \\
\hline ' 06-Feb-1998' & [ & \(32.1040]\) \\
\hline '09-Feb-1998' & [ & \(32.1040]\) \\
\hline '10-Feb-1998' & [ & \(32.1040]\) \\
\hline '11-Feb-1998' & [ & \(32.2710]\) \\
\hline '12-Feb-1998' & [ & \(32.3330]\) \\
\hline '13-Feb-1998' & [ & \(32.9580]\) \\
\hline '16-Feb-1998' & [ & \(34.5000]\) \\
\hline '17-Feb-1998' & [ & \(34.8750]\) \\
\hline '18-Feb-1998' & [ & \(35.1040]\) \\
\hline '19-Feb-1998' & [ & \(35.5000]\) \\
\hline '20-Feb-1998' & [ & \(35.5000]\) \\
\hline
\end{tabular}
'23-Feb-1998'
'24-Feb-1998'
'25-Feb-1998'
'26-Feb-1998'
' 27-Feb-1998'
'02-Mar-1998'
'03-Mar-1998'
'04-Mar-1998'
'05-Mar-1998'
'06-Mar-1998'
'09-Mar-1998'
'10-Mar-1998'
'11-Mar-1998'
'12-Mar-1998'
'13-Mar-1998'
'16-Mar-1998'
'17-Mar-1998'
'18-Mar-1998'
'19-Mar-1998'
'20-Mar-1998'
'23-Mar-1998'
'24-Mar-1998'
'25-Mar-1998'
'26-Mar-1998'
'27-Mar-1998'
'30-Mar-1998'
'31-Mar-1998'
'01-Apr-1998'
'02-Apr-1998'
'03-Apr-1998'
'06-Apr-1998'
'07-Apr-1998'
'08-Apr-1998'
'09-Apr-1998'
'10-Apr-1998'
'13-Apr-1998'
'14-Apr-1998'
\(35.5000]\)
35.5000 ]
35.5000 ]
35.5000 ]
35.5000 ]
36.1040 ]
\(36.2920]\)
\(34.8960]\)
\(34.8960]\)
\(34.8960]\)
34.8960 ]
34.8960 ]
34.7920 ]
34.7920 ]
34.7920 ]
34.7920 ]
34.7920 ]
34.7920 ]
34.7920]
\(34.7920]\)
34.2500 ]
34.2500 ]
34.2500 ]
\(34.2500]\)
34.2500 ]
34.2500 ]
34.2500 ]
\(34.2500]\)
\(34.2500]\)
\(34.2500]\)
34.2500 ]
34.2500 ]
34.2500 ]
34.2500 ]
34.8750 ]
34.9790]
34.9790 ]
\begin{tabular}{|c|c|c|}
\hline '15-Apr-1998' & [ & 34.9790 ] \\
\hline '16-Apr-1998' & [ & 34.9790 ] \\
\hline '17-Apr-1998' & [ & 34.9790 ] \\
\hline '20-Apr-1998' & [ & 34.9790 ] \\
\hline '21-Apr-1998' & [ & 35.1460 ] \\
\hline '22-Apr-1998' & [ & 35.2290 ] \\
\hline '23-Apr-1998' & [ & \(35.2290]\) \\
\hline '24-Apr-1998' & [ & 35.2290 ] \\
\hline '27-Apr-1998' & [ & \(35.2290]\) \\
\hline '28-Apr-1998' & [ & 35.5000 ] \\
\hline '29-Apr-1998' & [ & \(36.3130]\) \\
\hline '30-Apr-1998' & [ & \(36.3130]\) \\
\hline '01-May-1998' & [ & 37.1670 ] \\
\hline '04-May-1998' & [ & \(37.2080]\) \\
\hline '05-May-1998' & [ & \(37.2080]\) \\
\hline '06-May-1998' & [ & \(37.2080]\) \\
\hline '07-May-1998' & [ & \(37.8130]\) \\
\hline '08-May-1998' & [ & 38.1670 ] \\
\hline '11-May-1998' & [ & \(38.5630]\) \\
\hline '12-May-1998' & [ & \(39.5830]\) \\
\hline '13-May-1998' & [ & \(39.3330]\) \\
\hline '14-May-1998' & [ & \(38.5000]\) \\
\hline '15-May-1998' & [ & \(36.8540]\) \\
\hline '18-May-1998' & [ & \(36.3540]\) \\
\hline '19-May-1998' & [ & \(36.3540]\) \\
\hline '20-May-1998' & [ & 36.3540 ] \\
\hline '21-May-1998' & [ & \(36.3540]\) \\
\hline '22-May-1998' & [ & \(36.3540]\) \\
\hline '25-May-1998' & [ & 36.3540 ] \\
\hline '26-May-1998' & [ & \(36.3540]\) \\
\hline '27-May-1998' & [ & 36.3540 ] \\
\hline '28-May-1998' & [ & \(36.3540]\) \\
\hline '29-May-1998' & [ & \(36.3540]\) \\
\hline '01-Jun-1998' & [ & \(36.3540]\) \\
\hline '02-Jun-1998' & [ & \(36.3540]\) \\
\hline '03-Jun-1998' & [ & \(36.3540]\) \\
\hline '04-Jun-1998' & [ & \(36.0210]\) \\
\hline
\end{tabular}
'05-Jun-1998'
'08-Jun-1998'
'09-Jun-1998'
'10-Jun-1998'
'11-Jun-1998'
'12-Jun-1998'
'15-Jun-1998'
'16-Jun-1998'
'17-Jun-1998'
'18-Jun-1998'
'19-Jun-1998'
'22-Jun-1998'
'23-Jun-1998'
'24-Jun-1998'
'25-Jun-1998'
'26-Jun-1998'
'29-Jun-1998'
'30-Jun-1998'
'01-Jul-1998'
'02-Jul-1998'
'03-Jul-1998'
'06-Jul-1998'
'07-Jul-1998'
'08-Jul-1998'
'09-Jul-1998'
'10-Jul-1998'
'13-Jul-1998'
'14-Jul-1998'
'15-Jul-1998'
'16-Jul-1998'
'17-Jul-1998'
'20-Jul-1998'
'21-Jul-1998'
'22-Jul-1998'
'23-Jul-1998'
'24-Jul-1998'
'27-Jul-1998'
\(36.0210]\)
36.0210 ]
36.0210 ]
36.0210 ]
\(36.0210]\)
\(36.0210]\)
36.0210 ]
36.0210]
\(36.0210]\)
\(36.0210]\)
35.6250 ]
\(34.8330]\)
34.8330 ]
34.8330 ]
34.8330 ]
34.8330 ]
34.8330 ]
34.8330 ]
34.8330 ]
34.8330 ]
34.8330 ]
34.8330 ]
34.8330 ]
34.8330 ]
34.8330 ]
34.9380 ]
34.9380 ]
34.9380 ]
34.9380 ]
34.9380 ]
34.9380 ]
34.9380 ]
34.9380 ]
34.9380 ]
34.9380 ]
35.3330 ]
35.5210 ]
\begin{tabular}{|c|c|c|}
\hline '28-Jul-1998' & [ & \(35.0630]\) \\
\hline '29-Jul-1998' & [ & \(35.0630]\) \\
\hline '30-Jul-1998' & [ & \(34]\) \\
\hline '31-Jul-1998' & [ & \(34]\) \\
\hline '03-Aug-1998' & [ & \(34]\) \\
\hline '04-Aug-1998' & [ & \(32.7500]\) \\
\hline '05-Aug-1998' & [ & \(32.2500]\) \\
\hline '06-Aug-1998' & [ & \(32.2500]\) \\
\hline '07-Aug-1998' & [ & \(32.2500]\) \\
\hline '10-Aug-1998' & [ & \(32.2500]\) \\
\hline '11-Aug-1998' & [ & \(31.4380]\) \\
\hline '12-Aug-1998' & [ & \(31.4380]\) \\
\hline '13-Aug-1998' & [ & \(31.4380]\) \\
\hline '14-Aug-1998' & [ & \(31.2500]\) \\
\hline '17-Aug-1998' & [ & \(31.1250]\) \\
\hline '18-Aug-1998' & [ & \(31.1250]\) \\
\hline '19-Aug-1998' & [ & \(31.1250]\) \\
\hline '20-Aug-1998' & [ & \(31.1250]\) \\
\hline '21-Aug-1998' & [ & \(31.1250]\) \\
\hline '24-Aug-1998' & [ & \(31.1250]\) \\
\hline '25-Aug-1998' & [ & \(31.1250]\) \\
\hline '26-Aug-1998' & [ & \(31.1250]\) \\
\hline '27-Aug-1998' & [ & \(30.9380]\) \\
\hline '28-Aug-1998' & [ & \(30.0630]\) \\
\hline '31-Aug-1998' & [ & \(26]\) \\
\hline '01-Sep-1998' & [ & \(26]\) \\
\hline '02-Sep-1998' & [ & \(26]\) \\
\hline '03-Sep-1998' & [ & \(26]\) \\
\hline '04-Sep-1998' & [ & \(26]\) \\
\hline '07-Sep-1998' & [ & \(26]\) \\
\hline '08-Sep-1998' & [ & \(26]\) \\
\hline '09-Sep-1998' & [ & \(26]\) \\
\hline '10-Sep-1998' & [ & \(26]\) \\
\hline '11-Sep-1998' & [ & \(25.7500]\) \\
\hline '14-Sep-1998' & [ & \(23.8750]\) \\
\hline '15-Sep-1998' & [ & \(23.8750]\) \\
\hline '16-Sep-1998' & [ & \(23.8750]\) \\
\hline
\end{tabular}
'17-Sep-1998'
23.8750]
'18-Sep-1998'
'21-Sep-1998'
'22-Sep-1998'
'23-Sep-1998'
'24-Sep-1998'
'25-Sep-1998'
'28-Sep-1998'
'29-Sep-1998'
'30-Sep-1998'
'01-0ct-1998'
'02-0ct-1998'
'05-0ct-1998'
'06-0ct-1998'
'07-0ct-1998'
'08-0ct-1998'
'09-0ct-1998'
'12-0ct-1998'
'13-0ct-1998'
'14-0ct-1998'
'15-0ct-1998'
'16-0ct-1998'
'19-0ct-1998'
'20-0ct-1998'
'21-0ct-1998'
'22-0ct-1998'
'23-0ct-1998'
'26-0ct-1998'
'27-0ct-1998'
'28-0ct-1998'
'29-0ct-1998'
'30-0ct-1998'
' 02 -Nov-1998'
'03-Nov-1998'
'04-Nov-1998'
'05-Nov-1998'
'06-Nov-1998'
23.8750]
\(23.8750]\)
\(23.8750]\)
23.8750]
23.8750]
23.8750]
23.8750]
23.8750]
23.8750]
23.8750]
24.5000]
24.5000]
24.5000]
24.5000]
\(22.6250]\)
\(22.5000]\)
22.5000 ]
\(22.5000]\)
\(22.5000]\)
\(22.5000]\)
\(22.5000]\)
\(22.5000]\)
\(22.5000]\)
\(22.5000]\)
\(22.5000]\)
\(22.5000]\)
\(22.5000]\)
22.5000]
22.5000 ]
24.1880]
24.1880]
24.1880]
24.1880]
25.1250]
25.1250]
25.7500]
\begin{tabular}{|c|c|c|}
\hline 09-Nov-1998' & [ & 25.7500 ] \\
\hline '10-Nov-1998' & [ & 25.7500 ] \\
\hline '11-Nov-1998' & [ & \(25.7500]\) \\
\hline '12-Nov-1998' & [ & 25.7500 ] \\
\hline '13-Nov-1998' & [ & 25.7500 ] \\
\hline '16-Nov-1998' & [ & 25.7500 ] \\
\hline '17-Nov-1998' & [ & \(26.1250]\) \\
\hline 18-Nov-1998' & [ & \(26.5630]\) \\
\hline 19-Nov-1998' & [ & \(27.4380]\) \\
\hline 20-Nov-1998' & [ & 27.9380 ] \\
\hline 23-Nov-1998' & [ & \(27.9380]\) \\
\hline 24-Nov-1998' & [ & 27.9380 ] \\
\hline '25-Nov-1998' & [ & \(28.1250]\) \\
\hline 26-Nov-1998' & [ & \(28.1250]\) \\
\hline '27-Nov-1998' & [ & \(28.1250]\) \\
\hline 30-Nov-1998' & [ & \(28.1250]\) \\
\hline 01-Dec-1998' & [ & \(28.1250]\) \\
\hline 02-Dec-1998' & [ & \(28.1250]\) \\
\hline 03-Dec-1998' & [ & \(28.1250]\) \\
\hline 04-Dec-1998' & [ & \(28.1250]\) \\
\hline 07-Dec-1998' & [ & \(28.1250]\) \\
\hline 08-Dec-1998' & [ & \(28.1250]\) \\
\hline 09-Dec-1998' & [ & \(28.1250]\) \\
\hline 10-Dec-1998' & [ & \(28.6250]\) \\
\hline '11-Dec-1998' & [ & \(29.5000]\) \\
\hline '14-Dec-1998' & [ & \(29.6250]\) \\
\hline '15-Dec-1998' & [ & \(30.1250]\) \\
\hline '16-Dec-1998' & [ & 30.1250 ] \\
\hline 17-Dec-1998' & [ & 30.1250 ] \\
\hline '18-Dec-1998' & [ & 30.0630 ] \\
\hline 21-Dec-1998' & [ & 30.0630 ] \\
\hline '22-Dec-1998' & [ & \(29.9380]\) \\
\hline 23-Dec-1998' & [ & \(29.9380]\) \\
\hline '24-Dec-1998' & [ & \(29.9380]\) \\
\hline '25-Dec-1998' & [ & \(29.9380]\) \\
\hline '28-Dec-1998' & [ & \(29.9380]\) \\
\hline '29-Dec-1998' & [ & 29.9380 ] \\
\hline
\end{tabular}
'30-Dec-1998'
29.7500]
'31-Dec-1998'
'01-Jan-1999'
'04-Jan-1999'
'05-Jan-1999'
'06-Jan-1999'
'07-Jan-1999'
'08-Jan-1999'
'11-Jan-1999'
'12-Jan-1999'
'13-Jan-1999'
'14-Jan-1999'
'15-Jan-1999'
'18-Jan-1999'
'19-Jan-1999'
'20-Jan-1999'
'21-Jan-1999'
'22-Jan-1999'
'25-Jan-1999'
'26-Jan-1999'
'27-Jan-1999'
'28-Jan-1999'
'29-Jan-1999'
' 01-Feb-1999'
' 02-Feb-1999'
'03-Feb-1999'
'04-Feb-1999'
' 05-Feb-1999'
'08-Feb-1999'
' 09-Feb-1999'
'10-Feb-1999'
'11-Feb-1999'
'12-Feb-1999'
' 15 -Feb-1999'
'16-Feb-1999'
'17-Feb-1999'
'18-Feb-1999'
29.5630]
29.5630]
29.2500]
29.2500]
29.2500]
29.2500]
29.2500]
29.2500]
29.2500]
29.2500]
29.2500]
29.2500]
29.2500]
29.2500]
29.2500]
29.2500]
29.6880]
29.7500]

30]
31.8130]
32.6880 ]
32.6880 ]
32.6880 ]
32.6880 ]
32.6880 ]
\(32.6880]\)
32.6880 ]
32.6880 ]
\(32.6880]\)
32.6880 ]
32.6880 ]
32.6880 ]
\(32.6880]\)
\(32.8130]\)
\(32.8130]\)
32.8130 ]
\begin{tabular}{|c|c|c|}
\hline '19-Feb-1999' & [ & \(32.8130]\) \\
\hline '22-Feb-1999' & [ & 33] \\
\hline '23-Feb-1999' & [ & 33] \\
\hline '24-Feb-1999' & [ & \(33.3130]\) \\
\hline '25-Feb-1999' & [ & \(33.3130]\) \\
\hline '26-Feb-1999' & [ & \(33.3130]\) \\
\hline '01-Mar-1999' & [ & \(33.3130]\) \\
\hline '02-Mar-1999' & [ & \(33.8130]\) \\
\hline '03-Mar-1999' & [ & \(34]\) \\
\hline '04-Mar-1999' & [ & \(34]\) \\
\hline '05-Mar-1999' & [ & \(34]\) \\
\hline '08-Mar-1999' & [ & \(34]\) \\
\hline '09-Mar-1999' & [ & \(34]\) \\
\hline '10-Mar-1999' & [ & \(34]\) \\
\hline '11-Mar-1999' & [ & \(34.0630]\) \\
\hline '12-Mar-1999' & [ & \(34.0630]\) \\
\hline '15-Mar-1999' & [ & \(34.0630]\) \\
\hline '16-Mar-1999' & [ & \(34.0630]\) \\
\hline '17-Mar-1999' & [ & \(34.0630]\) \\
\hline '18-Mar-1999' & [ & \(34.0630]\) \\
\hline '19-Mar-1999' & [ & \(34.0630]\) \\
\hline '22-Mar-1999' & [ & \(34.1250]\) \\
\hline '23-Mar-1999' & [ & \(32.8130]\) \\
\hline '24-Mar-1999' & [ & \(32.6250]\) \\
\hline '25-Mar-1999' & [ & \(32.6250]\) \\
\hline '26-Mar-1999' & [ & \(32.6250]\) \\
\hline '29-Mar-1999' & [ & \(32.6250]\) \\
\hline
\end{tabular}

\section*{Ilow}


See Also hhigh

\section*{Purpose Natural logarithm}

\section*{Syntax newfts \(=\log (t s o b j)\)}

Description newfts \(=\log (\) tsobj \()\) calculates the natural logarithm (log base e) of the data series in a financial time series object tsobj. It returns another time series object newfts containing the natural logarithms.

\author{
See Also exp | log2 | log10
}

Purpose Common logarithm
Syntax newfts \(=\log 10(t s o b j)\)
Description newfts \(=\log 10(\) tsobj ) calculates the common logarithm (base 10) of all the data in the data series of the financial time series object tsobj and returns the result in the object newfts.

\author{
See Also exp | log | log2
}

\section*{Purpose Base 2 logarithm}

\section*{Syntax newfts = log2(tsobj)}

Description newfts \(=\log 2(\mathrm{tsobj})\) calculates the base 2 logarithm of the data series in a financial time series object tsobj. It returns another time series object newfts containing the logarithms.

See Also exp \(|\log | \log 10\)

Purpose Compute sample lower partial moments of data
Syntax lpm(Data)
lpm(Data, MAR)
lpm(Data, MAR, Order)
Moment = lpm(Data, MAR, Order)

\section*{Arguments}

\section*{Description}

Given NUMSERIES assets with NUMSAMPLES returns in a NUMSAMPLES-by-NUMSERIES matrix Data, a scalar minimum acceptable return MAR, and one or more nonnegative moment orders in a NUMORDERS vector Order, lpm computes lower partial moments relative to MAR for each asset in a NUMORDERS x NUMSERIES matrix Moment.

The output Moment is a NUMORDERS x NUMSERIES matrix of lower partial moments with NUMORDERS Orders and NUMSERIES series, that is, each row contains lower partial moments for a given order.

Note To compute upper partial moments, just reverse the signs of both Data and MAR (do not reverse the sign of the output). This function computes sample lower partial moments from data. To compute expected lower partial moments for multivariate normal asset returns with a specified mean and covariance, use elpm. With lpm, you can compute various investment ratios such as Omega ratio, Sortino ratio, and Upside Potential ratio, where:
- Omega \(=1 p m(-\) Data, \(-M A R, 1) /\) lpm(Data, MAR , 1)
- Sortino \(=(\) mean \((\) Data \()-\) MAR) \(/ \operatorname{sqrt(lpm(Data,~MAR,~2))~}\)
- Upside = lpm(-Data, -MAR, 1) / sqrt(lpm(Data, MAR, 2))

\section*{Examples}

References

See "Sample Lower Partial Moments" on page 7-14.
Vijay S. Bawa, "Safety-First, Stochastic Dominance, and Optimal Portfolio Choice," Journal of Financial and Quantitative Analysis, Vol. 13, No. 2, June 1978, pp. 255-271.
W. V. Harlow, "Asset Allocation in a Downside-Risk Framework," Financial Analysts Journal, Vol. 47, No. 5, September/October 1991, pp. 28-40.
W. V. Harlow and K. S. Rao, "Asset Pricing in a Generalized Mean-Lower Partial Moment Framework: Theory and Evidence," Journal of Financial and Quantitative Analysis, Vol. 24, No. 3, September 1989, pp. 285-311.

Frank A. Sortino and Robert van der Meer, "Downside Risk," Journal of Portfolio Management, Vol. 17, No. 5, Spring 1991, pp. 27-31.

See Also elpm

\section*{Iweekdate}

Purpose Date of last occurrence of weekday in month
```

Syntax LastDate = lweekdate (Weekday, Year, Month, NextDay)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Weekday & Weekday whose date you seek. Enter as an integer from 1 through 7: \\
\hline & 1 Sunday \\
\hline & 2 Monday \\
\hline & 3 Tuesday \\
\hline & 4 Wednesday \\
\hline & 5 Thursday \\
\hline & 6 Friday \\
\hline & \(7 \quad\) Saturday \\
\hline Year & Year. Enter as a four-digit integer. \\
\hline Month & Month. Enter as an integer from 1 through 12. \\
\hline NextDay & (Optional) Weekday that must occur after Weekday in the same week. Enter as an integer from 0 through 7 , where \(0=\) ignore (default) and 1 through 7 are the same as for Weekday. \\
\hline
\end{tabular}

Any input can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, if Year is a 1-by-n vector of integers, then Month must be a 1 -by-n vector of integers or a single integer. LastDate is then a 1-by-n vector of date numbers.

\section*{Description}

LastDate = lweekdate(Weekday, Year, Month, NextDay) returns the serial date number for the last occurrence of Weekday in the given year and month and in a week that also contains NextDay.

Use the function datestr to convert serial date numbers to formatted date strings.

\section*{Examples}

Example 1. To find the last Monday in June 2001
LastDate = lweekdate(2, 2001, 6); datestr(LastDate)
ans \(=\)

25-Jun-2001
Example 2. To find the last Monday in a week that also contains a Friday in June 2001

LastDate \(=\) lweekdate (2, 2001, 6, 6); datestr(LastDate)
ans \(=\)
25-Jun-2001
Example 3. To find the last Monday in May for 2001, 2002, and 2003
Year = [2001:2003];
LastDate = lweekdate(2, Year, 5)
LastDate =
\(730999 \quad 731363 \quad 731727\)
datestr(LastDate)
ans =
28-May-2001
27-May-2002
26-May-2003
See Also
eomdate | lbusdate | nweekdate

\section*{m2xdate}

Purpose MATLAB serial date number to Excel serial date number
Syntax DateNum = m2xdate (MATLABDateNumber, Convention)
Arguments
MATLABDateNumber A vector or scalar of MATLAB serial date numbers.

Convention (Optional) Excel date system. A vector or scalar. When Convention = 0 (default), the Excel 1900 date system is in effect. When Convention = 1, the Excel 1904 date system in used.

In the Excel 1900 date system, the Excel serial date number 1 corresponds to January 1, 1900 A.D. In the Excel 1904 date system, date number 0 is January 1, 1904 A.D.

Due to a software limitation in Excel software, the year 1900 is considered a leap year. As a result, all DATEVALUE's reported by Excel software between Jan. 1, 1900 and Feb. 28, 1900 (inclusive) differs from the values reported by 1. For example:
- In Excel software, Jan. 1, \(1900=1\)
- In MATLAB, Jan. 1, 1900-693960 (for 1900 date system) \(=2\)
```

datenum('Jan 1, 1900') - 693960

```
ans \(=\)

Vector arguments must have consistent dimensions.


This example shows how to convert MATLAB serial date numbers using the 1900 date system. Given MATLAB date numbers for Christmas 2001 through 2004, convert them to Excel date numbers in the 1900 system.
```

DateNum = datenum(2001:2004, 12, 25);
ExDate = m2xdate(DateNum)

```
ExDate =
\begin{tabular}{llll}
37250 & 37615 & 37980 & 38346
\end{tabular}

\section*{Convert MATLAB Serial Date Numbers Using 1904 Date System}

This example shows how to convert MATLAB serial date numbers using the 1904 date system. Given MATLAB date numbers for Christmas 2001 through 2004, convert them to Excel date numbers in the 1904 system.
```

DateNum = datenum(2001:2004, 12, 25);
ExDate = m2xdate(DateNum, 1)

```

\section*{m2xdate}
```

ExDate =
35788 36153 36518 36884

```
See Also datenum | datestr | x2mdate

\section*{Purpose Moving Average Convergence/Divergence (MACD)}

\section*{Syntax}
```

[macdvec, nineperma] = macd(data)
[macdvec, nineperma] = macd(data, dim)
macdts = macd(tsobj, series_name)

```

\section*{Arguments}
\begin{tabular}{ll} 
data & Data matrix \\
dim & Dimension. Default = 1 (column orientation). \\
tsobj & Financial time series object \\
series_name & Data series name
\end{tabular}

\section*{Description}
[macdvec, nineperma] \(=\) macd(data) calculates the Moving Average Convergence/Divergence (MACD) line, macdvec, from the data matrix, data, as well as the nine-period exponential moving average, nineperma, from the MACD line.

When the two lines are plotted, they can give you an indication of whether to buy or sell a stock, when an overbought or oversold condition is occurring, and when the end of a trend might occur.
The MACD is calculated by subtracting the 26 -period ( \(7.5 \%\) ) exponential moving average from the 12 -period ( \(15 \%\) ) moving average. The 9 -day ( \(20 \%\) ) exponential moving average of the MACD line is used as the signal line. For example, when the MACD and the \(20 \%\) moving average line have just crossed and the MACD line falls below the other line, it is time to sell.
[macdvec, nineperma] = macd(data, dim) lets you specify the orientation direction for the input. If the input data is a matrix, you need to indicate whether each row is a set of observations (dim \(=2\) ) or each column is a set of observations (dim \(=1\), the default).
macdts \(=\) macd(tsobj, series_name) calculates the MACD line from the financial time series tsobj, as well as the nine-period exponential
moving average from the MACD line. The MACD is calculated for the closing price series in tsobj, presumed to have been named Close. The result is stored in the financial time series object macdts. The macdts object has the same dates as the input object tsobj and contains only two series, named MACDLine and NinePerMA. The first series contains the values representing the MACD line and the second is the nine-period exponential moving average of the MACD line.

\section*{Examples Compute the Moving Average Convergence/Divergence (MACD)}

This example shows how to compute the MACD for Disney stock and plot the results.
```

load disney.mat
dis_CloseMACD = macd(dis);
dis_OpenMACD = macd(dis, 'OPEN');
plot(dis_CloseMACD);
plot(dis_OpenMACD);
title('MACD for Disney')

```


See Also adline | willad

Purpose Maximum value

\section*{Syntax tsmax \(=\max (\mathrm{tsobj})\)}

Description tsmax \(=\max (\mathrm{tsobj})\) finds the maximum value in each data series in the financial time series object tsobj and returns it in a structure tsmax. The tsmax structure contains field name(s) identical to the data series name(s).

Note tsmax returns only the values and does not return the dates associated with the values. The maximum values are not necessarily from the same date.

\section*{See Also \\ min}

\section*{Purpose}

Compute maximum drawdown for one or more price series
Syntax
MaxDD = maxdrawdown(Data)
MaxDD = maxdrawdown(Data, Format)
[MaxDD, MaxDDIndex] = maxdrawdown(Data, Format)

\section*{Arguments}
Data \begin{tabular}{cl} 
Format & \begin{tabular}{l} 
T-by-N matrix with \(T\) samples of \(N\) total return price \\
series (also known as total equity). \\
(Optional) MATLAB string indicating format of data. \\
Possible values are: \\
'return' (default): Maximum drawdown in terms of \\
maximum percentage drop from a peak. \\
'arithmetic ': Maximum drawdown of an \\
arithmetic Brownian motion with drift (differences \\
of data from peak to trough) using the equation
\end{tabular} \\
\(\quad d X(t)=\mu d t+\sigma d W(t)\). \\
& \begin{tabular}{l} 
'geometric ': Maximum drawdown of a geometric \\
Brownian motion with drift (differences of log of data \\
from peak to trough) using the equation
\end{tabular} \\
\(\quad d S(t)=\mu_{0} S(t) d t+\sigma_{0} S(t) d W(t)\)
\end{tabular}

\section*{Description}

MaxDD = maxdrawdown(Data, Format) computes maximum drawdown for each series in an \(N\)-vector MaxDD and identifies start and end indexes of maximum drawdown periods for each series in a \(2 \times \mathrm{N}\) matrix MaxDDIndex.

To summarize the outputs of maxdrawdown:

\section*{maxdrawdown}
- MaxDD is a 1-by-N vector with maximum drawdown for each of N time series.
- MaxDDIndex is a 2-by-N vector of start and end indexes for each maximum drawdown period for each total equity time series, where the first row contains the start indexes and the second row contains the end indexes of each maximum drawdown period.

\section*{Notes}
- Drawdown is the percentage drop in total returns from the start to the end of a period. If the total equity time series is increasing over an entire period, drawdown is 0 . Otherwise, it is a positive number. Maximum drawdown is an ex-ante proxy for downside risk that computes the largest drawdown over all intervals of time that can be formed within a specified interval of time.
- Maximum drawdown is sensitive to quantization error.

\author{
Examples See "Maximum Drawdown" on page 7-17. \\ References Christian S. Pederson and Ted Rudholm-Alfvin, "Selecting a Risk-Adjusted Shareholder Performance Measure," Journal of Asset Management, Vol. 4, No. 3, 2003, pp. 152-172. \\ See Also \\ emaxdrawdown
}

\section*{Purpose Arithmetic average}

\section*{Syntax tsmean = mean(tsobj)}

Description tsmean \(=\) mean (tsobj) computes the arithmetic mean of all data in all series in tsobj and returns it in a structure tsmean. The tsmean structure contains field name(s) identical to the data series name(s).

See Also peravg | tsmovavg

\section*{medprice}

Purpose Median price
Syntax mprc = medprice (highp, lowp)
mprc = medprice([highp lowp])
mprcts = medprice(tsobj)
mprcts = medprice(tsobj, ParameterName, ParameterValue, ...)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline highp & High price (vector) \\
\hline lowp & Low price (vector) \\
\hline tsobj & Financial time series object \\
\hline ParameterName & Valid parameter names are: \\
\hline ParameterValue & \begin{tabular}{l}
- HighName: high prices series name Parameter values are the strings that \\

\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
mprc \(=\) medprice (highp, lowp) calculates the median prices mprc from the high (highp) and low (lowp) prices. The median price is the average of the high and low price for each period.
mprc = medprice([highp lowp]) accepts a two-column matrix as the input rather than two individual vectors. The columns of the matrix represent the high and low prices, in that order.
mprcts \(=\) medprice(tsobj) calculates the median prices of a financial time series object tsobj. The object must minimally contain the series High and Low. The median price is the average of the high and low price each period. mprcts is a financial time series object with the same dates as tsobj and the data series MedPrice.
mprcts = medprice(tsobj, ParameterName, ParameterValue, ...) accepts parameter name/parameter value pairs as input. These pairs specify the name(s) for the required data series if it is different
from the expected default name(s). Parameter values are the strings that represent the valid parameter names.

\section*{Examples Compute the Median Price}

This example shows how to compute the median price for Disney stock and plot the results.
```

load disney.mat
dis_MedPrice = medprice(dis)
plot(dis_MedPrice)
title('Median Price for Disney')

```
dis_MedPrice =
    desc: MedPrice: Walt Disney Company (DIS)
    freq: Unknown (0)
    'dates: (782)' 'MedPrice: (782)
    '29-Mar-1996' [ 21.4585]
    '01-Apr-1996' [ 21.5210]
    '02-Apr-1996' [ 21.7710]
    '03-Apr-1996' [ 21.8125]
    '04-Apr-1996' [ 21.6875]
    '05-Apr-1996' [ NaN]
    '08-Apr-1996' [
    21.4375]
    '09-Apr-1996' [ 21.3750]
    '10-Apr-1996' [ 20.7085]
    '11-Apr-1996' [ 20.2710]
    '12-Apr-1996' [ 20.3330]
    '15-Apr-1996' [ 20.5835]
    '16-Apr-1996' [ 20.5420]
    '17-Apr-1996' [ 20.8125]
    '18-Apr-1996' [ 20.9170]
    '19-Apr-1996' [ 21.0420]
    '22-Apr-1996' [ 20.9580]
\begin{tabular}{|c|c|c|}
\hline 23-Apr-1996' & [ & 20.6460 ] \\
\hline '24-Apr-1996' & [ & 20.2295] \\
\hline '25-Apr-1996' & [ & 20.3955] \\
\hline '26-Apr-1996' & [ & 20.7085] \\
\hline '29-Apr-1996' & [ & \(20.6250]\) \\
\hline '30-Apr-1996' & [ & \(20.6250]\) \\
\hline '01-May-1996' & [ & \(20.3750]\) \\
\hline '02-May-1996' & [ & \(20.0625]\) \\
\hline '03-May-1996' & [ & \(19.8750]\) \\
\hline '06-May-1996' & [ & \(19.8125]\) \\
\hline '07-May-1996' & [ & \(19.8750]\) \\
\hline '08-May-1996' & [ & \(19.5000]\) \\
\hline '09-May-1996' & [ & \(19.5625]\) \\
\hline '10-May-1996' & [ & 19.6665] \\
\hline '13-May-1996' & [ & \(20.0625]\) \\
\hline '14-May-1996' & [ & 20.3125] \\
\hline '15-May-1996' & [ & 20.2290] \\
\hline '16-May-1996' & [ & 20.1665] \\
\hline '17-May-1996' & [ & 20.4375] \\
\hline '20-May-1996' & [ & 20.5210] \\
\hline '21-May-1996' & [ & 20.6040 ] \\
\hline '22-May-1996' & [ & \(20.8750]\) \\
\hline '23-May-1996' & [ & \(20.8540]\) \\
\hline '24-May-1996' & [ & \(20.8330]\) \\
\hline '27-May-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '28-May-1996' & [ & 20.7710] \\
\hline '29-May-1996' & [ & 20.4375] \\
\hline '30-May-1996' & [ & \(20.2705]\) \\
\hline '31-May-1996' & [ & 20.3955] \\
\hline '03-Jun-1996' & [ & \(20.1665]\) \\
\hline '04-Jun-1996' & [ & \(20.0210]\) \\
\hline '05-Jun-1996' & [ & \(20.0205]\) \\
\hline '06-Jun-1996' & [ & 20.9165] \\
\hline '07-Jun-1996' & [ & \(20.7500]\) \\
\hline '10-Jun-1996' & [ & 20.9585] \\
\hline '11-Jun-1996' & [ & \(20.8330]\) \\
\hline '12-Jun-1996' & [ & \(20.8330]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '13-Jun-1996' & [ & \(20.7080]\) \\
\hline '14-Jun-1996' & [ & \(20.4375]\) \\
\hline '17-Jun-1996' & [ & \(20.5830]\) \\
\hline '18-Jun-1996' & [ & \(20.5000]\) \\
\hline '19-Jun-1996' & [ & \(20.3750]\) \\
\hline '20-Jun-1996' & [ & \(20.4585]\) \\
\hline '21-Jun-1996' & [ & \(20.7710]\) \\
\hline '24-Jun-1996' & [ & \(20.8330]\) \\
\hline '25-Jun-1996' & [ & \(20.9790]\) \\
\hline '26-Jun-1996' & [ & 20.7915] \\
\hline '27-Jun-1996' & [ & 20.9375] \\
\hline '28-Jun-1996' & [ & \(21.0625]\) \\
\hline '01-Jul-1996' & [ & \(20.7710]\) \\
\hline '02-Jul-1996' & [ & \(20.5835]\) \\
\hline '03-Jul-1996' & [ & \(20.2290]\) \\
\hline '04-Jul-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '05-Jul-1996' & [ & 19.9585] \\
\hline '08-Jul-1996' & [ & 19.8125] \\
\hline '09-Jul-1996' & [ & 19.4585] \\
\hline '10-Jul-1996' & [ & \(19.2500]\) \\
\hline '11-Jul-1996' & [ & 19] \\
\hline '12-Jul-1996' & [ & \(18.9375]\) \\
\hline '15-Jul-1996' & [ & 18.7915] \\
\hline '16-Jul-1996' & [ & \(18.3750]\) \\
\hline '17-Jul-1996' & [ & \(18.8750]\) \\
\hline '18-Jul-1996' & [ & \(18.9375]\) \\
\hline '19-Jul-1996' & [ & \(19.0625]\) \\
\hline '22-Jul-1996' & [ & \(18.8545]\) \\
\hline '23-Jul-1996' & [ & \(18.6250]\) \\
\hline '24-Jul-1996' & [ & \(18.2500]\) \\
\hline '25-Jul-1996' & [ & \(18.2085]\) \\
\hline '26-Jul-1996' & [ & 18.0415] \\
\hline '29-Jul-1996' & [ & 18] \\
\hline '30-Jul-1996' & [ & 18.1250] \\
\hline '31-Jul-1996' & [ & \(18.4375]\) \\
\hline '01-Aug-1996' & [ & 18.9375] \\
\hline '02-Aug-1996' & [ & 19.4375] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ' 05-Aug-1996 ' & & \(19.4790]\) \\
\hline '06-Aug-1996 ' & [ & \(19.5830]\) \\
\hline '07-Aug-1996 ' & [ & \(19.5000]\) \\
\hline '08-Aug-1996 ' & [ & \(19.2915]\) \\
\hline '09-Aug-1996 ' & [ & \(19.0625]\) \\
\hline '12-Aug-1996 ' & & \(19.1665]\) \\
\hline '13-Aug-1996' & [ & \(19.3540]\) \\
\hline '14-Aug-1996 ' & [ & \(19.3125]\) \\
\hline '15-Aug-1996 ' & [ & \(19.3960]\) \\
\hline '16-Aug-1996 ' & [ & \(19.3125]\) \\
\hline '19-Aug-1996 ' & [ & \(19.3960]\) \\
\hline '20-Aug-1996' & [ & \(19.2080]\) \\
\hline '21-Aug-1996' & [ & \(19.1455]\) \\
\hline '22-Aug-1996 ' & [ & \(19.4165]\) \\
\hline '23-Aug-1996 ' & [ & \(19.3125]\) \\
\hline '26-Aug-1996 ' & [ & \(19.6045]\) \\
\hline '27-Aug-1996 ' & [ & \(19.7500]\) \\
\hline '28-Aug-1996 ' & [ & \(19.5000]\) \\
\hline '29-Aug-1996' & [ & 19.1875] \\
\hline '30-Aug-1996 ' & & 19] \\
\hline '02-Sep-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '03-Sep-1996' & [ & \(18.8960]\) \\
\hline '04-Sep-1996' & [ & \(18.8960]\) \\
\hline '05-Sep-1996' & [ & \(18.7500]\) \\
\hline '06-Sep-1996' & [ & \(18.8125]\) \\
\hline '09-Sep-1996' & [ & \(19.2295]\) \\
\hline '10-Sep-1996' & [ & \(19.2710]\) \\
\hline '11-Sep-1996' & [ & \(19.3750]\) \\
\hline '12-Sep-1996' & & \(19.9165]\) \\
\hline '13-Sep-1996' & [ & \(20.2500]\) \\
\hline '16-Sep-1996' & [ & \(20.3330]\) \\
\hline '17-Sep-1996' & [ & \(20.2290]\) \\
\hline '18-Sep-1996' & [ & \(20.3750]\) \\
\hline '19-Sep-1996' & [ & \(20.7295]\) \\
\hline '20-Sep-1996' & [ & \(20.9585]\) \\
\hline '23-Sep-1996' & [ & \(21.0830]\) \\
\hline '24-Sep-1996' & [ & \(21.0625]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '25-Sep-1996' & [ & \(20.9585]\) \\
\hline '26-Sep-1996' & [ & \(20.9165]\) \\
\hline '27-Sep-1996' & [ & \(20.7710]\) \\
\hline '30-Sep-1996' & [ & \(21.1045]\) \\
\hline '01-0ct-1996' & [ & \(21.0205]\) \\
\hline '02-0ct-1996' & [ & 21] \\
\hline '03-0ct-1996' & [ & \(21.0210]\) \\
\hline '04-0ct-1996' & [ & \(21.3540]\) \\
\hline '07-0ct-1996' & [ & \(21.3750]\) \\
\hline '08-0ct-1996' & [ & \(21.3125]\) \\
\hline '09-0ct-1996' & [ & \(21.0835]\) \\
\hline '10-0ct-1996' & [ & \(21.1250]\) \\
\hline '11-Oct-1996' & [ & \(21.3330]\) \\
\hline '14-0ct-1996' & [ & \(21.4585]\) \\
\hline '15-0ct-1996' & [ & \(21.3545]\) \\
\hline '16-0ct-1996' & [ & 21.6040 ] \\
\hline '17-0ct-1996' & [ & 21.7705] \\
\hline '18-0ct-1996' & [ & 21.5835] \\
\hline '21-0ct-1996' & [ & 21.7915] \\
\hline '22-Oct-1996' & [ & \(22.0625]\) \\
\hline '23-0ct-1996' & [ & \(22.0420]\) \\
\hline '24-0ct-1996' & [ & \(21.8960]\) \\
\hline '25-0ct-1996' & [ & \(21.8955]\) \\
\hline '28-0ct-1996' & [ & \(22.1775]\) \\
\hline '29-0ct-1996' & [ & \(22.0625]\) \\
\hline '30-0ct-1996' & [ & \(21.9585]\) \\
\hline '31-0ct-1996' & [ & \(21.8540]\) \\
\hline '01-Nov-1996' & [ & \(21.9165]\) \\
\hline '04-Nov-1996' & , & \(22.0625]\) \\
\hline '05-Nov-1996' & [ & \(22.3960]\) \\
\hline '06-Nov-1996' & [ & \(22.4375]\) \\
\hline '07-Nov-1996' & [ & \(22.7710]\) \\
\hline '08-Nov-1996' & , & \(22.7710]\) \\
\hline '11-Nov-1996' & [ & 23.1455] \\
\hline '12-Nov-1996' & [ & \(23.5625]\) \\
\hline '13-Nov-1996' & [ & \(23.5625]\) \\
\hline '14-Nov-1996' & [ & \(23.4165]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 15-Nov-1996' & [ & \(23.9580]\) \\
\hline 18-Nov-1996' & [ & \(23.8335]\) \\
\hline 19-Nov-1996' & [ & \(23.7710]\) \\
\hline 20-Nov-1996' & [ & \(23.7295]\) \\
\hline 21-Nov-1996' & [ & \(23.9585]\) \\
\hline 22-Nov-1996' & [ & 24.2290] \\
\hline 25-Nov-1996' & [ & 24.1875] \\
\hline 26-Nov-1996' & [ & \(25.2710]\) \\
\hline 27-Nov-1996' & [ & \(24.8335]\) \\
\hline 28-Nov-1996' & [ & \(\mathrm{NaN}]\) \\
\hline 29-Nov-1996' & [ & \(24.5000]\) \\
\hline 02-Dec-1996' & [ & \(24.5830]\) \\
\hline 03-Dec-1996' & [ & 24.2920] \\
\hline 04-Dec-1996 ' & [ & \(23.7290]\) \\
\hline 05-Dec-1996' & [ & \(23.8125]\) \\
\hline 06-Dec-1996' & [ & \(23.5210]\) \\
\hline '09-Dec-1996' & [ & 24.0625] \\
\hline 10-Dec-1996' & [ & \(24.4165]\) \\
\hline 11-Dec-1996' & [ & 24.0625] \\
\hline 12-Dec-1996' & [ & \(23.7290]\) \\
\hline 13-Dec-1996' & [ & \(23.3540]\) \\
\hline 16-Dec-1996' & [ & \(23.3125]\) \\
\hline 17-Dec-1996' & [ & \(23.4165]\) \\
\hline 18-Dec-1996' & [ & \(23.8125]\) \\
\hline 19-Dec-1996' & [ & \(23.9375]\) \\
\hline '20-Dec-1996' & [ & 24.2915] \\
\hline 23-Dec-1996' & [ & \(24]\) \\
\hline '24-Dec-1996' & [ & \(23.8750]\) \\
\hline '25-Dec-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '26-Dec-1996' & [ & \(23.7915]\) \\
\hline '27-Dec-1996' & [ & \(23.8545]\) \\
\hline '30-Dec-1996' & [ & \(23.5835]\) \\
\hline '31-Dec-1996' & [ & \(23.3125]\) \\
\hline '01-Jan-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '02-Jan-1997' & [ & \(22.7710]\) \\
\hline '03-Jan-1997' & [ & \(22.9165]\) \\
\hline '06-Jan-1997' & [ & \(23.0625]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '07-Jan-1997' & [ & \(22.8750]\) \\
\hline '08-Jan-1997' & [ & \(22.8125]\) \\
\hline '09-Jan-1997' & [ & 22.6670 ] \\
\hline '10-Jan-1997' & [ & \(22.3750]\) \\
\hline '13-Jan-1997' & [ & \(22.7290]\) \\
\hline '14-Jan-1997' & [ & \(22.9170]\) \\
\hline '15-Jan-1997' & [ & \(23.0210]\) \\
\hline '16-Jan-1997' & [ & \(22.9790]\) \\
\hline '17-Jan-1997' & [ & \(23.1665]\) \\
\hline '20-Jan-1997' & [ & \(23.5210]\) \\
\hline '21-Jan-1997' & [ & \(23.1875]\) \\
\hline '22-Jan-1997' & [ & \(23.3540]\) \\
\hline '23-Jan-1997' & [ & \(23.6665]\) \\
\hline '24-Jan-1997' & [ & \(23.5000]\) \\
\hline '27-Jan-1997' & [ & \(23.7500]\) \\
\hline '28-Jan-1997' & [ & \(24.5210]\) \\
\hline '29-Jan-1997' & [ & \(24.4165]\) \\
\hline '30-Jan-1997' & [ & \(24.3750]\) \\
\hline '31-Jan-1997' & [ & \(24.3330]\) \\
\hline '03-Feb-1997' & [ & \(24.1460]\) \\
\hline ' 04-Feb-1997' & [ & \(24.2500]\) \\
\hline ' 05-Feb-1997' & [ & \(24.3960]\) \\
\hline '06-Feb-1997' & [ & \(24.5205]\) \\
\hline '07-Feb-1997' & [ & \(24.9375]\) \\
\hline '10-Feb-1997' & [ & \(25.4375]\) \\
\hline '11-Feb-1997' & [ & 25.1040 ] \\
\hline '12-Feb-1997' & [ & \(25.3335]\) \\
\hline '13-Feb-1997' & [ & \(25.8960]\) \\
\hline ' 14-Feb-1997' & [ & \(26.1460]\) \\
\hline '17-Feb-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '18-Feb-1997' & [ & 25.7915] \\
\hline '19-Feb-1997' & [ & \(25.5415]\) \\
\hline ' 20-Feb-1997' & [ & \(25.1665]\) \\
\hline '21-Feb-1997' & [ & \(25.1875]\) \\
\hline '24-Feb-1997' & [ & \(25.1040]\) \\
\hline ' 25-Feb-1997' & [ & \(25.3125]\) \\
\hline ' 26-Feb-1997' & [ & \(24.9790]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '27-Feb-1997' & [ & \(25.2710]\) \\
\hline '28-Feb-1997' & [ & 24.9165] \\
\hline '03-Mar-1997' & [ & \(24.6040]\) \\
\hline '04-Mar-1997' & [ & 24.3335] \\
\hline '05-Mar-1997' & [ & 24.3125] \\
\hline '06-Mar-1997' & [ & 24.8125] \\
\hline '07-Mar-1997' & [ & 25.2915] \\
\hline '10-Mar-1997' & [ & \(25.3750]\) \\
\hline '11-Mar-1997' & [ & \(25.7290]\) \\
\hline '12-Mar-1997' & [ & \(25.3545]\) \\
\hline '13-Mar-1997' & [ & \(24.7500]\) \\
\hline '14-Mar-1997' & [ & 24.8125] \\
\hline '17-Mar-1997' & [ & 25.0625] \\
\hline '18-Mar-1997' & [ & \(25.2290]\) \\
\hline '19-Mar-1997' & [ & \(24.8750]\) \\
\hline '20-Mar-1997' & [ & \(24.8750]\) \\
\hline '21-Mar-1997' & [ & \(24.7290]\) \\
\hline '24-Mar-1997' & [ & 24.8335] \\
\hline '25-Mar-1997' & [ & 25] \\
\hline '26-Mar-1997' & [ & 25.0415] \\
\hline '27-Mar-1997' & [ & 24.8125] \\
\hline '28-Mar-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '31-Mar-1997' & [ & \(24.3750]\) \\
\hline '01-Apr-1997' & [ & 24.0835] \\
\hline '02-Apr-1997' & [ & \(24.1665]\) \\
\hline '03-Apr-1997' & [ & \(24]\) \\
\hline '04-Apr-1997' & [ & 24.2705] \\
\hline '07-Apr-1997' & [ & \(24.5830]\) \\
\hline '08-Apr-1997' & [ & \(24.4790]\) \\
\hline '09-Apr-1997' & [ & \(24.5830]\) \\
\hline '10-Apr-1997' & [ & \(24.8335]\) \\
\hline '11-Apr-1997' & [ & \(24.5000]\) \\
\hline '14-Apr-1997' & [ & \(23.7500]\) \\
\hline '15-Apr-1997' & [ & \(24.2290]\) \\
\hline '16-Apr-1997' & [ & \(24.8330]\) \\
\hline '17-Apr-1997' & [ & \(25.2705]\) \\
\hline '18-Apr-1997' & [ & 25.4170 ] \\
\hline
\end{tabular}
\begin{tabular}{llr} 
'21-Apr-1997' & {\([\)} & \(25.6875]\) \\
'22-Apr-1997' & {\([\)} & \(25.8750]\) \\
'23-Apr-1997' & {\([\)} & \(26.3125]\) \\
'24-Apr-1997' & {\([\)} & \(26.2710]\) \\
'25-Apr-1997' & {\([\)} & \(25.8955]\) \\
'28-Apr-1997' & {\([\)} & \(25.9165]\) \\
'29-Apr-1997' & {\([\)} & \(26.5205]\) \\
'30-Apr-1997' & {\([\)} & \(27.0835]\) \\
'01-May-1997' & {\([\)} & \(27.0415]\) \\
'02-May-1997' & {\([\)} & \(26.9795]\) \\
'05-May-1997' & {\([\)} & \(27]\) \\
'06-May-1997' & {\([\)} & \(27.2915]\) \\
'07-May-1997' & {\([\)} & \(27.0835]\) \\
'08-May-1997' & {\([\)} & \(26.9375]\) \\
'09-May-1997' & {\([\)} & \(27.2085]\) \\
'12-May-1997' & {\([\)} & \(27.9165]\) \\
'13-May-1997' & {\([\)} & \(27.8750]\) \\
'14-May-1997' & {\([\)} & \(28]\) \\
'15-May-1997' & {\([\)} & \(27.6670]\) \\
'16-May-1997' & {\([\)} & \(27.2500]\) \\
'19-May-1997' & {\([\)} & \(27.3545]\) \\
'20-May-1997' & {\([\)} & \(27.5415]\) \\
'21-May-1997' & {\([\)} & {\([\)}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 11-Jun-1997 ' & [ & \(27.1250]\) \\
\hline 12-Jun-1997' & [ & 27.1875] \\
\hline 13-Jun-1997' & [ & 27.6460 ] \\
\hline 16-Jun-1997' & [ & \(27.8125]\) \\
\hline 17-Jun-1997' & [ & \(27.8540]\) \\
\hline 18-Jun-1997' & [ & \(27.6460]\) \\
\hline '19-Jun-1997' & [ & \(27.5000]\) \\
\hline 20-Jun-1997' & [ & \(27.5625]\) \\
\hline 23-Jun-1997' & [ & \(27.1455]\) \\
\hline 24-Jun-1997' & [ & 27.1665] \\
\hline 25-Jun-1997' & [ & 27.3385] \\
\hline 26-Jun-1997' & [ & \(27.2085]\) \\
\hline 27-Jun-1997' & [ & \(26.9690]\) \\
\hline 30-Jun-1997' & [ & \(26.5315]\) \\
\hline 01-Jul-1997' & [ & \(26.2705]\) \\
\hline 02-Jul-1997' & [ & \(25.6980]\) \\
\hline '03-Jul-1997' & [ & \(25.9375]\) \\
\hline 04-Jul-1997' & [ & \(\mathrm{NaN}]\) \\
\hline 07-Jul-1997' & [ & \(25.5520]\) \\
\hline 08-Jul-1997' & [ & \(25.8750]\) \\
\hline 09-Jul-1997' & [ & \(25.8855]\) \\
\hline 10-Jul-1997' & [ & 25.7605] \\
\hline 11-Jul-1997' & [ & \(25.4585]\) \\
\hline 14-Jul-1997' & [ & \(25.6460]\) \\
\hline 15-Jul-1997' & [ & \(25.7500]\) \\
\hline '16-Jul-1997' & [ & 26.2605] \\
\hline 17-Jul-1997' & [ & \(25.8750]\) \\
\hline '18-Jul-1997' & [ & \(25.3750]\) \\
\hline '21-Jul-1997' & [ & 24.9585] \\
\hline '22-Jul-1997' & [ & 25.5415] \\
\hline '23-Jul-1997' & [ & 26.2295] \\
\hline '24-Jul-1997' & [ & \(26.0210]\) \\
\hline 25-Jul-1997' & [ & \(26.2500]\) \\
\hline '28-Jul-1997' & [ & \(26.4685]\) \\
\hline '29-Jul-1997' & [ & \(26.6565]\) \\
\hline '30-Jul-1997' & [ & \(26.9480]\) \\
\hline '31-Jul-1997' & [ & \(27.0835]\) \\
\hline
\end{tabular}
\begin{tabular}{llr} 
' 01-Aug-1997' \(^{\prime}\) & {\([\)} & \(26.9270]\) \\
'04-Aug-1997' & {\([\)} & \(26.8645]\) \\
'05-Aug-1997' & {\([\)} & \(26.8020]\) \\
'06-Aug-1997' & {\([\)} & \(26.7710]\) \\
'07-Aug-1997' & {\([\)} & \(26.6980]\) \\
'08-Aug-1997' & {\([\)} & \(26.2605]\) \\
'11-Aug-1997' & {\([\)} & \(26.3020]\) \\
'12-Aug-1997' & {\([\)} & \(26.4375]\) \\
'13-Aug-1997' & {\([\)} & \(26.2190]\) \\
'14-Aug-1997' & {\([\)} & \(26.2815]\) \\
'15-Aug-1997' & {\([\)} & \(25.8540]\) \\
'18-Aug-1997' & {\([\)} & \(25.8020]\) \\
'19-Aug-1997' & {\([\)} & \(26.2815]\) \\
'20-Aug-1997' & {\([\)} & \(26.6460]\) \\
'21-Aug-1997' & {\([\)} & \(26.4795]\) \\
'22-Aug-1997' & {\([\)} & \(25.9165]\) \\
'25-Aug-1997' & {\([\)} & \(26.1560]\) \\
'26-Aug-1997' & {\([\)} & \(26.0310]\) \\
'27-Aug-1997' & {\([\)} & \(25.9790]\) \\
'28-Aug-1997' & {\([\)} & \(26]\) \\
'29-Aug-1997' & {\([\)} & {\([\)}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '23-Sep-1997' & [ & \(26.3855]\) \\
\hline '24-Sep-1997' & [ & 26.4375] \\
\hline '25-Sep-1997' & [ & 26.3125] \\
\hline ' 26-Sep-1997' & [ & \(26.5625]\) \\
\hline '29-Sep-1997' & [ & \(26.6875]\) \\
\hline '30-Sep-1997' & [ & \(26.8645]\) \\
\hline '01-Oct-1997' & [ & \(27.1980]\) \\
\hline '02-Oct-1997' & [ & \(27.6980]\) \\
\hline '03-0ct-1997' & [ & \(28.3020]\) \\
\hline '06-0ct-1997' & [ & \(27.8750]\) \\
\hline '07-Oct-1997' & [ & \(28.1145]\) \\
\hline '08-Oct-1997' & [ & 28.0105] \\
\hline '09-Oct-1997' & [ & \(27.9585]\) \\
\hline '10-Oct-1997' & [ & \(27.8855]\) \\
\hline '13-Oct-1997' & [ & \(28.1670]\) \\
\hline '14-0ct-1997' & [ & \(28.6250]\) \\
\hline '15-0ct-1997' & [ & \(28.9270]\) \\
\hline '16-0ct-1997' & [ & \(28.3855]\) \\
\hline '17-0ct-1997' & [ & \(27.6355]\) \\
\hline '20-Oct-1997' & [ & \(27.6875]\) \\
\hline '21-Oct-1997' & [ & \(27.8650]\) \\
\hline '22-Oct-1997' & [ & \(27.8960]\) \\
\hline '23-0ct-1997' & [ & \(27.4270]\) \\
\hline '24-0ct-1997' & [ & \(27.8335]\) \\
\hline '27-0ct-1997' & [ & 26.7605] \\
\hline '28-Oct-1997' & [ & 26.2915] \\
\hline '29-0ct-1997' & [ & \(27.5000]\) \\
\hline '30-Oct-1997' & [ & \(27.2705]\) \\
\hline '31-Oct-1997' & [ & 27.4895] \\
\hline '03-Nov-1997' & [ & \(28.1145]\) \\
\hline ' 04-Nov-1997' & [ & \(28.5730]\) \\
\hline '05-Nov-1997' & [ & \(28.5420]\) \\
\hline '06-Nov-1997' & [ & \(28.5420]\) \\
\hline '07-Nov-1997' & [ & 28.6670 ] \\
\hline '10-Nov-1997' & [ & \(28.7705]\) \\
\hline '11-Nov-1997' & [ & \(28.6980]\) \\
\hline '12-Nov-1997' & [ & \(28.2295]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '13-Nov-1997' & [ & \(28.1880]\) \\
\hline '14-Nov-1997' & [ & \(28.7710]\) \\
\hline '17-Nov-1997' & [ & \(29.6045]\) \\
\hline '18-Nov-1997' & [ & \(29.6770]\) \\
\hline '19-Nov-1997' & [ & \(30.1250]\) \\
\hline '20-Nov-1997' & [ & \(30.3545]\) \\
\hline '21-Nov-1997' & [ & \(30.9580]\) \\
\hline '24-Nov-1997' & [ & \(31.1250]\) \\
\hline '25-Nov-1997' & [ & \(31.1875]\) \\
\hline ' 26 -Nov-1997' & [ & \(31.5525]\) \\
\hline '27-Nov-1997' & [ & NaN ] \\
\hline '28-Nov-1997' & [ & \(31.6565]\) \\
\hline '01-Dec-1997' & [ & \(32.0105]\) \\
\hline '02-Dec-1997' & [ & \(32.2395]\) \\
\hline '03-Dec-1997' & [ & \(31.8230]\) \\
\hline '04-Dec-1997' & [ & \(31.1980]\) \\
\hline '05-Dec-1997' & [ & \(31.2395]\) \\
\hline '08-Dec-1997' & [ & \(31.4380]\) \\
\hline '09-Dec-1997' & [ & \(31.4585]\) \\
\hline '10-Dec-1997' & [ & \(31.2080]\) \\
\hline '11-Dec-1997' & [ & \(30.8855]\) \\
\hline '12-Dec-1997' & [ & \(31.2395]\) \\
\hline '15-Dec-1997' & [ & \(31.9170]\) \\
\hline '16-Dec-1997' & [ & \(32.1355]\) \\
\hline '17-Dec-1997' & [ & \(32.2085]\) \\
\hline '18-Dec-1997' & [ & \(32.3435]\) \\
\hline '19-Dec-1997' & [ & 31.6040 ] \\
\hline '22-Dec-1997' & [ & \(32.2815]\) \\
\hline '23-Dec-1997' & [ & \(32.6560]\) \\
\hline '24-Dec-1997' & [ & \(32.0835]\) \\
\hline '25-Dec-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '26-Dec-1997' & [ & \(31.8440]\) \\
\hline '29-Dec-1997' & [ & \(32.1560]\) \\
\hline '30-Dec-1997' & [ & \(33.0420]\) \\
\hline '31-Dec-1997' & [ & \(33.1565]\) \\
\hline '01-Jan-1998' & [ & NaN ] \\
\hline '02-Jan-1998' & [ & \(33.0730]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 05-Jan-1998' & [ & \(33.0730]\) \\
\hline '06-Jan-1998' & [ & \(32.7815]\) \\
\hline '07-Jan-1998' & [ & \(32.6455]\) \\
\hline '08-Jan-1998' & [ & \(32.5630]\) \\
\hline '09-Jan-1998' & [ & \(32.2915]\) \\
\hline '12-Jan-1998' & [ & \(31.6150]\) \\
\hline '13-Jan-1998' & [ & \(31.5415]\) \\
\hline '14-Jan-1998' & [ & \(31.8855]\) \\
\hline '15-Jan-1998' & [ & \(31.7920]\) \\
\hline '16-Jan-1998' & [ & 31.9690 ] \\
\hline '19-Jan-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '20-Jan-1998' & [ & \(32.7500]\) \\
\hline '21-Jan-1998' & [ & \(32.9275]\) \\
\hline '22-Jan-1998' & [ & \(32.4895]\) \\
\hline '23-Jan-1998' & [ & \(32.6670]\) \\
\hline '26-Jan-1998' & [ & \(32.7185]\) \\
\hline '27-Jan-1998' & [ & \(33.8330]\) \\
\hline '28-Jan-1998' & [ & \(35.0415]\) \\
\hline '29-Jan-1998' & [ & 35.5000 ] \\
\hline '30-Jan-1998' & [ & 35.5310 ] \\
\hline '02-Feb-1998' & [ & \(36.0105]\) \\
\hline ' 03-Feb-1998' & [ & 35.8330 ] \\
\hline '04-Feb-1998' & [ & \(36.0105]\) \\
\hline '05-Feb-1998' & [ & \(36.1355]\) \\
\hline '06-Feb-1998' & [ & 36.1980 ] \\
\hline '09-Feb-1998' & [ & 36.1980 ] \\
\hline '10-Feb-1998' & [ & \(35.9375]\) \\
\hline '11-Feb-1998' & [ & \(36.5210]\) \\
\hline '12-Feb-1998' & [ & \(36.5525]\) \\
\hline '13-Feb-1998' & [ & \(36.8230]\) \\
\hline '16-Feb-1998' & [ & NaN ] \\
\hline '17-Feb-1998' & [ & \(37.4585]\) \\
\hline '18-Feb-1998' & [ & 37.8960 ] \\
\hline '19-Feb-1998' & [ & \(38.1665]\) \\
\hline '20-Feb-1998' & [ & \(38.0210]\) \\
\hline '23-Feb-1998' & [ & \(38.2080]\) \\
\hline '24-Feb-1998' & [ & \(37.5835]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{'26-Feb-1998'}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{27-Feb-1998 \({ }^{\prime}\)} \\
\hline \multicolumn{2}{|l|}{02-Mar-1998} \\
\hline \multicolumn{2}{|l|}{03-Mar-1998} \\
\hline \multicolumn{2}{|l|}{r} \\
\hline \multicolumn{2}{|l|}{Mar 1998} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{11-Mar-1998} \\
\hline & \\
\hline \multicolumn{2}{|l|}{13-Mar-1998} \\
\hline \multicolumn{2}{|l|}{16-Mar-1998} \\
\hline & \\
\hline \multicolumn{2}{|l|}{18-Mar-1998'} \\
\hline \multicolumn{2}{|l|}{Mar-1998} \\
\hline \multicolumn{2}{|l|}{20-Mar-1998'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{25-Mar-1998} \\
\hline \multicolumn{2}{|l|}{-Mar - 1998} \\
\hline \multicolumn{2}{|l|}{-Mar} \\
\hline \multicolumn{2}{|l|}{30-Mar-1998} \\
\hline \multicolumn{2}{|l|}{31-Mar-1998} \\
\hline \multicolumn{2}{|l|}{01-Apr-1998'} \\
\hline \multicolumn{2}{|l|}{Ap} \\
\hline \multicolumn{2}{|l|}{'03-Apr-1998} \\
\hline \multicolumn{2}{|l|}{'06-Apr 1908} \\
\hline \multicolumn{2}{|l|}{07-Apr-19} \\
\hline \multicolumn{2}{|l|}{'} \\
\hline \multicolumn{2}{|l|}{- \({ }^{\text {- }}\) -} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{-Apr-1998} \\
\hline \multicolumn{2}{|l|}{-Apr-1998} \\
\hline \multicolumn{2}{|l|}{16-Apr-1998} \\
\hline
\end{tabular}
\(37.1875]\)
\(36.6875]\)
\(36.9375]\)
\(36.8230]\)
36.6145 ]
35.2710 ]
35.1045 ]
\(35.2605]\)
\(35.2810]\)
\(35.2815]\)
\(34.9900]\)
35.1460 ]
\(35.4895]\)
36.0315 ]
35.9065 ]
35.5830 ]
35.5730 ]
35.3960 ]
34.7500 ]
\(35.3230]\)
35.5420 ]
35.7085 ]
35.8650 ]
35.5000 ]
35.5000 ]
35.3230 ]
35.7295
36.5105 ]
\(36.5730]\)
\(35.9170]\)
\(35.6145]\)
35.9895 ]

NaN]
36.5525 ]
37.4585 ]
37.8855 ]
37.5630 ]
\begin{tabular}{|c|c|c|}
\hline '17-Apr-1998' & [ & \(37.5105]\) \\
\hline '20-Apr-1998' & [ & \(38.2190]\) \\
\hline '21-Apr-1998' & [ & \(38.5730]\) \\
\hline '22-Apr-1998' & [ & \(39.6150]\) \\
\hline '23-Apr-1998' & [ & 41.8440 ] \\
\hline '24-Apr-1998' & [ & \(40.5835]\) \\
\hline '27-Apr-1998' & [ & \(40.1145]\) \\
\hline '28-Apr-1998' & [ & \(41.0830]\) \\
\hline '29-Apr-1998' & [ & \(41.2500]\) \\
\hline '30-Apr-1998' & [ & 41.6145] \\
\hline '01-May-1998' & [ & \(41.6770]\) \\
\hline '04-May-1998' & [ & \(42.4480]\) \\
\hline '05-May-1998' & [ & 42.0935] \\
\hline 06-May-1998' & [ & \(41.7605]\) \\
\hline '07-May-1998' & [ & \(39.9170]\) \\
\hline '08-May-1998' & [ & \(39.8020]\) \\
\hline '11-May-1998' & [ & 40.1460 ] \\
\hline '12-May-1998' & [ & \(39.8955]\) \\
\hline '13-May-1998' & [ & 39.6040 ] \\
\hline '14-May-1998' & [ & \(38.8125]\) \\
\hline '15-May-1998' & [ & \(37.5210]\) \\
\hline '18-May-1998' & [ & 36.9270 ] \\
\hline '19-May-1998' & [ & \(36.9895]\) \\
\hline '20-May-1998' & [ & \(37.7605]\) \\
\hline '21-May-1998' & [ & \(38.5625]\) \\
\hline '22-May-1998' & [ & \(38.7085]\) \\
\hline '25-May-1998' & [ & NaN ] \\
\hline '26-May-1998' & [ & 37.9690 ] \\
\hline '27-May-1998' & [ & 37.5940 ] \\
\hline '28-May-1998' & [ & 37.7290 ] \\
\hline '29-May-1998' & [ & \(37.8955]\) \\
\hline '01-Jun-1998' & [ & 37.3750 ] \\
\hline '02-Jun-1998' & [ & 36.9270 ] \\
\hline '03-Jun-1998' & [ & \(36.7395]\) \\
\hline '04-Jun-1998' & [ & \(36.3230]\) \\
\hline '05-Jun-1998' & [ & \(37.8230]\) \\
\hline '08-Jun-1998' & [ & \(38.2605]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '09-Jun-1998' & [ & 38.5415] \\
\hline '10-Jun-1998' & [ & \(39.4480]\) \\
\hline '11-Jun-1998' & [ & \(39.1355]\) \\
\hline '12-Jun-1998' & [ & 38.2915] \\
\hline '15-Jun-1998' & [ & \(37.8645]\) \\
\hline '16-Jun-1998' & [ & \(37.7295]\) \\
\hline '17-Jun-1998' & [ & \(38.2085]\) \\
\hline '18-Jun-1998' & [ & \(37.7295]\) \\
\hline '19-Jun-1998' & [ & \(36.1250]\) \\
\hline '22-Jun-1998' & [ & \(35.5730]\) \\
\hline '23-Jun-1998' & [ & \(36.5000]\) \\
\hline '24-Jun-1998' & [ & 37.1670 ] \\
\hline '25-Jun-1998' & [ & \(37.5835]\) \\
\hline '26-Jun-1998' & [ & \(37.1250]\) \\
\hline '29-Jun-1998' & [ & \(37.6045]\) \\
\hline '30-Jun-1998' & [ & \(35.8020]\) \\
\hline '01-Jul-1998' & [ & \(35.5935]\) \\
\hline '02-Jul-1998' & [ & \(35.2810]\) \\
\hline '03-Jul-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '06-Jul-1998' & [ & \(35.1880]\) \\
\hline '07-Jul-1998' & [ & \(35.5000]\) \\
\hline '08-Jul-1998' & [ & 35.9170 ] \\
\hline '09-Jul-1998' & [ & \(36.6565]\) \\
\hline '10-Jul-1998' & [ & \(37.5000]\) \\
\hline '13-Jul-1998' & [ & \(38.9690]\) \\
\hline '14-Jul-1998' & [ & \(39.9375]\) \\
\hline '15-Jul-1998' & [ & \(39.7505]\) \\
\hline '16-Jul-1998' & [ & \(38.7505]\) \\
\hline '17-Jul-1998' & [ & \(39.1880]\) \\
\hline '20-Jul-1998' & [ & \(39.1250]\) \\
\hline '21-Jul-1998' & [ & 38.0005] \\
\hline '22-Jul-1998' & [ & \(37.4065]\) \\
\hline '23-Jul-1998' & [ & \(36.9375]\) \\
\hline '24-Jul-1998' & [ & \(36.5315]\) \\
\hline '27-Jul-1998' & [ & \(36.3440]\) \\
\hline '28-Jul-1998' & [ & \(35.8130]\) \\
\hline '29-Jul-1998' & [ & \(35.4065]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 30-Jul-1998 \({ }^{\prime}\) & [ & \(34.7500]\) \\
\hline 31-Jul-1998' & [ & \(34.8750]\) \\
\hline 03-Aug-1998' & [ & \(34.7500]\) \\
\hline 04-Aug-1998' & [ & 33.9690 ] \\
\hline 05-Aug-1998' & [ & \(33.1565]\) \\
\hline 06-Aug-1998' & [ & \(33.5315]\) \\
\hline 07-Aug-1998' & [ & \(33.2190]\) \\
\hline 10-Aug-1998' & [ & \(33.0940]\) \\
\hline 11-Aug-1998' & [ & 31.9690 ] \\
\hline 12-Aug-1998' & [ & 32.4690 ] \\
\hline 13-Aug-1998' & [ & \(32.5005]\) \\
\hline 14-Aug-1998' & [ & 31.8440 ] \\
\hline 17-Aug-1998' & [ & \(31.6875]\) \\
\hline 18-Aug-1998' & [ & \(32.8750]\) \\
\hline 19-Aug-1998' & [ & \(33.2190]\) \\
\hline 20-Aug-1998' & [ & \(33.4065]\) \\
\hline '21-Aug-1998' & [ & \(32.8755]\) \\
\hline 24-Aug-1998' & [ & \(33.3755]\) \\
\hline 25-Aug-1998' & [ & \(34.1565]\) \\
\hline 26-Aug-1998' & [ & \(33.0625]\) \\
\hline 27-Aug-1998' & [ & 31.7190 ] \\
\hline 28-Aug-1998' & [ & \(30.8755]\) \\
\hline 31-Aug-1998' & [ & \(28.6250]\) \\
\hline 01-Sep-1998' & [ & \(29.1250]\) \\
\hline 02-Sep-1998' & [ & \(30.7190]\) \\
\hline 03-Sep-1998' & [ & \(28.8750]\) \\
\hline 04-Sep-1998' & [ & \(28.1250]\) \\
\hline 07-Sep-1998' & [ & \(\mathrm{NaN}]\) \\
\hline 08-Sep-1998' & [ & 29.1565] \\
\hline '09-Sep-1998' & [ & \(28.3130]\) \\
\hline '10-Sep-1998' & [ & \(27.1875]\) \\
\hline '11-Sep-1998' & [ & \(26.8440]\) \\
\hline 14-Sep-1998' & [ & \(24.5625]\) \\
\hline '15-Sep-1998' & [ & \(25.1565]\) \\
\hline 16-Sep-1998' & [ & \(25.5940]\) \\
\hline '17-Sep-1998' & [ & \(25.3750]\) \\
\hline 18-Sep-1998' & [ & \(25.5000]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '21-Sep-1998' & [ & \(25.1250]\) \\
\hline '22-Sep-1998' & [ & \(25.2190]\) \\
\hline '23-Sep-1998' & [ & \(26.3750]\) \\
\hline '24-Sep-1998' & [ & \(26.4375]\) \\
\hline '25-Sep-1998' & [ & \(25.7500]\) \\
\hline '28-Sep-1998' & [ & \(26.0630]\) \\
\hline '29-Sep-1998' & [ & \(26.1565]\) \\
\hline '30-Sep-1998' & [ & \(25.6255]\) \\
\hline '01-0ct-1998' & [ & \(24.8750]\) \\
\hline '02-0ct-1998' & [ & \(25.1250]\) \\
\hline '05-0ct-1998' & [ & \(25.1250]\) \\
\hline '06-0ct-1998' & [ & \(25.4690]\) \\
\hline '07-0ct-1998' & [ & \(25.2505]\) \\
\hline '08-0ct-1998' & [ & \(23.7190]\) \\
\hline '09-0ct-1998' & [ & \(23.1565]\) \\
\hline '12-0ct-1998' & [ & \(24.7505]\) \\
\hline '13-0ct-1998' & [ & 24.9065] \\
\hline '14-0ct-1998' & [ & \(24.9375]\) \\
\hline '15-0ct-1998' & [ & \(25.0940]\) \\
\hline '16-0ct-1998' & [ & \(25.5625]\) \\
\hline '19-0ct-1998' & [ & \(25.5940]\) \\
\hline '20-0ct-1998' & [ & \(26.8440]\) \\
\hline '21-0ct-1998' & [ & \(27.3440]\) \\
\hline '22-0ct-1998' & [ & \(27.5315]\) \\
\hline '23-0ct-1998' & [ & \(27.4380]\) \\
\hline '26-0ct-1998' & [ & \(27.7500]\) \\
\hline '27-0ct-1998' & [ & \(27.2500]\) \\
\hline '28-0ct-1998' & [ & \(26.4065]\) \\
\hline '29-0ct-1998' & , & \(26.5000]\) \\
\hline '30-0ct-1998' & [ & \(26.9380]\) \\
\hline '02-Nov-1998' & [ & 28.2815] \\
\hline '03-Nov-1998' & [ & \(29.3125]\) \\
\hline '04-Nov-1998' & [ & \(29.4065]\) \\
\hline '05-Nov-1998' & [ & \(29.0630]\) \\
\hline '06-Nov-1998' & [ & \(30.2190]\) \\
\hline '09-Nov-1998' & [ & \(29.9690]\) \\
\hline '10-Nov-1998' & [ & 29.0315] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '11-Nov-1998' & [ & \(29.0630]\) \\
\hline '12-Nov-1998' & [ & \(28.4690]\) \\
\hline '13-Nov-1998' & [ & 28.8125] \\
\hline '16-Nov-1998' & [ & \(29.3440]\) \\
\hline '17-Nov-1998' & [ & 28.9065] \\
\hline '18-Nov-1998' & [ & \(28.6875]\) \\
\hline '19-Nov-1998' & [ & \(28.5000]\) \\
\hline ' 20-Nov-1998' & [ & \(28.4065]\) \\
\hline '23-Nov-1998' & [ & \(29.0625]\) \\
\hline '24-Nov-1998' & [ & \(30.1875]\) \\
\hline '25-Nov-1998' & [ & \(30.2815]\) \\
\hline '26-Nov-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '27-Nov-1998' & [ & \(31.4690]\) \\
\hline '30-Nov-1998' & [ & \(32.3440]\) \\
\hline '01-Dec-1998' & [ & 31.5625] \\
\hline 02-Dec-1998' & [ & \(31.0630]\) \\
\hline '03-Dec-1998' & [ & \(31.3755]\) \\
\hline 04-Dec-1998' & [ & \(31.5000]\) \\
\hline '07-Dec-1998' & [ & \(31.4065]\) \\
\hline '08-Dec-1998' & [ & \(31.8440]\) \\
\hline '09-Dec-1998' & [ & \(32.9065]\) \\
\hline '10-Dec-1998' & [ & \(32.9690]\) \\
\hline '11-Dec-1998' & [ & \(31.7505]\) \\
\hline '14-Dec-1998' & [ & \(30.8125]\) \\
\hline '15-Dec-1998' & [ & \(31.0315]\) \\
\hline '16-Dec-1998' & [ & 31.0005] \\
\hline '17-Dec-1998' & [ & \(30.9690]\) \\
\hline '18-Dec-1998' & [ & \(30.5005]\) \\
\hline '21-Dec-1998' & [ & \(30.8440]\) \\
\hline '22-Dec-1998' & [ & \(31.3130]\) \\
\hline '23-Dec-1998' & [ & \(30.5940]\) \\
\hline '24-Dec-1998' & [ & \(30.7500]\) \\
\hline '25-Dec-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '28-Dec-1998' & [ & \(30.6250]\) \\
\hline '29-Dec-1998' & [ & \(30.4690]\) \\
\hline '30-Dec-1998' & [ & \(30.1250]\) \\
\hline '31-Dec-1998' & [ & \(29.8440]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '01-Jan-1999' & [ & NaN] \\
\hline '04-Jan-1999' & [ & 29.9690 ] \\
\hline '05-Jan-1999' & [ & \(30.1565]\) \\
\hline '06-Jan-1999' & [ & \(30.3750]\) \\
\hline '07-Jan-1999' & [ & \(30.8750]\) \\
\hline '08-Jan-1999' & [ & \(32.3130]\) \\
\hline '11-Jan-1999' & [ & \(34.2815]\) \\
\hline '12-Jan-1999' & [ & \(37.9380]\) \\
\hline '13-Jan-1999' & [ & \(35.8750]\) \\
\hline '14-Jan-1999' & [ & \(36.5315]\) \\
\hline '15-Jan-1999' & [ & \(36.1565]\) \\
\hline '18-Jan-1999' & [ & \(\mathrm{NaN}]\) \\
\hline '19-Jan-1999' & [ & \(36.2190]\) \\
\hline '20-Jan-1999' & [ & \(36.4065]\) \\
\hline '21-Jan-1999' & [ & \(35.0625]\) \\
\hline '22-Jan-1999' & [ & \(34.2815]\) \\
\hline '25-Jan-1999' & [ & \(34.5315]\) \\
\hline '26-Jan-1999' & [ & \(34.7815]\) \\
\hline '27-Jan-1999' & [ & \(33.5315]\) \\
\hline '28-Jan-1999' & [ & \(33.8440]\) \\
\hline '29-Jan-1999' & [ & \(33.5000]\) \\
\hline '01-Feb-1999' & [ & \(33.5940]\) \\
\hline '02-Feb-1999' & [ & \(33.2505]\) \\
\hline '03-Feb-1999' & [ & \(33.5625]\) \\
\hline '04-Feb-1999' & [ & \(33.5315]\) \\
\hline ' 05-Feb-1999 ' & [ & \(34.1255]\) \\
\hline '08-Feb-1999' & [ & \(34.0315]\) \\
\hline '09-Feb-1999' & [ & \(34.0315]\) \\
\hline '10-Feb-1999 ' & [ & \(33.7505]\) \\
\hline '11-Feb-1999' & [ & \(34.6565]\) \\
\hline '12-Feb-1999' & [ & 35.0630 ] \\
\hline '15-Feb-1999' & [ & \(\mathrm{NaN}]\) \\
\hline '16-Feb-1999' & [ & \(35.3125]\) \\
\hline '17-Feb-1999' & [ & \(34.9065]\) \\
\hline '18-Feb-1999' & [ & \(34.5625]\) \\
\hline '19-Feb-1999' & [ & \(34.2500]\) \\
\hline '22-Feb-1999' & [ & \(34.6250]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 23-Feb-1999' & [ & \(35.1875]\) \\
\hline '24-Feb-1999' & [ & 35.4690 ] \\
\hline 25-Feb-1999' & [ & \(34.6565]\) \\
\hline 26-Feb-1999' & [ & \(34.8755]\) \\
\hline 01-Mar-1999' & [ & \(34.9065]\) \\
\hline 02-Mar-1999' & [ & \(34.6255]\) \\
\hline 03-Mar-1999' & [ & \(34.7500]\) \\
\hline 04-Mar-1999' & [ & \(34.9380]\) \\
\hline 05-Mar-1999' & [ & \(35.7815]\) \\
\hline 08-Mar-1999' & [ & \(36.3130]\) \\
\hline 09-Mar-1999' & [ & 35.0630 ] \\
\hline 10-Mar-1999' & [ & 34.7190 ] \\
\hline 11-Mar-1999' & [ & 34.5315] \\
\hline 12-Mar-1999' & [ & \(36.0315]\) \\
\hline '15-Mar-1999' & [ & 35.8440 ] \\
\hline 16-Mar-1999' & [ & \(35.7505]\) \\
\hline 17-Mar-1999' & [ & \(35.0315]\) \\
\hline 18-Mar-1999' & [ & 35.1880 ] \\
\hline 19-Mar-1999' & [ & 35.3440 ] \\
\hline 22-Mar-1999' & [ & \(34.6250]\) \\
\hline 23-Mar-1999' & [ & \(33.5005]\) \\
\hline '24-Mar-1999' & [ & \(32.9375]\) \\
\hline '25-Mar-1999' & [ & \(33.2500]\) \\
\hline '26-Mar-1999' & [ & \(33.0625]\) \\
\hline '29-Mar-1999' & [ & 32.9690 ] \\
\hline
\end{tabular}


\footnotetext{
References Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 177-178.
}

See Also wclose | typprice

Purpose Merge multiple financial time series objects
```

Syntax newfts = merge(fts1, fts2)
newfts = merge(fts1, fts2, ..., ftsx)
newfts = merge(fts1, fts2, ..., ftsx, 'PARAM1', VALUE1, 'PARAM2',
VALUE2, ...)

```

\section*{Arguments}
fts1,
fts2,..

Note Multiple Financial Time Series objects can be merged at once. The merged objects must appear in a comma separated list before the optional inputs. The order of the inputs is significant.

\footnotetext{
'DateSetMethod ' (Optional) Merge method. Valid merge values are: 'union': (Default) Returns the combined values of all merged objects.
'intersection': Returns the values common to all merged objects.
RefObf: Maps all values to a reference time contained in a Financial Time Series object (RefObj) or vector of date numbers.
}
\begin{tabular}{ll} 
'DataSetMethod ' & \begin{tabular}{l} 
(Optional) Merge method. Valid merge values are: \\
'closest ': (Default) Returns data based on the \\
order of the inputs. However, the first missing \\
data point (NaN value) of a date will be replaced by \\
the closest non-NaN data point that appears on the
\end{tabular} \\
same date of subsequent merged objects. \\
'order': Returns data based strictly on the order \\
of the inputs. \\
(Optional) Sorts columns. Valid merge values are:
\end{tabular}

\section*{Description}
newfts = merge(fts1, fts2, ..., ftsx, 'PARAM1', VALUE1, 'PARAM2', VALUE2', ...) merges multiple financial time series objects. The optional parameter and value pair argument specifies the values contained in the output financial time series object ftsout.

\section*{Examples \\ Create Three Financial Time Series Objects and Merge into a Single Object}

Create three financial time series objects and merged into a new time series object t123.
```

dates = {'jan-01-2001'; 'jan-02-2001'; 'jan-03-2001'; ...
'jan-04-2001'; 'jan-06-2001'};
data = [1; 1; 1; 1; 1];
t1 = fints(dates, data);
dates = {'jan-02-2001'; 'jan-03-2001'; 'jan-04-2001';
jan-05-2001'};
data = [2; 2; 2; 2];
t2 = fints(dates, data);

```
```

dates = {'jan-03-2001'; 'jan-04-2001'; 'jan-05-2001';
jan-06-2001'};
data = [3; 3; 3; 3];
t3 = fints(dates, data);
t123 = merge(t1, t2, t3)
t123 =

```
```

 desc: || ||
    ```
    desc: || ||
    freq: Unknown (0)
    freq: Unknown (0)
    'dates: (6)' 'series1: (6)
    '01-Jan-2001' [ 1]
    '02-Jan-2001' [ 1]
    '03-Jan-2001' [ 1]
    '04-Jan-2001' [ 1]
    '05-Jan-2001' [ 2]
    '06-Jan-2001' [ 1]
```

If you change the order of input time series, the output may contain different data when duplicate dates exist. Here, for example, is the result of using the same three time series defined above but with the order changed.

```
merge(t3, t2, t1)
```

ans =
desc: || ||
freq: Unknown (0)
'dates: (6)' 'series1: (6)

| '01-Jan-2001' | $[$ | $1]$ |
| :--- | :--- | :--- |
| '02-Jan-2001' | $[$ | $2]$ |
| '03-Jan-2001' | $[$ | $3]$ |
| '04-Jan-2001' | $[$ | $3]$ |
| '05-Jan-2001' | $[$ | $3]$ |
| '06-Jan-2001' | $[$ | $3]$ |

t123 contains all 1's except on '05-Jan-2001' because t1 appears first in the list of inputs and takes precedence. The same logic can be applied to t321. By changing the order of inputs, you can overwrite old financial time series data with new data by placing the new time series ahead of the old one in the list of inputs to the merge function.

Merge Financial Time Series Objects with Different Headers (Series Names)

Merge time series objects with different headers into a new time series object t45.

```
dates = {'jan-01-2001'; 'jan-02-2001'; 'jan-03-2001'; ...
'jan-04-2001'; 'jan-06-2001'};
data = [1; 1; 1; 1; 1];
t4 = fints(dates, data, 'ts4');
dates = {'jan-02-2001'; 'jan-03-2001'; 'jan-04-2001'; 'jan-05-2001'};
data = [2; 2; 2; 2];
t5 = fints(dates, data, 'ts5');
t45 = merge(t4, t5)
```

t45 =
desc: ||
freq: Unknown (0)
'dates: (6)' 'ts4: (6)' 'ts5: (6)

| '01-Jan-2001' | $[$ | $1]$ | $[$ | $\mathrm{NaN}]$ |
| :--- | :--- | ---: | :--- | ---: |
| '02-Jan-2001' | $[$ | $1]$ | $[$ | $2]$ |
| '03-Jan-2001' | $[$ | $1]$ | $[$ | $2]$ |
| '04-Jan-2001' | $[$ | $1]$ | $[$ | $2]$ |
| '05-Jan-2001' | $[$ | $\mathrm{NaN}]$ | $[$ | $2]$ |
| '06-Jan-2001' | $[$ | $1]$ | $[$ | $\mathrm{NaN}]$ |

Merge Two Financial Index Series and Keep Intersecting Dates

Merge two index series into the final merged object (t12) and keep the intersecting dates.

```
dates = {'jan-01-2001'; 'jan-02-2001'; 'jan-03-2001'; 'jan-04-2001'; 'jar
data = [1; 1; 1; 1; 1];
t1 = fints(dates, data,'A')
dates = {'jan-02-2001'; 'jan-03-2001'; 'jan-04-2001'; 'jan-05-2001'};
data = [2; 2; 2; 2];
t2 = fints(dates, data,'B')
t12 = merge(t1, t2,'DateSetMethod','Intersection')
t1 =
    desc: (none)
    freq: Unknown (0)
    'dates: (5)' 'A: (5)
    '01-Jan-2001' [ 1]
    '02-Jan-2001' [ 1]
    '03-Jan-2001' [ 1]
    '04-Jan-2001' [ 1]
    '06-Jan-2001' [ 1]
```

```
t2 =
```

desc: (none)
freq: Unknown (0)
'dates: (4)' 'B: (4)'
'02-Jan-2001' [2]
'03-Jan-2001' [2]
'04-Jan-2001' [2]
'05-Jan-2001' [2]
t12 =
desc: ||
freq: Unknown (0)

| 'dates: (3)' | 'A: | $(3)^{\prime}$ | ${ }^{\prime} B:$ | $(3)^{\prime}$ |
| :--- | :--- | :--- | :--- | :--- |
| '02-Jan-2001' | $[$ | $1]$ | $[$ | $2]$ |
| '03-Jan-2001' | $[$ | $1]$ | $[$ | $2]$ |
| '04-Jan-2001' | $[$ | $1]$ | $[$ | $2]$ |

See Also
horzcat | vertcat

min

Purpose Minimum value

Syntax \quad tsmin $=\min (t s o b j)$

Description tsmin $=\min (t s o b j)$ finds the minimum value in each data series in the financial time series object tsobj and returns it in the structure tsmin. The tsmin structure contains field name(s) identical to the data series name(s).

Note tsmin returns only the values and does not return the dates associated with the values. The minimum values are not necessarily from the same date.

See Also
 max

Purpose Financial time series subtraction

```
Syntax
newfts = tsobj_1 - tsobj_2
newfts = tsobj - array
newfts = array - tsobj
```


Arguments

$$
\begin{array}{ll}
\text { tsobj_1, tsobj_2 } & \text { A pair of financial time series objects . } \\
\text { array } & \text { A scalar value or array with the number of } \\
& \text { rows equal to the number of dates in tsobj and } \\
& \text { the number of columns equal to the number of } \\
& \text { data series in tsobj. }
\end{array}
$$

Description

See Also rdivide | plus | times

minute

Purpose Minute of date or time
Syntax \quad Minute $=$ minute $($ Date $)$
Description Minute $=$ minute (Date) returns the minute given a serial date number or a date string.
Examples Minute $=$ minute (731204.5591223380)
or
Minute $=$ minute('19-dec-2001, 13:25:08.17')
returns
Minute =
25
See Also datevec | hour | second

| Purpose | Modified internal rate of return |
| :---: | :---: |
| Syntax | Return $=$ mirr(CashFlow, FinRate, Reinvest) |
| Arguments | |
| | CashFlow $\quad \begin{aligned} & \text { Vector of cash flows. The first entry is the initial } \\ & \text { investment. }\end{aligned}$ |
| | FinRate Finance rate for negative cash flow values. Enter as a decimal fraction. |
| | Reinvest Reinvestment rate for positive cash flow values, as a decimal fraction. |
| Description | Return = mirr(CashFlow, FinRate, Reinvest) calculates the modified internal rate of return for a series of periodic cash flows. This function calculates only positive rates of return; for nonpositive rates of return, Return $=0$. |
| Examples | This cash flow represents the yearly income from an initial investment of $\$ 100,000$. The finance rate is 9% and the reinvestment rate is 12%. |
| | Year $1 \quad \$ 20,000$ |
| | Year $2 \quad(\$ 10,000)$ |
| | Year $3 \quad \$ 30,000$ |
| | Year $4 \quad \$ 38,000$ |
| | Year 5 \$50,000 |

To calculate the modified internal rate of return on the investment
Return $=\operatorname{mirr}([-10000020000-100003000038000$ 50000], $0.09, \ldots$
0.12)
returns

```
Return =
    0.0832 (8.32%)
```

References Brealey and Myers, Principles of Corporate Finance, Chapter 5 See Also annurate | effrr | irr | nomrr | pvvar | xirr
Purpose Month of date
Syntax [MonthNum, MonthString] = month(Date)
[MonthNum, MonthString] = month(Date, F)
Description [MonthNum, MonthString] = month(Date) returns the month innumeric and string form given a serial date number or a date string.
[MonthNum, MonthString] = month(Date, F) returns the day of theof the month, given a serial date number or date string, in a specifieddate format.
Examples [MonthNum, MonthString] = month(730368)
or
[MonthNum, MonthString] = month('05-Sep-1999')
returns
MonthNum =
9
MonthString =
Sep
You can also use the F argument to designate a country-specific date format:

```
[MonthNum, MonthString] = month('1999/05/09','yyyy/dd/mm')
```

returns
hmiMonthNum =9

```
MonthString =
Sep
```

See Also datevec | day | year

Purpose Number of whole months between dates

```
Syntax MyMonths = months(StartDate, EndDate, EndMonthFlag)
```


Arguments

| StartDate | Enter as serial date numbers or date strings. |
| :--- | :--- |
| EndDate | Enter as serial date numbers or date strings. |
| EndMonthFlag | (Optional) end-of-month flag. If StartDate and |
| | EndDate are end-of-month dates and EndDate |
| | has fewer days than StartDate, EndMonthFlag

 $=1$ (default) treats EndDate as the end of a
 whole month, while EndMonthFlag $=0$ does

 not. |

Description MyMonths = months(StartDate, EndDate, EndMonthFlag) returns the number of whole months between StartDate and EndDate. If EndDate is earlier than StartDate, MyMonths is negative. Enter dates as serial date numbers or date strings.

Any input argument can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, if StartDate is an n-row character array of date strings, then EndDate must be an n-row character array of date strings or a single date. MyMonths is then an n-by- 1 vector of numbers.

Examples

MyMonths =
1

MyMonths = months('may $\left.312000^{\prime}, ' j u n 302000^{\prime}, 0\right)$

MyMonths =
0

Dates = ['mar 312002 '; 'apr $302002 ' ; ~ ' m a y ~ 31 ~ 2002 '] ; ~$ MyMonths = months(Dates, 'jun 30 2002')

MyMonths =
3
2
1
See Also yearfrac

Purpose Leading and lagging moving averages chart
Syntax

Arguments
Asset Security data, a vector of time-series prices.
Lead \quad Number of samples to use in leading average calculation. A positive integer. Lead must be less than or equal to Lag.
Lag Number of samples to use in the lagging average calculation. A positive integer.

Alpha (Optional) Control parameter that determines the type of moving averages. $0=$ simple moving average (default), $0.5=$ square root weighted moving average, $1=$ linear moving average, $2=$ square weighted moving average, and so on. To calculate the exponential moving average, set Alpha ='e'.

Note When Alpha ='e', the value of the moving average depends on all previous data points (due to the iterative calculation). In this case, the Lead and Lag parameters are used to calculate the weighting factor for their respective averages (which is different from the number of samples).

Description

movavg(Asset, Lead, Lag, Alpha) plots leading and lagging moving averages.
[Short, Long] = movavg(Asset, Lead, Lag, Alpha) returns the leading Short and lagging Long moving average data without plotting it.

Examples If asset A is a vector of stock price data from 01/01/2006 to 02/01/2006

```
>> A(:,2)
ans =
    8.6500
    9.0000
    8.8500
    9.3500
    9.5000
    9.3500
    9.2500
    9.7000
    9.9500
10.5000
10.1000
    9.9000
    10.0000
    9.9000
    9.6000
    9.7000
    9.8000
    9.7000
    9.9500
    10.1500
    9.8500
    9.9000
    10.2000
    10.0000
    9.9500
    9.8500
    9.9500
    10.0000
    10.0000
    10.5400
    10.5900
```

11.1900
11.0400
11.0900
10.7400
10.3500
10.2500
10.4500
10.7400
10.5900
10.3000
10.0500
9.8500
9.9000
9.9000
10.3000
10.4500
10.7400
10.9400
10.6900
10.9400
10.7900
10.2000
11.4900
11.9400
11.9400
12.4800
13.1800
12.9800
12.9800
13.6800
13.4800
13.9300
14.9200
13.9300
14.4200
14.0300
14.9700

```
15.0700
15.0200
15.0700
14.4200
13.7800
14.2800
14.8700
15.5700
15.5200
15.5200
15.5200
15.5200
15.7200
15.8200
15.9700
15.2700
14.9500
14.8000
15.1500
14.5000
15.0500
14.5500
14.6000
14.5500
17.5500
16.7000
16.8000
17.9500
17.3000
17.6000
17.5500
16.5000
15.8500
16.3000
```

then the moving average is

```
[Short,Long]= movavg(A(:,2),3,20,1);
movavg(A(:,2),3,20,1);
ylabel('Price')
legend('Asset Price','Lagging Long','Leading Short')
```

this plots linear three-sample leading and 20 -sample lagging moving averages

See Also
bolling | candle | dateaxis | highlow | pointfig

mrdivide

Purpose Financial time series matrix division

```
Syntax
```

```
newfts = tsobj_1 / tsobj_2
```

newfts = tsobj_1 / tsobj_2
newfts = tsobj / array
newfts = tsobj / array
newfts = array / tsobj

```
newfts = array / tsobj
```

Arguments

$$
\begin{array}{ll}
\text { tsobj_1, tsobj_2 } & \text { A pair of financial time series objects. } \\
\text { array } & \text { A scalar value or array with number of rows } \\
& \begin{array}{l}
\text { equal to the number of dates in tsobj and } \\
\\
\text { number of columns equal to the number of data } \\
\text { series in tsobj. }
\end{array}
\end{array}
$$

Description

See Also minus | plus | rdivide | times

Purpose Financial time series matrix multiplication

Syntax

```
newfts = tsobj_1 * tsobj_2
newfts = tsobj * array
newfts = array * tsobj
```


Arguments

> tsobj_1, tsobj_2 A pair of financial time series objects.
> array
> A scalar value or array with number of rows equal to the number of dates in tsobj and number of columns equal to the number of data series in tsobj.

The mtimes method multiplies element by element the components of one financial time series object by the components of the other. You can also multiply the entire object by an array.

If an object is to be multiplied by another object, both objects must have the same dates and data series names, although the order need not be the same. The order of the data series, when an object is multiplied by another object, follows the order of the first object.
newfts = tsobj_1 * tsobj_2 multiplies financial time series objects element by element.
newfts = tsobj * array multiplies a financial time series object element by element by an array.
newfts = array * tsobj and newfts = array / tsobj multiplies an array element by element by a financial time series object.

For financial time series objects, the mtimes operation is identical to the times operation.

See Also minus | mrdivide | plus | times

Purpose

Arguments

Synfax $\quad \begin{aligned} & \text { Fisher }=\text { mvnrfish(Data, Design, Covariance, MatrixFormat, } \\ & \text { CovarFormat) }\end{aligned}$
Fisher information matrix for multivariate normal or least-squares regression

| Data | NUMSAMPLES-by-NUMSERIES matrix |
| :--- | :--- |
| | with NUMSAMPLES samples of a |
| | NUMSERIES-dimensional random vector. |
| If a data sample has missing values, | |
| represented as NaNs, the sample is ignored. | |
| Design | A matrix or a cell array that handles two model
 structures: |

- If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS matrix with known values. This structure is the standard form for regression on a single series.
- If NUMSERIES ≥ 1, Design is a cell array. The cell array contains either one or NUMSAMPLES cells. Each cell contains a NUMSERIES-by-NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same Design matrix for each sample. If Design has more than one cell, each cell contains a Design matrix for each sample.

NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of the residuals of the regression.

MatrixFormat (Optional) String that identifies parameters to be included in the Fisher information matrix:

- full - Default format. Compute the full Fisher information matrix for both model and covariance parameter estimates.
- paramonly - Compute only components of the Fisher information matrix associated with the model parameter estimates.

CovarFormat (Optional) String that specifies the format for the covariance matrix. The choices are:

- 'full' - Default method. The covariance matrix is a full matrix.
- 'diagonal' - The covariance matrix is a diagonal matrix.

Description

Fisher = mvnrfish(Data, Design, Covariance, MatrixFormat, CovarFormat) computes a Fisher information matrix based on current maximum likelihood or least-squares parameter estimates.

Fisher is a TOTALPARAMS-by-TOTALPARAMS Fisher information matrix. The size of TOTALPARAMS depends on MatrixFormat and on current parameter estimates. If MatrixFormat $=$ 'full',

TOTALPARAMS $=$ NUMPARAMS + NUMSERIES * (NUMSERIES + 1)/2

If MatrixFormat = 'paramonly',
TOTALPARAMS = NUMPARAMS

Note mvnrfish operates slowly if you calculate the full Fisher information matrix.

Examples See "Multivariate Normal Linear Regression" on page 9-3.
See Also mvnrstd | mvnrmle

Purpose

Multivariate normal regression (ignore missing data)

Syntax
[Parameters, Covariance, Resid, Info] = mvnrmle(Data, Design, MaxIterations, TolParam, TolObj, CovarO, CovarFormat)

Arguments

(Optional) Convergence tolerance for estimation algorithm based on changes in model parameter estimates. Default value is sqrt(eps) which is about $1.0 \mathrm{e}-8$ for double precision. The convergence test for changes in model parameters is

$$
\| \text { Param }_{k}-\text { Param }_{k-1} \|<\text { TolParam } \times\left(1+\| \text { Param }_{k} \|\right)
$$

where Param represents the output Parameters, and iteration $k=2,3, \ldots$. Convergence is assumed when both the TolParam and TolObj conditions are satisfied. If both TolParam \leq 0 and TolObj ≤ 0, do the maximum number of iterations (MaxIterations), whatever the results of the convergence tests.
(Optional) Convergence tolerance for estimation algorithm based on changes in the objective function. Default value is eps $\wedge 3 / 4$ which is about $1.0 \mathrm{e}-12$ for double precision. The convergence test for changes in the objective function is

$$
\left|\mathrm{Obj}_{k}-\mathrm{Obj}_{k-1}\right|<\operatorname{TolObj} \times\left(1+\left|\mathrm{Obj}_{k}\right|\right)
$$

for iteration $k=2,3, \ldots$. Convergence is assumed when both the TolParam and TolObj conditions are satisfied. If both TolParam \leq 0 and TolObj ≤ 0, do the maximum number of iterations (MaxIterations), whatever the results of the convergence tests.

| Covar0 | (Optional) NUMSERIES-by-NUMSERIES matrix
 that contains a user-supplied initial or known
 estimate for the covariance matrix of the
 regression residuals. |
| :--- | :--- |
| CovarFormat | (Optional) String that specifies the format for
 the covariance matrix. The choices are: |

- 'full' - Default method. Compute the full covariance matrix.
- 'diagonal ' - Force the covariance matrix to be a diagonal matrix.

Description

[Parameters, Covariance, Resid, Info] = mvnrmle(Data, Design, MaxIterations, TolParam, TolObj, Covaro, CovarFormat) estimates a multivariate normal regression model without missing data. The model has the form

$$
\text { Data }_{k} \square N\left(\text { Design }_{k} \times \text { Parameters, Covariance }\right)
$$

for samples $k=1, \ldots$, NUMSAMPLES.
mvnrmle estimates a NUMPARAMS-by-1 column vector of model parameters called Parameters, and a NUMSERIES-by-NUMSERIES matrix of covariance parameters called Covariance.
mvnrmle(Data, Design) with no output arguments plots the log-likelihood function for each iteration of the algorithm.

To summarize the outputs of mvnrmle:

- Parameters is a NUMPARAMS-by- 1 column vector of estimates for the parameters of the regression model.
- Covariance is a NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of the regression model's residuals.
- Resid is a NUMSAMPLES-by-NUMSERIES matrix of residuals from the regression. For any row with missing values in Data, the
corresponding row of residuals is represented as all NaN missing values, since this routine ignores rows with NaN values.

Another output, Info, is a structure that contains additional information from the regression. The structure has these fields:

- Info. Obj - A variable-extent column vector, with no more than MaxIterations elements, that contains each value of the objective function at each iteration of the estimation algorithm. The last value in this vector, Obj (end), is the terminal estimate of the objective function. If you do maximum likelihood estimation, the objective function is the log-likelihood function.
- Info.PrevParameters - NUMPARAMS-by-1 column vector of estimates for the model parameters from the iteration just before the terminal iteration.
- Info.PrevCovariance - NUMSERIES-by-NUMSERIES matrix of estimates for the covariance parameters from the iteration just before the terminal iteration.

Notes
mvnrmle does not accept an initial parameter vector, because the parameters are estimated directly from the first iteration onward.

You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if NUMSERIES ≥ 1.

- If Design is a cell array and NUMSERIES $=1$, each cell contains a NUMPARAMS row vector.
- If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-by-NUMPARAMS matrix.

These points concern how Design handles missing data:

- Although Design should not have NaN values, ignored samples due to NaN values in Data are also ignored in the corresponding Design array.
- If Design is a 1-by-1 cell array, which has a single Design matrix for each sample, no NaN values are permitted in the array. A
model with this structure must have NUMSERIES \geq NUMPARAMS with rank(Design\{1\}) $=$ NUMPARAMS .
- Two functions for handling missing data, ecmmvnrmle and ecmlsrmle, are stricter about the presence of NaN values in Design.
Use the estimates in the optional output structure Info for diagnostic purposes.

Examples
See "Multivariate Normal Regression" on page 9-18, "Least-Squares Regression" on page 9-18, "Covariance-Weighted Least Squares" on page 9-19, "Feasible Generalized Least Squares" on page 9-20, and "Seemingly Unrelated Regression" on page 9-21.

References Roderick J. A. Little and Donald B. Rubin, Statistical Analysis with Missing Data, 2nd ed., John Wiley \& Sons, Inc., 2002.
Xiao-Li Meng and Donald B. Rubin, "Maximum Likelihood Estimation via the ECM Algorithm," Biometrika, Vol. 80, No. 2, 1993, pp. 267-278.

See Also ecmmvnrmle | mvnrstd | mvnrobj

| Purpose | Log-likelihood function for multivariate normal regression without
 missing data |
| :--- | :--- |
| Syntax | Objective $=$ mvnrobj (Data, Design, Parameters, Covariance,
 CovarFormat) |

Arguments

$\left.\begin{array}{ll}\text { Data } & \begin{array}{l}\text { NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES } \\ \text { samples of a NUMSERIES-dimensional random vector. }\end{array} \\ \text { If a data sample has missing values, represented } \\ \text { as NaNs, the sample is ignored. (Use ecmmvnrmle to } \\ \text { handle missing data.) }\end{array}\right\}$

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of the residuals of the regression.

CovarFormat (Optional) String that specifies the format for the covariance matrix. The choices are:

- 'full' - Default method. The covariance matrix is a full matrix.
- 'diagonal' - The covariance matrix is a diagonal matrix.

Description

Notes
Objective = mvnrobj(Data, Design, Parameters, Covariance, CovarFormat) computes the log-likelihood function based on current maximum likelihood parameter estimates without missing data. Objective is a scalar that contains the log-likelihood function.

You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if NUMSERIES ≥ 1.

- If Design is a cell array and NUMSERIES $=1$, each cell contains a NUMPARAMS row vector.
- If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-by-NUMPARAMS matrix.
Although Design should not have NaN values, ignored samples due to NaN values in Data are also ignored in the corresponding Design array.

Examples See "Multivariate Normal Regression" on page 9-18, "Least-Squares Regression" on page 9-18, "Covariance-Weighted Least Squares" on page 9-19, "Feasible Generalized Least Squares" on page 9-20, and "Seemingly Unrelated Regression" on page 9-21.

See Also ecmmvnrmle | ecmmvnrobj | mvnrmle

Purpose Evaluate standard errors for multivariate normal regression model

```
Syntax [StdParameters, StdCovariance] = mvnrstd(Data, Design, Covariance, CovarFormat)
```


Arguments

| Data | NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
 samples of a NUMSERIES-dimensional random vector.
 If a data sample has missing values, represented as

 NaNs, the sample is ignored. (Use ecmmvnrmle to
 handle missing data.) |
| :--- | :--- |
| Design | A matrix or a cell array that handles two model
 structures: |
| | - If NUMSERIES = 1, Design is a |
| | NUMSAMPLES-by-NUMPARAMS matrix with |
| | known values. This structure is the standard form |
| | for regression on a single series. |
| | - If NUMSERIES \geq 1, Design is a cell array. The cell |
| | array contains either one or NUMSAMPLES cells. |
| | Each cell contains a NUMSERIES-by-NUMPARAMS |
| matrix of known values. | |
| | If Design has a single cell, it is assumed to have |
| the same Design matrix for each sample. If | |
| | Design has more than one cell, each cell contains |
| a Design matrix for each sample. | |

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of the regression residuals.

CovarFormat (Optional) String that specifies the format for the covariance matrix. The choices are:

- 'full' - Default method. The covariance matrix is a full matrix.
- 'diagonal' - The covariance matrix is a diagonal matrix.

Description

[StdParameters, StdCovariance] = mvnrstd(Data, Design, Covariance, CovarFormat) evaluates standard errors for a multivariate normal regression model without missing data. The model has the form

Data $\square N\left(\right.$ Design $_{k} \times$ Parameters, Covariance $)$
for samples $k=1, \ldots$, NUMSAMPLES.
mvnrstd computes two outputs:

- StdParameters is a NUMPARAMS-by- 1 column vector of standard errors for each element of Parameters, the vector of estimated model parameters.
- StdCovariance is a NUMSERIES-by-NUMSERIES matrix of standard errors for each element of Covariance, the matrix of estimated covariance parameters.

Note mvnrstd operates slowly when you calculate the standard errors associated with the covariance matrix Covariance.

Notes

You can configure Design as a matrix if NUMSERIES $=1$ or as a cell array if NUMSERIES ≥ 1.

- If Design is a cell array and NUMSERIES $=1$, each cell contains a NUMPARAMS row vector.
- If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-by-NUMPARAMS matrix.

> Examples See "Multivariate Normal Regression" on page 9-18, "Least-Squares Regression" on page 9-18, "Covariance-Weighted Least Squares" on page 9-19, "Feasible Generalized Least Squares" on page 9-20, and "Seemingly Unrelated Regression" on page 9-21.

> References Roderick J. A. Little and Donald B. Rubin, Statistical Analysis with Missing Data, 2nd ed., John Wiley \& Sons, Inc., 2002.

See Also

ecmmvnrmle | ecmmvnrstd | mvnrmle

Purpose Covariance ignoring NaNs

```
Syntax
c = nancov(X)
c = nancov(..., 'pairwise')
```


Arguments

Description

$$
\begin{array}{ll}
X & \text { Financial times series object. } \\
Y & \text { Financial times series object. }
\end{array}
$$

nancov for financial times series objects is based on the Statistics Toolbox function nancov. See nancov in the Statistics Toolbox documentation.
$c=\operatorname{nancov}(X)$, if X is a financial time series object with one series and returns the sample variance of the values in X , treating NaNs as missing values. For a financial time series object containing more than one series, where each row is an observation and each series a variable, nancov (X) is the covariance matrix computing using rows of X that do not contain any NaN values. nancov (X, Y), where X and Y are financial time series objects with the same number of elements, is equivalent to nancov([X(:) Y(:)]).
nancov (X) or nancov (X, Y) normalizes by $(N-1)$ if $N>1$, where N is the number of observations after removing missing values. This makes nancov the best unbiased estimate of the covariance matrix if the observations are from a normal distribution. For $\mathrm{N}=1$, cov normalizes by N.
nancov($\mathrm{X}, 1$) or nancov($\mathrm{X}, \mathrm{Y}, 1$) normalizes by N and produces the second moment matrix of the observations about their mean. nancov $(X, Y, 0)$ is the same as $\operatorname{nancov}(X, Y)$, and $\operatorname{nancov}(X, 0)$ is the same as nancov (X).
c = nancov(..., 'pairwise') computes c(i,j) using rows with no NaN values in columns ior j. The result may not be a positive definite
matrix. c $=$ nancov(..., 'complete') is the default, and it omits rows with any NaN values, even if they are not in column i or j. The mean is removed from each column before calculating the result.

Examples

To generate random data having nonzero covariance between column 4 and the other columns:

```
x = randn(30, 4); % uncorrelated data
x(:, 4) = sum(x, 2); % introduce correlation
x(2, 3) = NaN; % introduce one missing value
f = fints((today:today+29)', x); % create a fints object using x
c = nancov(f) % compute sample covariance
```

$C=$

| 1.6898 | -0.0005 | 0.3612 | 1.9143 |
| ---: | ---: | ---: | ---: |
| -0.0005 | 1.0833 | -0.5513 | 0.6059 |
| 0.3612 | -0.5513 | 1.0369 | 0.7570 |
| 1.9143 | 0.6059 | 0.7570 | 4.4895 |

See Also cov | nanvar | var

Purpose Maximum ignoring NaNs

Syntax $\quad m=\operatorname{nanmax}(X)$
[m,ndx] = nanmax (X)
$\mathrm{m}=$ nanmax (X, Y)
[m,ndx] = nanmax(X,[],DIM)

Arguments

| X | Financial times series object. |
| :--- | :--- |
| Y | Financial times series object or scalar. |
| DIM | Dimension of X. |

Description

nanmax for financial times series objects is based on the Statistics Toolbox function nanmax. See nanmax in the Statistics Toolbox documentation.
$m=n a n m a x(X)$ returns the maximum of a financial time series object X with NaNs treated as missing. m is the largest non- NaN element in X .
$[m, n d x]=\operatorname{nanmax}(X)$ returns the indices of the maximum values in X. If the values along the first nonsingleton dimension contain multiple maximal elements, the index of the first one is returned.
$m=$ nanmax (X, Y) returns an array the same size as X and Y with the largest elements taken from X or Y. Only Y can be a scalar double.
[m,ndx] = nanmax(X, [],DIM) operates along the dimension DIM.

Examples

To compute nanmax for the following dates:

```
dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;
f.series3(2) = nan;
```

```
    [nmax, maxidx] = nanmax(f)
nmax =
    4 5
maxidx =
    3 1
```

See Also max | nanmean | nanmedian | nanmin | nanstd | nanvar

Purpose Mean ignoring NaNs

Syntax
$\mathrm{m}=$ nanmean (X)
m = nanmean(X,DIM)

Arguments

| X | Financial times series object. |
| :--- | :--- |
| DIM | Dimension along which the operation is conducted. |

Description

nanmean for financial times series objects is based on the Statistics Toolbox function nanmean. See nanmean in the Statistics Toolbox documentation.
$m=$ nanmean (X) returns the sample mean of a financial time series object X, treating NaNs as missing values. m is a row vector containing the mean value of the non- NaN elements in each series.
$m=$ nanmean(X,DIM) takes the mean along dimension DIM of X.

Examples
 To compute nanmean for the following dates:

```
dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;
f.series3(2) = nan;
nmean = nanmean(f)
nmean =
    3.5000 3.0000 4.0000
```

See Also mean | nanmax | nanmin | nanstd | nansum | nanvar

Purpose Median ignoring NaNs

```
Syntax m = nanmedian(X)
m = nanmedian(X,DIM)
```

Arguments

Description

Examples

To compute nanmedian for the following dates:

```
dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007';'04-Jan-2007'};
f = fints(dates, magic(4));
f.series1(1) = nan;
f.series2(2) = nan;
f.series3([1 3]) = nan;
nmedian = nanmedian(f)
nmedian =
    5.0000 7.0000 12.5000 10.0000
```

See Also mean | nanmax | nanmin | nanstd | nansum | nanvar

Purpose Minimum ignoring NaNs

Syntax

```
m = nanmin(X)
[m,ndx] = nanmin(X)
\(\mathrm{m}=\) nanmin \((\mathrm{X}, \mathrm{Y})\)
[m,ndx] = nanmin(X,[],DIM)
```


Arguments

| X | Financial times series object. |
| :--- | :--- |
| Y | Financial times series object or scalar. |
| DIM | Dimension along which the operation is conducted. |

Description

nanmin for financial times series objects is based on the Statistics Toolbox function nanmin. See nanmin in the Statistics Toolbox documentation.
$\mathrm{m}=$ nanmin (X) returns the minimum of a financial time series object X with NaNs treated as missing. m is the smallest non-NaN element in X.
[$m, n d x]=$ nanmin($X)$ returns the indices of the minimum values in X. If the values along the first nonsingleton dimension contain multiple elements, the index of the first one is returned.
$m=n a n m i n(X, Y)$ returns an array the same size as X and Y with the smallest elements taken from X or Y. Only Y can be a scalar double.
[m,ndx] = nanmin(X, [], DIM) operates along the dimension DIM.

Examples

To compute nanmin for the following dates:

```
dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;
f.series3(2) = nan;
```

```
[nmin, minidx] = nanmin(f)
nmin =
    3 1 2
minidx =
    2 1 3
```

See Also mean | nanmax | nanstd | nanvar

Purpose Standard deviation ignoring NaNs

Syntax

```
y = nanstd(X)
y = nanstd(X,1)
y = nanstd(X,FLAG,DIM)
```


Arguments

| X | Financial times series object. |
| :--- | :--- |
| FLAG | Normalization flag. |
| DIM | Dimension along which the operation is conducted. |

Description

nanstd for financial times series objects is based on the Statistics Toolbox function nanstd. See nanstd in the Statistics Toolbox documentation.
$y=$ nanstd (X) returns the sample standard deviation of the values in a financial time series object X, treating NaNs as missing values. y is the standard deviation of the non-NaN elements of X.
nanstd normalizes y by $(N-1)$, where N is the sample size. This is the square root of an unbiased estimator of the variance of the population from which X is drawn, as long as X consists of independent, identically distributed samples and data are missing at random.
$y=$ nanstd $(X, 1)$ normalizes by N and produces the square root of the second moment of the sample about its mean. nanstd $(X, 0)$ is the same as nanstd(X).
$y=n a n s t d(X, f l a g, d i m)$ takes the standard deviation along the dimension dim of X. Set the value of flag to 0 to normalize the result by $n-1$; set the value of flag to 1 to normalize the result by n.

Examples

To compute nanstd for the following dates:

```
dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
```

```
f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;
f.series3(2) = nan;
nstd = nanstd(f)
nstd =
```

0.71
2.83
2.83

See Also
nanmax | nanmean | nanmedian | nanmin | nanvar | std

Purpose Sum ignoring NaNs

Syntax

```
y = nansum(X)
y = nansum(X,DIM)
```

Arguments

| X | Financial time series object. |
| :--- | :--- |
| DIM | Dimension along which the operation is conducted. |

Description

nansum for financial times series objects is based on the Statistics Toolbox function nansum. See nansum in the Statistics Toolbox documentation.
$y=\operatorname{nansum}(X)$ returns the sum of a financial time series object X, treating NaNs as missing values. y is the sum of the non- NaN elements in X.
$\mathrm{y}=$ nansum(X,DIM) takes the sum along dimension DIM of X .

Examples

To compute nansum for the following dates:

```
dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;
f.series3(2) = nan;
nsum = nansum(f)
nsum =
    7 6 8
```

```
See Also nanmax | nanmean | nanmedian | nanmin | nanstd | nanvar
```


Purpose Variance ignoring NaNs

```
Syntax
y = nanvar(X)
y = nanvar(X,1)
y = nanvar(X,W)
y = nanvar(X,W,DIM)
```


Arguments

| X | Financial times series object. |
| :--- | :--- |
| W | Weight vector. |
| DIM | Dimension along which the operation is conducted. |

Description

nanvar for financial times series objects is based on the Statistics Toolbox function nanvar. See nanvar in the Statistics Toolbox documentation.
$y=$ nanvar (X) returns the sample variance of the values in a financial time series object X , treating NaNs as missing values. y is the variance of the non-NaN elements of each series in X .
nanvar normalizes y by $N-1$ if $N>1$, where N is the sample size of the non-NaN elements. This is an unbiased estimator of the variance of the population from which X is drawn, as long as X consists of independent, identically distributed samples, and data are missing at random. For N $=1$, y is normalized by N .
$\mathrm{y}=$ nanvar($\mathrm{X}, 1)$ normalizes by N and produces the second moment of the sample about its mean. nanvar $(X, 0)$ is the same as nanvar (X).
$y=$ nanvar(X, W) computes the variance using the weight vector W. The length of W must equal the length of the dimension over which nanvar operates, and its non-NaN elements must be nonnegative. Elements of X corresponding to NaN elements of Ware ignored.
$\mathrm{y}=$ nanvar(X,W,DIM) takes the variance along dimension DIM of X .

```
Examples To compute nanvar:
    f = fints((today:today+1)', [4 -2 1; 9 5 7])
    f.series1(1) = nan;
    f.series3(2) = nan;
nvar = nanvar(f)
nvar =
    024.5000 0
```

See Also nanmax | nanmean | nanmedian | nanmin | nanstd | var

Purpose Negative volume index

```
Syntax
```

```
nvi = negvolidx(closep, tvolume, initnvi)
```

nvi = negvolidx(closep, tvolume, initnvi)
nvi = negvolidx([closep tvolume], initnvi)
nvi = negvolidx([closep tvolume], initnvi)
nvits = negvolidx(tsobj)
nvits = negvolidx(tsobj)
vits = negvolidx(tsobj, initnvi, ParameterName, ParameterValue,
vits = negvolidx(tsobj, initnvi, ParameterName, ParameterValue,
...)

```
...)
```


Arguments

| closep | Closing price (vector). |
| :--- | :--- |
| tvolume | Volume traded (vector). |
| initnvi | (Optional) Initial value for negative volume
 index (Default = 100). |
| tsobj | Financial time series object. |
| ParameterName | Valid parameter names are:
 - CloseName: closing prices series name |
| Parametervalue | - VolumeName: volume traded series name
 Parameter values are the strings that
 represent the valid parameter names. |

Description nvi = negvolidx(closep, tvolume, initnvi) calculates the negative volume index from a set of stock closing prices (closep) and volume traded (tvolume) data. nvi is a vector representing the negative volume index. If initnvi is specified, negvolidx uses that value instead of the default (100).
nvi = negvolidx([closep tvolume], initnvi) accepts a two-column matrix, the first column representing the closing prices (closep) and
the second representing the volume traded (tvolume). If initnvi is specified, negvolidx uses that value instead of the default (100).
nvits $=$ negvolidx(tsobj) calculates the negative volume index from the financial time series object tsobj. The object must contain, at least, the series Close and Volume. The nvits output is a financial time series object with dates similar to tsobj and a data series named NVI. The initial value for the negative volume index is arbitrarily set to 100 .
nvits = negvolidx(tsobj, initnvi, ParameterName, ParameterValue, ...) accepts parameter name/ parameter value pairs as input. These pairs specify the name(s) for the required data series if it is different from the expected default name(s). Parameter values are the strings that represent the valid parameter names.

Examples Compute the Negative Volume Index

This example shows how to compute the negative volume index for Disney stock and plot the results.

```
load disney.mat
dis_NegVol = negvolidx(dis)
plot(dis_NegVol)
title('Negative Volume Index for Disney')
dis_NegVol =
    desc: NegVolIdx: Walt Disney Company (DIS)
    freq: Unknown (0)
    'dates: (782)' 'NVI: (782)'
    '29-Mar-1996' [ 100]
    '01-Apr-1996' [ 101.5640]
    '02-Apr-1996' [ 101.5640]
    '03-Apr-1996' [ 101.7593]
    '04-Apr-1996' [ 101.7593]
    '05-Apr-1996' [ 100]
```

| '08-Apr-1996' | [| $100]$ |
| :---: | :---: | :---: |
| '09-Apr-1996' | [| $98.8349]$ |
| '10-Apr-1996' | [| $98.8349]$ |
| '11-Apr-1996' | [| $98.8349]$ |
| '12-Apr-1996' | [| 100.4703] |
| '15-Apr-1996' | [| 101.2905] |
| '16-Apr-1996' | [| 101.9043] |
| '17-Apr-1996' | [| 101.9043] |
| '18-Apr-1996' | [| 102.7179] |
| '19-Apr-1996' | [| 102.7179] |
| '22-Apr-1996' | [| 102.7179] |
| '23-Apr-1996' | [| 102.7179] |
| '24-Apr-1996' | [| 102.7179] |
| '25-Apr-1996' | [| 103.7803] |
| '26-Apr-1996' | [| 104.8376] |
| '29-Apr-1996' | [| $104.8376]$ |
| '30-Apr-1996' | [| 105.0510] |
| '01-May-1996' | [| 105.0510] |
| '02-May-1996' | [| 104.1811] |
| ' $03-$ May -1996 ' | [| 104.1811] |
| '06-May-1996' | [| 106.1676] |
| '07-May-1996' | [| $104.8433]$ |
| '08-May-1996' | [| $104.8433]$ |
| '09-May-1996' | [| 103.5106] |
| '10-May-1996' | [| 105.2858] |
| '13-May-1996' | [| 105.2858] |
| '14-May-1996' | [| 105.5041] |
| '15-May-1996' | [| 105.5041] |
| '16-May-1996 ' | [| 106.1594] |
| '17-May-1996 ' | [| 106.1594] |
| ' 20-May-1996' | [| 107.2409] |
| '21-May-1996' | [| 108.1093] |
| '22-May-1996' | [| 108.7592] |
| ' 23 -May-1996 ' | [| 108.7592] |
| '24-May-1996' | [| 108.7592] |
| ' 27 -May-1996 ' | [| 100] |
| ' 28 -May-1996 ' | [| 100] |

| 29-May-1996 ' | [| 100] |
| :---: | :---: | :---: |
| 30-May-1996' | [| 101.2396] |
| 31-May-1996' | [| 100.4116] |
| 03-Jun-1996' | [| 99.7917] |
| 04-Jun-1996' | [| 99.7917] |
| 05-Jun-1996' | [| 100.4141] |
| 06-Jun-1996' | [| $100.4141]$ |
| 07-Jun-1996' | [| 101.6191] |
| '10-Jun-1996' | [| $100.2165]$ |
| 11-Jun-1996' | [| $100.2165]$ |
| 12-Jun-1996' | [| $100.2165]$ |
| 13-Jun-1996' | [| $99.2091]$ |
| 14-Jun-1996' | [| $99.2091]$ |
| 17-Jun-1996' | [| $100.0173]$ |
| 18-Jun-1996' | [| $100.0173]$ |
| 19-Jun-1996' | [| $100.2239]$ |
| '20-Jun-1996' | [| 100.2239] |
| 21-Jun-1996' | [| $100.2239]$ |
| '24-Jun-1996' | [| 99.0308] |
| 25-Jun-1996' | [| $99.0308]$ |
| 26-Jun-1996' | [| $97.6639]$ |
| 27-Jun-1996' | [| $98.8382]$ |
| 28-Jun-1996' | [| 98.8382] |
| 01-Jul-1996' | [| 97.8573] |
| 02-Jul-1996' | [| $97.8573]$ |
| 03-Jul-1996' | [| $97.8573]$ |
| 04-Jul-1996' | [| 100] |
| 05-Jul-1996' | [| 100] |
| 08-Jul-1996' | [| 100] |
| 09-Jul-1996' | [| 100] |
| '10-Jul-1996' | [| $101.0852]$ |
| '11-Jul-1996' | [| 101.0852] |
| '12-Jul-1996' | [| 102.4360] |
| '15-Jul-1996' | [| 102.4360] |
| '16-Jul-1996' | [| 102.4360] |
| '17-Jul-1996' | [| $102.4360]$ |
| '18-Jul-1996' | [| 104.7188] |

| 19-Jul-1996' | 104.9493] |
| :---: | :---: |
| '22-Jul-1996' | 104.9493] |
| 23-Jul-1996' | 104.9493] |
| 24-Jul-1996' | 104.9493] |
| 25-Jul-1996' | 104.9493] |
| '26-Jul-1996' | 104.9493] |
| '29-Jul-1996' | 103.4951] |
| 30-Jul-1996' | $107.1307]$ |
| 31-Jul-1996' | 107.1307] |
| '01-Aug-1996' | 110.4991] |
| '02-Aug-1996' | 111.7009] |
| 05-Aug-1996' | 112.4231] |
| '06-Aug-1996' | 112.4231] |
| '07-Aug-1996' | $111.2284]$ |
| '08-Aug-1996' | $111.2284]$ |
| '09-Aug-1996' | $110.5030]$ |
| '12-Aug-1996' | $110.5030]$ |
| '13-Aug-1996' | $109.5566]$ |
| '14-Aug-1996' | $109.5566]$ |
| '15-Aug-1996' | $109.0873]$ |
| '16-Aug-1996' | 109.0873] |
| '19-Aug-1996' | 108.8508] |
| '20-Aug-1996' | $108.8508]$ |
| '21-Aug-1996' | $110.0430]$ |
| '22-Aug-1996' | 110.0430] |
| '23-Aug-1996' | 110.5144] |
| '26-Aug-1996' | 110.5144] |
| '27-Aug-1996' | [109.8164] |
| '28-Aug-1996' | 108.4205] |
| '29-Aug-1996' | 108.4205] |
| '30-Aug-1996' | 108.4205] |
| '02-Sep-1996' | 100] |
| '03-Sep-1996' | 100] |
| '04-Sep-1996' | $99.5632]$ |
| '05-Sep-1996' | $99.5632]$ |
| '06-Sep-1996' | $99.5632]$ |
| '09-Sep-1996' | 101.7483] |

| 10-Sep-1996 ${ }^{\text {' }}$ | $101.7483]$ |
| :---: | :---: |
| 11-Sep-1996' | 103.0668] |
| 12-Sep-1996' | 103.0668] |
| 13-Sep-1996' | 103.4910] |
| '16-Sep-1996' | $102.6375]$ |
| 17-Sep-1996' | $102.6375]$ |
| '18-Sep-1996' | 102.8491] |
| '19-Sep-1996' | 102.8491] |
| '20-Sep-1996' | $102.8491]$ |
| 23-Sep-1996' | $103.6605]$ |
| 24-Sep-1996' | $103.6605]$ |
| 25-Sep-1996' | 103.4523] |
| 26-Sep-1996' | 103.4523] |
| 27-Sep-1996' | $105.1192]$ |
| 30-Sep-1996' | 105.1192] |
| 01-Oct-1996' | $103.8727]$ |
| 02-Oct-1996' | $103.8727]$ |
| 03-Oct-1996' | 104.2891] |
| 04-0ct-1996' | 104.2891] |
| 07-Oct-1996' | 104.2891] |
| 08-0ct-1996' | 104.2891] |
| 09-0ct-1996' | 104.2891] |
| 10-Oct-1996' | 104.4911] |
| 11-0ct-1996' | $105.1069]$ |
| 14-Oct-1996' | $105.1069]$ |
| 15-Oct-1996' | $105.1069]$ |
| 16-0ct-1996' | 105.1069] |
| 17-Oct-1996' | 104.1056] |
| 18-Oct-1996' | 104.1056] |
| 21-Oct-1996' | 104.1056] |
| '22-0ct-1996' | 104.1056] |
| 23-0ct-1996' | 104.1056] |
| '24-0ct-1996' | 102.9248] |
| '25-0ct-1996' | $104.2992]$ |
| '28-0ct-1996' | $104.2992]$ |
| '29-0ct-1996' | $103.3187]$ |
| 30-Oct-1996 ' | 103.1207] |

| '31-Oct-1996' | [| 103.1207] |
| :---: | :---: | :---: |
| '01-Nov-1996' | [| 103.1207] |
| '04-Nov-1996' | [| 103.1207] |
| '05-Nov-1996' | [| 103.1207] |
| '06-Nov-1996' | [| 103.3083] |
| '07-Nov-1996' | [| $103.3083]$ |
| '08-Nov-1996' | [| $102.5582]$ |
| '11-Nov-1996' | [| 102.5582] |
| '12-Nov-1996' | [| 102.5582] |
| '13-Nov-1996' | [| 102.1979] |
| '14-Nov-1996' | [| 102.1979] |
| '15-Nov-1996' | [| 102.1979] |
| '18-Nov-1996' | [| $100.9630]$ |
| '19-Nov-1996' | [| $100.9630]$ |
| '20-Nov-1996' | [| $100.9630]$ |
| '21-Nov-1996' | [| $101.6637]$ |
| '22-Nov-1996' | [| 101.6637] |
| '25-Nov-1996' | [| 101.6637] |
| '26-Nov-1996' | [| 101.6637] |
| '27-Nov-1996' | [| $98.8225]$ |
| '28-Nov-1996' | [| 100] |
| '29-Nov-1996' | [| 100] |
| '02-Dec-1996' | [| 100] |
| '03-Dec-1996' | [| $97.2914]$ |
| '04-Dec-1996' | [| $97.2914]$ |
| '05-Dec-1996' | [| 97.1211] |
| '06-Dec-1996' | [| $97.1211]$ |
| '09-Dec-1996' | [| $99.3298]$ |
| '10-Dec-1996' | [| $99.5010]$ |
| '11-Dec-1996' | [| $99.5010]$ |
| '12-Dec-1996' | [| $99.5010]$ |
| '13-Dec-1996' | [| $99.5010]$ |
| '16-Dec-1996' | [| $98.2602]$ |
| '17-Dec-1996' | [| $98.2602]$ |
| '18-Dec-1996' | [| $99.1253]$ |
| '19-Dec-1996' | [| $100.3398]$ |
| '20-Dec-1996' | [| 100.3398] |

| 23-Dec-1996 ${ }^{\prime}$ | [| 99.9946] |
| :---: | :---: | :---: |
| '24-Dec-1996' | [| $99.1253]$ |
| '25-Dec-1996' | [| 100] |
| '26-Dec-1996' | [| 100] |
| '27-Dec-1996' | [| $99.8235]$ |
| '30-Dec-1996' | [| $99.8235]$ |
| '31-Dec-1996' | [| $99.4684]$ |
| '01-Jan-1997' | [| 100] |
| '02-Jan-1997' | [| 100] |
| '03-Jan-1997' | [| 102.7830] |
| '06-Jan-1997' | [| $102.4134]$ |
| '07-Jan-1997' | [| $102.2264]$ |
| '08-Jan-1997' | [| $100.7436]$ |
| '09-Jan-1997' | [| $100.7436]$ |
| '10-Jan-1997' | [| $100.7436]$ |
| '13-Jan-1997' | [| 100.9306] |
| '14-Jan-1997' | [| $100.9306]$ |
| '15-Jan-1997' | [| $100.9306]$ |
| '16-Jan-1997' | [| $100.5627]$ |
| '17-Jan-1997' | [| $100.5627]$ |
| '20-Jan-1997' | [| $101.2824]$ |
| '21-Jan-1997' | [| 101.2824] |
| '22-Jan-1997' | | 101.2824] |
| '23-Jan-1997' | [| 101.2824] |
| '24-Jan-1997' | [| $102.5432]$ |
| '27-Jan-1997' | [| $102.5432]$ |
| '28-Jan-1997' | [| $102.5432]$ |
| '29-Jan-1997' | [| 104.1316] |
| '30-Jan-1997' | [| 102.1916] |
| '31-Jan-1997' | [| 102.8990] |
| '03-Feb-1997' | [| $102.8990]$ |
| '04-Feb-1997' | [| $102.5432]$ |
| '05-Feb-1997' | [| $102.5432]$ |
| '06-Feb-1997' | [| 102.5432] |
| '07-Feb-1997' | [| 103.9275] |
| '10-Feb-1997' | [| 103.9275] |
| '11-Feb-1997' | [| 103.0699] |

| '12-Feb-1997' | 105.3045] |
| :---: | :---: |
| '13-Feb-1997' | $105.3045]$ |
| '14-Feb-1997' | 106.3252] |
| '17-Feb-1997' | 100] |
| '18-Feb-1997' | 100] |
| '19-Feb-1997' | $98.2271]$ |
| '20-Feb-1997' | $96.4541]$ |
| '21-Feb-1997' | $96.4541]$ |
| '24-Feb-1997' | $96.7728]$ |
| '25-Feb-1997' | 96.7728] |
| '26-Feb-1997' | $96.7728]$ |
| '27-Feb-1997' | $97.2534]$ |
| '28-Feb-1997' | $97.2534]$ |
| '03-Mar-1997' | $97.2534]$ |
| '04-Mar-1997' | $96.4264]$ |
| '05-Mar-1997' | $96.4264]$ |
| '06-Mar-1997' | 98.5595] |
| '07-Mar-1997' | 98.5595] |
| '10-Mar-1997' | $99.5322]$ |
| '11-Mar-1997' | $99.5322]$ |
| '12-Mar-1997' | $99.5322]$ |
| '13-Mar-1997' | $96.7275]$ |
| '14-Mar-1997' | $96.7275]$ |
| '17-Mar-1997' | $98.3424]$ |
| '18-Mar-1997' | $97.6980]$ |
| '19-Mar-1997' | $97.0497]$ |
| '20-Mar-1997' | $96.4014]$ |
| '21-Mar-1997' | $96.4014]$ |
| '24-Mar-1997' | 97.7028] |
| '25-Mar-1997' | 97.7028] |
| '26-Mar-1997' | $98.3537]$ |
| '27-Mar-1997' | $98.3537]$ |
| '28-Mar-1997' | 100] |
| '31-Mar-1997' | 100] |
| '01-Apr-1997' | $99.3125]$ |
| '02-Apr-1997' | $99.3125]$ |
| '03-Apr-1997' | $99.6542]$ |

| 04-Apr-1997' | $99.6542]$ |
| :---: | :---: |
| 07-Apr-1997' | $99.6542]$ |
| '08-Apr-1997' | $99.6542]$ |
| '09-Apr-1997' | $99.6542]$ |
| '10-Apr-1997' | $99.6542]$ |
| '11-Apr-1997' | $99.6542]$ |
| '14-Apr-1997' | $97.9317]$ |
| '15-Apr-1997' | 101.7196] |
| '16-Apr-1997' | 101.7196] |
| '17-Apr-1997' | 101.8891] |
| '18-Apr-1997' | 101.8891] |
| '21-Apr-1997' | $101.8891]$ |
| '22-Apr-1997' | 101.8891] |
| '23-Apr-1997' | 101.8891] |
| '24-Apr-1997' | 100.7610] |
| '25-Apr-1997' | $99.6369]$ |
| '28-Apr-1997' | $99.9575]$ |
| '29-Apr-1997' | 99.9575] |
| '30-Apr-1997' | 99.9575] |
| '01-May-1997' | $99.0405]$ |
| '02-May-1997' | $99.0405]$ |
| '05-May-1997' | $99.0405]$ |
| '06-May-1997' | $99.0405]$ |
| '07-May-1997' | $96.9308]$ |
| '08-May-1997' | $96.9308]$ |
| '09-May-1997' | $98.1262]$ |
| '12-May-1997' | $98.1262]$ |
| '13-May-1997' | $97.1090]$ |
| '14-May-1997' | $97.1090]$ |
| '15-May-1997' | $96.2381]$ |
| '16-May-1997' | $96.2381]$ |
| '19-May-1997' | $99.0654]$ |
| '20-May-1997' | $99.0654]$ |
| '21-May-1997' | $97.4353]$ |
| '22-May-1997' | 97.4353] |
| '23-May-1997' | $98.7700]$ |
| '26-May-1997' | 100] |

| '27-May-1997' | [| 100] |
| :---: | :---: | :---: |
| '28-May-1997' | [| 100.1469] |
| '29-May-1997' | [| $100.1469]$ |
| '30-May-1997' | [| $100.1469]$ |
| '02-Jun-1997' | [| 98.9213] |
| '03-Jun-1997' | [| 98.9213] |
| '04-Jun-1997' | [| 98.9213] |
| '05-Jun-1997' | [| 98.9213] |
| '06-Jun-1997' | [| 98.9213] |
| '09-Jun-1997' | [| $98.4654]$ |
| '10-Jun-1997' | [| $98.4654]$ |
| '11-Jun-1997' | [| $98.4654]$ |
| '12-Jun-1997' | [| $98.4654]$ |
| '13-Jun-1997' | [| $98.4654]$ |
| '16-Jun-1997' | [| $98.9076]$ |
| '17-Jun-1997' | [| $98.9076]$ |
| '18-Jun-1997' | [| $97.1414]$ |
| '19-Jun-1997' | [| $97.1414]$ |
| '20-Jun-1997' | [| $97.1414]$ |
| '23-Jun-1997' | [| $95.2210]$ |
| '24-Jun-1997' | [| $95.2210]$ |
| '25-Jun-1997' | [| $95.2210]$ |
| '26-Jun-1997' | [| $94.7159]$ |
| '27-Jun-1997' | [| $94.7159]$ |
| '30-Jun-1997' | [| $94.7159]$ |
| '01-Jul-1997' | [| $92.7260]$ |
| '02-Jul-1997' | [| $92.7260]$ |
| '03-Jul-1997' | [| $93.1783]$ |
| '04-Jul-1997' | [| 100] |
| '07-Jul-1997' | [| 100] |
| '08-Jul-1997' | [| 102.7158] |
| '09-Jul-1997' | [| 101.4013] |
| '10-Jul-1997' | [| 101.1526] |
| '11-Jul-1997' | [| 101.1526] |
| '14-Jul-1997' | [| 101.1526] |
| '15-Jul-1997' | [| 101.8860] |
| '16-Jul-1997' | [| 101.8860] |

| '17-Jul-1997' | 100.4328] |
| :---: | :---: |
| '18-Jul-1997' | 100.4328] |
| '21-Jul-1997' | $99.5235]$ |
| '22-Jul-1997' | $99.5235]$ |
| '23-Jul-1997' | $99.9235]$ |
| '24-Jul-1997' | 101.6890] |
| '25-Jul-1997' | 101.2851] |
| '28-Jul-1997' | 102.0890] |
| '29-Jul-1997' | $102.0890]$ |
| '30-Jul-1997' | $102.0890]$ |
| '31-Jul-1997' | $101.9339]$ |
| '01-Aug-1997' | $101.9339]$ |
| '04-Aug-1997' | 102.4083] |
| '05-Aug-1997' | 101.1443] |
| ' 06-Aug-1997' | $102.2527]$ |
| '07-Aug-1997' | $102.2527]$ |
| '08-Aug-1997' | $102.2527]$ |
| '11-Aug-1997' | $102.2527]$ |
| '12-Aug-1997' | $102.2527]$ |
| '13-Aug-1997' | 103.0668] |
| '14-Aug-1997' | 102.9063] |
| '15-Aug-1997' | 102.9063] |
| '18-Aug-1997' | 102.9063] |
| '19-Aug-1997' | 102.9063] |
| '20-Aug-1997' | $103.7935]$ |
| '21-Aug-1997' | $101.8565]$ |
| '22-Aug-1997' | $101.8565]$ |
| '25-Aug-1997' | $102.0990]$ |
| '26-Aug-1997' | $102.0990]$ |
| '27-Aug-1997' | 102.0990] |
| '28-Aug-1997' | $102.0990]$ |
| '29-Aug-1997' | 100.8659] |
| '01-Sep-1997' | 100] |
| '02-Sep-1997' | 100] |
| '03-Sep-1997' | 100] |
| '04-Sep-1997' | 100] |
| '05-Sep-1997' | 100.6449] |

| 08-Sep-1997 ${ }^{\text {' }}$ | $100.2394]$ |
| :---: | :---: |
| 09-Sep-1997' | $100.2394]$ |
| '10-Sep-1997' | $99.2817]$ |
| 11-Sep-1997' | $99.2817]$ |
| 12-Sep-1997' | 101.0826] |
| 15-Sep-1997' | 101.1651] |
| 16-Sep-1997' | 101.1651] |
| 17-Sep-1997' | 100.9271] |
| 18-Sep-1997' | 100.9271] |
| 19-Sep-1997' | $101.7212]$ |
| 22-Sep-1997' | 101.2440] |
| 23-Sep-1997' | $100.5263]$ |
| 24-Sep-1997' | $100.5263]$ |
| 25-Sep-1997' | $100.5263]$ |
| 26-Sep-1997' | $100.5263]$ |
| 29-Sep-1997' | 101.1598] |
| 30-Sep-1997' | 101.1598] |
| 01-Oct-1997' | 101.1598] |
| 02-Oct-1997' | 101.1598] |
| 03-Oct-1997' | 101.1598] |
| 06-0ct-1997' | 99.5125] |
| 07-Oct-1997' | 99.5125] |
| 08-Oct-1997' | $99.5125]$ |
| 09-0ct-1997 ${ }^{\text {' }}$ | $99.7364]$ |
| 10-Oct-1997' | $99.7364]$ |
| 13-Oct-1997' | $100.8519]$ |
| 14-Oct-1997' | $100.8519]$ |
| 15-Oct-1997' | $100.8519]$ |
| 16-Oct-1997' | 98.6055] |
| 17-Oct-1997' | $98.6055]$ |
| 20-Oct-1997' | $99.7225]$ |
| '21-Oct-1997' | $99.8729]$ |
| 22-Oct-1997' | $99.8729]$ |
| '23-0ct-1997' | $99.8729]$ |
| 24-Oct-1997' | $99.8729]$ |
| '27-0ct-1997' | 94.2678] |
| 28-0ct-1997' | $94.2678]$ |

| 29-Oct-1997 ${ }^{\text {' }}$ | [| $94.9825]$ |
| :---: | :---: | :---: |
| 30-Oct-1997' | [| $92.3336]$ |
| 31-Oct-1997' | [| $94.3366]$ |
| 03-Nov-1997' | | $94.3366]$ |
| 04-Nov-1997' | [| $95.1641]$ |
| 05-Nov-1997' | [| $95.1641]$ |
| 06-Nov-1997' | [| $95.1641]$ |
| 07-Nov-1997' | [| $95.1641]$ |
| 10-Nov-1997' | [| $94.1982]$ |
| 11-Nov-1997' | [| $94.8201]$ |
| 12-Nov-1997' | [| $94.8201]$ |
| 13-Nov-1997' | [| $94.8201]$ |
| 14-Nov-1997' | [| $94.8201]$ |
| 17-Nov-1997' | [| $94.8201]$ |
| 18-Nov-1997' | [| $94.8201]$ |
| 19-Nov-1997' | [| $97.0766]$ |
| '20-Nov-1997' | [| $97.0766]$ |
| 21-Nov-1997' | [| $97.0766]$ |
| 24-Nov-1997' | [| $95.9240]$ |
| 25-Nov-1997' | [| $95.9240]$ |
| 26-Nov-1997' | [| $96.8215]$ |
| 27-Nov-1997' | [| 100] |
| 28-Nov-1997' | [| 100] |
| 01-Dec-1997' | [| 100] |
| 02-Dec-1997' | [| 100] |
| 03-Dec-1997' | [| $98.5740]$ |
| 04-Dec-1997' | [| 98.5740] |
| 05-Dec-1997' | [| $99.0323]$ |
| 08-Dec-1997' | [| $99.4274]$ |
| 09-Dec-1997' | [| $99.4274]$ |
| 10-Dec-1997' | [| $98.8992]$ |
| 11-Dec-1997' | [| 98.8992] |
| 12-Dec-1997' | [| $98.8992]$ |
| '15-Dec-1997' | [| 98.8992] |
| 16-Dec-1997' | [| $97.7537]$ |
| '17-Dec-1997' | [| 98.5815] |
| 18-Dec-1997 ${ }^{\text {' }}$ | [| 98.5815] |

| '19-Dec-1997' | 98.5815] |
| :---: | :---: |
| '22-Dec-1997' | 100.1866] |
| '23-Dec-1997' | 100.1866] |
| '24-Dec-1997' | $97.6187]$ |
| '25-Dec-1997' | 100] |
| '26-Dec-1997' | 100] |
| ' 29-Dec-1997' | 100] |
| '30-Dec-1997 | 100] |
| '31-Dec-1997' | 100] |
| '01-Jan-1998' | 100] |
| '02-Jan-1998' | 100] |
| '05-Jan-1998' | 100] |
| '06-Jan-1998' | $99.6205]$ |
| '07-Jan-1998' | $99.6205]$ |
| '08-Jan-1998' | 98.8013] |
| '09-Jan-1998' | 98.8013] |
| '12-Jan-1998' | 98.8013] |
| '13-Jan-1998' | $99.3913]$ |
| '14-Jan-1998' | 100.9607] |
| '15-Jan-1998' | 100.1101] |
| '16-Jan-1998' | 100.1101] |
| '19-Jan-1998' | 100] |
| '20-Jan-1998' | 100] |
| '21-Jan-1998' | $99.4958]$ |
| '22-Jan-1998' | $97.1079]$ |
| '23-Jan-1998' | $97.1079]$ |
| '26-Jan-1998' | $95.8762]$ |
| '27-Jan-1998' | $95.8762]$ |
| '28-Jan-1998' | $97.9756]$ |
| '29-Jan-1998' | $99.1430]$ |
| '30-Jan-1998' | $99.7252]$ |
| '02-Feb-1998' | $99.7252]$ |
| '03-Feb-1998' | $98.9801]$ |
| '04-Feb-1998' | $99.2661]$ |
| '05-Feb-1998' | $99.2661]$ |
| '06-Feb-1998' | $99.4970]$ |
| '09-Feb-1998' | 99.4970] |

| '10-Feb-1998' | [| $99.4970]$ |
| :---: | :---: | :---: |
| '11-Feb-1998' | [| $99.4970]$ |
| '12-Feb-1998' | [| $99.4970]$ |
| '13-Feb-1998' | [| 100.6842] |
| '16-Feb-1998' | [| 100] |
| '17-Feb-1998' | [| 100] |
| '18-Feb-1998' | [| 101.6593] |
| '19-Feb-1998' | [| 101.6593] |
| '20-Feb-1998' | [| 101.6593] |
| '23-Feb-1998' | [| 101.6593] |
| '24-Feb-1998' | [| 101.6593] |
| '25-Feb-1998' | [| $101.0326]$ |
| '26-Feb-1998' | [| 101.0326] |
| '27-Feb-1998' | [| $101.0326]$ |
| '02-Mar-1998' | [| $98.7176]$ |
| '03-Mar-1998' | [| $99.2835]$ |
| '04-Mar-1998' | [| $99.2835]$ |
| '05-Mar-1998' | [| $97.7172]$ |
| '06-Mar-1998' | [| 98.1213] |
| '09-Mar-1998' | [| $98.2969]$ |
| '10-Mar-1998' | [| $98.3554]$ |
| '11-Mar-1998' | [| $98.3554]$ |
| '12-Mar-1998' | [| $99.4111]$ |
| '13-Mar-1998' | [| $99.4674]$ |
| '16-Mar-1998' | [| $99.4674]$ |
| '17-Mar-1998' | [| 97.7090] |
| '18-Mar-1998' | [| $97.3687]$ |
| '19-Mar-1998' | [| $97.3687]$ |
| '20-Mar-1998' | [| $97.3687]$ |
| '23-Mar-1998' | [| $97.3687]$ |
| '24-Mar-1998' | [| $97.3687]$ |
| '25-Mar-1998' | [| $97.3114]$ |
| '26-Mar-1998' | [| $98.0516]$ |
| '27-Mar-1998' | [| $97.6528]$ |
| '30-Mar-1998' | [| $96.1177]$ |
| '31-Mar-1998' | [| $96.1177]$ |
| '01-Apr-1998' | [| $96.1177]$ |

| 02-Apr-1998 ${ }^{\text {' }}$ | $96.1177]$ |
| :---: | :---: |
| '03-Apr-1998' | $97.9372]$ |
| '06-Apr-1998' | $95.6754]$ |
| '07-Apr-1998' | $95.2331]$ |
| '08-Apr-1998' | $95.2331]$ |
| '09-Apr-1998' | $95.2331]$ |
| '10-Apr-1998' | 100] |
| '13-Apr-1998' | 100] |
| '14-Apr-1998' | 100] |
| '15-Apr-1998' | 100] |
| '16-Apr-1998' | $98.6237]$ |
| '17-Apr-1998' | $98.6237]$ |
| '20-Apr-1998' | $98.6237]$ |
| '21-Apr-1998' | $99.8007]$ |
| '22-Apr-1998' | $104.2885]$ |
| '23-Apr-1998' | 104.2885] |
| '24-Apr-1998' | 102.9707] |
| '27-Apr-1998' | $101.9715]$ |
| '28-Apr-1998' | $101.9715]$ |
| '29-Apr-1998' | 102.2811] |
| '30-Apr-1998' | 102.2811] |
| '01-May-1998' | 103.2049] |
| '04-May-1998' | 103.2049] |
| '05-May-1998' | 102.8493] |
| '06-May-1998' | $100.8205]$ |
| '07-May-1998' | $100.8205]$ |
| '08-May-1998' | $101.0845]$ |
| '11-May-1998' | $102.2493]$ |
| '12-May-1998' | $100.5033]$ |
| '13-May-1998' | $100.5033]$ |
| '14-May-1998' | $100.5033]$ |
| '15-May-1998' | $100.5033]$ |
| '18-May-1998' | $99.6530]$ |
| '19-May-1998' | 100.7868] |
| '20-May-1998' | 104.1364] |
| '21-May-1998' | $105.3302]$ |
| '22-May-1998' | 105.6709] |

| 25-May-1998 ${ }^{\text {' }}$ | [| 100] |
| :---: | :---: | :---: |
| 26-May-1998' | [| 100] |
| 27-May-1998' | [| 100] |
| 28-May-1998' | | $99.1812]$ |
| '29-May-1998' | [| $99.0710]$ |
| 01-Jun-1998' | | $99.0710]$ |
| 02-Jun-1998' | | $99.0710]$ |
| 03-Jun-1998' | | $98.5663]$ |
| 04-Jun-1998' | | 98.5663] |
| 05-Jun-1998' | [| $98.5663]$ |
| 08-Jun-1998' | | $99.5873]$ |
| 09-Jun-1998' | [| $100.1236]$ |
| 10-Jun-1998' | [| $100.1236]$ |
| 11-Jun-1998' | [| $98.3236]$ |
| 12-Jun-1998' | [| $98.3236]$ |
| 15-Jun-1998' | [| $95.8677]$ |
| '16-Jun-1998' | [| $95.8677]$ |
| '17-Jun-1998' | [| $95.8677]$ |
| '18-Jun-1998' | [| $95.8677]$ |
| 19-Jun-1998' | [| $95.8677]$ |
| 22-Jun-1998' | [| $96.9265]$ |
| 23-Jun-1998' | [| $97.8169]$ |
| 24-Jun-1998' | [| 100.4373] |
| 25-Jun-1998' | [| 100.4373] |
| 26-Jun-1998' | [| 98.6508] |
| 29-Jun-1998' | [| 98.6508] |
| 30-Jun-1998' | [| 98.6508] |
| 01-Jul-1998' | [| $99.7663]$ |
| 02-Jul-1998' | [| $99.9410]$ |
| 03-Jul-1998' | [| 100] |
| 06-Jul-1998' | [| 100] |
| 07-Jul-1998' | [| 100] |
| '08-Jul-1998' | [| 100] |
| '09-Jul-1998' | [| 100] |
| '10-Jul-1998' | [| 100] |
| '13-Jul-1998' | [| $103.2787]$ |
| '14-Jul-1998' | [| 104.5902] |

| 15-Jul-1998' | 103.2787] |
| :---: | :---: |
| 16-Jul-1998' | 103.2787] |
| 17-Jul-1998' | 103.4416] |
| 20-Jul-1998' | 103.4416] |
| 21-Jul-1998' | 103.4416] |
| 22-Jul-1998' | $103.4416]$ |
| 23-Jul-1998' | $100.8324]$ |
| 24-Jul-1998' | $102.3985]$ |
| 27-Jul-1998' | $101.8755]$ |
| 28-Jul-1998' | $101.8755]$ |
| '29-Jul-1998' | $101.8755]$ |
| 30-Jul-1998' | $101.8755]$ |
| 31-Jul-1998' | $99.3512]$ |
| 03-Aug-1998' | $99.3512]$ |
| 04-Aug-1998' | $99.3512]$ |
| 05-Aug-1998' | $99.3512]$ |
| 06-Aug-1998' | 98.6112] |
| 07-Aug-1998' | $98.7947]$ |
| 10-Aug-1998' | $97.3146]$ |
| '11-Aug-1998' | $97.3146]$ |
| 12-Aug-1998' | 98.2628] |
| '13-Aug-1998' | $96.3695]$ |
| 14-Aug-1998' | $96.1787]$ |
| 17-Aug-1998' | $97.5055]$ |
| 18-Aug-1998' | $97.5055]$ |
| 19-Aug-1998' | $96.4140]$ |
| 20-Aug-1998' | $97.8693]$ |
| '21-Aug-1998' | 97.8693] |
| '24-Aug-1998' | $98.2372]$ |
| '25-Aug-1998' | $98.2372]$ |
| '26-Aug-1998' | $98.2372]$ |
| '27-Aug-1998' | $98.2372]$ |
| '28-Aug-1998' | $94.7564]$ |
| '31-Aug-1998' | $94.7564]$ |
| '01-Sep-1998' | $94.7564]$ |
| '02-Sep-1998' | $93.1966]$ |
| 03-Sep-1998' | $88.3239]$ |

| 04-Sep-1998 ${ }^{\text {' }}$ | [| 88.3239] |
| :---: | :---: | :---: |
| 07-Sep-1998' | [| 100] |
| 08-Sep-1998' | [| 100] |
| 09-Sep-1998' | [| $95.4953]$ |
| '10-Sep-1998' | [| 92.9202] |
| 11-Sep-1998' | [| 88.6283] |
| '14-Sep-1998' | [| 88.6283] |
| '15-Sep-1998' | | 92.4798] |
| '16-Sep-1998' | [| 93.3865] |
| '17-Sep-1998' | [| $93.1617]$ |
| 18-Sep-1998' | [| $93.1617]$ |
| 21-Sep-1998' | [| $91.5654]$ |
| 22-Sep-1998' | I | $91.5654]$ |
| 23-Sep-1998' | [| $91.5654]$ |
| 24-Sep-1998' | [| $88.3622]$ |
| 25-Sep-1998' | [| $87.5084]$ |
| '28-Sep-1998' | [| 89.6428] |
| 29-Sep-1998' | [| 89.6428] |
| 30-Sep-1998' | [| 89.6428] |
| 01-Oct-1998' | [| 89.6428] |
| 02-Oct-1998' | [| $90.7643]$ |
| 05-Oct-1998' | [| $90.0921]$ |
| 06-0ct-1998' | [| $90.0921]$ |
| 07-0ct-1998' | [| 88.5406] |
| 08-Oct-1998' | [| $88.5406]$ |
| 09-Oct-1998' | [| 89.2489] |
| 12-Oct-1998' | [| $92.7792]$ |
| '13-0ct-1998' | [| 92.7792] |
| '14-Oct-1998' | [| 92.7792] |
| '15-0ct-1998' | [| $98.4887]$ |
| '16-0ct-1998' | [| $98.4887]$ |
| '19-0ct-1998' | [| $100.6632]$ |
| '20-0ct-1998' | [| $100.6632]$ |
| '21-0ct-1998' | [| $102.5230]$ |
| '22-0ct-1998' | [| $104.1484]$ |
| '23-0ct-1998' | [| 104.1484] |
| '26-0ct-1998' | [| 104.8540] |

| 27-Oct-1998' | $104.8540]$ |
| :---: | :---: |
| '28-0ct-1998' | $103.3876]$ |
| '29-0ct-1998' | 104.1188] |
| '30-0ct-1998' | 104.1188] |
| '02-Nov-1998' | 104.1188] |
| '03-Nov-1998' | 104.1188] |
| '04-Nov-1998' | 104.1188] |
| '05-Nov-1998' | 109.8040] |
| '06-Nov-1998' | $110.0295]$ |
| '09-Nov-1998' | $107.5307]$ |
| '10-Nov-1998' | $107.5307]$ |
| '11-Nov-1998' | $107.5307]$ |
| '12-Nov-1998' | 106.3688] |
| '13-Nov-1998' | 106.3688] |
| '16-Nov-1998' | 106.3688] |
| '17-Nov-1998' | 106.3688] |
| '18-Nov-1998' | [106.3688] |
| '19-Nov-1998' | 106.3688] |
| '20-Nov-1998' | 107.0713] |
| '23-Nov-1998' | 107.0713] |
| '24-Nov-1998' | 107.0713] |
| '25-Nov-1998' | 111.1117] |
| '26-Nov-1998' | 100] |
| '27-Nov-1998' | 100] |
| '30-Nov-1998' | 100] |
| '01-Dec-1998' | [97.8626] |
| '02-Dec-1998' | $96.8933]$ |
| '03-Dec-1998' | [95.9208] |
| '04-Dec-1998' | $97.4742]$ |
| '07-Dec-1998' | $97.4742]$ |
| '08-Dec-1998' | 97.4742] |
| '09-Dec-1998' | $97.4742]$ |
| '10-Dec-1998' | $94.2070]$ |
| '11-Dec-1998' | $92.9349]$ |
| '14-Dec-1998' | $92.9349]$ |
| '15-Dec-1998' | 93.3143] |
| '16-Dec-1998' | 93.3143] |

| '17-Dec-1998' | [| $93.6936]$ |
| :---: | :---: | :---: |
| '18-Dec-1998' | [| $93.6936]$ |
| '21-Dec-1998' | [| $94.2622]$ |
| '22-Dec-1998' | [| $94.2622]$ |
| '23-Dec-1998' | [| $97.4108]$ |
| '24-Dec-1998' | [| $96.2301]$ |
| '25-Dec-1998' | [| 100] |
| '28-Dec-1998' | [| 100] |
| '29-Dec-1998' | [| 100] |
| '30-Dec-1998' | [| 100] |
| '31-Dec-1998' | [| 100] |
| '01-Jan-1999' | [| 100] |
| '04-Jan-1999' | [| 100] |
| '05-Jan-1999' | [| 103.3826] |
| '06-Jan-1999' | [| 103.3826] |
| '07-Jan-1999' | [| 103.3826] |
| '08-Jan-1999' | [| 106.0299] |
| '11-Jan-1999' | [| 106.0299] |
| '12-Jan-1999' | [| $106.0299]$ |
| '13-Jan-1999' | [| 100.7981] |
| '14-Jan-1999' | [| $100.6251]$ |
| '15-Jan-1999' | [| 100.4493] |
| '18-Jan-1999' | [| 100] |
| '19-Jan-1999' | [| 100] |
| '20-Jan-1999' | [| 100] |
| '21-Jan-1999' | [| 100] |
| '22-Jan-1999' | [| $98.7327]$ |
| '25-Jan-1999' | [| 101.0850] |
| '26-Jan-1999' | [| $101.0850]$ |
| '27-Jan-1999' | [| $101.0850]$ |
| '28-Jan-1999' | [| $101.0850]$ |
| '29-Jan-1999' | [| $99.5762]$ |
| '01-Feb-1999' | [| 101.6523] |
| '02-Feb-1999' | [| 100.7078] |
| '03-Feb-1999' | [| 100.7078] |
| '04-Feb-1999' | [| 99.21031 |
| '05-Feb-1999' | [| $99.2103]$ |

| 08-Feb-1999 ' | [| $98.4861]$ |
| :---: | :---: | :---: |
| '09-Feb-1999' | [| $98.4861]$ |
| 10-Feb-1999 ' | [| $98.4861]$ |
| 11-Feb-1999 ${ }^{\prime}$ | | $98.4861]$ |
| 12-Feb-1999' | [| $98.4861]$ |
| 15-Feb-1999' | | 100] |
| 16-Feb-1999' | | 100] |
| 17-Feb-1999 ' | | $99.4638]$ |
| 18-Feb-1999' | [| $99.4638]$ |
| 19-Feb-1999' | | $98.3827]$ |
| 22-Feb-1999 ' | [| $98.3827]$ |
| 23-Feb-1999 ${ }^{\prime}$ | [| $98.3827]$ |
| 24-Feb-1999 ${ }^{\prime}$ | [| $98.3827]$ |
| 25-Feb-1999 ' | [| $96.8030]$ |
| 26-Feb-1999' | [| $96.8030]$ |
| 01-Mar-1999 ' | [| 95.7713] |
| 02-Mar-1999' | [| $94.0520]$ |
| 03-Mar-1999' | [| $94.0520]$ |
| 04-Mar-1999' | [| $94.0520]$ |
| 05-Mar-1999' | [| $94.0520]$ |
| 08-Mar-1999' | [| $94.0520]$ |
| 09-Mar-1999' | [| $94.0520]$ |
| 10-Mar-1999' | [| $93.5422]$ |
| 11-Mar-1999' | [| $94.0520]$ |
| 12-Mar-1999' | [| $94.0520]$ |
| 15-Mar-1999' | [| $93.5617]$ |
| 16-Mar-1999' | [| $91.4440]$ |
| 17-Mar-1999' | [| 91.4440] |
| 18-Mar-1999' | [| 91.4440] |
| 19-Mar-1999' | [| 91.4440] |
| 22-Mar-1999' | [| $89.6497]$ |
| 23-Mar-1999' | [| $89.6497]$ |
| '24-Mar-1999' | [| $89.6497]$ |
| '25-Mar-1999' | [| $89.6497]$ |
| '26-Mar-1999' | [| 88.4758] |
| 29-Mar-1999' | [| $88.4758]$ |

References Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 193-194.

See Also onbalvol | posvolidx
Purpose Nominal rate of return
Syntax

Return = nomrr(Rate, NumPeriods)
Arguments
Rate Effective annual percentage rate. Enter as a decimal fraction.
NumPeriods Number of compounding periods per year, an integer.
Description Return $=$ nomrr(Rate, NumPeriods) calculates the nominal rate of return.
Examples Calculate the Nominal Rate of Return
This example shows how to calculate the nominal rate of return based on an effective annual percentage rate of 9.38% compounded monthly.
Return $=$ nomrr(0.0938, 12)
Return =
0.0900
See Also effrr | irr | mirr | taxedrr | xirr

Purpose Date of specific occurrence of weekday in month
 ```Syntax \\ Date = nweekdate(n, Weekday, Year, Month, Same)```
 Arguments

| n | Nth occurrence of the weekday in a month. Enter as integer from 1 through 5. |
| :---: | :---: |
| Weekday | Weekday whose date you seek. Enter as integer from 1 through 7. |
| | 1 Sunday |
| | 2 Monday |
| | 3 Tuesday |
| | 4 Wednesday |
| | 5 Thursday |
| | 6 Friday |
| | 7 Saturday |
| Year | Year. Enter as a four-digit integer. |
| Month | Month. Enter as an integer from 1 through 12. |
| Same | (Optional) Weekday that must occur in the same week with Weekday. Enter as an integer from 0 through 7 , where $0=$ ignore (default) and 1 through 7 are as for Weekday. |

Description
 Date $=$ nweekdate(n , Weekday, Year, Month, Same) returns the

 serial date number for the specific occurrence of the weekday in the given year and month, and in a week that also contains the weekday Same.If n is larger than the last occurrence of Weekday, Date $=0$.

Any input can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. Date is then a 1-by-n vector of date numbers.
Use the function datestr to convert serial date numbers to formatted date strings.

Examples

To find the first Thursday in May 2001

```
Date = nweekdate(1, 5, 2001, 5); datestr(Date)
ans =
```

03-May-2001

To find the first Thursday in a week that also contains a Wednesday in May 2001

```
Date = nweekdate(2, 5, 2001, 5, 4); datestr(Date)
ans =
10-May-2001
```

To find the third Monday in February for 2001, 2002, and 2003

```
Year = [2001:2003];
Date = nweekdate(3, 2, Year, 2)
Date =
            730901 731265
                                    7 3 1 6 2 9
datestr(Date)
ans =
```

$19-$ Feb- 2001
18 -Feb- 2002
17 -Feb- 2003

See Also fbusdate | lbusdate | lweekdate

| Purpose | New York Stock Exchange closures from 1885 to 2050 |
| :---: | :---: |
| Syntax | ```[Closures, SatTransition] = nyseclosures(StartDate, EndDate, WorkWeekFormat)``` |
| Description | [Closures, SatTransition] = nyseclosures(StartDate, EndDate,
 WorkWeekFormat) returns a vector of serial date numbers corresponding to market closures between StartDate and EndDate, inclusive. If you do not specify StartDate and EndDate, |
| | Closures output contains all known or anticipated closures from January 1, 1885 to December 31, 2050. By default, WorkWeekFormat argument uses the 'Implicit' value. |
| | SatTransition output is the date of transition for the New York Stock Exchange from a 6 -day workweek to a 5 -day workweek. The date for this transition is September 29, 1952 and this date returns the serial date number 713226. |
| | Since the New York Stock Exchange was open on Saturdays before September 29, 1952, exact closures from 1885 to 1952 are based on a 6 -day workweek. nyseclosures contains all holiday and special non-trading days for the New York Stock Exchange from 1885 through 2050 based on a six-day work week (always closed on Sundays). Use WorkWeekFormat to modify the list of dates. |
| Input | StartDate |
| Arguments | First date of a specified date range that is a date string or a serial date number. |

Default: January 1, 1885 (start of the default date range)

EndDate

Last date of a specified date range that is a date string or a serial date number. If specified, the EndDate must be a date after the StartDate.

Default: December 31, 2050 (end of the default date range)

WorkWeekFormat

Specifies method to handle the workweek. The default is 'Implicit'. This function accepts the first letter for each method as input and is not case sensitive. Acceptable values are:

- 'Modern' - 5-day workweek with all Saturday trading days removed
- 'Implicit' - 6-day workweek until 1952 and 5-day week afterward (no need to exclude Saturdays)
- 'Archaic' - 6-day workweek throughout and Saturdays treated as closures after 1952

Output
 Arguments

Definitions

Examples

Closures

A vector of serial date numbers corresponding to market closures between the dates StartDate and EndDate, inclusive

SatTransition

The date of transition for the New York Stock Exchange from a 6-day workweek to a 5-day workweek.
holidays is based on a modern 5-day workweek and contains all holidays and special nontrading days for the New York Stock Exchange from January 1, 1885 to December 31, 2050. Since the New York Stock Exchange was open on Saturdays before September 29, 1952, exact closures for the period from 1885 to 2050 should include Saturday trading days. To capture these dates, use the function nyseclosures. The results from holidays and nyseclosures are identical if the WorkWeekFormat in nyseclosures is 'modern'.

Find the NYSE closures for 1899:
datestr(nyseclosures('1-jan-1899', '31-dec-1899'), 'dd-mmm-yyyy ddd')
This returns:

```
ans =
02-Jan-1899 Mon
11-Feb-1899 Sat
13-Feb-1899 Mon
22-Feb-1899 Wed
31-Mar-1899 Fri
29-May-1899 Mon
30-May-1899 Tue
03-Jul-1899 Mon
04-Jul-1899 Tue
04-Sep-1899 Mon
29-Sep-1899 Fri
30-Sep-1899 Sat
07-Nov-1899 Tue
25-Nov-1899 Sat
30-Nov-1899 Thu
25-Dec-1899 Mon
```

Find the NYSE closure dates using the 'Archaic' value for WorkWeekFormat:

```
datestr(nyseclosures('1-sep-1952','31-oct-1952','a'),1)
```

This returns:
ans =

01-Sep-1952
06-Sep-1952
13-Sep-1952
20-Sep-1952
27-Sep-1952
04-0ct-1952
11-Oct-1952
13-Oct-1952

18-Oct-1952
25-0ct-1952

The exchange was closed on Saturdays for much of 1952 before the official transition to a 5 -day workweek.

See Also busdate | createholidays | fbusdate | isbusday | lbusdate | holidays

Purpose On-Balance Volume (OBV)
Syntax obv = onbalvol(closep, tvolume)
obv = onbalvol([closep tvolume])
obvts = onbalvol(tsobj)
obvts = onbalvol(tsobj, ParameterName, ParameterValue, ...)

Arguments

| closep | Closing price (vector) |
| :--- | :--- |
| tvolume | Volume traded |
| tsobj | Financial time series object |

Description

obv $=$ onbalvol(closep, tvolume) calculates the On-Balance Volume (OBV) from the stock closing price (closep) and volume traded (tvolume) data.
obv = onbalvol([closep tvolume]) accepts a two-column matrix representing the closing price (closep) and volume traded (tvolume), in that order.
obvts = onbalvol(tsobj) calculates the OBV from the stock data in the financial time series object tsobj. The object must minimally contain series names Close and Volume. The obvts output is a financial time series object with the same dates as tsobj and a series named OnBalVol.
obvts = onbalvol(tsobj, ParameterName, ParameterValue, ...) accepts parameter name/ parameter value pairs as input. These pairs specify the name(s) for the required data series if it is different from the expected default name(s). Valid parameter names are

- CloseName: closing prices series name
- VolumeName: volume traded series name

Parameter values are the strings that represent the valid parameter names.

Examples Calculate the On-Balance Volume (OBV)

This example shows how to calculate the OBV for Disney stock and plot the results.

```
load disney.mat
dis_OnBalVol = onbalvol(dis)
plot(dis_OnBalVol)
title('On-Balance Volume for Disney')
```

dis_OnBalVol =
desc: OnBalVol: Walt Disney Company (DIS)
freq: Unknown (0)
'dates: (782)' 'OnBalVol: (782)
'29-Mar-1996' [3373800]
'01-Apr-1996' [6117900]
'02-Apr-1996' [10499700]
'03-Apr-1996' [13360200]
'04-Apr-1996' [9669000]
'05-Apr-1996' [NaN]
'08-Apr-1996' [5301900]
'09-Apr-1996' [1803000]
'10-Apr-1996' [-7190100]
'11-Apr-1996' [-18501600]
'12-Apr-1996' [-10740900]
'15-Apr-1996' [-6201900]
'16-Apr-1996' [-2596800]
'17-Apr-1996' [1125000]
'18-Apr-1996' [4033800]
'19-Apr-1996' [8044200]
'22-Apr-1996' [3202200]

| '23-Apr-1996 ' | [| -3669000] |
| :---: | :---: | :---: |
| '24-Apr-1996' | [| -20093700] |
| '25-Apr-1996' | | -12329700] |
| '26-Apr-1996' | [| -6962100] |
| '29-Apr-1996' | [| -6962100] |
| '30-Apr-1996' | [| -4030800] |
| '01-May-1996' | [| -10876800] |
| '02-May-1996' | [| -16715700] |
| '03-May-1996' | [| -24213600] |
| ' 06 - May-1996 ' | [| -18475800] |
| '07-May-1996 ' | [| -22732200] |
| '08-May-1996' | [| -29838300] |
| '09-May-1996' | [| -35832000] |
| '10-May-1996 ' | [| -31387200] |
| '13-May-1996' | [| -25687800] |
| '14-May-1996' | [| -22051200] |
| '15-May-1996' | [| -27845700] |
| '16-May-1996' | [| -24024300] |
| '17-May-1996 ' | [| -19204800] |
| '20-May-1996' | [| -14654400] |
| '21-May-1996 ' | [| -10620300] |
| '22-May-1996' | [| -6702300] |
| '23-May-1996 ' | [| -10780800] |
| '24-May-1996 ' | [| -6465900] |
| '27-May-1996' | [| $\mathrm{NaN}]$ |
| ' 28 -May-1996 ' | [| $3453900]$ |
| '29-May-1996' | [| -793500] |
| '30-May-1996' | [| $3377400]$ |
| ' 31 -May-1996 ' | [| 77400] |
| '03-Jun-1996' | [| -3132000] |
| '04-Jun-1996' | [| -9225900] |
| '05-Jun-1996' | [| -4248000] |
| '06-Jun-1996' | [| $3107100]$ |
| '07-Jun-1996' | [| $9480000]$ |
| '10-Jun-1996' | [| $6408300]$ |
| '11-Jun-1996' | [| $6408300]$ |
| '12-Jun-1996' | [| $6408300]$ |

| '13-Jun-1996' | [| 4276800] |
| :---: | :---: | :---: |
| '14-Jun-1996' | [| 918600] |
| '17-Jun-1996' | [| 3083100] |
| '18-Jun-1996' | [| -416400] |
| '19-Jun-1996' | [| $2937600]$ |
| '20-Jun-1996' | [| 6722700] |
| '21-Jun-1996' | [| 15493500] |
| '24-Jun-1996' | [| 12007500] |
| '25-Jun-1996' | [| 16635900] |
| '26-Jun-1996' | [| 13046100] |
| '27-Jun-1996' | [| 16167000] |
| '28-Jun-1996' | [| 11528400] |
| '01-Jul-1996' | [| $8295000]$ |
| '02-Jul-1996' | [| 3630900] |
| '03-Jul-1996' | [| -3062100] |
| '04-Jul-1996' | [| $\mathrm{NaN}]$ |
| '05-Jul-1996' | [| 3419700] |
| '08-Jul-1996' | [| -2984100] |
| '09-Jul-1996' | [| -9453000] |
| '10-Jul-1996' | [| -3501000] |
| '11-Jul-1996' | [| -11153100] |
| '12-Jul-1996' | [| -5372700] |
| '15-Jul-1996' | [| -13884900] |
| '16-Jul-1996' | [| -828000] |
| '17-Jul-1996' | [| -828000] |
| '18-Jul-1996' | [| 3527100] |
| '19-Jul-1996' | [| 7700400] |
| '22-Jul-1996' | [| 3292200] |
| '23-Jul-1996' | [| -1285200] |
| '24-Jul-1996' | [| -6083700] |
| '25-Jul-1996' | [| -6083700] |
| '26-Jul-1996' | [| -15350100] |
| '29-Jul-1996' | [| -21173100] |
| '30-Jul-1996' | [| -15713700] |
| '31-Jul-1996' | [| -9688500] |
| '01-Aug-1996' | [| -4194600] |
| '02-Aug-1996' | [| 284100] |

| ' 05-Aug-1996 ' | [| 3245100] |
| :---: | :---: | :---: |
| '06-Aug-1996' | [| 7471200] |
| '07-Aug-1996' | [| 3803700] |
| '08-Aug-1996' | [| -124800] |
| '09-Aug-1996 ' | [| -2961000] |
| '12-Aug-1996 ' | [| -15000] |
| '13-Aug-1996' | [| -2517600] |
| '14-Aug-1996 ' | [| 226200] |
| '15-Aug-1996' | [| -1818600] |
| '16-Aug-1996 ' | [| 804300] |
| '19-Aug-1996 ' | [| -1401600] |
| '20-Aug-1996' | [| -3879600] |
| '21-Aug-1996 ' | [| -1421700] |
| '22-Aug-1996' | [| $1983300]$ |
| '23-Aug-1996' | [| $4990200]$ |
| '26-Aug-1996' | [| 8201100] |
| '27-Aug-1996 ' | [| $5562900]$ |
| '28-Aug-1996 ' | [| $3928200]$ |
| ' 29-Aug-1996 ' | [| $1117500]$ |
| '30-Aug-1996' | [| -3091800] |
| '02-Sep-1996' | [| $\mathrm{NaN}]$ |
| '03-Sep-1996' | [| $2462700]$ |
| '04-Sep-1996' | [| 240300] |
| '05-Sep-1996' | [| -2739900] |
| '06-Sep-1996' | [| $1264200]$ |
| '09-Sep-1996' | [| 4015800] |
| '10-Sep-1996' | [| 32700] |
| '11-Sep-1996' | [| 2881500] |
| '12-Sep-1996' | [| 9552000] |
| '13-Sep-1996' | [| $14984400]$ |
| '16-Sep-1996' | [| $11056500]$ |
| '17-Sep-1996' | [| $15009600]$ |
| '18-Sep-1996' | [| 17711700] |
| '19-Sep-1996' | [| 24555300] |
| '20-Sep-1996' | [| $16607700]$ |
| '23-Sep-1996' | [| 19314000] |
| '24-Sep-1996' | [| $15848700]$ |

| | |
| :---: | :---: |
| $\text { Sep - } 1996$ | |
| | |
| | |
| '01-0ct-1996' | |
| '02-0ct-1996' | |
| '03-0ct | |
| '04-0 | |
| | |
| | |
| '09-0ct-1996 | |
| | |
| '11-0ct-1996' | |
| '14-Oct-1996 | |
| 5-0ct-1996 | |
| '16-0ct-1996 | |
| '17-0ct-1996 | |
| | |
| '21-0ct-1996 | |
| 22-0ct-1996 | |
| - | |
| '24-0ct-1996' | |
| | |
| --Oct-1 | |
| '29-0ct-1996' | |
| | |
| '31-0ct-1996' | |
| '01-Nov-1996' | |
| | |
| ' 05 -Nov-1996' | |
| '06-Nov-1996' | |
| | |
| 08-Nov-1 | |
| | |
| '12-Nov-1996' | |
| 13-Nov-1996 | |
| | |

12915600] 9752100]
11682900]
15246300]
12537000]
15702600]
18570600]
$23375400]$
23375400]
20786100]
17859300]
19896900]
21448800]
23175900]
25815000]
29748900]
$27000600]$
30031800]
33111300]
36861300]
32436000]
29771700]
32174400]
35402400]
33057900]
31365900]
34237200]
31252200]
34609200]
38259300]
41460900]
46109400]
42373800]
47422500]
53302800]
49602600]
49602600]

| ' 15 -Nov-1996 ' | | $59264100]$ |
| :---: | :---: | :---: |
| ' 18-Nov-1996' | [| $56029500]$ |
| '19-Nov-1996' | [| $52059000]$ |
| '20-Nov-1996' | | $56883600]$ |
| '21-Nov-1996' | | $59886300]$ |
| '22-Nov-1996' | | $55713600]$ |
| '25-Nov-1996' | [| $60369900]$ |
| '26-Nov-1996' | | 74817900] |
| '27-Nov-1996' | | $68114700]$ |
| '28-Nov-1996' | [| $\mathrm{NaN}]$ |
| '29-Nov-1996' | | 1991100] |
| '02-Dec-1996' | [| $1991100]$ |
| '03-Dec-1996' | [| -1965300] |
| '04-Dec-1996' | [| $2825100]$ |
| '05-Dec-1996' | [| -481500] |
| '06-Dec-1996' | | -4893300] |
| '09-Dec-1996' | [| -1226400] |
| '10-Dec-1996' | | $1845000]$ |
| '11-Dec-1996' | [| -3267300] |
| '12-Dec-1996 ' | | -8445900] |
| '13-Dec-1996' | [| -8445900] |
| '16-Dec-1996' | | -11935800] |
| '17-Dec-1996' | | -5978100] |
| '18-Dec-1996' | | -1789800] |
| '19-Dec-1996' | | $1845300]$ |
| '20-Dec-1996' | [| $1845300]$ |
| '23-Dec-1996' | | -593100] |
| '24-Dec-1996 ' | [| -1729500] |
| '25-Dec-1996 ' | | $\mathrm{NaN}]$ |
| '26-Dec-1996' | | $1753200]$ |
| '27-Dec-1996 ' | [| 323100] |
| '30-Dec-1996' | | -2516100] |
| '31-Dec-1996' | [| -5197800] |
| '01-Jan-1997' | [| NaN] |
| '02-Jan-1997' | [| 8003400] |
| '03-Jan-1997' | [| $12589200]$ |
| '06-Jan-1997' | [| $9015900]$ |

| 07-Jan-1997' | [| $5459400]$ |
| :---: | :---: | :---: |
| '08-Jan-1997' | [| $2278500]$ |
| '09-Jan-1997' | [| -2264400] |
| '10-Jan-1997' | [| $2941500]$ |
| '13-Jan-1997' | [| $7530600]$ |
| '14-Jan-1997' | [| 12225300] |
| '15-Jan-1997' | [| $6886500]$ |
| '16-Jan-1997' | [| $2439000]$ |
| '17-Jan-1997' | [| $7936200]$ |
| '20-Jan-1997' | [| $12334200]$ |
| '21-Jan-1997' | [| $7414800]$ |
| '22-Jan-1997' | [| $12549000]$ |
| '23-Jan-1997' | [| $4513500]$ |
| '24-Jan-1997' | [| 9117000] |
| '27-Jan-1997' | [| $13991700]$ |
| '28-Jan-1997' | [| 22009200] |
| '29-Jan-1997' | [| 28142100] |
| '30-Jan-1997' | [| $23912400]$ |
| '31-Jan-1997' | [| 26682000] |
| '03-Feb-1997' | [| 26682000] |
| '04-Feb-1997' | [| $24430200]$ |
| ' 05-Feb-1997' | [| $29298600]$ |
| '06-Feb-1997' | [| 34572900] |
| ' 07-Feb-1997' | [| 39004800] |
| '10-Feb-1997' | [| 44856900] |
| '11-Feb-1997' | [| 41204700] |
| ' 12-Feb-1997' | [| 44509200] |
| '13-Feb-1997' | [| 50301600] |
| '14-Feb-1997' | [| 55975200] |
| '17-Feb-1997' | [| $\mathrm{NaN}]$ |
| ' 18-Feb-1997' | [| 4121700] |
| ' 19-Feb-1997' | [| 543600] |
| ' 20-Feb-1997' | [| -2471400] |
| '21-Feb-1997' | [| 1265100] |
| ' 24 -Feb-1997' | [| 4162200] |
| ' 25-Feb-1997' | [| $7295400]$ |
| ' 26-Feb-1997' | [| $2904600]$ |

18-1111

| '27-Feb-1997' | [| 6019500] |
| :---: | :---: | :---: |
| ' 28-Feb-1997' | [| $2896800]$ |
| '03-Mar-1997' | [| -1632300] |
| '04-Mar-1997' | [| -5811600] |
| '05-Mar-1997' | [| -1208100] |
| ' 06-Mar-1997' | [| $3392400]$ |
| '07-Mar-1997' | [| 8131200] |
| '10-Mar-1997' | [| 10682400] |
| '11-Mar-1997' | [| $13695600]$ |
| '12-Mar-1997' | [| 10157400] |
| '13-Mar-1997' | [| 7052700] |
| '14-Mar-1997' | [| 11346600] |
| '17-Mar-1997' | [| $14729100]$ |
| '18-Mar-1997' | [| 11612400] |
| '19-Mar-1997' | [| 8744700] |
| ' 20-Mar-1997' | [| 6195000] |
| '21-Mar-1997' | [| $2062200]$ |
| '24-Mar-1997' | [| $5828700]$ |
| '25-Mar-1997' | [| $2038500]$ |
| ' 26-Mar-1997' | [| 5134200] |
| '27-Mar-1997' | [| 1169400] |
| '28-Mar-1997' | [| NaN] |
| '31-Mar-1997' | [| 5029500] |
| '01-Apr-1997' | [| 764700] |
| '02-Apr-1997' | [| 764700] |
| '03-Apr-1997' | [| $4120500]$ |
| '04-Apr-1997' | [| $7654200]$ |
| '07-Apr-1997' | [| $7654200]$ |
| '08-Apr-1997' | [| 9789900] |
| '09-Apr-1997' | [| $7633800]$ |
| '10-Apr-1997' | [| 11643000] |
| '11-Apr-1997' | [| $6474900]$ |
| '14-Apr-1997' | [| 2186400] |
| '15-Apr-1997' | [| 5787300] |
| '16-Apr-1997' | [| $11091300]$ |
| '17-Apr-1997' | [| $14433600]$ |
| '18-Apr-1997' | [| 17807400] |

| '21-Apr-1997' | [| 22039500] |
| :---: | :---: | :---: |
| '22-Apr-1997' | [| 28494300] |
| '23-Apr-1997' | [| 35226300] |
| '24-Apr-1997' | [| 31061700] |
| '25-Apr-1997' | [| 27668400] |
| '28-Apr-1997' | [| 30726300] |
| '29-Apr-1997' | [| 37395600] |
| '30-Apr-1997' | [| 44377200] |
| '01-May-1997' | [| $40994700]$ |
| '02-May-1997' | [| $37489200]$ |
| '05-May-1997' | [| 41747400] |
| '06-May-1997' | [| 46132800] |
| '07-May-1997' | [| $42688200]$ |
| '08-May-1997' | [| 47432400] |
| '09-May-1997' | [| 50909100] |
| '12-May-1997' | [| $55593600]$ |
| '13-May-1997' | [| $52068600]$ |
| '14-May-1997' | [| $52068600]$ |
| '15-May-1997' | [| $49497300]$ |
| '16-May-1997' | [| 43970400] |
| '19-May-1997' | [| 46818900] |
| ' 20-May-1997' | [| 50787600] |
| '21-May-1997' | [| 47655600] |
| '22-May-1997' | [| 47655600] |
| ' 23-May-1997' | [| 49125900] |
| '26-May-1997' | [| NaN] |
| ' 27 -May-1997' | [| 2646900] |
| '28-May-1997' | [| 5168100] |
| ' 29-May-1997' | [| 2541900] |
| '30-May-1997' | [| -1269600] |
| '02-Jun-1997' | [| -3791100] |
| '03-Jun-1997' | [| -6414900] |
| '04-Jun-1997' | [| -9079200] |
| '05-Jun-1997' | , | -6138300] |
| '06-Jun-1997' | [| -2316300] |
| '09-Jun-1997' | [| -5512500] |
| '10-Jun-1997' | [| -1866600] |

18-1113

| '11-Jun-1997' | | -5871300] |
| :---: | :---: | :---: |
| '12-Jun-1997' | [| -904200] |
| '13-Jun-1997' | [| $4782900]$ |
| '16-Jun-1997' | | 8727300] |
| '17-Jun-1997' | | $13134000]$ |
| '18-Jun-1997' | | 9859800] |
| '19-Jun-1997' | [| 14677200] |
| '20-Jun-1997' | | $9268800]$ |
| '23-Jun-1997' | | $6556800]$ |
| '24-Jun-1997' | [| $10872300]$ |
| '25-Jun-1997' | | $5979600]$ |
| '26-Jun-1997' | [| $1920000]$ |
| '27-Jun-1997' | | -3502500] |
| '30-Jun-1997' | [| $3988200]$ |
| '01-Jul-1997' | [| -2332500] |
| '02-Jul-1997' | | -11237100] |
| '03-Jul-1997' | [| -5904000] |
| '04-Jul-1997' | | $\mathrm{NaN}]$ |
| '07-Jul-1997' | [| 10174200] |
| '08-Jul-1997' | [| $18797700]$ |
| '09-Jul-1997' | [| $12285300]$ |
| '10-Jul-1997' | | $7260000]$ |
| '11-Jul-1997' | | 1706700] |
| '14-Jul-1997' | | 7536900] |
| '15-Jul-1997' | | $12406500]$ |
| '16-Jul-1997' | [| $18644700]$ |
| '17-Jul-1997' | | $12704400]$ |
| '18-Jul-1997' | [| $5579100]$ |
| '21-Jul-1997' | | 795000] |
| '22-Jul-1997' | | $9185400]$ |
| '23-Jul-1997' | [| 15534900] |
| '24-Jul-1997' | | $20761200]$ |
| '25-Jul-1997' | [| $16583700]$ |
| '28-Jul-1997' | [| 19612200] |
| '29-Jul-1997' | | 24107400] |
| '30-Jul-1997' | [| 28859100] |
| '31-Jul-1997' | [| 25097700] |

| 01-Aug-1997 ${ }^{\text {' }}$ | [| 20899500] |
| :---: | :---: | :---: |
| 04-Aug-1997' | [| 24658200] |
| '05-Aug-1997' | [| 20962800] |
| '06-Aug-1997' | [| 24417000] |
| '07-Aug-1997' | [| 20940300] |
| '08-Aug-1997' | [| 24836100] |
| '11-Aug-1997' | [| 28764000] |
| '12-Aug-1997' | [| 23302500] |
| '13-Aug-1997' | [| 28739400] |
| '14-Aug-1997' | [| 24126900] |
| '15-Aug-1997' | [| $19108500]$ |
| '18-Aug-1997' | [| 24909000] |
| '19-Aug-1997' | [| $32244600]$ |
| '20-Aug-1997' | [| 36238800] |
| '21-Aug-1997' | [| $33236100]$ |
| '22-Aug-1997' | [| 29638800] |
| '25-Aug-1997' | [| $32309700]$ |
| '26-Aug-1997' | [| 29387400] |
| '27-Aug-1997' | [| 32809200] |
| '28-Aug-1997' | [| 28646400] |
| '29-Aug-1997' | [| 25878600] |
| '01-Sep-1997' | [| NaN] |
| '02-Sep-1997' | [| $2701500]$ |
| '03-Sep-1997' | [| 5723100] |
| '04-Sep-1997' | [| 541500] |
| '05-Sep-1997' | [| 3967200] |
| '08-Sep-1997' | [| $1704600]$ |
| '09-Sep-1997' | [| 4470600] |
| '10-Sep-1997' | [| 2270400] |
| '11-Sep-1997' | [| -4904100] |
| '12-Sep-1997' | [| -248700] |
| '15-Sep-1997' | [| 2112900] |
| '16-Sep-1997' | [| 5765400] |
| '17-Sep-1997' | [| 2114700] |
| '18-Sep-1997' | [| 7377000] |
| '19-Sep-1997' | [| 11317500] |
| '22-Sep-1997' | [| 8430900] |

| '23-Sep-1997' | [| $5745900]$ |
| :---: | :---: | :---: |
| '24-Sep-1997' | [| $2734200]$ |
| '25-Sep-1997' | | $5826900]$ |
| '26-Sep-1997' | [| $2526600]$ |
| '29-Sep-1997' | [| $5671200]$ |
| '30-Sep-1997' | [| $9388200]$ |
| '01-0ct-1997' | [| $13584900]$ |
| '02-0ct-1997' | | $18693600]$ |
| '03-0ct-1997' | [| $24258000]$ |
| '06-0ct-1997' | [| 21622800] |
| '07-0ct-1997' | [| $24906900]$ |
| '08-0ct-1997' | [| $20544300]$ |
| '09-0ct-1997' | | $22908000]$ |
| '10-0ct-1997' | [| 20141100] |
| '13-0ct-1997' | [| 21624000] |
| '14-0ct-1997' | [| $25319700]$ |
| '15-0ct-1997' | [| 30577500] |
| '16-0ct-1997' | - | 26619000] |
| '17-0ct-1997' | [| 20743500] |
| '20-0ct-1997' | [| 23930100] |
| '21-0ct-1997' | [| $26769900]$ |
| '22-0ct-1997' | [| $23650800]$ |
| '23-0ct-1997' | [| $19695300]$ |
| '24-0ct-1997' | | 26252400] |
| '27-0ct-1997' | [| $20901600]$ |
| '28-0ct-1997' | | $29919300]$ |
| '29-0ct-1997' | [| $34923000]$ |
| '30-0ct-1997' | [| $31276500]$ |
| '31-0ct-1997' | | $34749300]$ |
| ' $03-$ Nov-1997' | [| 38377500] |
| ' 04 -Nov-1997' | [| $41811300]$ |
| ' 05 -Nov-1997' | [| $37804200]$ |
| ' 06-Nov-1997' | [| 41975700] |
| ' 07 -Nov-1997' | [| $37662300]$ |
| '10-Nov-1997' | [| $35558100]$ |
| '11-Nov-1997' | [| $37305900]$ |
| '12-Nov-1997' | [| 32977500] |

| '13-Nov-1997' | [| 37319400] |
| :---: | :---: | :---: |
| '14-Nov-1997' | [| 42110400] |
| '17-Nov-1997' | [| 47103000] |
| '18-Nov-1997' | [| $53433600]$ |
| '19-Nov-1997' | [| 58312800] |
| '20-Nov-1997' | [| 51258000] |
| '21-Nov-1997' | [| 58759200] |
| '24-Nov-1997' | [| 51671400] |
| '25-Nov-1997' | [| 51671400] |
| '26-Nov-1997' | [| $55600800]$ |
| '27-Nov-1997' | [| NaN] |
| '28-Nov-1997' | [| 1642800] |
| '01-Dec-1997' | [| $5349900]$ |
| '02-Dec-1997' | [| 924000] |
| '03-Dec-1997' | [| -2584200] |
| '04-Dec-1997' | [| -9636900] |
| '05-Dec-1997' | [| -4232700] |
| '08-Dec-1997' | [| -934200] |
| '09-Dec-1997' | [| -4675500] |
| '10-Dec-1997' | [| -7514400] |
| '11-Dec-1997' | [| -10931700] |
| '12-Dec-1997' | [| -7095000] |
| '15-Dec-1997' | [| -1420500] |
| '16-Dec-1997' | [| -5680200] |
| '17-Dec-1997' | [| -2891100] |
| '18-Dec-1997' | [| 1243200] |
| '19-Dec-1997' | [| -6582000] |
| '22-Dec-1997' | [| -3283800] |
| '23-Dec-1997' | [| 876000] |
| '24-Dec-1997' | [| -766800] |
| '25-Dec-1997' | [| NaN] |
| '26-Dec-1997' | [| 646200] |
| '29-Dec-1997' | [| 2924700] |
| '30-Dec-1997' | [| 8929200] |
| '31-Dec-1997' | [| 8929200] |
| '01-Jan-1998' | [| NaN] |
| '02-Jan-1998' | [| 2924700] |

| '05-Jan-1998 ' | | -8805900] |
| :---: | :---: | :---: |
| '06-Jan-1998' | [| -13050000] |
| '07-Jan-1998' | [| -8639700] |
| '08-Jan-1998' | [| -11427600] |
| '09-Jan-1998' | [| -16781700] |
| '12-Jan-1998' | [| -22844100] |
| '13-Jan-1998' | [| -17843400] |
| '14-Jan-1998' | [| -14462700] |
| '15-Jan-1998' | [| -17454000] |
| '16-Jan-1998' | [| -13027200] |
| '19-Jan-1998' | | NaN] |
| '20-Jan-1998' | [| 4008600] |
| '21-Jan-1998' | [| $495300]$ |
| '22-Jan-1998' | [| -2164200] |
| '23-Jan-1998' | [| $3294300]$ |
| '26-Jan-1998' | | 240000] |
| '27-Jan-1998' | [| $9940200]$ |
| '28-Jan-1998' | [| $18777300]$ |
| '29-Jan-1998' | | $24265200]$ |
| '30-Jan-1998' | | $28534500]$ |
| '02-Feb-1998' | [| $34042500]$ |
| '03-Feb-1998' | [| $29872200]$ |
| '04-Feb-1998' | | $33276600]$ |
| '05-Feb-1998' | [| 33276600] |
| ' 06-Feb-1998' | | 35492400] |
| ' 09-Feb-1998' | [| $32911800]$ |
| '10-Feb-1998' | | $36264600]$ |
| '11-Feb-1998' | [| $40136700]$ |
| ' 12-Feb-1998' | [| $36028200]$ |
| '13-Feb-1998 | | $38919900]$ |
| '16-Feb-1998' | [| $\mathrm{NaN}]$ |
| '17-Feb-1998 | [| $4417500]$ |
| '18-Feb-1998' | [| 8013000] |
| ' 19-Feb-1998' | [| $4330500]$ |
| ' 20-Feb-1998' | [| 8488200] |
| ' 23-Feb-1998' | [| $3972900]$ |
| '24-Feb-1998' | [| -1035000] |

| '25-Feb-1998' | [| -5181900] |
| :---: | :---: | :---: |
| '26-Feb-1998' | [| -9547200] |
| '27-Feb-1998' | [| -5034900] |
| '02-Mar-1998' | [| -8720100] |
| '03-Mar-1998' | [| -5605800] |
| '04-Mar-1998' | [| -17107800] |
| '05-Mar-1998' | [| -23647200] |
| '06-Mar-1998' | [| -19680300] |
| '09-Mar-1998' | [| -16308900] |
| '10-Mar-1998' | [| -13248600] |
| '11-Mar-1998' | [| -16751400] |
| '12-Mar-1998' | [| -13499100] |
| '13-Mar-1998' | [| -10484100] |
| '16-Mar-1998' | [| -6700500] |
| '17-Mar-1998' | [| -9991200] |
| '18-Mar-1998' | [| -12997500] |
| '19-Mar-1998' | [| -16234200] |
| '20-Mar-1998' | [| -11182800] |
| '23-Mar-1998' | [| -18885300] |
| '24-Mar-1998' | [| -10964400] |
| '25-Mar-1998' | [| -14564700] |
| '26-Mar-1998' | [| -11363700] |
| '27-Mar-1998' | [| -14522400] |
| '30-Mar-1998' | [| -17274300] |
| '31-Mar-1998' | [| -13571700] |
| '01-Apr-1998' | [| -18082500] |
| '02-Apr-1998' | [| -13479600] |
| '03-Apr-1998' | [| -9193800] |
| '06-Apr-1998' | [| -12261000] |
| '07-Apr-1998' | [| -14684100] |
| '08-Apr-1998' | [| -17896200] |
| '09-Apr-1998' | [| -14189100] |
| '10-Apr-1998' | [| NaN] |
| '13-Apr-1998' | [| 3679200] |
| '14-Apr-1998' | [| 8487900] |
| '15-Apr-1998' | [| 14494800] |
| '16-Apr-1998' | [| 10557300] |

| '17-Apr-1998 ' | [| $14546100]$ |
| :---: | :---: | :---: |
| '20-Apr-1998' | [| $19858200]$ |
| '21-Apr-1998' | | $24564600]$ |
| '22-Apr-1998' | [| 28344000] |
| '23-Apr-1998' | [| $55454400]$ |
| '24-Apr-1998' | [| 39950700] |
| '27-Apr-1998' | [| $32652300]$ |
| '28-Apr-1998' | [| 40182000] |
| '29-Apr-1998' | [| $44553300]$ |
| '30-Apr-1998' | [| 49603800] |
| '01-May-1998' | [| 53312100] |
| '04-May-1998' | [| 57713100] |
| '05-May-1998' | | 53821500] |
| '06-May-1998' | [| 50777400] |
| '07-May-1998' | [| $39787200]$ |
| '08-May-1998' | [| $45888600]$ |
| '11-May-1998' | [| 49755000] |
| '12-May-1998' | [| 46115100] |
| '13-May-1998' | [| $41923500]$ |
| '14-May-1998' | [| $34759500]$ |
| '15-May-1998' | [| $19684500]$ |
| '18-May-1998' | [| $10614900]$ |
| '19-May-1998' | [| 17611200] |
| '20-May-1998' | [| 24337500] |
| '21-May-1998' | [| 29973300] |
| '22-May-1998' | [| 33870000] |
| ' 25-May-1998 ' | [| $\mathrm{NaN}]$ |
| '26-May-1998' | [| 5850300] |
| '27-May-1998 ' | [| $12978000]$ |
| '28-May-1998' | [| $9394800]$ |
| ' 29-May-1998 ' | [| 6268500] |
| '01-Jun-1998' | [| $2225400]$ |
| '02-Jun-1998' | [| -4048200] |
| '03-Jun-1998' | [| -7950900] |
| '04-Jun-1998' | [| -7950900] |
| '05-Jun-1998' | [| 828300] |
| '08-Jun-1998' | [| $6939600]$ |

| '09-Jun-1998' | [| 11004000] |
| :---: | :---: | :---: |
| '10-Jun-1998' | [| 17923800] |
| '11-Jun-1998' | [| 13304100] |
| '12-Jun-1998' | [| 7525200] |
| '15-Jun-1998' | [| $2847300]$ |
| '16-Jun-1998' | [| 8892900] |
| '17-Jun-1998' | [| 15341400] |
| '18-Jun-1998' | [| 8139300] |
| '19-Jun-1998' | [| -12700200] |
| '22-Jun-1998' | [| $2448900]$ |
| '23-Jun-1998' | [| 8636700] |
| '24-Jun-1998' | [| 14799600] |
| '25-Jun-1998' | [| 8633700] |
| '26-Jun-1998' | [| 4090500] |
| '29-Jun-1998' | [| 9408600] |
| '30-Jun-1998' | [| -12645000] |
| '01-Jul-1998' | [| 1566900] |
| '02-Jul-1998' | [| $9660900]$ |
| '03-Jul-1998' | [| $\mathrm{NaN}]$ |
| '06-Jul-1998' | [| 7764000] |
| '07-Jul-1998' | [| 16635300] |
| '08-Jul-1998' | [| $26148000]$ |
| '09-Jul-1998' | [| 38979600] |
| '10-Jul-1998' | [| $54615100]$ |
| '13-Jul-1998' | [| 69710100] |
| '14-Jul-1998' | [| 82290600] |
| '15-Jul-1998' | [| $73697700]$ |
| '16-Jul-1998' | [| 63690200] |
| '17-Jul-1998' | [| 69487500] |
| '20-Jul-1998' | [| 63170900] |
| '21-Jul-1998' | [| 56802700] |
| '22-Jul-1998' | [| $48304200]$ |
| '23-Jul-1998' | [| 43689800] |
| '24-Jul-1998' | [| $47914200]$ |
| '27-Jul-1998' | [| 44061400] |
| '28-Jul-1998' | [| $37847600]$ |
| '29-Jul-1998' | [| 37847600] |

| '30-Jul-1998' | | $32323200]$ |
| :---: | :---: | :---: |
| '31-Jul-1998' | [| $28516000]$ |
| '03-Aug-1998' | [| 32688400] |
| '04-Aug-1998' | | 25045400] |
| '05-Aug-1998' | | 32772700] |
| '06-Aug-1998' | | $27319600]$ |
| '07-Aug-1998' | [| 32180400] |
| '10-Aug-1998' | | $27715400]$ |
| '11-Aug-1998' | [| $19223100]$ |
| '12-Aug-1998' | [| 26185900] |
| '13-Aug-1998' | | $21344300]$ |
| '14-Aug-1998' | [| 16900700] |
| '17-Aug-1998' | | $21276700]$ |
| '18-Aug-1998' | [| 27097000] |
| '19-Aug-1998' | [| $22558700]$ |
| '20-Aug-1998' | | $26354500]$ |
| '21-Aug-1998' | [| $21091100]$ |
| '24-Aug-1998' | | $24433200]$ |
| '25-Aug-1998' | [| 28690900] |
| '26-Aug-1998' | | $23240200]$ |
| '27-Aug-1998' | [| $15904100]$ |
| '28-Aug-1998' | | 8928400] |
| '31-Aug-1998' | | -2429100] |
| '01-Sep-1998' | | $12773100]$ |
| '02-Sep-1998' | | $4594900]$ |
| '03-Sep-1998' | [| -2652200] |
| '04-Sep-1998' | | -10280600] |
| '07-Sep-1998' | [| $\mathrm{NaN}]$ |
| '08-Sep-1998' | | $8823500]$ |
| '09-Sep-1998' | | $446200]$ |
| '10-Sep-1998' | [| -7804100] |
| '11-Sep-1998' | | -14992700] |
| '14-Sep-1998' | [| -38685900] |
| '15-Sep-1998' | [| -27772000] |
| '16-Sep-1998' | [| -18080100] |
| '17-Sep-1998' | [| -24293100] |
| '18-Sep-1998' | [| -32205300] |

| | |
| :---: | :---: |
| | |
| '23-Sep-1998' | |
| | |
| '25-Sep-1998' | |
| 28 Sep-1998 | |
| ' 29-Sep-1998 | |
| | |
| '01-0ct-1998' | |
| | |
| '05-0ct-1998 | |
| | |
| '07-0ct-1998' | |
| - Oct - 1 | |
| | |
| '12-0ct-1998' | |
| '13-0ct-1998 | |
| | |
| 15-0ct-1998 | |
| '16-0ct-1998 | |
| '19-0ct-1998' | |
| ' 20-0ct-1998 | |
| | |
| -0ct-1 | |
| ' | |
| | |
| ' | |
| '28-0ct-1998' | |
| | |
| '30-0ct-1998' | |
| ' 02 -Nov-1998 | |
| | |
| ' 04 -Nov-1998' | |
| | |
| '06-Nov-1998' | |
| O9-Nov-1998 | |
| | |

-37140700]
-31010000]
-22494700]
-28732500]
-33087800]
-28800800]
-33225300]
-38324200]
-45247700
-40021700]
-44238900]
-39578900]
-44219300
-53929100]
-47795900
-43277000
-38419700]
-43659400
-38449700]
-44845700]
-39767100]
-31920900]
-26830000
-23217500
-27082900]
-23712000]
-29685800]
-35346700]
-31573600]
-26720900]
-19475400]
-11051100]
-19788400]
-12735600]
-6737600]
-11632200]
-18033400

| '11-Nov-1998' | | -18033400] |
| :---: | :---: | :---: |
| ' 12-Nov-1998' | [| -22202800] |
| '13-Nov-1998' | [| -17918100] |
| '16-Nov-1998' | | -22945800] |
| '17-Nov-1998' | | -22945800] |
| '18-Nov-1998' | | -28370000] |
| ' 19-Nov-1998' | [| -35341000] |
| '20-Nov-1998' | | -29276300] |
| '23-Nov-1998' | | -22435900] |
| '24-Nov-1998' | [| -12255400] |
| '25-Nov-1998' | | -5927400] |
| '26-Nov-1998' | [| $\mathrm{NaN}]$ |
| '27-Nov-1998' | | $4346800]$ |
| '30-Nov-1998' | [| $13602700]$ |
| '01-Dec-1998' | [| $7288000]$ |
| '02-Dec-1998' | | $2714900]$ |
| '03-Dec-1998' | [| -1807700] |
| '04-Dec-1998' | | $2089700]$ |
| '07-Dec-1998' | [| -2371600] |
| '08-Dec-1998' | | $3619900]$ |
| '09-Dec-1998' | [| 10643800] |
| '10-Dec-1998' | | 5105700] |
| '11-Dec-1998' | | $480500]$ |
| '14-Dec-1998' | | -4899000] |
| '15-Dec-1998' | | $454300]$ |
| '16-Dec-1998' | [| $454300]$ |
| '17-Dec-1998' | | 4050700] |
| '18-Dec-1998' | [| -2129500] |
| '21-Dec-1998' | | $3669300]$ |
| '22-Dec-1998' | | -3050700] |
| '23-Dec-1998' | [| $2802400]$ |
| '24-Dec-1998' | | $1000300]$ |
| '25-Dec-1998' | [| $\mathrm{NaN}]$ |
| '28-Dec-1998' | [| $4603500]$ |
| '29-Dec-1998' | [| $4603500]$ |
| '30-Dec-1998' | [| -486100] |
| '31-Dec-1998' | [| 5090100] |

| '01-Jan-1999' | [| $\mathrm{NaN}]$ |
| :---: | :---: | :---: |
| '04-Jan-1999' | [| 7105100] |
| '05-Jan-1999' | [| 13324100] |
| '06-Jan-1999' | [| $23794000]$ |
| '07-Jan-1999' | [| 34760100] |
| '08-Jan-1999' | [| 45438500] |
| '11-Jan-1999' | [| $62733900]$ |
| '12-Jan-1999' | [| 84003400] |
| '13-Jan-1999' | [| 68413800] |
| '14-Jan-1999' | [| 60901200] |
| '15-Jan-1999' | [| $54379000]$ |
| '18-Jan-1999' | [| $\mathrm{NaN}]$ |
| '19-Jan-1999' | [| 7027800] |
| '20-Jan-1999' | [| -397600] |
| '21-Jan-1999' | [| -7852300] |
| '22-Jan-1999' | [| -12905000] |
| '25-Jan-1999' | [| -8789100] |
| '26-Jan-1999' | [| -14462900] |
| '27-Jan-1999' | [| -26087800] |
| '28-Jan-1999' | [| -13973100] |
| '29-Jan-1999' | [| -22836700] |
| '01-Feb-1999' | [| -16644600] |
| '02-Feb-1999' | [| -22629000] |
| '03-Feb-1999' | [| -16038300] |
| '04-Feb-1999' | [| -21857600] |
| '05-Feb-1999' | [| -14497600] |
| '08-Feb-1999' | [| -19314300] |
| '09-Feb-1999' | [| -25085100] |
| '10-Feb-1999' | [| -19022800] |
| '11-Feb-1999' | [| -12482800] |
| '12-Feb-1999' | [| -5834500] |
| '15-Feb-1999' | [| $\mathrm{NaN}]$ |
| '16-Feb-1999' | [| 4995400] |
| '17-Feb-1999' | [| 525700] |
| '18-Feb-1999' | [| -4301500] |
| '19-Feb-1999' | [| -7476100] |
| '22-Feb-1999' | [| -2032200] |

| | |
| :---: | :---: |
| | |
| 25-Fob-1999 ${ }^{\text {' }}$ | |
| | |
| 01-Mar-1999 | |
| | |
| '03-Mar-1999' | |
| 04-Mar-1999 | |
| | |
| '08-Mar-1999 | |
| - Mar-1999 | |
| '10-Mar-1999' | |
| 11-Mar-1999 | |
| | |
| -M | |
| 16-Mar-1999' | |
| | |
| '18-Mar-1999' | |
| '19-Mar-1999 | |
| '22-Mar-1999' | |
| '23-Mar-1999' | |
| | |
| '25-Mar-1999' | |
| 26-Mar-1999 | |
| | |

-2032200]
4126700]

- 1210900]

4552700]
-57400]
-4390400]
547200]
5660200]
10891700]
16943200]
8646800]
3070500]
8426000]
17161000]
11598400]
7399400]
3181700]
8492000]
2927000]
-1412400]
-11204100]
-11204100]
-3268100]
-8820900]
-2500400]

References Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 207-209.

See Also negvolidx

Purpose Option profit
Syntax Profit = opprofit(AssetPrice, Strike, Cost, PosFlag, OptType)
Arguments

| AssetPrice | Asset price. |
| :--- | :--- |
| Strike | Strike or exercise price. |
| Cost | Cost of the option. |
| PosFlag | Option position. $0=$ long, $1=$ short. |
| OptType | Option type. $0=$ call option, $1=$ put option. |

Description $\begin{aligned} & \text { Profit }=\text { opprofit(AssetPrice, Strike, Cost, PosFlag, } \\ & \text { OptType) returns the profit of an option. }\end{aligned}$

Examples Calcualte the Profit of an Option

This example shows how to return the profit of an option. For example, consider buying (going long on) a call option with a strike price of $\$ 90$ on an underlying asset with a current price of $\$ 100$ for a cost of $\$ 4$.

```
Profit = opprofit(100, 90, 4, 0, 0)
```


Profit =

6

See Also binprice | blsprice

Purpose Periodic payment given number of advance payments

```
Syntax Payment = payadv(Rate, NumPeriods, PresentValue, FutureValue,
Advance)
```


Arguments

Description Payment = payadv(Rate, NumPeriods, PresentValue, FutureValue, Advance) returns the periodic payment given a number of advance payments.

Examples Compute the Periodic Payment

This example shows how to compute the periodic payment, given a number of advance payments. For example, the present value of a loan is $\$ 1000.00$ and it will be paid in full in 12 months. The annual interest rate is 10% and three payments are made at closing time.

```
Payment = payadv(0.1/12, 12, 1000, 0, 3)
```


See Also
 amortize | payodd | payper

Purpose Payment of loan or annuity with odd first period

```
Syntax Payment = payodd(Rate, NumPeriods, PresentValue, FutureValue, Days)
```


Arguments

Description
 Payment = payodd(Rate, NumPeriods, PresentValue, FutureValue, Days) returns the payment for a loan or annuity with an odd first period.

Examples Compute the Payment for a Loan or Annuity With an Odd First Period

This example shows how to return the payment for a loan or annuity with an odd first period. For example, consider a two-year loan for $\$ 4000$ that has an annual interest rate of 11% and the first payment will be made in 36 days.

```
Payment = payodd(0.11/12, 24, 4000, 0, 36)
```

Payment =

See Also amortize | payadv | payper

Purpose Periodic payment of loan or annuity

```
Syntax Payment = payper(Rate, NumPeriods, PresentValue, FutureValue, Due)
```


Arguments

| Rate | Interest rate per period. Enter as a decimal
 fraction. |
| :--- | :--- |
| NumPeriods | Number of payment periods in the life of the
 instrument. |
| PresentValue | Present value of the instrument.
 (Optional) Future value or target value to be |
| FutureValue | attained after NumPeriods periods. Default $=0$.
 (Optional) When payments are due: $0=$ end of
 period (default), or $1=$ beginning of period. |

Description
 Payment = payper(Rate, NumPeriods, PresentValue, FutureValue, Due) returns the periodic payment of a loan or annuity.

Examples Compute the Periodic Payment of a Loan or Annuity

This example shows how to find the monthly payment for a three-year loan of $\$ 9000$ with an annual interest rate of 11.75%.

```
Payment = payper(0.1175/12, 36, 9000, 0, 0)
```

Payment =
297.8553

See Also

amortize | fvfix | payadv | payodd | pvfix

Purpose Uniform payment equal to varying cash flow
Syntax Series = payuni(CashFlow, Rate)
Arguments

Description Series = payuni(CashFlow, Rate) returns the uniform series value of a varying cash flow.

Examples This cash flow represents the yearly income from an initial investment of $\$ 10,000$. The annual interest rate is 8%.
Year $1 \quad \$ 2000$

Year $2 \quad \$ 1500$
Year $3 \quad \$ 3000$
Year 4 \$3800
Year $5 \quad \$ 5000$

To calculate the uniform series value
Series = payuni([-10000 2000150030003800 5000], 0.08)
returns
Series =
429.63

See Also
 fvfix | fvvar | irr | pvfix | pvvar

pcalims

Purpose Linear inequalities for individual asset allocation
Syntax $\quad[A, b]=$ pcalims(AssetMin, AssetMax, NumAssets)
Arguments

Description

[A, b] = pcalims(AssetMin, AssetMax, NumAssets) specifies the lower and upper bounds of portfolio allocations in each of NumAssets available asset investments.
A is a matrix and b is a vector such that $A * P o r t W t s^{\prime}<=b$, where PortWts is a 1 -by-NASSETS vector of asset allocations.

If pcalims is called with fewer than two output arguments, the function returns A concatenated with b [A, b].

Examples

Set the minimum weight in every asset to 0 (no short-selling), and set the maximum weight of IBM stock to 0.5 and CSCO to 0.8 , while letting the maximum weight in INTC float.

| Asset | IBM | INTC | CSCO |
| :--- | :--- | :--- | :--- |
| Min. Wt. | 0 | 0 | 0 |
| Max. Wt. | 0.5 | | 0.8 |

AssetMin $=0$

```
AssetMax = [0.5 NaN 0.8]
[A,b] = pcalims(AssetMin, AssetMax)
A =
\begin{tabular}{rrr}
1 & 0 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{tabular}
b =
    0.5000
    0.8000
        0
        0
        0
```

Portfolio weights of 50% in IBM and 50% in INTC satisfy the constraints.

Set the minimum weight in every asset to 0 and the maximum weight to 1 .

| Asset | IBM | INTC | CSCO |
| :--- | :--- | :--- | :--- |
| Min. Wt. | 0 | 0 | 0 |
| Max. Wt. | 1 | 1 | 1 |

```
AssetMin = 0
AssetMax = 1
NumAssets = 3
[A,b] = pcalims(AssetMin, AssetMax, NumAssets)
A =
```


pcalims

| 1 | 0 | 0 |
| ---: | ---: | ---: |
| 0 | 1 | 0 |
| 0 | 0 | 1 |
| -1 | 0 | 0 |
| 0 | -1 | 0 |
| 0 | 0 | -1 |

b =
1
1
1
0
0
0

Portfolio weights of 50% in IBM and 50% in INTC satisfy the constraints.

See Also

Related
Examples

Concepts
pcgcomp | pcglims | portstats | pcpval | portcons | portopt

- "Portfolio Construction Examples" on page 3-5
- "Portfolio Selection and Risk Aversion" on page 3-8
- "Constraint Specification" on page 3-12
- "Active Returns and Tracking Error Efficient Frontier" on page 3-20
- "Analyzing Portfolios" on page 3-2
- "Portfolio Optimization Functions" on page 3-3

> Purpose
> Linear inequalities for asset group comparison constraints
> Syntax $\quad[A, b]=\operatorname{cgcomp}(G r o u p A$, AtoBmin, AtoBmax, GroupB)

Arguments

Description

 made between an arbitrary number of group pairs NGROUPS comprising subsets of NASSETS available investments.
A is a matrix and b a vector such that $A * P o r t W t s^{\prime}<=b$, where PortWts is a 1 -by-NASSETS vector of asset allocations.

If pcgcomp is called with fewer than two output arguments, the function returns A concatenated with b [A, b].

Examples

| Asset | INTC | XOM | RD |
| :--- | :--- | :--- | :--- |
| Region | North America | North America | Europe |
| Sector | Technology | Energy | Energy |

| Group | Min. Exposure | Max. Exposure |
| :--- | :--- | :--- |
| North America | 0.30 | 0.75 |
| Europe | 0.10 | 0.55 |
| Technology | 0.20 | 0.50 |
| Energy | 0.20 | 0.80 |

Make the North American energy sector compose exactly 20\% of the North American investment.

```
% INTC XOM RD
GroupA = [ 0 1 1 0 ]; % North American Energy
GroupB = [ 1 1 1 0 ]; % North America
AtoBmin = 0.20;
AtoBmax = 0.20;
[A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB)
A =
\begin{tabular}{rrr}
0.2000 & -0.8000 & 0 \\
-0.2000 & 0.8000 & 0
\end{tabular}
b =
    0
    0
```

Portfolio weights of 40% for INTC, 10% for XOM, and 50% for RD satisfy the constraints.

See Also pcalims | pcglims | pcpval | portcons | portopt

Related
 Examples

Concepts

- "Portfolio Construction Examples" on page 3-5
- "Portfolio Selection and Risk Aversion" on page 3-8
- "Constraint Specification" on page 3-12
- "Active Returns and Tracking Error Efficient Frontier" on page 3-20
- "Analyzing Portfolios" on page 3-2
- "Portfolio Optimization Functions" on page 3-3

Purpose
Syntax
Arguments

| Groups | Number of groups (NGROUPS) by number of assets
 (NASSETS) specification of which assets belong to
 which group. Each row specifies a group. For a
 specific group, Group $(i, j)=1$ if the group contains
 asset j; otherwise, Group $(i, j)=0$. |
| :--- | :--- |
| GroupMin | Scalar or NGROUPS-long vectors of minimum and
 maximum combined allocations in each group. NaN
 GroupMax
 indicates no constraint. Scalar bounds are applied to
 all groups. |

Description

GroupMax maximum combined allocations in each group. NaN indicates no constraint. Scalar bounds are applied to all groups.
[A, b] = pcglims(Groups, GroupMin, GroupMax) specifies minimum

Linear inequalities for asset group minimum and maximum allocation

$$
[\mathrm{A}, \mathrm{~b}]=\text { pcglims(Groups, GroupMin, GroupMax) }
$$ and maximum allocations to groups of assets. An arbitrary number of groups, NGROUPS, comprising subsets of NASSETS investments, is allowed.

A is a matrix and b a vector such that $A * P o r t W t s{ }^{\text {' }}<=b$, where PortWts is a 1-by-NASSETS vector of asset allocations.
If pcglims is called with fewer than two output arguments, the function returns A concatenated with b [A, b].

Examples

| Asset | INTC | XOM | RD |
| :--- | :--- | :--- | :--- |
| Region | North America | North America | Europe |
| Sector | Technology | Energy | Energy |

| Group | Min. Exposure | Max. Exposure |
| :--- | :--- | :--- |
| North America | 0.30 | 0.75 |
| Europe | 0.10 | 0.55 |
| Technology | 0.20 | 0.50 |
| Energy | 0.50 | 0.50 |

Set the minimum and maximum investment in various groups.

```
% INTC XOM RD
Groups = [\begin{array}{llll}{1}&{1}&{0}&{;}\end{array}%\mathrm{ North America}
    0 0 1 ; % Europe
    10 0 ; % Technology
    0 1 1 ]; % Energy
GroupMin = [0.30
    0.10
    0.20
    0.50];
GroupMax = [0.75
    0.55
    0.50
    0.50];
[A,b] = pcglims(Groups, GroupMin, GroupMax)
A =
\begin{tabular}{rrr}
-1 & -1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0 \\
0 & -1 & -1 \\
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{tabular}
```


pcglims

b =

$$
\begin{array}{r}
-0.3000 \\
-0.1000 \\
-0.2000 \\
-0.5000 \\
0.7500 \\
0.5500 \\
0.5000 \\
0.5000
\end{array}
$$

Portfolio weights of 50% in INTC, 25% in XOM, and 25% in RD satisfy the constraints.

See Also
pcalims | pcgcomp | pcpval | portcons | portopt

Related

Examples

- "Portfolio Construction Examples" on page 3-5
- "Portfolio Selection and Risk Aversion" on page 3-8
- "Constraint Specification" on page 3-12
- "Active Returns and Tracking Error Efficient Frontier" on page 3-20

Concepts

- "Analyzing Portfolios" on page 3-2
- "Portfolio Optimization Functions" on page 3-3

Purpose Linear inequalities for fixing total portfolio value
 ```Syntax \(\quad[A, b]=\) pcpval(PortValue, NumAssets)```
 Arguments

Description

Examples

| PortValue | Scalar total value of asset portfolio (sum of
 the allocations in all assets). PortValue $=1$
 specifies weights as fractions of the portfolio
 and return and risk numbers as rates instead
 of value. |
| :--- | :--- |
| NumAssets | Number of available asset investments. |

[A,b] = pcpval(PortValue, NumAssets) scales the total value of a portfolio of NumAssets assets to PortValue. All portfolio weights, bounds, return, and risk values except ExpReturn and ExpCovariance (see portopt) are in terms of PortValue.
A is a matrix and b a vector such that $A * P o r t W t s{ }^{\prime}<=b$, where PortWts is a 1 -by-NASSETS vector of asset allocations.

If pcpval is called with fewer than two output arguments, the function returns A concatenated with $b[A, b]$.

Scale the value of a portfolio of three assets = 1, so all return values are rates and all weight values are in fractions of the portfolio.

```
PortValue = 1;
NumAssets = 3;
[A,b] = pcpval(PortValue, NumAssets)
A =
    1
```

$\mathrm{b}=$

1
-1

Portfolio weights of $40 \%, 10 \%$, and 50% in the three assets satisfy the constraints.

See Also
 pcalims | pcgcomp | pcglims | portcons | portopt

$\begin{array}{ll}\text { Related } & \text { - "Portfolio Construction Examples" on page 3-5 } \\ \text { Examples } & \text { - "Portfolio Selection and Risk Aversion" on page 3-8 }\end{array}$

- "Constraint Specification" on page 3-12
- "Active Returns and Tracking Error Efficient Frontier" on page 3-20

Concepts - "Analyzing Portfolios" on page 3-2

- "Portfolio Optimization Functions" on page 3-3

Purpose Periodic average of FINTS object

Syntax

```
avgfts = peravg(tsobj)
avgfts = peravg(tsobj, numperiod)
avgfts = peravg(tsobj, daterange)
```


Arguments

| tsobj | Financial time series object |
| :--- | :--- |
| numperiod | (Optional) Integer specifying the number of data
 points over which each periodic average should be
 averaged |
| daterange | (Optional) Time period over which the data is
 averaged |

Description

peravg calculates periodic averages of a financial time series object. Periodic averages are calculated from the values per period defined. If the period supplied is a string, it is assumed as a range of date string. If the period is entered as numeric, the number represents the number of data points (financial time series periods) to be included in a period for the calculation. For example, if you enter '01/01/98: :01/01/99' as the period input argument, peravg returns the average of the time series between those dates, inclusive. However, if you enter the number 5 as the period input, peravg returns a series of averages from the time series data taken 5 date points (financial time series periods) at a time.
avgfts = peravg(tsobj, numperiod) returns a structure avgfts that contains the periodic (per numperiod periods) average of the financial time series object. avgfts has field names identical to the data series names of tsobj.
avgfts = peravg(tsobj, daterange) returns a structure avgfts that contains the periodic (as specified by daterange) average of the
financial time series object. avgfts has field names identical to the data series names of tsobj.

Note peravg calculates periodic averages of a FINTS object. Periodic averages are calculated from the values per period defined. If the period supplied is a string, it is assumed as a range of date strings. If the period is entered as numeric, the number represents the number of data points to be included in a period for the calculation.

Examples

If you enter 01-Jan-2001: :03-Jan-2001 as the period input argument, peravg returns the average of the time series between those dates, inclusive. However, if you enter the number 5 as the period input, peravg returns a series of averages from the time series data, taken 5 date points at a time.

```
%% Create the FINTS object %%
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ', size(dates, 1), 1), times]);
data = [(1:6)', 2*(1:6)'];
myFts = fints(dates_times, data, {'Data1', 'Data2'}, 1, 'My first FINTS')
%% Create the FINTS object %%
[p, pFts] = peravg(myFts, 3)
    p =
    Data1: [2 5]
    Data2: [4 10]
pFts =
    desc: My first FINTS
    freq: Daily (1)
```

```
    'dates: (2)' 'times: (2)' 'Data1: (2)' 'Data2: (2)
    '02-Jan-2001' '11:00
    '03-Jan-2001' '12:00
[p, pFts] = peravg(myFts,'01-Jan-2001 12:00::03-Jan-2001 11:00')
p =
    Data1: 3.5000
    Data2: 7
pFts =
    desc: My first FINTS
    freq: Daily (1)
        'dates: (1)' 'times: (1)' 'Data1: (1)' 'Data2: (1)'
    '03-Jan-2001' '11:00' [ 3.5000] [ 7]
```

See Also
mean | tsmovavg | mean

Purpose Periodic total returns from total return prices
$\begin{array}{ll}\text { Syntax } & \text { TotalReturn }=\text { periodicreturns (TotalReturnPrices) } \\ & \text { TotalReturn }=\text { periodicreturns (TotalReturnPrices, Period) }\end{array}$
Arguments
TotalReturnPrices Number of observations (NUMOBS) by number of assets (NASSETS + 1) matrix of total return prices for a given security. Column 1 contains MATLAB serial date numbers. The remaining columns contain total return price data.
Period (Optional) Periodicity flag used to compute total returns:
'd' = daily values (default)
'w' = weekly values
' m^{\prime} = monthly values
$n=$ rolling return periodic values, where n is an integer

Description

TotalReturn = periodicreturns(TotalReturnPrices) calculates the daily total returns from a daily total return price series.

TotalReturn = periodicreturns(TotalReturnPrices, Period) calculates the total returns for a periodicity you specify from a daily total return price series.

TotalReturn is a NUMOBS-by-NASSETS + 1 matrix containing month-end dates and return values. Each row represents an observation. Column 1 contains month-end dates in MATLAB serial date number format. The remaining columns contain monthly return values.

> Note Although input returns can have dates in either ascending or descending order, output total returns in TotalReturn have dates in ascending order, with the earliest date in the first row TotalReturn, and the most recent date in the last row of TotalReturn.

plot

Purpose Plot data series
Syntax plot(tsobj)
hp = plot(tsobj)
plot(tsobj, linefmt)
hp = plot(tsobj, linefmt)
plot(..., volumename, bar)
hp $=$ plot(..., volumename, bar)

Arguments

| tsobj | Financial time series object. |
| :--- | :--- |
| linefmt | (Optional) Line format.
 (Optional) Specifies which data series is the volume
 veries. volumename must be the exact data series
 name for the volume column (case sensitive). |
| bar | (Optional)
 - bar $=0$ (default). Plot volume as a line. |
| | - bar $=1$. Plot volume as a bar chart. The width of |
| | each bar is the same as the default in bar, barh. |

Description

plot(tsobj) plots the data series contained in the object tsobj. Each data series will be a line. plot automatically generates a legend and dates on the x-axis. Grid is turned on by default. plot uses the default color order as if plotting a matrix.

The plot command automatically creates subplots when multiple time series are encountered, and they differ greatly on their decimal scales. For example, subplots are generated if one time series data set is in the 10 s and another is in the $10,000 \mathrm{~s}$.
$\mathrm{hp}=\operatorname{plot}(\mathrm{tsobj})$ additionally returns the handle(s) to the object(s) inside the plot figure. If there are multiple lines in the plot, hp is a vector of multiple handles.
plot(tsobj, linefmt) plots the data series in tsobj using the line format specified. For a list of possible line formats, see plot in the MATLAB documentation. The plot legend is not generated, but the dates on the x-axis and the plot grid are. The specified line format is applied to all data series; that is, all data series will have the same line type.
$\mathrm{hp}=$ plot(tsobj, linefmt) plots the data series in tsobj using the format specified. The plot legend is not generated, but the dates on the x-axis and the plot grid are. The specified line format is applied to all data series, that is, all data series can have the same line type. If there are multiple lines in the plot, hp is a vector of multiple handles.
plot(..., volumename, bar) additionally specifies which data series is the volume. The volume is plotted in a subplot below the other data series. If bar $=1$, the volume is plotted as a bar chart. Otherwise, a line plot is used.
$\mathrm{hp}=\mathrm{plot}(. . .$, volumename, bar) returns handles for each line. If bar $=1$, the handle to the patch for the bars is also returned.

Note To turn the legend off, enter legend off at the MATLAB command line. Once you turn it off, the legend is essentially deleted. To turn it back on, recreate it using the legend command as if you are creating it for the first time. To turn the grid off, enter grid off. To turn it back on, enter grid on.

Portfolio.plotFrontier

> Superclasses AbstractPortfolio
> Purpose Plot efficient frontier
> Syntax [prsk,pret] = plotFrontier(obj)
> [prsk, pret] = plotFrontier(obj, varargin)
> Description [prsk,pret] = plotFrontier(obj) plots the efficient frontier.
> [prsk, pret] = plotFrontier(obj, varargin) plots the efficient frontier with multiple types of input methods. There are four ways to use plotFrontier:
> - Method 1 - Given a Portfolio object obj, estimate the efficient frontier with default number of 10 portfolios on the frontier.
> - Method 2 - Given a Portfolio object obj, estimate the efficient frontier with a specified number of portfolios NumPorts on the frontier.
> - Method 3 - Given a Portfolio object obj with estimated efficient portfolios in PortWeights, plot the efficient frontier with those portfolios. This method assumes that you provide valid efficient portfolios as input.
> - Method 4 - Given a Portfolio object obj with estimated portfolio risks (PortRisk) and returns (PortReturn), plot the efficient frontier. This method assumes that you provide valid inputs for efficient portfolio risks and returns.

> Note plotFrontier handles multiple input formats as described above. Given an asset universe with NumAssets assets and an efficient frontier with NumPorts portfolios, remember that portfolio weights are NumAsset-by-NumPorts matrices and that portfolio risks and returns are NumPorts column vectors.

Portfolio.plotFrontier

Tips Use dot notation to plot the efficient frontier.
 ```[prsk, pret] = obj.plotFrontier;```
 Input Arguments
 obi
 Portfolio object [Portfolio].
 varargin

(Optional) varargin can be NumPorts, PortRisk, PortReturn, or PortWeights depending on which of the four input methods you use:

- Method 1 - Given a Portfolio object obj, estimate the efficient frontier with the default number of 10 portfolios on the frontier:
[prsk, pret, pwgt] = obj.plotFrontier
- Method 2 - Given a Portfolio object obj, estimate the efficient frontier with a specified number of portfolios NumPorts on the frontier:
[prsk, pret, pwgt] = obj.plotFrontier(NumPorts)
- Method 3 - Given a Portfolio object obj with estimated efficient portfolios in PortWeights, plot the efficient frontier with those portfolios:

```
[prsk, pret, pwgt] = obj.plotFrontier(PortWeights)
```

This method assumes that you provide valid efficient portfolios as inputs.

- Method 4 - Given a Portfolio object obj with estimated portfolio risks (PortRisk) and returns (PortReturn), plot the efficient frontier:

```
[prsk, pret, pwgt] = obj.plotFrontier(PortRisk,PortReturn)
```


Portfolio.plotFrontier

 risks and returns as inputs.
Output prsk
 Arguments

This method assumes that you provide valid efficient portfolio

pret

Estimated efficient portfolio returns.

Note

- If the Portfolio object has a name in the Name property, the name is displayed as the title of the plot. Otherwise, the plot is just labeled "Efficient Frontier."
- If the Portfolio object has an initial portfolio in the InitPort property, the initial portfolio is plotted and labeled.
- If portfolio risks and returns are inputs, make sure that risks come first in the calling sequence. In addition, if portfolio risks and returns are not sorted in ascending order, this method performs the sort. On output, the sorted moments are returned.

Attributes

| Access | public |
| :--- | :--- |
| Static | false |
| Hidden | false |

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Portfolio.plotFrontier

Examples

Plot the Efficient Frontier for the Portfolio Object

Given a portfolio p, plot the efficient frontier.

load CAPMuniverse

p = Portfolio('AssetList',Assets(1:12));
p = p.estimateAssetMoments(Data(:,1:12),'missingdata',true);
p = p.setDefaultConstraints;
p.plotFrontier;

Portfolio.plotFrontier

See Also Portfolio
Related - "Plotting the Efficient Frontier" on page 4-105 Examples

Superclasses AbstractPortfolio

Purpose

Syntax

Description

Plot single efficient frontier for PortfolioCVaR object

```
[prsk,pret] = plotFrontier(obj)
[prsk,pret] = plotFrontier(obj,varargin)
```

[prsk,pret] = plotFrontier(obj) plots a single efficient frontier for a PortfolioCVaR object.
[prsk, pret] = plotFrontier(obj, varargin) to plot a single efficient frontier with multiple types of input methods. There are four ways to use plotFrontier:

- Method 1 - Given a CVaR portfolio object obj, estimate the efficient frontier with default number of 10 portfolios on the frontier.

```
[prsk, pret] = obj.plotFrontier
```

- Method 2 - Given a CVaR portfolio object obj, estimate the efficient frontier with a specified number of portfolios NumPorts on the frontier.

```
[prsk, pret] = obj.plotFrontier(NumPorts)
```

- Method 3 - Given a CVaR portfolio object obj with estimated efficient portfolios in PortWeights, plot the efficient frontier with those portfolios. This method assumes that you provide valid efficient portfolios as input.

```
[prsk, pret] = obj.plotFrontier(PortWeights)
```

- Method 4 - Given a CVaR portfolio object obj with estimated portfolio risks (PortRisk) and returns (PortReturn), plot the efficient frontier. This method assumes that you provide valid efficient portfolio risks and returns as inputs.

```
[prsk, pret] = obj.plotFrontier(PortRisk, PortReturn);
```


PortfolioCVaR.plotFrontier

Note plotFrontier handles multiple input formats as described above. Given an asset universe with NumAssets assets and an efficient frontier with NumPorts portfolios, remember that portfolio weights are NumAsset-by-NumPorts matrices and that portfolio risks and returns are NumPorts column vectors.

Tips
Use dot notation to plot a single efficient frontier for a PortfolioCVaR object.

```
[prsk, pret] = obj.plotFrontier;
```


Input
 obj

Arguments
CVaR portfolio object [PortfolioCVaR].

varargin

(Optional) varargin can be NumPorts, PortRisk, PortReturn, or PortWeights depending on which of the four input methods you use:

- Method 1 - Given a CVaR portfolio object obj, estimate the efficient frontier using the default number of 10 portfolios on the frontier:

```
[prsk, pret, pwgt] = obj.plotFrontier
```

- Method 2 - Given a CVaR portfolio object obj, estimate the efficient frontier with a specified number of portfolios NumPorts on the frontier:
[prsk, pret, pwgt] = obj.plotFrontier(NumPorts)
- Method 3 - Given a CVaR portfolio object obj with estimated efficient portfolios in PortWeights, plot the efficient frontier with those portfolios:

```
[prsk, pret, pwgt] = obj.plotFrontier(PortWeights)
```

This method assumes that you provide valid efficient portfolios as input.

- Method 4 - Given a CVaR portfolio object obj with estimated portfolio risks (PortRisk) and returns (PortReturn), plot the efficient frontier:
[prsk, pret, pwgt] = obj.plotFrontier(PortRisk, PortReturn)
This method assumes that you provide valid efficient portfolio risks and returns as inputs.

Output Arguments

prsk

Estimated efficient portfolio risks (conditional value-at-risk) [vector].
pret
Estimated efficient portfolio returns [vector].

Note

- If the CVaR portfolio object has a name in the Name property, the name is displayed as the title of the plot. Otherwise, the plot is just labeled "Efficient Frontier."
- If the CVaR portfolio object has an initial portfolio in the InitPort property, the initial portfolio is plotted and labeled.
- If portfolio risks and returns are inputs, ensure that risks come first in the calling sequence. In addition, if portfolio risks and returns are not sorted in ascending order, this method performs the sort. On output, the sorted moments are returned.

PortfolioCVaR.plotFrontier

Attributes

| Access | public |
| :--- | :--- |
| Static | false |
| Hidden | false |

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Examples Plot the Efficient Frontier for the PortfolioCVaR Object

Given a PortfolioCVaR p, plot the efficient frontier.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
p.plotFrontier;
```

Efficient Frontier

$\begin{array}{ll}\text { See Also } & \begin{array}{l}\text { estimateFrontier I estimateFrontierByReturn I } \\ \text { estimateFrontierByRisk I estimateFrontierLimits }\end{array} \\ \begin{array}{l}\text { Related } \\ \text { Examples }\end{array} & \text { - "Plotting the Efficient Frontier" on page 5-107 }\end{array}$ ($\begin{aligned} & \text { Concepts }\end{aligned}$ - "Estimating Efficient Portfolios and Frontiers" on page 5-25

PortfolioMAD.plotFrontier

Superclasses AbstractPortfolio
Purpose Plot single efficient frontier for PortfolioMAD object
Syntax

[prsk,pret] = plotFrontier(obj)
[prsk,pret] = plotFrontier(obj,varargin)
Description
[prsk,pret] = plotFrontier(obj) plots a single efficient frontier for a PortfolioMAD object.
[prsk, pret] = plotFrontier(obj, varargin) to plot a single efficient frontier with multiple types of input methods. There are four ways to use plotFrontier:

- Method 1 - Given a PortfolioMAD object obj, estimate the efficient frontier with default number of 10 portfolios on the frontier.
[prsk, pret] = obj.plotFrontier
- Method 2 - Given a PortfolioMAD object obj, estimate the efficient frontier with a specified number of portfolios NumPorts on the frontier.

```
[prsk, pret] = obj.plotFrontier(NumPorts)
```

- Method 3 - Given a PortfolioMAD object obj with estimated efficient portfolios in PortWeights, plot the efficient frontier with those portfolios. This method assumes that you provide valid efficient portfolios as input.

```
[prsk, pret] = obj.plotFrontier(PortWeights)
```

- Method 4 - Given a PortfolioMAD object obj with estimated portfolio risks (PortRisk) and returns (PortReturn), plot the efficient frontier. This method assumes that you provide valid efficient portfolio risks and returns as inputs.

```
[prsk, pret] = obj.plotFrontier(PortRisk, PortReturn);
```


PortfolioMAD.plotFrontier

Abstract

Note plotFrontier handles multiple input formats as described above. Given an asset universe with NumAssets assets and an efficient frontier with NumPorts portfolios, remember that portfolio weights are NumAsset-by-NumPorts matrices and that portfolio risks and returns are NumPorts column vectors.

Tips
Use dot notation to plot a single efficient frontier for a PortfolioMAD object.

```
[prsk, pret] = obj.plotFrontier;
```


Input Arguments

obi

MAD portfolio object [PortfolioMAD].

varargin

(Optional) varargin can be NumPorts, PortRisk, PortReturn, or PortWeights depending on which of the four input methods you use:

- Method 1 - Given a PortfolioMAD object obj, estimate the efficient frontier using the default number of 10 portfolios on the frontier:
[prsk, pret, pwgt] = obj.plotFrontier
- Method 2 - Given a PortfolioMAD object obj, estimate the efficient frontier with a specified number of portfolios NumPorts on the frontier:
[prsk, pret, pwgt] = obj.plotFrontier(NumPorts)
- Method 3 - Given a PortfolioMAD object obj with estimated efficient portfolios in PortWeights, plot the efficient frontier with those portfolios:

PortfolioMAD.plotFrontier

```
[prsk, pret, pwgt] = obj.plotFrontier(PortWeights)
```

This method assumes that you provide valid efficient portfolios as input.

- Method 4 - Given a PortfolioMAD object obj with estimated portfolio risks (PortRisk) and returns (PortReturn), plot the efficient frontier:
[prsk, pret, pwgt] = obj.plotFrontier(PortRisk, PortReturn)

This method assumes that you provide valid efficient portfolio risks and returns as inputs.

Estimated efficient portfolio returns [vector].

Note

- If the MAD portfolio object has a name in the Name property, the name is displayed as the title of the plot. Otherwise, the plot is just labeled "Efficient Frontier."
- If the MAD portfolio object has an initial portfolio in the InitPort property, the initial portfolio is plotted and labeled.
- If portfolio risks and returns are inputs, ensure that risks come first in the calling sequence. In addition, if portfolio risks and returns are not sorted in ascending order, this method performs the sort. On output, the sorted moments are returned.

PortfolioMAD.plotFrontier

Attributes

| Access | public |
| :--- | :--- |
| Static | false |
| Hidden | false |

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Examples Plot Efficient Frontier for PortfolioMAD Object

Given a PortfolioMAD p, plot the efficient frontier.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p.plotFrontier;
```


PortfolioMAD.plotFrontier

$\left.\begin{array}{ll}\text { See Also } & \begin{array}{l}\text { estimateFrontier I estimateFrontierByReturn I } \\ \text { estimateFrontierByRisk I estimateFrontierLimits }\end{array} \\ \begin{array}{ll}\text { Related } \\ \text { Examples }\end{array} & \text { - "Plotting the Efficient Frontier" on page 6-106 }\end{array}\right\} \begin{aligned} & \text { Concepts }\end{aligned}$ - "Estimating Efficient Portfolios and Frontiers" on page 6-24

Purpose Financial time series addition

```
Syntax
newfts = tsobj_1 + tsobj_2
newfts = tsobj + array
newfts = array + tsobj
```


Arguments

$$
\begin{array}{ll}
\text { tsobj_1, tsobj_2 } & \text { A pair of financial time series objects. } \\
\text { array } & \text { A scalar value or array with the number of } \\
& \text { rows equal to the number of dates in tsobj and } \\
& \text { the number of columns equal to the number of } \\
& \text { data series in tsobj. }
\end{array}
$$

Description

See Also minus | rdivide | times

pointfig

Purpose Point and figure chart

Syntax pointfig(Asset)

Description pointfig(Asset) plots a point and figure chart for a vector of price data Asset. Upward price movements are plotted as X's and downward price movements are plotted as O's.

Examples

Create a Point and Figure Chart for an Equity's Closing Prices

Using the price data for the equity DIS, plot a point and figure chart for the closing prices.
load disney;
pointfig(dis_CLOSE)

portalloc

Purpose
Optimal capital allocation to efficient frontier portfolios

Syntax [RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, OverallRisk, OverallReturn] = portalloc(PortRisk, PortReturn, PortWts, RisklessRate, BorrowRate, RiskAversion)

Arguments

| PortRisk | Standard deviation of each risky asset efficient
 frontier portfolio. A number of portfolios
 (NPORTS) by 1 vector. |
| :--- | :--- |
| PortReturn | Expected return of each risky asset efficient
 frontier portfolio. An NPORTS-by-1 vector. |
| PortWts | Weights allocated to each asset. An NPORTS by
 number of assets (NASSETS) matrix of weights
 allocated to each asset. Each row represents an
 efficient frontier portfolio of risky assets. Total
 of all weights in a portfolio is 1. |
| RisklessRate | Risk-free lending rate. A decimal number.
 BorrowRate
 (Optional) Borrowing rate. A decimal number. |
| RiskAversion | If borrowing is not desired, or not an option,
 set to NaN (default).
 (Optional) Coefficient of investor's degree of |
| | risk aversion. Higher numbers indicate greater
 risk aversion. Typical coefficients range
 between 2.0 and 4.0 (Default = 3). |

Note Consider that a less risk-averse investor would be expected to accept much greater risk and, consequently, a more risk-averse investor would accept less risk for a given level of return. Therefore, making the RiskAversionargument higher reflects the risk-return tradeoff in the data.

Description

[RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, OverallRisk, OverallReturn] = portalloc(PortRisk, PortReturn, PortWts, RisklessRate, BorrowRate, RiskAversion) computes the optimal risky portfolio, and the optimal allocation of funds between the risky portfolio and the risk-free asset.

RiskyRisk is the standard deviation of the optimal risky portfolio.
RiskyReturn is the expected return of the optimal risky portfolio.
RiskyWts is a 1-by-NASSETS vector of weights allocated to the optimal risky portfolio. The total of all weights in the portfolio is 1.

RiskyFraction is the fraction of the complete portfolio allocated to the risky portfolio.

OverallRisk is the standard deviation of the optimal overall portfolio.
OverallReturn is the expected rate of return of the optimal overall portfolio.
portalloc generates a plot of the optimal capital allocation if you invoke it without output arguments.

Examples Compute the Optimal Risky Portfolio

This example shows how to compute the optimal risky portfolio by generating the efficient frontier from the asset data and then finding the

portalloc

optimal risky portfolio and allocate capital. The risk-free investment return is 8%, and the borrowing rate is 12%.

```
ExpReturn = [0.1 0.2 0.15];
ExpCovariance = [l0.005 -0.010 0.004
    -0.010 0.040 -0.002
    0.004 -0.002 0.023];
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance);
RisklessRate = 0.08;
BorrowRate = 0.12;
RiskAversion = 3;
[RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, ...
OverallRisk, OverallReturn] = portalloc(PortRisk, PortReturn,...
PortWts, RisklessRate, BorrowRate, RiskAversion)
RiskyRisk =
    0.1283
RiskyReturn =
    0.1788
    RiskyWts =
    0.0265 0.6023 0.3712
    RiskyFraction =
```

OverallRisk =
0.1527

OverallReturn =
0.1899

References $\begin{aligned} & \text { Bodie, Kane, and Marcus, Investments, Second Edition, Chapters } 6 \\ & \text { and } 7 .\end{aligned}$
See Also

portalpha

Purpose

Compute risk-adjusted alphas and returns for one or more assets

Syntax

```
portalpha(Asset, Benchmark)
portalpha(Asset, Benchmark, Cash)
portalpha(Asset, Benchmark, Cash, Choice)
Alpha = portalpha(Asset, Benchmark, Cash, Choice)
[Alpha, RAReturn] = portalpha(Asset, Benchmark, Cash, Choice)
```


Arguments

| Asset | NUMSAMPLES x NUMSERIES matrix with NUMSAMPLES observations of asset returns for NUMSERIES asset return series. |
| :---: | :---: |
| Benchmark | NUMSAMPLES vector of returns for a benchmark asset. The periodicity must be the same as the periodicity of Asset. For example, if Asset is monthly data, then Benchmark should be monthly returns. |
| Cash | (Optional) Either a scalar return for a riskless asset or a vector of asset returns to be a proxy for a "riskless" asset. In either case, the periodicity must be the same as the periodicity of Asset. For example, if Asset is monthly data, then Cash must be monthly returns. If no value is supplied, the default value for Cash returns is 0 . |
| Choice | (Optional) A number, string, or cell array of numbers or strings to indicate one or more measures to be computed from among a number of risk-adjusted alphas and return measures. The number of choices selected in Choice is NUMCHOICES. The current list of choices is given in the following table: |

| Code | Description |
| :--- | :--- |
| 'xs' | Excess Return (no risk
 adjustment) |
| 'sml' | Security Market Line |
| 'capm' | Jensen's Alpha |
| 'mm' | Modigliani \& Modigliani |
| 'gh1' | Graham-Harvey 1 |
| 'gh2' | Graham-Harvey 2 |
| 'all' | Compute all measures |

Choice is specified by using the code from the table (for example, to select the Modigliani \& Modigliani measure, Choice $=$ 'mm'). A single choice is either a string or a scalar cell array with a single code from the table.
Multiple choices can be selected with a cell array of choice codes (for example, to select both Graham-Harvey measures, Choice $=$ \{'gh1', 'gh2' \}). To select all choices, specify Choice = 'all'. If no value is supplied, the default choice is to compute the excess return with Choice $=$ ' xs'. Choice is not case sensitive.

[^8]To summarize the outputs of portalpha:

portalpha

- Alpha is a NUMCHOICES-by-NUMSERIES matrix of risk-adjusted alphas for each series in Asset with each row corresponding to a specified measure in Choice.
- RAReturn is a NUMCHOICES-by-NUMSERIES matrix of risk-adjusted returns for each series in Asset with each row corresponding to a specified measure in Choice.

Note NaN values in the data are ignored and, if NaNs are present, some results could be unpredictable. Although the alphas are comparable across measures, risk-adjusted returns depend on whether the Asset or Benchmark is levered or unlevered to match its risk with the alternative. If Choice $=$ 'all' , the order of rows in Alpha and RAReturn follows the order in the table. In addition, Choice = 'all' overrides all other choices.

Examples See "Risk-Adjusted Return" on page 7-11.

References

John Lintner, "The Valuation of Risk Assets and the Selection of Risky Investments in Stocks Portfolios and Capital Budgets," Review of Economics and Statistics, Vol. 47, No. 1, February 1965, pp. 13-37.
John R. Graham and Campbell R. Harvey, "Market Timing Ability and Volatility Implied in Investment Newsletters' Asset Allocation Recommendations," Journal of Financial Economics, Vol. 42, 1996, pp. 397-421.

Franco Modigliani and Leah Modigliani, "Risk-Adjusted Performance: How to Measure It and Why," Journal of Portfolio Management, Vol. 23, No. 2, Winter 1997, pp. 45-54.

Jan Mossin, "Equilibrium in a Capital Asset Market," Econometrica, Vol. 34, No. 4, October 1966, pp. 768-783.

William F. Sharpe, "Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk," Journal of Finance, Vol. 19, No. 3, September 1964, pp. 425-442.

See Also inforatio | sharpe

Purpose Portfolio constraints

```
Syntax ConSet = portcons(varargin)
```

Description Using linear inequalities, portcons generates a matrix of constraints for a portfolio of asset investments. The matrix ConSet is defined as ConSet $=\left[\begin{array}{ll}A & b\end{array}\right]$. A is a matrix and b a vector such that $A * P o r t W t s{ }^{\prime}<=$ b sets the value, where PortWts is a 1 -by-number of assets (NASSETS) vector of asset allocations.

ConSet = portcons('ConstType', Data1, ..., DataN) creates a matrix ConSet, based on the constraint type ConstType, and the constraint parameters Data1, ..., DataN.

ConSet = portcons('ConstType1', Data11, ..., Data21, ..., Data2N, ...) creates a matrix ConSet, based on the constraint types ConstTypen, and the corresponding constraint parameters DataN1, ..., DataNN.

| Constraint Type | Description | Values |
| :--- | :--- | :--- |
| Default | All allocations are
 $>=0 ;$ no short
 selling allowed.
 Combined value
 of portfolio
 allocations
 normalized to 1. | NumAssets (required). Scalar representing
 number of assets in portfolio. |
| PortValue | Fix total value of
 portfolio to PVal. | PVal (required). Scalar representing total
 value of portfolio.
 NumAssets (required). Scalar representing
 number of assets in portfolio. See pcpval. |

| Constraint Type | Description | Values |
| :--- | :--- | :--- |
| AssetLims | Minimum and
 maximum
 allocation per
 asset. | AssetMin (required). Scalar or vector of length
 NASSETS, specifying minimum allocation per
 asset. |
| GroupLims | AssetMax (required). Scalar or vector of length
 NASSETS, specifying maximum allocation per
 asset.
 Manimum and
 maximum
 allocations to asset
 group. | Groups (required). NGROUPS-by-NASSETS matrix
 specifying which assets belong to each group.
 GroupMin (required). Scalar or a vector of
 length NGROUPS, specifying minimum combined
 allocations in each group.
 GroupMax (required). Scalar or a vector of |
| length NGROUPS, specifying maximum combined | | |
| allocations in each group. | | |
| See pcglims. | | |

| Constraint Type |
| :--- | | Description | Values | |
| :--- | :--- | :--- |
| | constraints
 A*PortWts ' $<=$
 b. | b (required). Vector of length NCONSTRAINTS
 specifying the right hand sides of the
 inequalities. |
| Note For more information using Custom, see | | |
| "Specifying Additional Constraints" on page | | |
| $3-17$. | | |

Examples

Constrain a portfolio of three assets:

| Asset | IBM | HPQ | XOM |
| :--- | :--- | :--- | :--- |
| Group | A | A | B |
| Min. Wt. | 0 | 0 | 0 |
| Max. Wt. | 0.5 | 0.9 | 0.8 |

```
NumAssets = 3;
PVal = 1; % Scale portfolio value to 1.
AssetMin = 0;
AssetMax = [0.5 0.9 0.8];
GroupA = [\begin{array}{lll}{1 1 0];}\end{array}]
GroupB = [0 0 1];
AtoBmax = 1.5 % Value of assets in Group A at most 1.5 times value
    % in group B.
ConSet = portcons('PortValue', PVal, NumAssets,'AssetLims',...
AssetMin, AssetMax, NumAssets, 'GroupComparison',GroupA, NaN,...
AtoBmax, GroupB)
```

ConSet =

| 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| ---: | ---: | ---: | ---: |
| -1.0000 | -1.0000 | -1.0000 | -1.0000 |
| 1.0000 | 0 | 0 | 0.5000 |
| 0 | 1.0000 | 0 | 0.9000 |
| 0 | 0 | 1.0000 | 0.8000 |
| -1.0000 | 0 | 0 | 0 |
| 0 | -1.0000 | 0 | 0 |
| 0 | 0 | -1.0000 | 0 |
| 1.0000 | 1.0000 | -1.5000 | 0 |

For instance, one possible solution for portfolio weights that satisfy the constraints is 30% in IBM, 30% in HPQ, and 40% in XOM.

See Also

pcalims | pcgcomp | pcglims | pcpval | portopt
Related

- "Portfolio Construction Examples" on page 3-5

Examples

Concepts

- "Portfolio Selection and Risk Aversion" on page 3-8
- "Constraint Specification" on page 3-12
- "Active Returns and Tracking Error Efficient Frontier" on page 3-20
- "Analyzing Portfolios" on page 3-2
- "Portfolio Optimization Functions" on page 3-3

Portfolio

Superclasses AbstractPortfolio

Purpose Portfolio object for mean-variance portfolio optimization and analysis
Description The Portfolio object implements mean-variance portfolio optimization and is derived from the abstract portfolio optimization class AbstractPortfolio. Portfolio objects implement all methods in the AbstractPortfolio class along with methods that are specific to mean-variance portfolio optimization.

The main workflow for portfolio optimization is to create an instance of a Portfolio object that completely specifies a portfolio optimization problem and to operate on the Portfolio object to obtain and analyze efficient portfolios. A mean-variance optimization problem is completely specified with the following three elements:

- A universe of assets with estimates for the prospective mean and covariance of asset total returns for a period of interest.
- A portfolio set that specifies the set of portfolio choices in terms of a collection of constraints.
- A model for portfolio return and risk, which, for mean-variance optimization, is either the gross or net mean of portfolio returns and the standard deviation of portfolio returns.

After you specify three elements in an unambiguous way, you can solve and analyze portfolio optimization problems. The simplest mean-variance portfolio optimization problem has:

- A mean and covariance of asset total returns
- Nonnegative weights for all portfolios that sum to 1 (the summation constraint is known as a budget constraint)
- Built-in models for portfolio return and risk that use the mean and covariance of asset total returns

Given mean and covariance of asset returns in the variables AssetMean and AssetCovar, this problem is completely specified by:

```
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar,...
'LowerBound', 0, 'Budget')
```

or equivalently by:

```
p = Portfolio;
p = p.setAssetMoments(AssetMean, AssetCovar);
p = p.setDefaultConstraints;
```


Construction

p = Portfolio constructs an empty Portfolio object for mean-variance portfolio optimization and analysis. You can then add elements to the Portfolio object using the supported add and set methods. For more information, see "Constructing the Portfolio Object" on page 4-27.
p = Portfolio(Name, Value) constructs a Portfolio object for mean-variance portfolio optimization and analysis with additional options specified by one or more Name, Value pair arguments. Name is a property name and Value is its corresponding value. Name must appear inside single quotes (' '). You can specify several name-value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
p = Portfolio(p,Name, Value) constructs a Portfolio object for mean-variance portfolio optimization and analysis using a previously constructed Portfolio object p with additional options specified by one or more Name, Value pair arguments.

Input Arguments

p

(Optional) Previously constructed Portfolio object (p).

Property Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can

Portfolio

specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Alnequality

Linear inequality constraint matrix ([] or [matrix]).
Default: []

AssetCovar

Covariance of asset returns ([] or square matrix.
Default: []

AssetList

Names or symbols of assets in the universe ([] or [vector cell of strings]).

Default: []

AssetMean

Mean of asset returns ([] or vector).
Default: []

bInequality

Linear inequality constraint vector ([] or [vector]).
Default: []

BuyCost

Proportional purchase costs ([] or vector).
Default: []

BuyTurnover

Turnover constraint on purchases ([] or [scalar]).
Default: []

GroupA

Group A weights to be bounded by weights in group B ([] or [matrix]).

Default: []

GroupB

Group B weights ([] or [matrix]).
Default: []

GroupMatrix

Group membership matrix ([] or [matrix]).
Default: []

InitPort

Initial portfolio ([] or vector).
Default: []

LowerBudget

Lower-bound budget constraint ([] or [scalar]).
Default: []

LowerGroup

Lower-bound group constraint ([] or [vector]).

Portfolio

Default: []

LowerRatio

Minimum ratio of allocations between groups A and B ([] or [vector]).

Default: []

Name

Name for instance of the Portfolio object ([] or [string]).
Default: []

NumAssets

Number of assets in the universe ([] or [integer scalar]).
Default: []

RiskFreeRate

Risk-free rate ([] or scalar).
Default: []

SellCost

Proportional sales costs ([] or vector).
Default: []

SellTurnover

Turnover constraint on sales ([] or [scalar]).
Default: []

Turnover

Turnover constraint ([] or [scalar]).
Default: []
UpperBoundUpper-bound constraint ([] or [vector]).
Default: []
UpperBudget
Upper-bound budget constraint ([] or [scalar]).
Default: []
UpperGroup
Upper-bound group constraint ([] or [vector]).
Default: []
UpperRatio
Maximum ratio of allocations between groups A and B ([] or[vector]).
Default: []
Properties The following properties are from the Portfolio class.
AssetCovar
Covariance of asset returns ([] or matrix).
Attributes:
SetAccess public
GetAccess public

Portfolio

AssetMean

Mean of asset returns ([] or vector).
Attributes:

SetAccess public
GetAccess public

BuyCost

Proportional purchase costs ([] or vector).
Attributes:
SetAccess public
GetAccess public

BuyTurnover

Turnover constraint on purchases ([] or [scalar]).
Attributes:

SetAccess public
GetAccess public

RiskFreeRate

Risk-free rate ([] or scalar).
Attributes:
SetAccess public
GetAccess public

SellCost

Proportional sales costs ([] or vector).

Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

SellTurnover

Turnover constraint on sales ([] or [scalar]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

Turnover

Turnover constraint ([] or [scalar]).
Attributes:
SetAccess
public
GetAccess
public

Properties The following properties are inherited from the AbstractPortfolio class.

AEquality

Linear equality constraint matrix ([] or [matrix]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

Alnequality

Linear inequality constraint matrix ([] or [matrix]).

Portfolio

Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

AssetList

Names or symbols of assets in the universe ([] or [vector cell of strings]).

Attributes:

SetAccess public

GetAccess public

bEquality

Linear equality constraint vector ([] or [vector]).
Attributes:
SetAccess public
GetAccess public

bInequality

Linear inequality constraint vector ([] or [vector]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

GroupA

Group A weights to be bounded by group B ([] or [matrix]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

GroupB

Group B weights ([] or [matrix]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

GroupMatrix

Group membership matrix ([] or [matrix]).
Attributes:

SetAccess public
GetAccess public

InitPort

Initial portfolio ([] or vector).
Attributes:
SetAccess public
GetAccess public

LowerBound

Lower-bound constraint ([] or [vector]).
Attributes:

SetAccess
public
GetAccess
public

Portfolio

LowerBudget

Lower-bound budget constraint ([] or [scalar]).
Attributes:

SetAccess public
GetAccess public

LowerGroup

Lower-bound group constraint ([] or [vector]).
Attributes:
SetAccess public
GetAccess public

LowerRatio

Minimum ratio of allocations between groups A and B ([] or [vector]).

Attributes:

SetAccess public
GetAccess public

Name

Name for instance of the Portfolio object ([] or [string]).
Attributes:
SetAccess public
GetAccess public

NumAssets

Number of assets in the universe ([] or [integer scalar]).

Attributes:

SetAccess public
GetAccess public

UpperBound

Upper-bound constraint ([] or [vector]).
Attributes:

SetAccess public
GetAccess public

UpperBudget

Upper-bound budget constraint ([] or [scalar]).
Attributes:

SetAccess public
GetAccess public

UpperGroup

Upper-bound group constraint ([] or [vector]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

UpperRatio

Maximum ratio of allocations between groups A and B ([] or [vector]).

Attributes:

Portfolio

SetAccess
GetAccess
public
public

Inherited Methods

The following methods are inherited from the AbstractPortfolio class.

| addEquality | Add equality constraints for portfolio
 weights to existing constraints. |
| :--- | :--- |
| addGroupRatio | Add group ratio constraints for
 portfolio weights to existing
 constraints. |
| addGroups | Add group constraints for portfolio
 weights to existing constraints. |
| addInequality | Add inequality constraints for
 portfolio weights to existing
 constraints. |
| checkFeasibility | Determine if portfolios are members
 of the set of feasible portfolios. |
| estimateBounds | Determine if set of feasible portfolios
 is nonempty and bounded. |
| estimateFrontier | Estimate portfolios on the entire
 efficient frontier. |
| estimateFrontierByReturn | Estimate portfolios on the efficient
 frontier with targeted returns or |
| estimateFrontierByRisk | return proxies. |
| Estimate portfolios on the efficient | |
| frontier with targeted risks or risk | |

Portfolio

(Continued)

| estimateMaxSharpeRatio | Estimate efficient portfolio that
 maximizes the Sharpe ratio. |
| :--- | :--- |
| estimatePortReturn | Estimate return or return proxy for
 specified portfolios. |
| estimatePortRisk | Estimate risk or risk proxy for
 specified portfolios.
 Get lower and upper bounds from the
 object. |
| getBounds | Get lower and upper budget
 constraints from the object. |
| getBudget | Get equality constraint matrix and
 vector from the object. |
| getEquality | Get base matrix, comparison matrix,
 and lower and upper bounds for group
 ratio constraints from the object. |
| getGroupRatio | Get group matrix and lower and upper
 bounds for group constraints from the
 object. |
| getGroups | Get inequality constraint matrix and
 vector from the object. |
| getInequality | Plot efficient frontier and optionally
 obtain risks and returns for portfolios
 on the efficient frontier. |
| plotFrontier | Set up a list of asset names and
 symbols to be associated with assets
 in the universe. |
| setAssetList | Set up lower and upper bounds for
 portfolio weights. |
| setBounds | |

Portfolio

(Continued)

setBudget
setDefaultConstraints
setEquality
setGroupRatio
setGroups
setInequality
setInitPort
setOptions
setSolver

Methods

estimateAssetMoments
estimatePortMoments
getAssetMoments

Set up lower and upper budget constraints for portfolio weights.

Set up default constraints for portfolio weights (nonnegative weights that must sum to 1).

Set up equality constraints for portfolio weights.

Set up group ratio constraints for portfolio weights.

Set up group constraints for portfolio weights.

Set up inequality constraints for portfolio weights.

Set up initial portfolio weights.
Set up hidden control properties in object (not implemented).

Set up solver to estimate efficient portfolios.

Estimate mean and covariance of asset returns from price or return data.

Estimate mean and standard deviation of portfolio returns for specified portfolios.

Get mean and covariance of asset returns from the object.

(Continued)

| getCosts | Get purchase and sales proportional
 transaction costs from the object. |
| :--- | :--- |
| getOneWayTurnover | Get one-way portfolio turnover
 constraints. |
| setAssetMoments | Set up mean and covariance of asset
 returns. |
| setCosts | Set up purchase and sale proportional
 transaction costs for assets in the
 universe. |
| setOneWayTurnover | Set up one-way portfolio turnover
 constraints. |
| setTurnover | Set up average turnover constraints
 for portfolio weights. |

Mean-Variance Portfolio Optimization

For more information on the theory and definition of mean-variance optimization supported by portfolio optimization tools in Financial Toolbox, see "Portfolio Optimization Theory" on page 4-2.

Copy Semantics

Examples

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

Construct a Portfolio Object and Determine Efficient Portfolios

Create efficient portfolios:
load CAPMuniverse

```
p = Portfolio('AssetList',Assets(1:12));
p = p.estimateAssetMoments(Data(:,1:12),'missingdata',true);
p = p.setDefaultConstraints;
```


Portfolio

```
p.plotFrontier;
pwgt = p.estimateFrontier(5);
pnames = cell(1,5);
for i = 1:5
    pnames{i} = sprintf('Port%d',i);
end
Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);
disp(Blotter);
\begin{tabular}{lrrrrl} 
& Port1 & Port2 & Port3 & Port4 & Port5 \\
AAPL & 0.017926 & 0.058247 & 0.097816 & 0.12955 & 0 \\
AMZN & 0 & 0 & 0 & 0 & 0 \\
CSCO & 0 & 0 & 0 & 0 & 0 \\
DELL & 0.0041906 & 0 & 0 & 0 & 0 \\
EBAY & 0 & 0 & 0 & 0 & 0 \\
GOOG & 0.16144 & 0.35678 & 0.55228 & 0.75116 & 1 \\
HPQ & 0.052566 & 0.032302 & 0.011186 & 0 & 0 \\
IBM & 0.46422 & 0.36045 & 0.25577 & 0.11928 & 0 \\
INTC & 0 & 0 & 0 & 0 & 0 \\
MSFT & 0.29966 & 0.19222 & 0.082949 & 0 & 0 \\
ORCL & 0 & 0 & 0 & 0 & 0 \\
YHOO & 0 & 0 & 0 & 0 & 0
\end{tabular}
```


References For a complete list of references for the Portfolio object and portfolio optimization tools, see "Portfolio Optimization" on page A-12.

See Also plotFrontier

Related Examples

- "Constructing the Portfolio Object" on page 4-27
- Class Attributes
- Property Attributes

Portfolio

Concepts

- "Portfolio Optimization Theory" on page 4-2
- "Portfolio Object" on page 4-17

Superclasses AbstractPortfolio

Purpose

Description

PortfolioCVaR object for conditional value-at-risk portfolio optimization and analysis

The PortfolioCVaR object implements conditional value-at-risk (CVaR) portfolio optimization and is derived from the abstract portfolio optimization class AbstractPortfolio. This object implements all methods in the AbstractPortfolio class along with methods that are specific to CVaR portfolio optimization.

The main workflow for CVaR portfolio optimization is to create an instance of a PortfolioCVaR object that completely specifies a portfolio optimization problem and to operate on the PortfolioCVaR object to obtain and analyze efficient portfolios. A CVaR optimization problem is completely specified with these four elements:

- A universe of assets with scenarios of asset total returns for a period of interest, where scenarios comprise a collection of samples from the underlying probability distribution for asset total returns. This collection must be sufficiently large for asymptotic convergence of sample statistics. Note that asset return moments and related statistics are derived exclusively from the scenarios.
- A portfolio set that specifies the set of portfolio choices in terms of a collection of constraints.
- A model for portfolio return and risk proxies, which, for CVaR optimization, is either the gross or net mean of portfolio returns and the conditional value-at-risk of portfolio returns.
- A probability level that specifies the probability that a loss is less than or equal to the value-at-risk. Typical values are 0.9 and 0.95 , which indicate 10% and 5% loss probabilities.

After these four elements have been specified in an unambiguous way, it is possible to solve and analyze CVaR portfolio optimization problems.
The simplest CVaR portfolio optimization problem has:

PortfolioCVaR

- Scenarios of asset total returns
- A requirement that all portfolios have nonnegative weights that sum to 1 (the summation constraint is known as a budget constraint)
- Built-in models for portfolio return and risk proxies that use scenarios of asset total returns
- A probability level of 0.95

Given scenarios of asset returns in the variable AssetScenarios, this problem is completely specified by:

```
p = PortfolioCVaR('Scenarios', AssetScenarios, 'LowerBound', 0, 'Budget', 1, ...
'ProbabilityLevel', 0.95);
```

or equivalently by:
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
To confirm that this is a valid portfolio optimization problem, the following method determines whether the set of PortfolioCVaR choices is bounded (a necessary condition for portfolio optimization).
[lb, ub, isbounded] = p.estimateBounds;
Given the problem specified in the PortfolioCVaR object p, the efficient frontier for this problem can be displayed with:
p.plotFrontier;
and efficient portfolios can be obtained with:
pwgt = p.estimateFrontier;

Construction

$p=$ PortfolioCVaR constructs an empty PortfolioCVaR object for conditional value-at-risk portfolio optimization and analysis. You can
then add elements to the PortfolioCVaR object using the supported add and set methods. For more information, see "Constructing the PortfolioCVaR Object" on page 5-28.
p = PortfolioCVaR(Name, Value) constructs a PortfolioCVaR object for conditional value-at-risk portfolio optimization and analysis with additional options specified by one or more Name, Value pair arguments. Name is a property name and Value is its corresponding value. Name must appear inside single quotes (' '). You can specify several name-value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
p = PortfolioCVaR(p, Name, Value) constructs a PortfolioCVaR object for conditional value-at-risk portfolio optimization and analysis using a previously constructed PortfolioCVaR object p with additional options specified by one or more Name, Value pair arguments.

Input Arguments

P

(Optional) Previously constructed CVaR portfolio object (p).

Property Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Alnequality

Linear inequality constraint matrix ([] or [matrix]).
Default: []

AssetList

Names or symbols of assets in the universe ([] or [vector cell of strings]).

PortfolioCVaR

Default: []

bInequality

Linear inequality constraint vector ([] or [vector]).
Default: []

BuyCost

Proportional purchase costs ([] or vector).
Default: []

BuyTurnover

Turnover constraint on purchases ([] or [scalar]).
Default: []

GroupA

Group A weights to be bounded by weights in group B ([] or [matrix]).

Default: []

GroupB

Group B weights ([] or [matrix]).
Default: []

GroupMatrix

Group membership matrix ([] or [matrix]).
Default: []
InitPort

Initial portfolio ([] or vector).
Default: []

LowerBudget

Lower-bound budget constraint ([] or [scalar]).
Default: []

LowerGroup

Lower-bound group constraint ([] or [vector]).
Default: []

LowerRatio

Minimum ratio of allocations between groups A and B ([] or [vector]).

Default: []

Name

Name for instance of the PortfolioCVaR object ([] or [string]).
Default: []

NumAssets

Number of assets in the universe ([] or [integer scalar]).
Default: []

NumScenarios

Number of scenarios ([] or [integer scalar]).

PortfolioCVaR

> Note Scenarios cannot be assigned directly to a PortfolioCVaR object. Scenarios must always be set through either the PortfolioCVaR constructor, the setScenarios method, or any of the scenario simulation methods. For more information, see "Constructing the PortfolioCVaR Object" on page 5-28.

Default: []

ProbabilityLevel

Probability level which is 1 minus the probability of losses greater than the value-at-risk ([] or [scalar]).

Default: []

RiskFreeRate

Risk-free rate ([] or scalar).
Default: []

SellCost

Proportional sales costs ([] or vector).
Default: []

SellTurnover

Turnover constraint on sales ([] or [scalar]).
Default: []

Turnover

Turnover constraint ([] or [scalar]).
Default: []
UpperBound
Upper-bound constraint ([] or [vector]).
Default: []
UpperBudget
Upper-bound budget constraint ([] or [scalar]).
Default: []
UpperGroupUpper-bound group constraint ([] or [vector]).Default: []
UpperRatioMaximum ratio of allocations between groups A and B ([] or[vector]).
Default: []
Properties The following properties are from the PortfolioCVaR class.
BuyCostProportional purchase costs ([] or vector).Attributes:
SetAccess public
GetAccess public
BuyTurnover

PortfolioCVaR

Turnover constraint on purchases ([] or [scalar]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

NumScenarios

Number of scenarios ([] or [integer scalar]).
Attributes:

| SetAccess | private |
| :--- | :--- |
| GetAccess | public |

ProbabilityLevel

Value-at-risk probability level which is 1 - (loss probability) ([] or [scalar]).

Attributes:
SetAccess public
GetAccess public

RiskFreeRate

Risk-free rate ([] or scalar).
Attributes:
SetAccess public
GetAccess public

SellCost

Proportional sales costs ([] or vector).
Attributes:
SetAccess public
GetAccess public

SellTurnover

Turnover constraint on sales ([] or [scalar]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

Turnover

Turnover constraint ([] or [scalar]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

Properties The following properties are inherited from the AbstractPortfolio class.

AEquality

Linear equality constraint matrix ([] or [matrix]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

Alnequality

Linear inequality constraint matrix ([] or [matrix]).

PortfolioCVaR

```
Attributes:
SetAccess public
GetAccess public
```


AssetList

Names or symbols of assets in the universe ([] or [vector cell of strings]).

Attributes:

SetAccess public

GetAccess public

bEquality

Linear equality constraint vector ([] or [vector]).
Attributes:
SetAccess public
GetAccess public

bInequality

Linear inequality constraint vector ([] or [vector]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

GroupA

Group A weights to be bounded by group B ([] or [matrix]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

GroupB

Group B weights ([] or [matrix]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

GroupMatrix

Group membership matrix ([] or [matrix]).
Attributes:

SetAccess public
GetAccess public

InitPort

Initial portfolio ([] or vector).
Attributes:

SetAccess public
GetAccess public

LowerBound

Lower-bound constraint ([] or [vector]).
Attributes:

SetAccess
public
GetAccess
public

PortfolioCVaR

LowerBudget

Lower-bound budget constraint ([] or [scalar]).
Attributes:

SetAccess public
GetAccess public

LowerGroup

Lower-bound group constraint ([] or [vector]).
Attributes:
SetAccess public
GetAccess public

LowerRatio

Minimum ratio of allocations between groups A and B ([] or [vector]).

Attributes:

SetAccess public
GetAccess public

Name

Name for instance of the PortfolioCVaR object ([] or [string]).
Attributes:
SetAccess public
GetAccess public

NumAssets

Number of assets in the universe ([] or [integer scalar]).

Attributes:
SetAccess public
GetAccess public

UpperBound

Upper-bound constraint ([] or [vector]).
Attributes:
SetAccess public
GetAccess public

UpperBudget

Upper-bound budget constraint ([] or [scalar]).
Attributes:
SetAccess public
GetAccess public

UpperGroup

Upper-bound group constraint ([] or [vector]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

UpperRatio

Maximum ratio of allocations between groups A and B ([] or [vector]).

Attributes:

PortfolioCVaR

```
SetAccess
public
GetAccess
public
```

Inherited Methods

The following methods are inherited from the AbstractPortfolio class.

| addEquality | Add equality constraints for portfolio
 weights to existing constraints. |
| :--- | :--- |
| addGroupRatio | Add group ratio constraints for
 portfolio weights to existing
 constraints. |
| addGroups | Add group constraints for portfolio
 weights to existing constraints. |
| addInequality | Add inequality constraints for
 portfolio weights to existing
 constraints. |
| checkFeasibility | Determine if portfolios are members
 of the set of feasible portfolios. |
| estimateBounds | Determine if set of feasible portfolios
 is nonempty and bounded. |
| estimateFrontier | Estimate portfolios on the entire
 efficient frontier. |
| estimateFrontierByReturn | Estimate portfolios on the efficient
 frontier with targeted returns or
 return proxies. |
| estimateFrontierByRisk | Estimate portfolios on the efficient
 frontier with targeted risks or risk |
| proxies. | |

(Continued)

| estimateFrontierLimits | Estimate portfolios at the extreme
 ends of the efficient frontier (minimum
 risk and maximum return). |
| :--- | :--- |
| estimatePortReturn | Estimate return or return proxy for
 specified portfolios. |
| estimatePortRisk | Estimate risk or risk proxy for
 specified portfolios.
 Get lower and upper bounds from the
 object.
 getBounds |
| getBudget | Get lower and upper budget
 constraints from the object. |
| getEquality | Get equality constraint matrix and
 vector from the object. |
| getGroupRatio | Get base matrix, comparison matrix,
 and lower and upper bounds for group
 ratio constraints from the object. |
| getGroups | Get group matrix and lower and upper
 bounds for group constraints from the
 object. |
| getInequality | Get inequality constraint matrix and
 vector from the object. |
| plotFrontier | Plot efficient frontier and optionally
 obtain risks and returns for portfolios
 on the efficient frontier. |
| setAssetList | Set up a list of asset names and
 symbols to be associated with assets
 in the universe. |
| set up lower and upper bounds for | |

PortfolioCVaR

(Continued)

| setBudget | Set up lower and upper budget
 constraints for portfolio weights. |
| :--- | :--- |
| setDefaultConstraints | Set up default constraints for portfolio
 weights (nonnegative weights that
 must sum to 1). |
| setEquality | Set up equality constraints for
 portfolio weights. |
| setGroupRatio | Set up group ratio constraints for
 portfolio weights. |
| setGroups | Set up group constraints for portfolio
 weights. |
| setInequality | Set up inequality constraints for
 portfolio weights. |
| setInitPort | Set up initial portfolio weights.
 setOptions |
| Set up hidden control properties in | |
| sebject (not implemented). | |

Methods

$$
\begin{array}{ll}
\text { estimatePortStd } & \begin{array}{l}
\text { Estimate standard deviation of } \\
\text { portfolio returns. }
\end{array} \\
\text { estimatePortVaR } & \text { Estimate value-at-risk for portfolio. } \\
\text { estimateScenarioMoments } & \begin{array}{l}
\text { Estimate mean and covariance of } \\
\text { scenarios. }
\end{array} \\
\text { simulateNormalScenariosByD } & \text { return scenarios from data. }
\end{array}
$$

(Continued)

simulateNormalScenariosByMCsiemtlste multivariate normal asset return scenarios from a mean and covariance of asset returns.
getCosts
Get purchase and sales proportional transaction costs from the object.

| getOneWayTurnover | Get one-way portfolio turnover
 constraints. |
| :--- | :--- |
| getScenarios | Obtain scenarios from PortfolioCVaR
 object. |
| setCosts | Set up purchase and sale proportional
 transaction costs for assets in the
 universe. |
| setOneWayTurnover | Set up one-way portfolio turnover
 constraints. |
| setProbabilityLevel | Set probability level for VaR and
 CVaR calculations. |
| setScenarios | Set asset returns scenarios by direct
 matrix. |
| setTurnover | Set up average turnover constraints
 for portfolio weights. |

Definitions Conditional Value-at-Risk Portfolio Optimization

For more information on the theory and definition of conditional value-at-risk optimization supported by portfolio optimization tools in Financial Toolbox, see "Portfolio Optimization Theory" on page 5-2.

PortfolioCVaR

Copy
Semantics
Examples

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

Construct a PortfolioCVaR Object and Determine Efficient Portfolios

Create efficient portfolios:
load CAPMuniverse
p = PortfolioCVaR('AssetList',Assets(1:12));
p = p.simulateNormalScenariosByData(Data(:,1:12), 20000 ,'missingdata',tr
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
p.plotFrontier;
pwgt = p.estimateFrontier(5);
pnames = cell(1,5);
for $i=1: 5$
pnames\{i\} = sprintf('Port\%d',i);
end
Blotter = dataset([\{pwgt\},pnames],'obsnames', p.AssetList);
disp(Blotter);

Port1
AAPL
2. 2422e-22

CSCO 0
DELL 0.022453
EBAY
GOOG
HPQ
IBM
6.5793e-23

Port2
0.073249
3.4209e-22
6.08e-23
2.2333e-22

0
0.0099197
0.36453

Port3
0.11933
1.8594e-32

0
$3.7336 \mathrm{e}-32$
0.56242
0.26282

Port4
0.13068

0
3.1758e-22
6.3517e-23
6.7909e-18
0.75932

0
0.11

Port
1.50
4.18
3.90
1.33
3.88
3.79

INTC
MSFT
ORCL
YHOO

0
0.27667
$2.5714 \mathrm{e}-39$
0

0
0
0
0.17175
0.055436
$-4.3905 e-34$
0
0
$1.4291 \mathrm{e}-22$
0
0

References

For a complete list of references for the PortfolioCVaR object and portfolio optimization tools, see "Portfolio Optimization" on page A-12.

PortfolioCVaR

See Also plotFrontier

Related - "Constructing the PortfolioCVaR Object" on page 5-28
Examples
- Class Attributes
- Property Attributes
Concepts - "Portfolio Optimization Theory" on page 5-2
- "PortfolioCVaR Object" on page 5-17

Superclasses AbstractPortfolio
Purpose
Description

PortfolioMAD object for mean-absolute deviation portfolio optimization and analysis

The PortfolioMAD object implements mean-absolute deviation portfolio optimization, where MAD stands for "mean-absolute deviation." This type of portfolio optimization is usually called MAD portfolio optimization and is derived from the abstract portfolio optimization class AbstractPortfolio. This object implements all methods in the AbstractPortfolio class along with methods that are specific to MAD portfolio optimization.

The main workflow for MAD portfolio optimization is to create an instance of a PortfolioMAD object that completely specifies a portfolio optimization problem and to operate on the PortfolioMAD object to obtain and analyze efficient portfolios. A MAD optimization problem is completely specified with these three elements:

- A universe of assets with scenarios of asset total returns for a period of interest, where scenarios comprise a collection of samples from the underlying probability distribution for asset total returns. This collection must be sufficiently large for asymptotic convergence of sample statistics. Note that asset return moments and related statistics are derived exclusively from the scenarios.
- A portfolio set that specifies the set of portfolio choices in terms of a collection of constraints.
- A model for portfolio return and risk proxies, which, for MAD optimization, is either the gross or net mean of portfolio returns and the mean-absolute deviation of portfolio returns.

After these three elements have been specified unambiguously, it is possible to solve and analyze MAD portfolio optimization problems.
The simplest MAD portfolio optimization problem has:

- Scenarios of asset total returns

PortfolioMAD

- A requirement that all portfolios have nonnegative weights that sum to 1 (the summation constraint is known as a budget constraint)
- Built-in models for portfolio return and risk proxies that use scenarios of asset total returns

Given scenarios of asset returns in the variable AssetScenarios, this problem is completely specified by:

```
p = PortfolioMAD('Scenarios', AssetScenarios, 'LowerBound', 0, 'Budget', 1);
or equivalently by:
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
```

To confirm that this is a valid portfolio optimization problem, the following method determines whether the set of PortfolioMAD choices is bounded (a necessary condition for portfolio optimization).
[lb, ub, isbounded] = p.estimateBounds;
Given the problem specified in the PortfolioMAD object p, the efficient frontier for this problem can be displayed with:
p.plotFrontier;
and efficient portfolios can be obtained with:
pwgt = p.estimateFrontier;
Construction $p=$ PortfolioMAD constructs an empty PortfolioMAD object for mean-absolute deviation portfolio optimization and analysis. You can then add elements to the PortfolioMAD object using the supported add and set methods. For more information, see "Constructing the PortfolioCVaR Object" on page 5-28.
p = PortfolioMAD(Name, Value) constructs a PortfolioMAD object for mean-absolute deviation portfolio optimization and analysis with
additional options specified by one or more Name, Value pair arguments. Name is a property name and Value is its corresponding value. Name must appear inside single quotes (' '). You can specify several name-value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
p = PortfolioMAD (p, Name, Value) constructs a PortfolioMAD object for mean-absolute deviation portfolio optimization and analysis using a previously constructed PortfolioMAD object p with additional options specified by one or more Name, Value pair arguments.

Input Arguments

p

(Optional) Previously constructed MAD portfolio object (p).

Property Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Alnequality

Linear inequality constraint matrix ([] or [matrix]).
Default: []

AssetList

Names or symbols of assets in the universe ([] or [vector cell of strings]).

Default: []

bInequality

Linear inequality constraint vector ([] or [vector]).

PortfolioMAD

Default: []

BuyCost

Proportional purchase costs ([] or vector).
Default: []

BuyTurnover

Turnover constraint on purchases ([] or [scalar]).
Default: []

GroupA

Group A weights to be bounded by weights in group B ([] or [matrix]).

Default: []

GroupB

Group B weights ([] or [matrix]).
Default: []

GroupMatrix

Group membership matrix ([] or [matrix]).
Default: []

InitPort

Initial portfolio ([] or vector).
Default: []
LowerBudget

Lower-bound budget constraint ([] or [scalar]).
Default: []

LowerGroup

Lower-bound group constraint ([] or [vector]).
Default: []

LowerRatio

Minimum ratio of allocations between groups A and B ([] or [vector]).

Default: []

Name

Name for instance of the PortfolioMAD object ([] or [string]).
Default: []

NumAssets

Number of assets in the universe ([] or [integer scalar]).

Note Scenarios cannot be assigned directly to a PortfolioMAD object. Scenarios must always be set through either the PortfolioMAD constructor, the setScenarios method, or any of the scenario simulation methods. For more information, see "Constructing the PortfolioMAD Object" on page 6-27.

Default: []

NumScenarios

PortfolioMAD

Number of scenarios ([] or [integer scalar]).
Default: []

RiskFreeRate

Risk-free rate ([] or scalar).
Default: []

SellCost

Proportional sales costs ([] or vector).
Default: []

SellTurnover

Turnover constraint on sales ([] or [scalar]).
Default: []

Turnover

Turnover constraint ([] or [scalar]).
Default: []

UpperBound

Upper-bound constraint ([] or [vector]).
Default: []

UpperBudget

Upper-bound budget constraint ([] or [scalar]).
Default: []

UpperGroup

Upper-bound group constraint ([] or [vector]).
Default: []

UpperRatio

Maximum ratio of allocations between groups A and B ([] or [vector]).

Default: []

Properties

The following properties are from the PortfolioCVaR class.

BuyCost

Proportional purchase costs ([] or vector).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

BuyTurnover

Turnover constraint on purchases ([] or [scalar]).
Attributes:

SetAccess public
GetAccess public

NumScenarios

Number of scenarios ([] or [integer scalar]).
Attributes:

PortfolioMAD

SetAccess privateGetAccesspublic
RiskFreeRate
Risk-free rate ([] or scalar).
Attributes:
SetAccess public
GetAccess public
SellCostProportional sales costs ([] or vector).
Attributes:
SetAccess public
GetAccess public
SellTurnoverTurnover constraint on sales ([] or [scalar]).Attributes:
SetAccess public
GetAccess public
Turnover
Turnover constraint ([] or [scalar]).
Attributes:

```
SetAccess
GetAccess
public
public
```

The following properties are inherited from the AbstractPortfolio class.

AEquality

Linear equality constraint matrix ([] or [matrix]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

Alnequality

Linear inequality constraint matrix ([] or [matrix]).
Attributes:

SetAccess public
GetAccess public

AssetList

Names or symbols of assets in the universe ([] or [vector cell of strings]).
Attributes:
SetAccess public
GetAccess public

bEquality

Linear equality constraint vector ([] or [vector]).
Attributes:

PortfolioMAD

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

bInequality

Linear inequality constraint vector ([] or [vector]).
Attributes:
SetAccess public

GetAccess public

GroupA

Group A weights to be bounded by group B ([] or [matrix]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

GroupB

Group B weights ([] or [matrix]).
Attributes:
SetAccess public
GetAccess public

GroupMatrix

Group membership matrix ([] or [matrix]).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

InitPort

Initial portfolio ([] or vector).
Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

LowerBound

Lower-bound constraint ([] or [vector]).
Attributes:
SetAccess public

GetAccess public

LowerBudget

Lower-bound budget constraint ([] or [scalar]).
Attributes:
SetAccess public
GetAccess public

LowerGroup

Lower-bound group constraint ([] or [vector]).
Attributes:

SetAccess public
GetAccess public

LowerRatio

Minimum ratio of allocations between groups A and B ([] or [vector]).

PortfolioMAD

Attributes:

| SetAccess | public |
| :--- | :--- |
| GetAccess | public |

Name

Name for instance of the PortfolioMAD object ([] or [string]).
Attributes:
SetAccess
public
GetAccess public

NumAssets

Number of assets in the universe ([] or [integer scalar]).
Attributes:

SetAccess public
GetAccess public

UpperBound

Upper-bound constraint ([] or [vector]).
Attributes:
SetAccess public
GetAccess public

UpperBudget

Upper-bound budget constraint ([] or [scalar]).
Attributes:

SetAccess
public
GetAccess
public

UpperGroup

Upper-bound group constraint ([] or [vector]).
Attributes:
SetAccess public
GetAccess public

UpperRatio

Maximum ratio of allocations between groups A and B ([] or [vector]).

Attributes:

SetAccess
GetAccess
public
public

Inherited Methods

The following methods are inherited from the AbstractPortfolio class. addEquality Add equality constraints for portfolio weights to existing constraints.

Add group ratio constraints for portfolio weights to existing constraints.
Add group constraints for portfolio weights to existing constraints.

PortfolioMAD

(Continued)

| addInequality | Add inequality constraints for
 portfolio weights to existing
 constraints. |
| :--- | :--- |
| checkFeasibility | Determine if portfolios are members
 of the set of feasible portfolios. |
| estimateBounds | Determine if the set of feasible
 portfolios is nonempty and bounded. |
| estimateFrontier | Estimate portfolios on the entire
 efficient frontier. |
| estimateFrontierByReturn | Estimate portfolios on the efficient
 frontier with targeted returns or
 return proxies. |
| estimateFrontierByRisk | Estimate portfolios on the efficient
 frontier with targeted risks or risk
 proxies. |
| estimateFrontierLimits | Estimate portfolios at the extreme
 ends of the efficient frontier (minimum
 risk and maximum return). |
| estimatePortReturn | Estimate the return or return proxy
 for specified portfolios. |
| estimatePortRisk | Estimate the risk or risk proxy for
 specified portfolios. |
| getBounds | Get lower and upper bounds from the
 object. |
| getBudget | Get lower and upper budget
 constraints from the object. |
| getEquality | Get equality constraint matrix and
 vector from the object. |

(Continued)

\(\left.\left.$$
\begin{array}{ll}\text { getGroupRatio } & \begin{array}{l}\text { Get base matrix, comparison matrix, } \\
\text { and lower and upper bounds for group } \\
\text { ratio constraints from the object. }\end{array} \\
\text { getGroups } & \begin{array}{l}\text { Get group matrix and lower and upper } \\
\text { bounds for group constraints from the } \\
\text { object. }\end{array} \\
\text { Get inequality constraint matrix and } \\
\text { vector from the object. }\end{array}
$$\right\} \begin{array}{l}Plot efficient frontier and optionally

obtain risks and returns for portfolios

on the efficient frontier.\end{array}\right\}\)| Set up a list of asset names and |
| :--- |
| symbols to be associated with assets |
| setAssetList |
| in the universe. |

PortfolioMAD

(Continued)

| setInitPort | Set up initial portfolio weights. |
| :--- | :--- |
| setOptions | Set up hidden control properties in
 object (not implemented). |
| setSolver | Set up solver to estimate efficient
 portfolios. |

Methods

$\left.\left.\begin{array}{ll}\text { estimatePortStd } & \begin{array}{l}\text { Estimate standard deviation of } \\ \text { portfolio returns. }\end{array} \\ \text { estimateScenarioMoments } & \begin{array}{l}\text { Estimate mean and covariance of } \\ \text { scenarios. }\end{array} \\ \text { simulateNormalScenariosByDatianulate multivariate normal asset } \\ \text { return scenarios from data. }\end{array}\right\} \begin{array}{l}\text { simulateNormalScenariosByMcsiemtlsate multivariate normal asset } \\ \text { return scenarios from a mean and } \\ \text { covariance of asset returns. } \\ \text { Get purchase and sales proportional } \\ \text { transaction costs from the object. }\end{array}\right\}$

PortfolioMAD

(Continued)

```
setScenarios Set asset returns scenarios by direct
    matrix.
setTurnover
Set up average turnover constraints for portfolio weights.
```


Definitions

Copy
Semantics

Examples

Mean-Absolute Deviation Portfolio Optimization

```
For more information on the theory and definition of mean-absolute deviation (MAD) optimization supported by portfolio optimization tools in Financial Toolbox, see "Portfolio Optimization Theory" on page 5-2.
Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.
```


Construct a PortfolioMAD Object and Determine Efficient Portfolios

```
Create efficient portfolios:
```

```
load CAPMuniverse
```

load CAPMuniverse
p = PortfolioMAD('AssetList',Assets(1:12));
p = p.simulateNormalScenariosByData(Data(:,1:12), 20000 ,'missingdata
p = p.setDefaultConstraints;
p.plotFrontier;
pwgt = p.estimateFrontier(5);
pnames = cell(1,5);
for i = 1:5
pnames{i} = sprintf('Port%d',i);
end

```

\section*{PortfolioMAD}
```

Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);
disp(Blotter);

```
\begin{tabular}{lrrr} 
& \multicolumn{1}{l}{ Port1 } & \multicolumn{1}{l}{ Port2 } & \multicolumn{1}{l}{ Port3 } \\
AAPL & 0.030236 & 0.075387 & 0.11278 \\
AMZN & \(1.3779 \mathrm{e}-21\) & \(4.1095 \mathrm{e}-22\) & 0 \\
CSCO & \(1.1191 \mathrm{e}-21\) & 0 & 0 \\
DELL & 0.0089659 & 0 & \(1.448 \mathrm{e}-23\) \\
EBAY & \(1.8419 \mathrm{e}-21\) & \(6.0466 \mathrm{e}-23\) & \(1.9096 \mathrm{e}-23\) \\
GOOG & 0.16117 & 0.35201 & 0.54486 \\
HPQ & 0.056551 & 0.024037 & \(1.3748 \mathrm{e}-22\) \\
IBM & 0.45905 & 0.37891 & 0.29383 \\
INTC & \(3.0271 \mathrm{e}-23\) & \(1.1001 \mathrm{e}-21\) & 0 \\
MSFT & 0.28403 & 0.16966 & 0.048527 \\
ORCL & \(7.3311 \mathrm{e}-23\) & 0 & 0 \\
YHOO & \(1.0366 \mathrm{e}-21\) & \(5.5383 \mathrm{e}-23\) & \(8.1727 \mathrm{e}-24\)
\end{tabular}
Port4
0.13456
\(5.0348 e-34\)
\(-1.5573 e-34\)
\(-3.5968 e-33\)
\(-3.7809 e-33\)
0.74888
\(-2.3622 e-34\)
0.11656
\(5.7778 e-34\)
\(4.7601 e-18\)
\(3.5627 e-17\)
0


References \(\quad \begin{aligned} & \text { For a complete list of references for the PortfolioMAD object and } \\ & \text { portfolio optimization tools, see "Portfolio Optimization" on page A-12. }\end{aligned}\)
See Also plotFrontier

Related Examples
- "Constructing the PortfolioMAD Object" on page 6-27
- Class Attributes
- Property Attributes

\section*{PortfolioMAD}

Concepts
- "Portfolio Optimization Theory" on page 6-2
- "PortfolioMAD Object" on page 6-17

\section*{Purpose}

Portfolios on constrained efficient frontier

\author{
Syntax
}

Arguments
\(\left.\begin{array}{ll}\text { ExpReturn } & \begin{array}{l}1 \text { by number of assets (NASSETS) vector } \\ \text { specifying the expected (mean) return of each } \\ \text { asset. }\end{array} \\ \text { ExpCovariance } & \begin{array}{l}\text { NASSETS-by-NASSETS matrix specifying the } \\ \text { covariance of the asset returns. }\end{array} \\ \text { NumPorts } & \begin{array}{l}\text { (Optional) Number of portfolios generated } \\ \text { along the efficient frontier. Returns are equally } \\ \text { spaced between the maximum possible return } \\ \text { and the minimum risk point. If NumPorts is } \\ \text { empty (entered as [ ]), computes 10 equally } \\ \text { spaced points. }\end{array} \\ \text { (Optional) Expected return of each portfolio. A }\end{array}\right\}\)
- 'maxiter' - Maximum number of iterations before termination of algorithm. The default is 100000 .
- 'tiebreak' - Method to break ties for pivot selection. This value pair applies only to 'lcprog' algorithm. The default is 'first'. Options are:
- 'first' - Selects pivot with lowest index.
- 'last' - Selects pivot with highest index.
- 'random' - Selects pivot at random.
- 'tolcon' - Tolerance for constraint violations. This value pair applies only to 'lcprog' algorithm. The default is 1.0e-6.
- 'tolpiv' - Pivot value below which a number is considered to be zero. This value pair applies only to 'lcprog' algorithm. The default is \(1.0 \mathrm{e}-9\).

\section*{Description}
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, NumPorts, PortReturn, ConSet, varargin) returns the mean-variance efficient frontier with user-specified covariance, returns, and asset constraints (ConSet). Given a collection of NASSETS risky assets, computes a portfolio of asset investment weights that minimize the risk for given values of the expected return. The portfolio risk is minimized subject to constraints on the total portfolio value, the individual asset minimum and maximum allocation, the asset group minimum and maximum allocation, or the asset group-to-group comparison.

PortRisk is an NPORTS-by-1 vector of the standard deviation of each portfolio.

PortReturn is an NPORTS-by-1 vector of the expected return of each portfolio.
PortWts is an NPORTS-by-NASSETS matrix of weights allocated to each asset. Each row represents a portfolio. The total of all weights in a portfolio is 1.

If portopt is invoked without output arguments, it returns a plot of the efficient frontier.

\section*{Examples}

\section*{Plot the Risk-Return Efficient Frontier}

This example shows how to plot the risk-return efficient frontier of portfolios allocated among three assets. Connect 20 portfolios along the frontier having evenly spaced returns. By default, choose among portfolios without short-selling and scale the value of the portfolio to 1 .
```

ExpReturn = [0.1 0.2 0.15];
ExpCovariance = [l0.005 -0.010 0.004
-0.010 0.040 -0.002
0.004 -0.002 0.023];
NumPorts = 20;
portopt(ExpReturn, ExpCovariance, NumPorts)

```


Return the two efficient portfolios that have returns of \(16 \%\) and \(17 \%\). Limit to portfolios that have at least \(20 \%\) of the allocation in the first asset, and cap the total value in the first and third assets at \(50 \%\) of the portfolio.
\[
\left.\begin{array}{l}
\text { ExpReturn }=\left[\begin{array}{llll}
0.1 & 0.20 .15
\end{array}\right] ; \\
\text { ExpCovariance }=\left[\begin{array}{ccc}
0.005 & -0.010 & 0.004 \\
-0.010 & 0.040 & -0.002 \\
& 0.004 & -0.002
\end{array}\right) 0.023
\end{array}\right] ; ~ \$
\]
```

PortReturn = [0.16
0.17];
NumAssets = 3;
AssetMin = [0.20 NaN NaN];
Group = [11 0 1];
GroupMax = 0.50;
ConSet = portcons('Default', NumAssets, 'AssetLims', AssetMin,...
NaN,'GroupLims', Group, NaN, GroupMax);
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance, [], PortReturn, ConSet)
PortRisk =
0.0919
0.1138

```

\section*{PortReturn =}
```

0.1600
0.1700
PortWts =

| 0.3000 | 0.5000 | 0.2000 |
| :--- | :--- | :--- |
| 0.2000 | 0.6000 | 0.2000 |

```
```

See Also ewstats | frontier | frontcon | portstats | portcons
Related
Examples

- "Portfolio Construction Examples" on page 3-5
- "Portfolio Selection and Risk Aversion" on page 3-8
- "Constraint Specification" on page 3-12
- "Active Returns and Tracking Error Efficient Frontier" on page 3-20

```

\section*{Concepts \\ - "Analyzing Portfolios" on page 3-2}
```

- "Portfolio Optimization Functions" on page 3-3

```

\author{
Purpose Randomized portfolio risks, returns, and weights \\ Syntax [PortRisk, PortReturn, PortWts] = portrand(Asset, Return, Points, Method) \\ portrand(Asset, Return, Points, Method)
}

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Asset & Matrix of time series data. Each row is an observation and each column represents a single security. \\
\hline Return & (Optional) Row vector where each column represents the rate of return for the corresponding security in Asset. By default, Return is computed by taking the average value of each column of Asset. \\
\hline Points & (Optional) Scalar that specifies how many random points should be generated. Default \(=1000\). \\
\hline Method & \begin{tabular}{l}
(Optional) A string that specifies how to generate random portfolios from the set of portfolios with two possible methods: \\
- 'uniform' - Uniformly-distributed portfolio weights (default method). The 'uniform' method generates portfolio weights that are uniformly-distributed on the set of portfolio weights. \\
- 'geometric' - Concentrated portfolio weights around the geometric center of the set of portfolios. The 'geometric' method generates portfolio weights that are concentrated around the geometric center of the set of portfolio weights.
\end{tabular} \\
\hline
\end{tabular}

Note The 'uniform' and 'geometric' methods generate weights that are distributed symmetrically around the geometric center of the set of weights.

\section*{Description}
[PortRisk, PortReturn, PortWts] = portrand(Asset, Return, Points, Method) returns the risks, rates of return, and weights of random portfolio configurations.
\begin{tabular}{ll} 
PortRisk & Points-by-1 vector of standard deviations. \\
PortReturn & \begin{tabular}{l} 
Points-by-1 vector of expected rates of return.
\end{tabular} \\
PortWts & \begin{tabular}{l} 
Points by number of securities matrix of asset \\
weights. Each row of PortWts is a different portfolio \\
configuration.
\end{tabular}
\end{tabular}
portrand(Asset, Return, Points, Method) plots the points representing each portfolio configuration. It does not return any data to the MATLAB workspace.

Note Portfolios are selected at random from a set of portfolios such that portfolio weights are nonnegative and sum to 1 . The sample mean and covariance of asset returns are used to compute portfolio returns for each random portfolio.

\author{
References Bodie, Kane, and Marcus, Investments, Chapter 7.
}

See Also frontcon | portror | portvar

\section*{Purpose Portfolio expected rate of return}

Syntax \(\quad\) R \(=\) portror (Return, Weight)
Arguments

Description \(\quad\) R \(=\) portror (Return, Weight) returns a 1-by-M vector for the expected rate of return.

\section*{Examples Portfolio Expected Rate of Return}

This example shows a portfolio that is made up of two assets ABC and XYZ having expected rates of return of \(10 \%\) and \(14 \%\), respectively. If \(40 \%\) percent of the portfolio's funds are allocated to asset ABC and the remaining funds are allocated to asset XYZ, the portfolio's expected rate of return is:
```

r = portror([.1 .14],[.4 .6])

```

\section*{\(r=\)}
0.1240

\section*{References Bodie, Kane, and Marcus, Investments, Chapter 7.}

See Also frontcon | portrand | portvar

Purpose Monte Carlo simulation of correlated asset returns
```

Syntax RetSeries = portsim(ExpReturn, ExpCovariance, NumObs, RetIntervals,
NumSim, Method)

```

\section*{Arguments}
\begin{tabular}{ll} 
ExpReturn & \begin{tabular}{l}
1 by number of assets (NASSETS) vector \\
specifying the expected (mean) return of each \\
asset.
\end{tabular} \\
ExpCovariance & \begin{tabular}{l} 
NASSETS-by-NASSETS matrix of asset \\
return covariances. ExpCovariance \\
must be symmetric and positive \\
semidefinite (no negative eigenvalues). \\
The standard deviations of the returns are
\end{tabular} \\
ExpSigma = sqrt (diag (ExpCovariance)). \\
NumObs & \begin{tabular}{l} 
Positive scalar integer indicating the number \\
of consecutive observations in the return time \\
series. If NumObs is entered as the empty matrix
\end{tabular} \\
[ ], the length of RetIntervals is used.
\end{tabular}
NumSim \begin{tabular}{l} 
(Optional) Positive scalar integer indicating \\
the number of simulated sample paths \\
(realizations) of NUMOBS observations. Default = \\
1 (single realization of NUMOBS correlated asset \\
returns). \\
Method \begin{tabular}{l} 
(Optional) String indicating the type of Monte \\
Carlo simulation: \\
\\
'Exact' (default) generates correlated asset \\
returns in which the sample mean and \\
covariance match the input mean (ExpReturn) \\
and covariance (ExpCovariance) specifications. \\
'Expected ' generates correlated asset returns \\
in which the sample mean and covariance \\
are statistically equal to the input mean and \\
covariance specifications. (The expected value \\
of the sample mean and covariance are equal \\
to the input mean (ExpReturn) and covariance \\
(ExpCovariance) specifications.)
\end{tabular} \\
\begin{tabular}{l} 
For either method the sample mean and \\
covariance returned are appropriately scaled
\end{tabular} \\
by RetIntervals.
\end{tabular}
portsim simulates correlated returns of NASSETS assets over NUMOBS consecutive observation intervals. Asset returns are simulated as the proportional increments of constant drift, constant volatility stochastic processes, thereby approximating continuous-time geometric Brownian motion.

RetSeries is a NUMOBS-by-NASSETS-by-NUMSIM three-dimensional array of correlated, normally distributed, proportional asset returns. Asset returns over an interval of length \(d t\) are given by
\[
\frac{d S}{S}=\mu d t+\sigma d z=\mu d t+\sigma \varepsilon \sqrt{d t}
\]
where \(S\) is the asset price, \(\mu\) is the expected rate of return, \(\sigma\) is the volatility of the asset price, and \(\varepsilon\) represents a random drawing from a standardized normal distribution.

\section*{Notes}
- When Method is 'Exact', the sample mean and covariance of all realizations (scaled by RetIntervals) match the input mean and covariance. When the returns are subsequently converted to asset prices, all terminal prices for a given asset are in close agreement. Although all realizations are drawn independently, they produce similar terminal asset prices. Set Method to 'Expected' to avoid this behavior.
- The returns from the portfolios in PortWts are given by PortReturn = PortWts * RetSeries(:,:,1)', where PortWts is a matrix in which each row contains the asset allocations of a portfolio. Each row of PortReturn corresponds to one of the portfolios identified in PortWts, and each column corresponds to one of the observations taken from the first realization (the first plane) in RetSeries. See portopt and portstats for portfolio specification and optimization.

\section*{Examples}

\section*{Distinction Between Simulation Methods}

This example shows the distinction between the Exact and Expected methods of simulation.

Consider a portfolio of five assets with the following expected returns, standard deviations, and correlation matrix based on daily asset returns (where ExpReturn and Sigmas are divided by 100 to convert percentages to returns).
\[
\text { ExpReturn }=\left[\begin{array}{lllll}
0.0246 & 0.0189 & 0.0273 & 0.0141 & 0.0311
\end{array}\right] / 100 ;
\]
\begin{tabular}{lrrrrl} 
Sigmas & \(=[0.9509\) & 1.4259 & 1.5227 & 1.1062 & \(1.0877] / 100 ;\) \\
Correlations \(=\) & {\([1.0000\)} & 0.4403 & 0.4735 & 0.4334 & 0.6855 \\
& 0.4403 & 1.0000 & 0.7597 & 0.7809 & 0.4343 \\
& 0.4735 & 0.7597 & 1.0000 & 0.6978 & 0.4926 \\
& 0.4334 & 0.7809 & 0.6978 & 1.0000 & 0.4289 \\
& 0.6855 & 0.4343 & 0.4926 & 0.4289 & \(1.0000] ;\)
\end{tabular}

Convert the correlations and standard deviations to a covariance matrix.
ExpCovariance = corr2cov(Sigmas, Correlations)

ExpCovariance =
1.0e-03 *
\begin{tabular}{lllll}
0.0904 & 0.0597 & 0.0686 & 0.0456 & 0.0709 \\
0.0597 & 0.2033 & 0.1649 & 0.1232 & 0.0674 \\
0.0686 & 0.1649 & 0.2319 & 0.1175 & 0.0816 \\
0.0456 & 0.1232 & 0.1175 & 0.1224 & 0.0516 \\
0.0709 & 0.0674 & 0.0816 & 0.0516 & 0.1183
\end{tabular}

Assume that there are 252 trading days in a calendar year, and simulate two sample paths (realizations) of daily returns over a two-year period. Since ExpReturn and ExpCovariance are expressed daily, set RetIntervals = 1.
```

StartPrice = 100;
NumObs = 504; % two calendar years of daily returns
NumSim = 2;
RetIntervals = 1; % one trading day
NumAssets = 5;

```

To illustrate the distinction between methods, simulate two paths by each method, starting with the same random number state.
```

rng('default');
RetExact = portsim(ExpReturn, ExpCovariance, NumObs, ...
RetIntervals, NumSim, 'Exact');
randn('state',0);
RetExpected = portsim(ExpReturn, ExpCovariance, NumObs, ...
RetIntervals, NumSim, 'Expected');

```

Compare the mean and covariance of RetExact with the inputs (ExpReturn and ExpCovariance), you will observe that they are almost identical.

At this point, RetExact and RetExpected are both 504 -by- 5 -by- 2 arrays. Now assume an equally weighted portfolio formed from the five assets and create arrays of portfolio returns in which each column represents the portfolio return of the corresponding sample path of the simulated returns of the five assets. The portfolio arrays PortRetExact and PortRetExpected are 504-by-2 matrices.
```

Weights = ones(NumAssets, 1)/NumAssets;
PortRetExact = zeros(NumObs, NumSim);
PortRetExpected = zeros(NumObs, NumSim);
for i = 1:NumSim
PortRetExact(:,i) = RetExact(:,:,i) * Weights;
PortRetExpected(:,i) = RetExpected(:,:,i) * Weights;
end

```

Finally, convert the simulated portfolio returns to prices and plot the data. In particular, note that since the Exact method matches expected return and covariance, the terminal portfolio prices are virtually identical for each sample path. This is not true for the Expected simulation method. Although this example examines portfolios, the same methods apply to individual assets as well. Thus, Exact simulation is most appropriate when unique paths are required to reach the same terminal prices.
```

PortExact = ret2tick(PortRetExact, ...
repmat(StartPrice,1,NumSim));

```
```

PortExpected = ret2tick(PortRetExpected, ...
repmat(StartPrice,1,NumSim));
subplot(2,1,1), plot(PortExact, '-r')
ylabel('Portfolio Prices')
title('Exact Method')
subplot(2,1,2), plot(PortExpected, '-b')
ylabel('Portfolio Prices')
title('Expected Method')

```

Exact Method


Expected Method


\section*{Interaction Between ExpReturn, ExpCovariance and RetIntervals}

This example shows the interplay among ExpReturn, ExpCovariance, and RetIntervals. Recall that portsim simulates correlated asset returns over an interval of length \(d t\), given by the equation
\[
\frac{d S}{S}=\mu d t+\sigma d z=\mu d t+\sigma \varepsilon \sqrt{d t}
\]
where \(S\) is the asset price, \(\mu\) is the expected rate of return, \(\sigma\) is the volatility of the asset price, and \(\varepsilon\) represents a random drawing from a standardized normal distribution.

The time increment \(d t\) is determined by the optional input RetIntervals, either as an explicit input argument or as a unit time increment by default. Regardless, the periodicity of ExpReturn, ExpCovariance and RetIntervals must be consistent. For example, if ExpReturn and ExpCovariance are annualized, then RetIntervals must be in years. This point is often misunderstood.

To illustrate the interplay among ExpReturn, ExpCovariance, and RetIntervals, consider a portfolio of five assets with the following expected returns, standard deviations, and correlation matrix based on daily asset returns.
\begin{tabular}{|c|c|c|c|c|c|}
\hline ExpReturn & \(=[0.0246\) & 0.0189 & 0.0273 & 0.0141 & 0.0311]/100; \\
\hline Sigmas & \(=[0.9509\) & 1.4259 & 1.5227 & 1.1062 & 1.0877]/100; \\
\hline \multirow[t]{5}{*}{Correlations} & \(=[1.0000\) & 0.4403 & 0.4735 & 0.4334 & 0.6855 \\
\hline & 0.4403 & 1.0000 & 0.7597 & 0.7809 & 0.4343 \\
\hline & 0.4735 & 0.7597 & 1.0000 & 0.6978 & 0.4926 \\
\hline & 0.4334 & 0.7809 & 0.6978 & 1.0000 & 0.4289 \\
\hline & 0.6855 & 0.4343 & 0.4926 & 0.4289 & 1.0000]; \\
\hline
\end{tabular}

Convert the correlations and standard deviations to a covariance matrix of daily returns.
```

ExpCovariance = corr2cov(Sigmas, Correlations);

```

Assume 252 trading days per calendar year, and simulate a single sample path of daily returns over a four-year period. Since the ExpReturn and ExpCovariance inputs are expressed daily, set RetIntervals = 1.
```

StartPrice = 100;
NumObs = 1008; % four calendar years of daily returns
RetIntervals = 1; % one trading day
NumAssets = length(ExpReturn);
randn('state',0);
RetSeries1 = portsim(ExpReturn, ExpCovariance, NumObs, ...
RetIntervals, 1, 'Expected');

```

Now annualize the daily data, thereby changing the periodicity of the data, by multiplying ExpReturn and ExpCovariance by 252 and dividing RetIntervals by 252 (RetIntervals = \(1 / 252\) of a year). Resetting the random number generator to its initial state, you can reproduce the results.
```

rng('default');
RetSeries2 = portsim(ExpReturn*252, ExpCovariance*252, ...
NumObs, RetIntervals/252, 1, 'Expected');

```

Assume an equally weighted portfolio and compute portfolio returns associated with each simulated return series.
```

Weights = ones(NumAssets, 1)/NumAssets;
PortRet1 = RetSeries2 * Weights;
PortRet2 = RetSeries2 * Weights;

```

Comparison of the data reveals that PortRet1 and PortRet2 are identical.

\section*{Univariate Geometric Brownian Motion}

This example shows how to simulates a univariate geometric Brownian motion process. It is based on an example found in Hull, Options, Futures, and Other Derivatives, 5th Edition (see example 12.2 on page 236). In addition to verifying Hull's example, it also graphically illustrates the lognormal property of terminal stock prices by a rather large Monte Carlo simulation.

Assume you own a stock with an initial price of \(\$ 20\), an annualized expected return of \(20 \%\) and volatility of \(40 \%\). Simulate the daily price process for this stock over the course of one full calendar year (252 trading days).
```

StartPrice = 20;
ExpReturn = 0.2;
ExpCovariance = 0.4^2;
NumObs = 252;
NumSim = 10000;
RetIntervals = 1/252;

```

Note that RetIntervals is expressed in years, consistent with the fact that ExpReturn and ExpCovariance are annualized. Also, note that ExpCovariance is entered as a variance rather than the more familiar standard deviation (volatility).

Set the random number generator state, and simulate 10,000 trials (realizations) of stock returns over a full calendar year of 252 trading days.
```

rng('default');
RetSeries = squeeze(portsim(ExpReturn, ExpCovariance, NumObs, ...
RetIntervals, NumSim, 'Expected'));

```

The squeeze function reformats the output array of simulated returns from a 252 -by-1-by-10000 array to more convenient 252 -by- 10000 array. (Recall that portsim is fundamentally a multivariate simulation engine).

In accordance with Hull's equations 12.4 and 12.5 on page 236
\[
\begin{aligned}
E\left(S_{T}\right) & =S_{0} e^{\mu T} \\
\operatorname{var}\left(S_{T}\right) & =S_{0}{ }^{2} e^{2 \mu T}\left(e^{\sigma^{2} T}-1\right)
\end{aligned}
\]
convert the simulated return series to a price series and compute the sample mean and the variance of the terminal stock prices.
```

StockPrices = ret2tick(RetSeries, repmat(StartPrice, 1, NumSim));
SampMean = mean(StockPrices(end,:))
SampVar = var(StockPrices(end,:))
SampMean
24.4489

```
SampVar =
    101.4243

Compare these values with the values you obtain by using Hull's equations.
```

ExpValue = StartPrice*exp(ExpReturn)
ExpVar = ...
StartPrice*StartPrice*exp(2*ExpReturn)*(exp((ExpCovariance)) - 1)

```
ExpValue =
    24.4281

ExpVar =

These results are very close to the results shown in Hull's example 12.2.
Display the sample density function of the terminal stock price after one calendar year. From the sample density function, the lognormal distribution of terminal stock prices is apparent.
```

[count, BinCenter] = hist(StockPrices(end,:), 30);
figure
bar(BinCenter, count/sum(count), 1, 'r')
xlabel('Terminal Stock Price')
ylabel('Probability')
title('Lognormal Terminal Stock Prices')

```


References
Hull, John, C., Options, Futures, and Other Derivatives, Upper Saddle River, New Jersey: Prentice-Hall. 5th ed., 2003, ISBN 0-13-009056-5.

See Also
ewstats | portopt | portstats | randn | ret2tick | squeeze

Purpose Portfolio expected return and risk
```

Syntax [PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance, PortWts)

```

\section*{Arguments}

\section*{Description}
[PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance, PortWts) computes the expected rate of return and risk for a portfolio of assets.

PortRisk is an NPORTS-by-1 vector of the standard deviation of each portfolio.

PortReturn is an NPORTS-by-1 vector of the expected return of each portfolio.

\section*{Examples Computes the Expected Rate of Return and Risk for a Portfolio of Assets}

This example shows how to calculate the expected rate of return and risk for a portfolio of assets.

ExpReturn = [0.1 0.2 0.15];
\begin{tabular}{rlrr} 
ExpCovariance \(=\) & {\(\left[\begin{array}{rrr}0.0100 & -0.0061 & 0.0042 \\
& -0.0061 & 0.0400 \\
& 0.0042 & -0.0252 \\
& 0.0225\end{array}\right] ;\)}
\end{tabular}
```

PortWts=[0.4 0.2 0.4; 0.2 0.4 0.2];
[PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance,...
PortWts)

```
PortRisk =
    0.0560
    0.0550

\section*{PortReturn =}
0.1400
0.1300

\section*{See Also frontcon}

\section*{Related Examples}

\section*{Concepts}
- "Portfolio Construction Examples" on page 3-5
- "Portfolio Selection and Risk Aversion" on page 3-8
- "Constraint Specification" on page 3-12
- "Active Returns and Tracking Error Efficient Frontier" on page 3-20
- "Analyzing Portfolios" on page 3-2
- "Portfolio Optimization Functions" on page 3-3

Purpose Variance for portfolio of assets
Syntax \(\quad V=\operatorname{portvar}(\) Asset, Weight)
Arguments
\begin{tabular}{ll} 
Description & \begin{tabular}{l}
\(V=\) portvar (Asset, Weight) returns the portfolio variance as an \\
R-by-Avector (assuming Weight is a matrix of size \(R\)-by-N) with each row \\
representing a variance calculation for each row of Weight.
\end{tabular} \\
\begin{tabular}{l}
\(V=\) portvar (Asset) assigns each security an equal weight when \\
calculating the portfolio variance.
\end{tabular} \\
References & Bodie, Kane, and Marcus, Investments, Chapter 7. \\
See Also \(\quad\) frontcon | portrand | portror
\end{tabular}

\section*{Purpose Portfolio value at risk (VaR)}
```

Syntax
ValueAtRisk = portvrisk(PortReturn, PortRisk, RiskThreshold,
PortValue)

```

\section*{Arguments}
\begin{tabular}{ll} 
PortReturn & \begin{tabular}{l} 
Number of portfolios (NPORTS)-by-1 vector or \\
scalar of the expected return of each portfolio \\
over the period.
\end{tabular} \\
PortRisk & \begin{tabular}{l} 
NPORTS-by-1 vector or scalar of the standard \\
deviation of each portfolio over the period.
\end{tabular} \\
RiskThreshold & \begin{tabular}{l} 
(Optional) NPORTS-by-1 vector or scalar \\
specifying the loss probability. Default = 0.05 \\
(5\%).
\end{tabular} \\
PortValue & \begin{tabular}{l} 
(Optional) NPORTS-by-1 vector or scalar \\
Specifying the total value of asset portfolio. \\
Default \(=1\).
\end{tabular}
\end{tabular}

\section*{Description}

ValueAtRisk = portvrisk(PortReturn, PortRisk, RiskThreshold, PortValue) returns the maximum potential loss in the value of a portfolio over one period of time, given the loss probability level RiskThreshold.

ValueAtRisk is an NPORTS-by- 1 vector of the estimated maximum loss in the portfolio, predicted with a confidence probability of 1RiskThreshold. portvrisk calculates ValueAtRisk using a normal distribution.

If PortValue is not given, ValueAtRisk is presented on a per-unit basis. \(A\) value of 0 indicates no losses.

\section*{portvrisk}

\section*{Examples Compute the Maximum Potential Loss in the Value of a Portfolio Over One Period of Time}

This example shows how to return the maximum potential loss in the value of a portfolio over one period of time, where ValueAtRisk is computed on a per-unit basis.
```

PortReturn = 0.29/100;
PortRisk = 3.08/100;
RiskThreshold = [0.01;0.05;0.10];
PortValue = 1;
ValueAtRisk = portvrisk(PortReturn,PortRisk,...
RiskThreshold,PortValue)

```

ValueAtRisk =
0.0688
0.0478
0.0366

\section*{Compute the Maximum Potential Loss in the Value of a Portfolio Over One Period of Time Using Actual Values}

This example shows how to return the maximum potential loss in the value of a portfolio over one period of time, where ValueAtRisk is computed with actual values.
```

PortReturn = [0.29/100;0.30/100];
PortRisk = [3.08/100;3.15/100];
RiskThreshold = 0.10;
PortValue = [1000000000;500000000];
ValueAtRisk = portvrisk(PortReturn,PortRisk,...
RiskThreshold,PortValue)

```

\title{
\(1.0 \mathrm{e}+07\) * \\ 3.6572 \\ 1.8684
}

See Also frontcon | portopt

\section*{posvolidx}

Purpose Positive volume index
Syntax
```

pvi = posvolidx(closep, tvolume, initpvi)
pvi = posvolidx([closep tvolume], initpvi)
pvits = posvolidx(tsobj)
pvits = posvolidx(tsobj, initpvi, ParameterName, ParameterValue, ...)

```

\section*{Arguments}
\begin{tabular}{ll} 
closep & Closing price (vector). \\
tvolume & Volume traded (vector). \\
initpvi & (Optional) Initial value for positive volume index. \\
& Default \(=100\). \\
tsobj & Financial time series object.
\end{tabular}

\section*{Description}
pvi = posvolidx(closep, tvolume, initpvi) calculates the positive volume index from a set of stock closing prices (closep) and volume traded (tvolume) data. pvi is a vector representing the positive volume index. If initpvi is specified, posvolidx uses that value instead of the default (100).
pvi = posvolidx([closep tvolume], initpvi) accepts a two-column matrix, the first column representing the closing prices (closep) and the second representing the volume traded (tvolume). If initpvi is specified, posvolidx uses that value instead of the default (100).
pvits = posvolidx(tsobj) calculates the positive volume index from the financial time series object tsobj. The object must contain, at least, the series Close and Volume. The pvits output is a financial time series object with dates similar to tsobj and a data series named PVI. The initial value for the positive volume index is arbitrarily set to 100 .
pvits = posvolidx(tsobj, initpvi, ParameterName, ParameterValue, ...) accepts parameter name/parameter value pairs as input. These pairs specify the name(s) for the required data series
if it is different from the expected default name(s). Valid parameter names are
- CloseName: closing prices series name
- VolumeName: volume traded series name

Parameter values are the strings that represent the valid parameter names.

\section*{Examples Compute the Positive Volume Index}

This example shows how to compute the positive volume index for Disney stock and plot the results.
```

load disney.mat
dis_PosVol = posvolidx(dis)
plot(dis_PosVol)
title('Positive Volume Index for Disney')

```
dis_PosVol =
    desc: NegVolIdx: Walt Disney Company (DIS)
    freq: Unknown (0)
    'dates: (782)' 'PVI: (782)
    '29-Mar-1996' [ 100]
    '01-Apr-1996' [ 100]
    '02-Apr-1996' [ 100.9618]
    '03-Apr-1996' [ 100.9618]
    '04-Apr-1996' [ 100.0018]
    '05-Apr-1996' [ 100]
    '08-Apr-1996' [ 100]
    '09-Apr-1996' [ 100]
    '10-Apr-1996' [ 95.6809]
    '11-Apr-1996' [ 94.8934]
    '12-Apr-1996' [ 94.8934]
    '15-Apr-1996' [ 94.8934]
\begin{tabular}{|c|c|}
\hline '16-Apr-1996' & \(94.8934]\) \\
\hline '17-Apr-1996' & \(95.0855]\) \\
\hline '18-Apr-1996' & \(95.0855]\) \\
\hline '19-Apr-1996' & \(95.4666]\) \\
\hline '22-Apr-1996' & \(94.7089]\) \\
\hline '23-Apr-1996' & 93.3842] \\
\hline '24-Apr-1996' & 91.6828] \\
\hline '25-Apr-1996' & 91.6828] \\
\hline '26-Apr-1996' & 91.6828] \\
\hline '29-Apr-1996' & 91.6828] \\
\hline '30-Apr-1996' & \(91.6828]\) \\
\hline '01-May-1996' & \(89.4647]\) \\
\hline '02-May-1996' & \(89.4647]\) \\
\hline '03-May-1996' & \(87.9751]\) \\
\hline '06-May-1996' & 87.9751] \\
\hline '07-May-1996' & \(87.9751]\) \\
\hline '08-May-1996' & 87.4195] \\
\hline '09-May-1996' & 87.4195] \\
\hline '10-May-1996' & 87.4195] \\
\hline '13-May-1996' & 89.6326] \\
\hline '14-May-1996' & 89.6326] \\
\hline '15-May-1996' & \(88.8950]\) \\
\hline '16-May-1996' & \(88.8950]\) \\
\hline '17-May-1996' & 89.6281] \\
\hline '20-May-1996' & 89.6281] \\
\hline '21-May-1996' & \(89.6281]\) \\
\hline '22-May-1996' & 89.6281] \\
\hline '23-May-1996' & \(88.5569]\) \\
\hline '24-May-1996' & 89.2682] \\
\hline '27-May-1996' & 100] \\
\hline '28-May-1996' & [ 100] \\
\hline '29-May-1996' & \(97.3875]\) \\
\hline '30-May-1996' & \(97.3875]\) \\
\hline '31-May-1996' & 97.3875] \\
\hline '03-Jun-1996' & \(97.3875]\) \\
\hline '04-Jun-1996' & 96.9858] \\
\hline '05-Jun-1996' & \(96.9858]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 06-Jun-1996 \({ }^{\text {' }}\) & \(100.1887]\) \\
\hline '07-Jun-1996' & 100.1887 ] \\
\hline '10-Jun-1996' & 100.1887 ] \\
\hline '11-Jun-1996' & \(100.1887]\) \\
\hline '12-Jun-1996' & \(100.1887]\) \\
\hline '13-Jun-1996' & 100.1887 ] \\
\hline '14-Jun-1996' & \(99.7847]\) \\
\hline '17-Jun-1996' & \(99.7847]\) \\
\hline '18-Jun-1996' & \(98.1721]\) \\
\hline '19-Jun-1996' & \(98.1721]\) \\
\hline '20-Jun-1996' & \(99.1743]\) \\
\hline '21-Jun-1996' & 101.1835] \\
\hline '24-Jun-1996' & 101.1835] \\
\hline '25-Jun-1996' & 102.8073] \\
\hline '26-Jun-1996' & 102.8073] \\
\hline '27-Jun-1996' & \(102.8073]\) \\
\hline '28-Jun-1996' & 102.3969] \\
\hline '01-Jul-1996' & \(102.3969]\) \\
\hline '02-Jul-1996' & 100.7536 ] \\
\hline '03-Jul-1996' & 100.3391 ] \\
\hline '04-Jul-1996' & 100] \\
\hline '05-Jul-1996' & 100] \\
\hline '08-Jul-1996' & \(99.3684]\) \\
\hline '09-Jul-1996' & \(96.8422]\) \\
\hline '10-Jul-1996' & \(96.8422]\) \\
\hline '11-Jul-1996' & 93.5083] \\
\hline '12-Jul-1996' & 93.5083] \\
\hline '15-Jul-1996' & \(90.2233]\) \\
\hline '16-Jul-1996' & \(92.0730]\) \\
\hline '17-Jul-1996' & \(92.0730]\) \\
\hline '18-Jul-1996' & \(92.0730]\) \\
\hline '19-Jul-1996' & \(92.0730]\) \\
\hline '22-Jul-1996' & \(89.8680]\) \\
\hline '23-Jul-1996' & \(89.0640]\) \\
\hline '24-Jul-1996' & \(87.2587]\) \\
\hline '25-Jul-1996' & \(87.2587]\) \\
\hline '26-Jul-1996' & 86.8591] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '29-Jul-1996' & [ & \(86.8591]\) \\
\hline '30-Jul-1996' & [ & \(86.8591]\) \\
\hline '31-Jul-1996' & [ & 87.4486] \\
\hline '01-Aug-1996' & [ & 87.4486] \\
\hline '02-Aug-1996' & [ & 87.4486] \\
\hline '05-Aug-1996' & [ & 87.4486] \\
\hline '06-Aug-1996' & [ & 88.3879] \\
\hline '07-Aug-1996' & [ & \(88.3879]\) \\
\hline '08-Aug-1996' & [ & \(87.0661]\) \\
\hline '09-Aug-1996' & [ & 87.0661] \\
\hline '12-Aug-1996' & [ & 89.1602] \\
\hline '13-Aug-1996' & [ & \(89.1602]\) \\
\hline '14-Aug-1996' & [ & \(89.3539]\) \\
\hline '15-Aug-1996' & [ & 89.3539] \\
\hline '16-Aug-1996' & [ & 89.7383] \\
\hline '19-Aug-1996' & [ & 89.7383] \\
\hline '20-Aug-1996' & [ & \(88.5779]\) \\
\hline '21-Aug-1996' & [ & \(88.5779]\) \\
\hline '22-Aug-1996' & [ & \(88.9590]\) \\
\hline '23-Aug-1996' & [ & \(88.9590]\) \\
\hline '26-Aug-1996' & [ & \(90.4860]\) \\
\hline '27-Aug-1996' & [ & \(90.4860]\) \\
\hline '28-Aug-1996' & [ & \(90.4860]\) \\
\hline '29-Aug-1996' & [ & \(89.7077]\) \\
\hline '30-Aug-1996' & [ & \(88.5427]\) \\
\hline '02-Sep-1996' & [ & 100] \\
\hline '03-Sep-1996' & [ & 100] \\
\hline '04-Sep-1996' & [ & 100] \\
\hline '05-Sep-1996' & [ & \(98.0177]\) \\
\hline '06-Sep-1996' & [ & 100.4388] \\
\hline '09-Sep-1996' & [ & 100.4388] \\
\hline '10-Sep-1996' & [ & \(99.7922]\) \\
\hline '11-Sep-1996' & [ & 99.7922] \\
\hline '12-Sep-1996' & [ & 102.9838] \\
\hline '13-Sep-1996' & [ & 102.9838] \\
\hline '16-Sep-1996' & [ & 102.9838 ] \\
\hline '17-Sep-1996' & [ & 104.4811] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline '18-Sep-1996' & 104.4811] \\
\hline '19-Sep-1996' & 108.3191] \\
\hline '20-Sep-1996' & 107.6795 ] \\
\hline '23-Sep-1996' & 107.6795] \\
\hline '24-Sep-1996' & \(106.2020]\) \\
\hline '25-Sep-1996' & \(106.2020]\) \\
\hline '26-Sep-1996' & 105.1438 ] \\
\hline '27-Sep-1996' & 105.1438 ] \\
\hline '30-Sep-1996' & 105.5593] \\
\hline '01-0ct-1996' & \(105.5593]\) \\
\hline '02-0ct-1996' & 106.1927] \\
\hline '03-0ct-1996' & 106.1927] \\
\hline '04-0ct-1996' & \(107.8732]\) \\
\hline '07-0ct-1996' & \(107.8732]\) \\
\hline '08-0ct-1996' & \(107.0304]\) \\
\hline '09-0ct-1996' & \(106.8235]\) \\
\hline '10-0ct-1996' & \(106.8235]\) \\
\hline '11-0ct-1996' & \(106.8235]\) \\
\hline '14-0ct-1996' & 107.0338 ] \\
\hline '15-0ct-1996' & \(107.4495]\) \\
\hline '16-0ct-1996' & 109.3272 ] \\
\hline '17-0ct-1996' & 109.3272 ] \\
\hline '18-Oct-1996' & \(109.5396]\) \\
\hline '21-0ct-1996' & 110.5911] \\
\hline '22-Oct-1996' & 112.2747] \\
\hline '23-0ct-1996' & \(111.4354]\) \\
\hline '24-0ct-1996' & \(111.4354]\) \\
\hline '25-0ct-1996' & \(111.4354]\) \\
\hline '28-0ct-1996' & 111.6474 ] \\
\hline '29-0ct-1996' & 111.6474 ] \\
\hline '30-0ct-1996' & \(111.6474]\) \\
\hline '31-0ct-1996' & \(112.0710]\) \\
\hline '01-Nov-1996' & \(111.4330]\) \\
\hline '04-Nov-1996' & 113.7757] \\
\hline '05-Nov-1996' & 115.0517] \\
\hline '06-Nov-1996' & 115.0517 ] \\
\hline '07-Nov-1996' & 117.1761] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ' 08-Nov-1996' & 117.1761] \\
\hline '11-Nov-1996' & [ 120.3835] \\
\hline '12-Nov-1996' & \(121.2406]\) \\
\hline '13-Nov-1996' & [ 121.2406] \\
\hline '14-Nov-1996' & [ 121.2406] \\
\hline '15-Nov-1996' & \(124.0267]\) \\
\hline '18-Nov-1996' & [ 124.0267] \\
\hline '19-Nov-1996' & \(123.3751]\) \\
\hline '20-Nov-1996' & [ 124.6783] \\
\hline '21-Nov-1996' & [ 124.6783] \\
\hline '22-Nov-1996' & [ 124.4661] \\
\hline '25-Nov-1996' & [ 126.8371] \\
\hline '26-Nov-1996' & [ 131.1496] \\
\hline '27-Nov-1996' & [ 131.1496] \\
\hline '28-Nov-1996' & [ 100] \\
\hline ' 29-Nov-1996' & [ 100] \\
\hline '02-Dec-1996' & [ 100] \\
\hline '03-Dec-1996' & [ 100] \\
\hline '04-Dec-1996' & [ 100.1753] \\
\hline '05-Dec-1996' & 100.1753 ] \\
\hline '06-Dec-1996' & [ 99.6526] \\
\hline '09-Dec-1996' & [ 99.6526] \\
\hline '10-Dec-1996' & [ 99.6526] \\
\hline '11-Dec-1996' & [ 98.1222] \\
\hline '12-Dec-1996' & [ 95.5714] \\
\hline '13-Dec-1996' & [ 95.5714] \\
\hline '16-Dec-1996' & [ 95.5714] \\
\hline '17-Dec-1996' & [ 97.6378] \\
\hline '18-Dec-1996' & [ 97.6378] \\
\hline '19-Dec-1996' & [ 97.6378] \\
\hline '20-Dec-1996' & [ 97.6378] \\
\hline '23-Dec-1996' & [ 97.6378] \\
\hline '24-Dec-1996' & [ 97.6378] \\
\hline '25-Dec-1996' & [ 100] \\
\hline '26-Dec-1996' & [ 100] \\
\hline '27-Dec-1996' & 100] \\
\hline '30-Dec-1996' & \(98.2442]\) \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline 14-Apr-1997' & \(99.6571]\) \\
\hline 15-Apr-1997' & \(99.6571]\) \\
\hline 16-Apr-1997' & \(102.0165]\) \\
\hline 17-Apr-1997' & 102.0165] \\
\hline '18-Apr-1997' & \(103.3619]\) \\
\hline 21-Apr-1997' & \(103.5316]\) \\
\hline 22-Apr-1997' & \(105.3821]\) \\
\hline 23-Apr-1997' & 106.5618] \\
\hline 24-Apr-1997' & 106.5618] \\
\hline 25-Apr-1997' & \(106.5618]\) \\
\hline 28-Apr-1997' & \(106.5618]\) \\
\hline 29-Apr-1997' & \(110.8531]\) \\
\hline 30-Apr-1997' & \(112.2245]\) \\
\hline 01-May-1997' & \(112.2245]\) \\
\hline 02-May-1997' & \(111.3600]\) \\
\hline 05-May-1997' & \(113.7832]\) \\
\hline 06-May-1997' & 113.9578] \\
\hline 07-May-1997' & 113.9578] \\
\hline 08-May-1997' & 115.0195] \\
\hline 09-May-1997' & 115.0195] \\
\hline 12-May-1997' & 118.1659] \\
\hline 13-May-1997' & 118.1659] \\
\hline 14-May-1997' & 118.1659] \\
\hline 15-May-1997' & 118.1659] \\
\hline 16-May-1997' & 115.3128] \\
\hline '19-May-1997' & 115.3128] \\
\hline '20-May-1997' & 115.6577 ] \\
\hline '21-May-1997' & 115.6577 ] \\
\hline 22-May-1997 \({ }^{\prime}\) & 115.6577 ] \\
\hline 23-May-1997 \({ }^{\prime}\) & 115.6577 ] \\
\hline 26-May-1997' & 100] \\
\hline '27-May-1997 ' & 100] \\
\hline 28-May-1997' & 100] \\
\hline '29-May-1997' & \(98.8089]\) \\
\hline '30-May-1997' & 97.6179] \\
\hline '02-Jun-1997' & 97.6179] \\
\hline 03-Jun-1997' & 97.31731 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline 25-Jul-1997' & \(102.6285]\) \\
\hline 28-Jul-1997' & \(102.6285]\) \\
\hline 29-Jul-1997' & \(103.2704]\) \\
\hline 30-Jul-1997' & 104.3182] \\
\hline 31-Jul-1997' & \(104.3182]\) \\
\hline 01-Aug-1997' & \(103.9930]\) \\
\hline 04-Aug-1997' & \(103.9930]\) \\
\hline 05-Aug-1997 ' & \(103.9930]\) \\
\hline 06-Aug-1997' & \(103.9930]\) \\
\hline 07-Aug-1997 ' & \(101.8195]\) \\
\hline 08-Aug-1997' & 101.9006] \\
\hline 11-Aug-1997' & \(102.4642]\) \\
\hline 12-Aug-1997' & \(100.8544]\) \\
\hline 13-Aug-1997' & \(100.8544]\) \\
\hline 14-Aug-1997' & \(100.8544]\) \\
\hline 15-Aug-1997' & \(97.9775]\) \\
\hline '18-Aug-1997' & \(100.5322]\) \\
\hline 19-Aug-1997' & \(101.8939]\) \\
\hline 20-Aug-1997' & \(101.8939]\) \\
\hline 21-Aug-1997' & \(101.8939]\) \\
\hline 22-Aug-1997' & 100.9251 ] \\
\hline 25-Aug-1997' & 100.9251 ] \\
\hline 26-Aug-1997' & \(99.8773]\) \\
\hline 27-Aug-1997 ' & 101.1687] \\
\hline 28-Aug-1997' & \(100.2021]\) \\
\hline 29-Aug-1997 ' & \(100.2021]\) \\
\hline 01-Sep-1997' & 100] \\
\hline 02-Sep-1997' & 100] \\
\hline 03-Sep-1997' & 100.7139] \\
\hline 04-Sep-1997' & 98.3405] \\
\hline 05-Sep-1997' & 98.3405] \\
\hline 08-Sep-1997' & 98.3405] \\
\hline 09-Sep-1997' & 99.1323] \\
\hline '10-Sep-1997' & \(99.1323]\) \\
\hline 11-Sep-1997' & \(96.5810]\) \\
\hline '12-Sep-1997' & \(96.5810]\) \\
\hline 15-Sep-1997' & \(96.5810]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline '16-Sep-1997' & \(98.9271]\) \\
\hline '17-Sep-1997' & \(98.9271]\) \\
\hline '18-Sep-1997' & \(99.4765]\) \\
\hline '19-Sep-1997' & \(99.4765]\) \\
\hline '22-Sep-1997' & \(99.4765]\) \\
\hline '23-Sep-1997' & \(99.4765]\) \\
\hline '24-Sep-1997' & \(99.0836]\) \\
\hline '25-Sep-1997' & \(100.2660]\) \\
\hline '26-Sep-1997' & \(100.1073]\) \\
\hline ' 29-Sep-1997' & 100.1073 ] \\
\hline '30-Sep-1997' & 100.8882 ] \\
\hline '01-Oct-1997' & \(102.6075]\) \\
\hline '02-Oct-1997' & 104.8786] \\
\hline 03-0ct-1997' & \(105.5806]\) \\
\hline 06-0ct-1997' & \(105.5806]\) \\
\hline 07-Oct-1997' & \(108.3626]\) \\
\hline 08-Oct-1997' & \(106.8514]\) \\
\hline 09-Oct-1997' & \(106.8514]\) \\
\hline 10-Oct-1997' & \(106.2155]\) \\
\hline '13-0ct-1997' & \(106.2155]\) \\
\hline '14-Oct-1997' & \(108.4936]\) \\
\hline '15-0ct-1997' & \(109.0396]\) \\
\hline '16-0ct-1997' & 109.0396] \\
\hline '17-Oct-1997' & \(106.0703]\) \\
\hline '20-0ct-1997' & 106.0703] \\
\hline '21-Oct-1997' & \(106.0703]\) \\
\hline '22-0ct-1997' & 105.2794 ] \\
\hline '23-0ct-1997' & 104.3288] \\
\hline '24-0ct-1997' & 104.4049] \\
\hline '27-0ct-1997' & 104.4049] \\
\hline '28-0ct-1997' & \(110.5321]\) \\
\hline '29-0ct-1997' & 110.5321 ] \\
\hline '30-0ct-1997' & \(110.5321]\) \\
\hline '31-Oct-1997' & 110.5321] \\
\hline '03-Nov-1997' & 114.7267] \\
\hline '04-Nov-1997' & 114.7267] \\
\hline '05-Nov-1997' & 113.2303] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 06-Nov-1997' & 114.8943] \\
\hline 07-Nov-1997' & 114.8105] \\
\hline 10-Nov-1997' & 114.8105] \\
\hline '11-Nov-1997' & 114.8105] \\
\hline '12-Nov-1997' & \(110.8896]\) \\
\hline 13-Nov-1997' & \(113.0563]\) \\
\hline '14-Nov-1997' & 115.7276] \\
\hline 17-Nov-1997' & 118.8155] \\
\hline 18-Nov-1997' & 119.1479] \\
\hline 19-Nov-1997' & 119.1479] \\
\hline 20-Nov-1997' & 118.2521] \\
\hline 21 -Nov-1997' & \(123.5487]\) \\
\hline '24-Nov-1997' & 123.5487 ] \\
\hline 25-Nov-1997' & 123.5487 ] \\
\hline '26-Nov-1997' & \(123.5487]\) \\
\hline 27-Nov-1997' & 100] \\
\hline 28-Nov-1997' & 100] \\
\hline 01-Dec-1997' & \(102.8313]\) \\
\hline 02-Dec-1997' & 101.7127] \\
\hline 03-Dec-1997' & \(101.7127]\) \\
\hline 04-Dec-1997' & \(99.9784]\) \\
\hline 05-Dec-1997' & \(99.9784]\) \\
\hline 08-Dec-1997' & \(99.9784]\) \\
\hline 09-Dec-1997' & 99.9149] \\
\hline 10-Dec-1997 \({ }^{\prime}\) & \(99.9149]\) \\
\hline '11-Dec-1997' & \(98.8509]\) \\
\hline 12-Dec-1997' & \(99.7136]\) \\
\hline '15-Dec-1997' & 103.4423] \\
\hline 16-Dec-1997' & 103.4423] \\
\hline '17-Dec-1997' & 103.4423] \\
\hline 18-Dec-1997' & 103.9776] \\
\hline '19-Dec-1997' & 102.3749] \\
\hline '22-Dec-1997' & 102.3749] \\
\hline '23-Dec-1997' & 102.5074] \\
\hline '24-Dec-1997' & \(102.5074]\) \\
\hline '25-Dec-1997' & 100] \\
\hline '26-Dec-1997' & 100] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '29-Dec-1997' & [ & 102.0355] \\
\hline '30-Dec-1997' & [ & \(104.1404]\) \\
\hline '31-Dec-1997' & [ & 104.1404] \\
\hline '01-Jan-1998' & [ & 100] \\
\hline '02-Jan-1998' & [ & 100] \\
\hline '05-Jan-1998' & [ & \(99.1869]\) \\
\hline '06-Jan-1998' & [ & \(99.1869]\) \\
\hline '07-Jan-1998' & [ & \(99.2474]\) \\
\hline '08-Jan-1998' & [ & \(99.2474]\) \\
\hline '09-Jan-1998' & [ & \(97.5315]\) \\
\hline '12-Jan-1998' & [ & \(95.9435]\) \\
\hline '13-Jan-1998' & [ & 95.9435] \\
\hline '14-Jan-1998' & [ & \(95.9435]\) \\
\hline '15-Jan-1998' & [ & 95.9435] \\
\hline '16-Jan-1998' & [ & \(96.3827]\) \\
\hline '19-Jan-1998' & [ & 100] \\
\hline '20-Jan-1998' & [ & 100] \\
\hline '21-Jan-1998' & [ & 100] \\
\hline '22-Jan-1998' & [ & 100] \\
\hline '23-Jan-1998' & [ & 102.2010] \\
\hline '26-Jan-1998' & [ & 102.2010] \\
\hline '27-Jan-1998' & [ & 107.8435] \\
\hline '28-Jan-1998' & [ & \(107.8435]\) \\
\hline '29-Jan-1998' & [ & 107.8435] \\
\hline '30-Jan-1998' & [ & \(107.8435]\) \\
\hline '02-Feb-1998' & [ & 109.7991] \\
\hline '03-Feb-1998' & [ & 109.7991] \\
\hline '04-Feb-1998' & [ & 109.7991] \\
\hline '05-Feb-1998' & [ & 109.7991] \\
\hline '06-Feb-1998' & [ & 109.7991] \\
\hline '09-Feb-1998' & [ & 108.9131] \\
\hline '10-Feb-1998' & [ & \(109.7354]\) \\
\hline '11-Feb-1998' & [ & 112.0747] \\
\hline '12-Feb-1998' & [ & 111.3768] \\
\hline '13-Feb-1998' & [ & 111.3768] \\
\hline '16-Feb-1998' & [ & 100] \\
\hline '17-Feb-1998' & [ & 100] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '18-Feb-1998' & [ & 100] \\
\hline '19-Feb-1998' & [ & \(99.4020]\) \\
\hline '20-Feb-1998' & [ & \(99.5639]\) \\
\hline '23-Feb-1998' & [ & \(99.2923]\) \\
\hline '24-Feb-1998' & [ & \(97.4433]\) \\
\hline '25-Feb-1998' & [ & \(97.4433]\) \\
\hline '26-Feb-1998' & [ & \(96.3502]\) \\
\hline '27-Feb-1998' & [ & \(98.0477]\) \\
\hline '02-Mar-1998' & [ & \(98.0477]\) \\
\hline '03-Mar-1998' & [ & \(98.0477]\) \\
\hline '04-Mar-1998' & [ & \(95.2614]\) \\
\hline '05-Mar-1998' & [ & \(95.2614]\) \\
\hline '06-Mar-1998' & [ & \(95.2614]\) \\
\hline '09-Mar-1998' & [ & \(95.2614]\) \\
\hline '10-Mar-1998' & [ & \(95.2614]\) \\
\hline '11-Mar-1998' & [ & \(94.3059]\) \\
\hline '12-Mar-1998' & [ & \(94.3059]\) \\
\hline '13-Mar-1998' & [ & \(94.3059]\) \\
\hline '16-Mar-1998' & [ & 97.5328] \\
\hline '17-Mar-1998' & [ & \(97.5328]\) \\
\hline '18-Mar-1998' & [ & \(97.5328]\) \\
\hline '19-Mar-1998' & [ & \(96.6248]\) \\
\hline '20-Mar-1998' & [ & \(97.2492]\) \\
\hline '23-Mar-1998' & [ & 93.6119] \\
\hline '24-Mar-1998' & [ & \(97.1919]\) \\
\hline '25-Mar-1998' & [ & 97.1919] \\
\hline '26-Mar-1998' & [ & 97.1919] \\
\hline '27-Mar-1998' & [ & 97.1919] \\
\hline '30-Mar-1998' & [ & 97.1919] \\
\hline '31-Mar-1998' & [ & \(98.2830]\) \\
\hline '01-Apr-1998' & [ & \(97.5924]\) \\
\hline '02-Apr-1998' & [ & \(100.2413]\) \\
\hline '03-Apr-1998' & [ & \(100.2413]\) \\
\hline '06-Apr-1998' & [ & \(100.2413]\) \\
\hline '07-Apr-1998' & [ & \(100.2413]\) \\
\hline '08-Apr-1998' & [ & \(99.4300]\) \\
\hline '09-Apr-1998' & [ & 101.3452] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '10-Apr-1998' & [ & 100] \\
\hline '13-Apr-1998' & [ & 100] \\
\hline '14-Apr-1998' & [ & 102.6639] \\
\hline '15-Apr-1998' & [ & 103.0041] \\
\hline '16-Apr-1998' & [ & 103.0041] \\
\hline '17-Apr-1998' & [ & 104.2705] \\
\hline '20-Apr-1998' & [ & 106.1080] \\
\hline '21-Apr-1998' & [ & 106.1080] \\
\hline '22-Apr-1998' & [ & 106.1080] \\
\hline '23-Apr-1998' & [ & 107.5744] \\
\hline '24-Apr-1998' & [ & \(107.5744]\) \\
\hline '27-Apr-1998' & [ & \(107.5744]\) \\
\hline '28-Apr-1998' & [ & 109.8533] \\
\hline '29-Apr-1998' & [ & 109.8533] \\
\hline '30-Apr-1998' & [ & 110.4625] \\
\hline '01-May-1998' & [ & 110.4625] \\
\hline '04-May-1998' & [ & \(111.7254]\) \\
\hline '05-May-1998' & [ & \(111.7254]\) \\
\hline '06-May-1998' & [ & 111.7254] \\
\hline '07-May-1998' & [ & 107.2263] \\
\hline '08-May-1998' & [ & 107.2263] \\
\hline '11-May-1998' & [ & 107.2263] \\
\hline '12-May-1998' & [ & 107.2263] \\
\hline '13-May-1998' & [ & 106.9447] \\
\hline '14-May-1998' & [ & 104.7463] \\
\hline '15-May-1998' & [ & \(99.8376]\) \\
\hline '18-May-1998' & [ & \(99.8376]\) \\
\hline '19-May-1998' & [ & \(99.8376]\) \\
\hline '20-May-1998' & [ & \(99.8376]\) \\
\hline '21-May-1998' & [ & \(99.8376]\) \\
\hline '22-May-1998' & [ & \(99.8376]\) \\
\hline '25-May-1998' & [ & 100] \\
\hline '26-May-1998' & [ & 100] \\
\hline '27-May-1998' & [ & 102.2926] \\
\hline '28-May-1998' & [ & 102.2926] \\
\hline '29-May-1998' & [ & 102.2926] \\
\hline '01-Jun-1998' & [ & 100.0923] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 02-Jun-1998 \({ }^{\text {' }}\) & \(99.4691]\) \\
\hline '03-Jun-1998' & \(99.4691]\) \\
\hline '04-Jun-1998' & \(99.4691]\) \\
\hline '05-Jun-1998' & 104.1210] \\
\hline '08-Jun-1998' & \(104.1210]\) \\
\hline '09-Jun-1998' & 104.1210] \\
\hline '10-Jun-1998' & 105.7432 ] \\
\hline '11-Jun-1998' & \(105.7432]\) \\
\hline '12-Jun-1998' & 104.7193] \\
\hline '15-Jun-1998' & 104.7193] \\
\hline '16-Jun-1998' & \(105.3605]\) \\
\hline '17-Jun-1998' & 106.7019] \\
\hline '18-Jun-1998' & 104.5429] \\
\hline '19-Jun-1998' & \(100.4012]\) \\
\hline '22-Jun-1998' & \(100.4012]\) \\
\hline '23-Jun-1998' & \(100.4012]\) \\
\hline '24-Jun-1998' & 100.4012 ] \\
\hline '25-Jun-1998' & 100.2329] \\
\hline '26-Jun-1998' & 100.2329] \\
\hline '29-Jun-1998' & 102.6711] \\
\hline '30-Jun-1998' & \(95.3019]\) \\
\hline '01-Jul-1998' & \(95.3019]\) \\
\hline '02-Jul-1998' & \(95.3019]\) \\
\hline '03-Jul-1998' & 100] \\
\hline '06-Jul-1998' & 100] \\
\hline '07-Jul-1998' & \(100.7088]\) \\
\hline '08-Jul-1998' & \(102.3617]\) \\
\hline '09-Jul-1998' & \(104.9020]\) \\
\hline '10-Jul-1998' & 108.0916] \\
\hline '13-Jul-1998' & 108.0916] \\
\hline '14-Jul-1998' & 108.0916] \\
\hline '15-Jul-1998' & \(108.0916]\) \\
\hline '16-Jul-1998' & \(107.9214]\) \\
\hline '17-Jul-1998' & \(107.9214]\) \\
\hline '20-Jul-1998' & \(105.6959]\) \\
\hline '21-Jul-1998' & \(103.4675]\) \\
\hline '22-Jul-1998' & \(101.9272]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '23-Jul-1998' & & 101.9272 ] \\
\hline '24-Jul-1998' & & 101.9272] \\
\hline '27-Jul-1998' & & 101.9272] \\
\hline '28-Jul-1998' & & \(98.4484]\) \\
\hline '29-Jul-1998' & & \(98.4484]\) \\
\hline '30-Jul-1998' & & \(98.2759]\) \\
\hline '31-Jul-1998' & & \(98.2759]\) \\
\hline '03-Aug-1998' & & 98.9893 ] \\
\hline '04-Aug-1998' & & \(93.6386]\) \\
\hline '05-Aug-1998' & & \(95.7789]\) \\
\hline '06-Aug-1998' & & \(95.7789]\) \\
\hline '07-Aug-1998' & & \(95.7789]\) \\
\hline '10-Aug-1998' & & \(95.7789]\) \\
\hline '11-Aug-1998' & & 93.5938 ] \\
\hline '12-Aug-1998' & & 93.5938 ] \\
\hline '13-Aug-1998' & & 93.5938 ] \\
\hline '14-Aug-1998' & & 93.5938 ] \\
\hline '17-Aug-1998' & & 93.5938 ] \\
\hline '18-Aug-1998' & & 97.4088 ] \\
\hline '19-Aug-1998' & & 97.4088 ] \\
\hline '20-Aug-1998' & & 97.4088 ] \\
\hline '21-Aug-1998' & & \(96.3224]\) \\
\hline '24-Aug-1998' & & \(96.3224]\) \\
\hline '25-Aug-1998' & & \(98.3080]\) \\
\hline '26-Aug-1998' & & 95.2401 ] \\
\hline ' 27-Aug-1998' & & \(91.6326]\) \\
\hline '28-Aug-1998' & & \(91.6326]\) \\
\hline '31-Aug-1998' & & 82.0968] \\
\hline '01-Sep-1998' & & \(90.8845]\) \\
\hline '02-Sep-1998' & & \(90.8845]\) \\
\hline '03-Sep-1998' & & \(90.8845]\) \\
\hline '04-Sep-1998' & & 90.6823 ] \\
\hline '07-Sep-1998' & & 100] \\
\hline '08-Sep-1998' & [ & 100] \\
\hline '09-Sep-1998' & & 100] \\
\hline '10-Sep-1998' & [ & 100] \\
\hline '11-Sep-1998' & [ & 100] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '14-Sep-1998' & [ & \(94.6732]\) \\
\hline '15-Sep-1998' & [ & \(94.6732]\) \\
\hline '16-Sep-1998' & [ & \(94.6732]\) \\
\hline '17-Sep-1998' & [ & \(94.6732]\) \\
\hline '18-Sep-1998' & [ & 94.2125] \\
\hline '21-Sep-1998' & [ & \(94.2125]\) \\
\hline '22-Sep-1998' & [ & 94.4488] \\
\hline '23-Sep-1998' & [ & 100.5421 ] \\
\hline '24-Sep-1998' & [ & \(100.5421]\) \\
\hline '25-Sep-1998' & [ & \(100.5421]\) \\
\hline '28-Sep-1998' & [ & \(100.5421]\) \\
\hline '29-Sep-1998' & [ & 99.5846] \\
\hline '30-Sep-1998' & [ & \(97.1907]\) \\
\hline '01-Oct-1998' & [ & 95.5169] \\
\hline '02-0ct-1998' & [ & \(95.5169]\) \\
\hline '05-0ct-1998' & [ & \(95.5169]\) \\
\hline '06-0ct-1998' & [ & \(96.7060]\) \\
\hline '07-Oct-1998' & [ & \(96.7060]\) \\
\hline '08-Oct-1998' & [ & \(91.1296]\) \\
\hline '09-0ct-1998' & [ & 91.1296] \\
\hline '12-Oct-1998' & [ & 91.1296] \\
\hline '13-0ct-1998' & [ & \(94.3677]\) \\
\hline '14-0ct-1998' & [ & \(90.2045]\) \\
\hline '15-0ct-1998' & [ & \(90.2045]\) \\
\hline '16-0ct-1998' & [ & 88.8971] \\
\hline '19-0ct-1998' & [ & \(88.8971]\) \\
\hline '20-0ct-1998' & [ & \(92.3080]\) \\
\hline '21-0ct-1998' & [ & \(92.3080]\) \\
\hline '22-0ct-1998' & [ & \(92.3080]\) \\
\hline '23-0ct-1998' & [ & 91.4838] \\
\hline '26-0ct-1998' & [ & 91.4838] \\
\hline '27-0ct-1998' & [ & \(87.8000]\) \\
\hline '28-0ct-1998' & [ & \(87.8000]\) \\
\hline '29-0ct-1998' & [ & \(87.8000]\) \\
\hline '30-0ct-1998' & [ & \(88.8321]\) \\
\hline '02-Nov-1998' & [ & \(95.0152]\) \\
\hline '03-Nov-1998' & [ & 97.4885] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 04-Nov-1998 \({ }^{\text {' }}\) & [ & 94.3953] \\
\hline 05-Nov-1998' & [ & 94.3953] \\
\hline 06-Nov-1998' & [ & 94.3953] \\
\hline 09-Nov-1998' & & \(94.3953]\) \\
\hline 10-Nov-1998' & & \(92.1985]\) \\
\hline 11-Nov-1998' & & 92.1985] \\
\hline 12-Nov-1998' & & \(92.1985]\) \\
\hline 13-Nov-1998' & & \(94.0126]\) \\
\hline 16-Nov-1998' & & \(93.8124]\) \\
\hline 17-Nov-1998' & & \(93.8124]\) \\
\hline 18-Nov-1998' & & \(93.6091]\) \\
\hline 19-Nov-1998' & & \(91.3915]\) \\
\hline 20-Nov-1998' & & 91.3915] \\
\hline 23-Nov-1998' & [ & \(94.5982]\) \\
\hline 24-Nov-1998' & & 95.6019] \\
\hline 25-Nov-1998' & [ & \(95.6019]\) \\
\hline 26-Nov-1998' & & 100] \\
\hline 27-Nov-1998' & [ & 100] \\
\hline 30-Nov-1998' & & \(100.9820]\) \\
\hline 01-Dec-1998' & [ & \(100.9820]\) \\
\hline 02-Dec-1998' & & \(100.9820]\) \\
\hline 03-Dec-1998' & [ & \(100.9820]\) \\
\hline 04-Dec-1998' & & \(100.9820]\) \\
\hline 07-Dec-1998' & & 100.1773] \\
\hline 08-Dec-1998' & & 102.9936] \\
\hline 09-Dec-1998' & [ & 108.0241] \\
\hline 10-Dec-1998' & & \(108.0241]\) \\
\hline 11-Dec-1998' & [ & 108.0241] \\
\hline 14-Dec-1998' & [ & \(103.3825]\) \\
\hline 15-Dec-1998' & [ & \(103.3825]\) \\
\hline 16-Dec-1998' & [ & \(103.3825]\) \\
\hline 17-Dec-1998' & & \(103.3825]\) \\
\hline 18-Dec-1998' & [ & 103.1749] \\
\hline '21-Dec-1998' & [ & 103.1749] \\
\hline '22-Dec-1998' & [ & \(99.6403]\) \\
\hline '23-Dec-1998' & [ & \(99.6403]\) \\
\hline 24-Dec-1998' & [ & 99.64031 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '25-Dec-1998' & [ & 100] \\
\hline '28-Dec-1998' & [ & 100] \\
\hline '29-Dec-1998' & [ & 100] \\
\hline '30-Dec-1998' & [ & \(98.1503]\) \\
\hline '31-Dec-1998' & [ & \(98.5610]\) \\
\hline '01-Jan-1999' & [ & 100] \\
\hline '04-Jan-1999' & [ & 100] \\
\hline '05-Jan-1999' & [ & 100] \\
\hline '06-Jan-1999' & [ & \(101.2270]\) \\
\hline '07-Jan-1999' & [ & 103.8838] \\
\hline '08-Jan-1999' & [ & 103.8838 ] \\
\hline '11-Jan-1999' & [ & \(112.4560]\) \\
\hline '12-Jan-1999' & [ & \(121.2291]\) \\
\hline '13-Jan-1999' & [ & 121.2291] \\
\hline '14-Jan-1999' & [ & 121.2291] \\
\hline '15-Jan-1999' & [ & 121.2291] \\
\hline '18-Jan-1999' & [ & 100] \\
\hline '19-Jan-1999' & [ & 100] \\
\hline '20-Jan-1999' & [ & \(98.6301]\) \\
\hline '21-Jan-1999' & [ & \(94.6932]\) \\
\hline '22-Jan-1999' & [ & \(94.6932]\) \\
\hline '25-Jan-1999' & [ & \(94.6932]\) \\
\hline '26-Jan-1999' & [ & \(93.6768]\) \\
\hline '27-Jan-1999' & [ & \(89.2725]\) \\
\hline '28-Jan-1999' & [ & \(90.7957]\) \\
\hline '29-Jan-1999' & [ & \(90.7957]\) \\
\hline '01-Feb-1999' & [ & \(90.7957]\) \\
\hline '02-Feb-1999' & [ & \(90.7957]\) \\
\hline '03-Feb-1999' & [ & 91.4758] \\
\hline '04-Feb-1999' & [ & 91.4758] \\
\hline '05-Feb-1999' & [ & 94.5826] \\
\hline '08-Feb-1999' & [ & \(94.5826]\) \\
\hline '09-Feb-1999' & [ & 93.1916] \\
\hline '10-Feb-1999' & [ & \(94.7578]\) \\
\hline '11-Feb-1999' & [ & \(97.8874]\) \\
\hline '12-Feb-1999' & [ & 98.5828] \\
\hline '15-Feb-1999' & [ & 100] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 16-Feb-1999 ' & 100] \\
\hline '17-Feb-1999' & 100] \\
\hline '18-Feb-1999' & \(98.9247]\) \\
\hline '19-Feb-1999' & \(98.9247]\) \\
\hline '22-Feb-1999' & \(101.0989]\) \\
\hline '23-Feb-1999' & 101.0989 ] \\
\hline '24-Feb-1999' & \(101.6439]\) \\
\hline 25-Feb-1999 \({ }^{\prime}\) & \(101.6439]\) \\
\hline 26-Feb-1999' & 103.6709] \\
\hline 01-Mar-1999' & 103.6709] \\
\hline 02-Mar-1999' & 103.6709] \\
\hline 03-Mar-1999' & \(104.6170]\) \\
\hline 04-Mar-1999' & 106.7033] \\
\hline 05-Mar-1999' & 108.5985] \\
\hline 08-Mar-1999' & \(110.4937]\) \\
\hline '09-Mar-1999' & 105.1871 ] \\
\hline '10-Mar-1999' & 105.1871] \\
\hline '11-Mar-1999' & 105.1871] \\
\hline '12-Mar-1999' & \(109.3566]\) \\
\hline '15-Mar-1999' & \(109.3566]\) \\
\hline '16-Mar-1999' & 109.3566] \\
\hline '17-Mar-1999' & 107.6007 ] \\
\hline '18-Mar-1999' & \(110.5262]\) \\
\hline 19-Mar-1999' & \(109.3566]\) \\
\hline '22-Mar-1999' & \(109.3566]\) \\
\hline '23-Mar-1999' & 105.5804 ] \\
\hline '24-Mar-1999' & 105.5804 ] \\
\hline '25-Mar-1999' & \(106.1753]\) \\
\hline '26-Mar-1999' & 106.1753] \\
\hline '29-Mar-1999' & 106.5782] \\
\hline
\end{tabular}


\footnotetext{
References Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 236-238.
}

See Also onbalvol | negvolidx

\section*{Purpose Financial time series power}
```

Syntax newfts = tsobj .^ array
newfts = array .^tsobj
newfts = tsobj_1 .^ tsobj_2

```

Arguments
tsobj Financial time series object.
array Scalar value or array with the number of rows equal to the number of dates in tsobj and the number of columns equal to the number of data series in tsobj.
tsobj_1, tsobj_2 Pair of financial time series objects.

\section*{Description}

See Also
newfts \(=\) tsobj .^ array raises all values in the data series of the financial time series object tsobj element by element to the power indicated by the array value. The results are stored in another financial time series object newfts. The newfts object contains the same data series names as tsobj.
newfts = array .^ tsobj raises the array values element by element to the values contained in the data series of the financial time series object tsobj. The results are stored in another financial time series object newfts. The newfts object contains the same data series names as tsobj.
newfts = tsobj_1 .^ tsobj_2 raises the values in the object tsobj_1 element by element to the values in the object tsobj_2. The data series names, the dates, and the number of data points in both series must be identical. newfts contains the same data series names as the original time series objects.
```

minus | plus | rdivide | times

```

\section*{Purpose Price bonds in portfolio by set of zero curves}

Syntax BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates, Compounding
Arguments
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{5}{*}{Bonds} & \multicolumn{2}{|l|}{Coupon bond information used to compute prices. A number of bonds (NUMBONDS)-by-6 matrix where each row describes a bond. The first two columns are required; the rest are optional but must be added in order. All rows in Bonds must have the same number of columns. Columns are [Maturity CouponRate Face Period Basis EndMonthRule] where:} \\
\hline & Maturity & Maturity date as a serial date number or date string. \\
\hline & CouponRate & Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond. \\
\hline & Face & (Optional) Face or par value of the bond. Default \(=100\). \\
\hline & Period & (Optional) Coupons per year of the bond. Allowed values are 0 , 1,2 (default), \(3,4,6\), and 12 . \\
\hline
\end{tabular}
(Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- 1 = 30/360 (SIA)
- 2 = actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\mathrm{actual} / 365\) (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- \(12=\) actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

EndMonthRule (Optional) End-of-month rule. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
Settle Serial date number of the settlement date.

ZeroRates

ZeroDates
Compounding Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors. Compounding values are: 1, 2, 3, 4, 6, 12 .

\section*{Description}

BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates, Compounding) computes the bond prices in a portfolio using a set of zero curves.

BondPrices is a NUMBONDS-by-NUMCURVES matrix of clean bond prices. Each column is derived from the corresponding zero curve in ZeroRates.

In addition, you can use the Financial Instruments Toolbox \({ }^{\text {TM }}\) method getZeroRates for an IRDataCurve object with a Dates property to create a vector of dates and data acceptable for prbyzero. For more
information, see "Converting an IRDataCurve or IRFunctionCurve Object".

\section*{Examples}

\section*{Compute the Bond Prices in a Portfolio Using a Set of Zero Curves}

This example uses the function zbtprice to compute a zero curve given a portfolio of coupon bonds and their prices. It then reverses the process, using the zero curve as input to the function prbyzero to compute the prices.
```

Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0;
datenum('7/1/2000') 0.06 100 2 0 0;
datenum('7/1/2000') 0.09375 100 6 1 0;
datenum('6/30/2001') 0.05125 100 1 3 1;
datenum('4/15/2002') 0.07125 100 4 1 0;
datenum('1/15/2000') 0.065 100 2 0 0;
datenum('9/1/1999') 0.08 100 3 3 0;
datenum('4/30/2001') 0.05875 100 2 0 0;
datenum('11/15/1999') 0.07125 100 2 0 0;
datenum('6/30/2000') 0.07 100 2 3 1;
datenum('7/1/2001') 0.0525 100 2 3 0;
datenum('4/30/2002') 0.07 100 2 0 0];
Prices = [99.375;
99.875;
105.75;
96.875;
103.625;
101.125;
103.125;
99.375;
101.0 ;
101.25;
96.375;
102.75];

```
```

Settle = datenum('12/18/1997');

```

Set semiannual compounding for the zero curve, on an actual/365 basis.
OutputCompounding = 2 ;

Execute the function zbtprice which returns the zero curve at the maturity dates.
```

[ZeroRates, ZeroDates] = zbtprice(Bonds, Prices, Settle,... OutputCompounding)

```

ZeroRates =
0.0616
0.0609
0.0658
0.0590
0.0647
0.0655
0.0606
0.0601
0.0642
0.0621
0.0627

ZeroDates =

729907
730364
730439
730500
730667
730668
730971

731032
731033
731321
731336
```

Execute the function prbyzero.
BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates)
BondPrices =
99.3750
98.7980
106.8270
96.8750
103.6249
101.1250
103.1250
99.3637
101.0000
101.2500
96.3750
102.7384

```

In this example zbtprice and prbyzero do not exactly reverse each other. Many of the bonds have the end-of-month rule off (EndMonthRule \(=0)\). The rule subtly affects the time factor computation. If you set the rule on (EndMonthRule \(=1\) ) everywhere in the Bonds matrix, then prbyzero returns the original prices, except when the two incompatible prices fall on the same maturity date.

\footnotetext{
See Also
tr2bonds | zbtprice
}

\section*{Purpose Price rate of change}

Syntax proc = prcroc (closep, nTimes)
procts \(=\) prcroc(tsobj, nTimes)
procts \(=\) prcroc(tsobj, nTimes, ParameterName, ParameterValue)

\section*{Arguments}
\begin{tabular}{ll} 
closep & Closing price \\
nTimes & (Optional) Time difference. Default \(=12\). \\
tsobj & Financial time series object
\end{tabular}

\section*{Description}
proc \(=\) prcroc (closep, nTimes) calculates the price rate of change proc from the closing price closep. If nTimes time is specified, the price rate of change is calculated between the current closing price and the closing price nTimes ago.
procts \(=\) prcroc(tsobj, nTimes) calculates the price rate of change procts from the financial time series object tsobj. tsobj must contain a data series named Close. The output procts is a financial time series object with similar dates as tsobj and a data series named PriceROC. If nT imes is specified, the price rate of change is calculated between the current closing price and the closing price nTimes ago.
procts = prcroc(tsobj, nTimes, ParameterName, ParameterValue) specifies the name for the required data series when it is different from the default name. The valid parameter name is
- CloseName: closing price series name

The parameter value is a string that represents the valid parameter name.

Note, to compute a quantity over \(n\) periods, you must specify \(n+1\) for \(n\) Times. If you specify \(n T i m e s=0\), the function returns your original time series.

\section*{Examples Compute the Price Rate of Change}

This example shows how to compute the price rate of change for Disney stock and plot the results.
```

load disney.mat
dis_PriceRoc = prcroc(dis)
plot(dis_PriceRoc)
title('Price Rate of Change for Disney')

```
dis_PriceRoc =
    desc: PrcROC: Walt Disney Company (DIS)
    freq: Unknown (0)
    'dates: (782)' 'PriceROC: (782)
    '29-Mar-1996' [ NaN]
    '01-Apr-1996' [ NaN]
    '02-Apr-1996' [ NaN]
    '03-Apr-1996' [ NaN]
    '04-Apr-1996' [ NaN]
    '05-Apr-1996' [ NaN]
    '08-Apr-1996' [ NaN]
    '09-Apr-1996' [ NaN]
    '10-Apr-1996' [ NaN]
    '11-Apr-1996' [ NaN]
    '12-Apr-1996' [ NaN]
    '15-Apr-1996' [ -3.1326]
    '16-Apr-1996' [ -4.0462]
    '17-Apr-1996' [ -4.7680]
    '18-Apr-1996' [ -4.1920]
    '19-Apr-1996' [ -2.8846]
    '22-Apr-1996' [ NaN]
    '23-Apr-1996' [ -4.0777]
    '24-Apr-1996' [ -4.7152]
    '25-Apr-1996' [ 0.6160]
    '26-Apr-1996' [ 2.4845]
\begin{tabular}{|c|c|c|}
\hline '29-Apr-1996' & [ & \(0.8163]\) \\
\hline '30-Apr-1996' & [ & \(0.2036]\) \\
\hline '01-May-1996' & [ & -2.8096] \\
\hline '02-May-1996' & [ & -3.8092] \\
\hline '03-May-1996' & [ & -6.1599] \\
\hline '06-May-1996' & [ & -4.7524] \\
\hline '07-May-1996' & [ & -5.1880] \\
\hline '08-May-1996' & [ & -4.4503] \\
\hline '09-May-1996' & [ & -3.9143] \\
\hline '10-May-1996' & [ & -3.2669] \\
\hline '13-May-1996' & [ & -1.8182] \\
\hline '14-May-1996' & [ & -1.6145] \\
\hline '15-May-1996' & [ & -2.6225] \\
\hline '16-May-1996' & [ & \(0.4116]\) \\
\hline '17-May-1996' & [ & \(2.0850]\) \\
\hline '20-May-1996' & [ & \(4.8711]\) \\
\hline '21-May-1996' & [ & \(3.7421]\) \\
\hline '22-May-1996' & [ & \(5.6841]\) \\
\hline '23-May-1996' & [ & 5.0847 ] \\
\hline '24-May-1996' & [ & \(7.2926]\) \\
\hline '27-May-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '28-May-1996' & [ & \(2.2617]\) \\
\hline '29-May-1996' & [ & -0.6160] \\
\hline '30-May-1996' & [ & \(1.4509]\) \\
\hline '31-May-1996' & [ & \(0]\) \\
\hline '03-Jun-1996' & [ & -1.4302] \\
\hline '04-Jun-1996' & [ & -2.8267] \\
\hline '05-Jun-1996' & [ & -3.0060] \\
\hline '06-Jun-1996' & [ & -0.4016] \\
\hline '07-Jun-1996' & [ & \(2.0129]\) \\
\hline '10-Jun-1996' & [ & -0.1968] \\
\hline '11-Jun-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '12-Jun-1996' & [ & \(0.4056]\) \\
\hline '13-Jun-1996' & [ & \(2.0628]\) \\
\hline '14-Jun-1996' & [ & \(0.4065]\) \\
\hline '17-Jun-1996' & [ & \(2.0593]\) \\
\hline '18-Jun-1996' & [ & \(1.0335]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '19-Jun-1996' & [ & \(1.6615]\) \\
\hline '20-Jun-1996' & [ & \(2.0628]\) \\
\hline '21-Jun-1996' & [ & \(0.8016]\) \\
\hline '24-Jun-1996' & [ & -1.5795] \\
\hline ' 25-Jun-1996' & [ & \(1.3996]\) \\
\hline '26-Jun-1996' & [ & \(0]\) \\
\hline '27-Jun-1996' & [ & \(1.2024]\) \\
\hline '28-Jun-1996' & [ & \(1.8219]\) \\
\hline '01-Jul-1996' & [ & \(1.2195]\) \\
\hline '02-Jul-1996' & [ & -1.2097] \\
\hline '03-Jul-1996' & [ & 0] \\
\hline '04-Jul-1996' & [ & NaN ] \\
\hline '05-Jul-1996' & [ & -3.8430] \\
\hline '08-Jul-1996' & [ & -6.3476] \\
\hline '09-Jul-1996' & [ & -7.6289] \\
\hline '10-Jul-1996' & [ & -8.1013] \\
\hline '11-Jul-1996' & [ & -10.0231] \\
\hline '12-Jul-1996' & [ & -9.9040] \\
\hline '15-Jul-1996' & [ & -12.7207] \\
\hline '16-Jul-1996' & [ & -10.0386] \\
\hline '17-Jul-1996' & [ & -8.5713] \\
\hline '18-Jul-1996' & [ & -6.1476] \\
\hline '19-Jul-1996' & [ & NaN] \\
\hline '22-Jul-1996' & [ & -5.6841] \\
\hline '23-Jul-1996' & [ & -5.9338] \\
\hline '24-Jul-1996' & [ & -5.4364] \\
\hline '25-Jul-1996' & [ & -6.4516] \\
\hline '26-Jul-1996' & [ & -3.5600] \\
\hline '29-Jul-1996' & [ & -6.1504] \\
\hline '30-Jul-1996' & [ & 0.6834 ] \\
\hline '31-Jul-1996' & [ & -0.6696] \\
\hline '01-Aug-1996' & [ & \(2.4535]\) \\
\hline ' 02-Aug-1996 ' & [ & \(1.3101]\) \\
\hline ' 05-Aug-1996' & [ & \(1.7412]\) \\
\hline ' 06-Aug-1996' & [ & \(5.3570]\) \\
\hline ' 07-Aug-1996' & [ & \(5.1784]\) \\
\hline '08-Aug-1996' & [ & \(5.7490]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 09-Aug-1996 \({ }^{\text {' }}\) & [ & \(5.0593]\) \\
\hline '12-Aug-1996' & [ & 8.0811] \\
\hline '13-Aug-1996' & [ & 8.6612] \\
\hline '14-Aug-1996' & [ & \(5.2017]\) \\
\hline 15-Aug-1996' & [ & \(4.0449]\) \\
\hline 16-Aug-1996' & [ & 1.3072 ] \\
\hline 19-Aug-1996' & [ & 0] \\
\hline '20-Aug-1996' & [ & -1.9272] \\
\hline '21-Aug-1996' & [ & -1.9067] \\
\hline '22-Aug-1996' & [ & -0.4266] \\
\hline '23-Aug-1996' & [ & \(1.5182]\) \\
\hline 26-Aug-1996' & [ & 3.9387 ] \\
\hline 27-Aug-1996' & [ & \(0.8564]\) \\
\hline 28-Aug-1996' & [ & 0.4345 ] \\
\hline 29-Aug-1996' & [ & -0.6452] \\
\hline 30-Aug-1996' & [ & -1.5136] \\
\hline 02-Sep-1996' & [ & NaN ] \\
\hline 03-Sep-1996' & [ & -1.7224] \\
\hline 04-Sep-1996' & [ & -0.8699] \\
\hline 05-Sep-1996' & [ & -3.8876] \\
\hline 06-Sep-1996' & [ & -1.9355] \\
\hline '09-Sep-1996' & [ & -0.2107] \\
\hline '10-Sep-1996' & [ & -2.5263] \\
\hline '11-Sep-1996' & [ & -0.6356] \\
\hline 12-Sep-1996' & [ & \(3.8626]\) \\
\hline '13-Sep-1996' & [ & \(5.1948]\) \\
\hline 16-Sep-1996' & [ & \(5.7000]\) \\
\hline '17-Sep-1996' & [ & NaN ] \\
\hline '18-Sep-1996' & [ & \(7.4579]\) \\
\hline '19-Sep-1996' & [ & 11.8941] \\
\hline '20-Sep-1996' & [ & \(13.4829]\) \\
\hline '23-Sep-1996' & [ & 11.6211] \\
\hline '24-Sep-1996' & [ & \(7.7252]\) \\
\hline '25-Sep-1996' & [ & \(8.2055]\) \\
\hline '26-Sep-1996' & [ & 5.7568 ] \\
\hline '27-Sep-1996' & [ & \(4.1305]\) \\
\hline 30-Sep-1996' & [ & \(4.1136]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 01-Oct-1996 \({ }^{\prime}\) & [ & \(3.7345]\) \\
\hline 02-Oct-1996' & [ & \(2.8613]\) \\
\hline 03-Oct-1996' & [ & 3.0612] \\
\hline 04-Oct-1996' & [ & \(0.9827]\) \\
\hline 07-Oct-1996' & [ & 1.5825] \\
\hline 08-Oct-1996' & [ & 0] \\
\hline 09-Oct-1996' & [ & \(1.1952]\) \\
\hline 10-Oct-1996' & [ & \(1.5952]\) \\
\hline 11-Oct-1996' & [ & \(3.2225]\) \\
\hline 14-Oct-1996' & [ & 1.7857] \\
\hline 15-0ct-1996' & [ & \(1.7787]\) \\
\hline 16-Oct-1996' & [ & \(4.8001]\) \\
\hline 17-Oct-1996' & [ & \(3.1826]\) \\
\hline 18-Oct-1996' & [ & \(2.9702]\) \\
\hline 21-Oct-1996' & [ & \(2.3392]\) \\
\hline 22-0ct-1996' & [ & 3.8971 ] \\
\hline '23-0ct-1996' & [ & \(3.9325]\) \\
\hline 24-Oct-1996' & [ & \(2.9527]\) \\
\hline 25-0ct-1996' & [ & \(4.1258]\) \\
\hline 28-0ct-1996' & [ & \(3.7126]\) \\
\hline 29-0ct-1996' & [ & \(2.5357]\) \\
\hline 30-Oct-1996' & [ & \(1.9433]\) \\
\hline 31-Oct-1996' & [ & \(0.5725]\) \\
\hline 01-Nov-1996' & [ & \(0.9618]\) \\
\hline 04-Nov-1996' & [ & \(2.8846]\) \\
\hline 05-Nov-1996' & [ & 3.0491 ] \\
\hline 06-Nov-1996' & [ & \(1.6886]\) \\
\hline 07-Nov-1996' & [ & \(4.3462]\) \\
\hline 08-Nov-1996' & [ & 4.7770 ] \\
\hline '11-Nov-1996' & [ & \(6.2265]\) \\
\hline 12-Nov-1996' & [ & \(6.7797]\) \\
\hline 13-Nov-1996' & [ & 7.4143] \\
\hline 14-Nov-1996' & [ & \(7.6206]\) \\
\hline 15-Nov-1996' & [ & \(9.6776]\) \\
\hline 18-Nov-1996' & [ & 8.9727] \\
\hline '19-Nov-1996' & [ & 6.1681 ] \\
\hline 20-Nov-1996' & [ & \(6.0997]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '21-Nov-1996' & [ & \(6.6422]\) \\
\hline '22-Nov-1996' & [ & \(4.5304]\) \\
\hline '25-Nov-1996' & [ & 7.3008] \\
\hline '26-Nov-1996' & [ & \(7.9930]\) \\
\hline '27-Nov-1996' & [ & \(4.2328]\) \\
\hline '28-Nov-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '29-Nov-1996' & [ & 4.6003] \\
\hline '02-Dec-1996' & [ & \(2.2506]\) \\
\hline '03-Dec-1996' & [ & \(0.6977]\) \\
\hline '04-Dec-1996' & [ & 1.4070] \\
\hline '05-Dec-1996' & [ & \(0.1714]\) \\
\hline '06-Dec-1996' & [ & -1.0381] \\
\hline '09-Dec-1996' & [ & \(1.3851]\) \\
\hline '10-Dec-1996' & [ & -0.3388] \\
\hline '11-Dec-1996' & [ & -5.0961] \\
\hline '12-Dec-1996' & [ & -4.9056] \\
\hline '13-Dec-1996' & [ & NaN ] \\
\hline '16-Dec-1996' & [ & -6.0914] \\
\hline '17-Dec-1996' & [ & -4.0609] \\
\hline '18-Dec-1996' & [ & -0.5217] \\
\hline '19-Dec-1996' & [ & \(0.5208]\) \\
\hline '20-Dec-1996' & [ & 0.6971 ] \\
\hline '23-Dec-1996' & [ & \(0.8769]\) \\
\hline '24-Dec-1996' & [ & -2.2236] \\
\hline '25-Dec-1996' & [ & NaN ] \\
\hline '26-Dec-1996' & [ & -1.0398] \\
\hline '27-Dec-1996' & [ & \(1.4220]\) \\
\hline '30-Dec-1996' & [ & -0.3587] \\
\hline '31-Dec-1996' & [ & \(0.5405]\) \\
\hline '01-Jan-1997' & [ & NaN ] \\
\hline '02-Jan-1997' & [ & -5.7693] \\
\hline '03-Jan-1997' & [ & -4.3192] \\
\hline '06-Jan-1997' & [ & -4.6632] \\
\hline '07-Jan-1997' & [ & -4.5088] \\
\hline '08-Jan-1997' & [ & -5.0686] \\
\hline '09-Jan-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '10-Jan-1997' & [ & -4.9050] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 13-Jan-1997 \({ }^{\prime}\) & [ & -4.5600] \\
\hline 14-Jan-1997' & [ & -1.0714] \\
\hline 15-Jan-1997' & [ & -0.8946] \\
\hline 16-Jan-1997' & [ & NaN ] \\
\hline 17-Jan-1997' & [ & \(3.8962]\) \\
\hline 20-Jan-1997' & [ & \(1.8065]\) \\
\hline '21-Jan-1997' & [ & 1.0870 ] \\
\hline 22-Jan-1997' & [ & \(2.7224]\) \\
\hline 23-Jan-1997' & [ & \(3.6818]\) \\
\hline 24-Jan-1997' & [ & \(5.5556]\) \\
\hline 27-Jan-1997' & [ & \(5.5249]\) \\
\hline 28-Jan-1997' & [ & \(6.7984]\) \\
\hline 29-Jan-1997' & [ & \(6.4983]\) \\
\hline 30-Jan-1997' & [ & \(4.7001]\) \\
\hline 31-Jan-1997' & [ & \(5.8106]\) \\
\hline 03-Feb-1997' & [ & \(4.1101]\) \\
\hline '04-Feb-1997' & [ & \(3.0128]\) \\
\hline 05-Feb-1997' & [ & \(4.3011]\) \\
\hline 06-Feb-1997' & [ & \(4.5965]\) \\
\hline 07-Feb-1997' & [ & \(6.5735]\) \\
\hline 10-Feb-1997' & [ & 6.1389 ] \\
\hline 11-Feb-1997' & [ & \(4.7120]\) \\
\hline 12-Feb-1997' & [ & \(5.5106]\) \\
\hline 13-Feb-1997' & [ & \(4.9180]\) \\
\hline 14-Feb-1997' & [ & \(7.9461]\) \\
\hline '17-Feb-1997' & [ & NaN ] \\
\hline 18-Feb-1997' & [ & \(6.3437]\) \\
\hline '19-Feb-1997' & [ & \(4.8207]\) \\
\hline '20-Feb-1997' & [ & \(2.7505]\) \\
\hline '21-Feb-1997' & [ & \(1.8567]\) \\
\hline '24-Feb-1997' & [ & \(0.8320]\) \\
\hline '25-Feb-1997' & [ & \(0.6625]\) \\
\hline 26-Feb-1997' & [ & \(0.6680]\) \\
\hline '27-Feb-1997' & [ & -0.9788] \\
\hline '28-Feb-1997' & [ & -4.0400] \\
\hline '03-Mar-1997' & [ & -6.0825] \\
\hline '04-Mar-1997' & [ & NaN ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 05-Mar-1997' & [ & -5.1601] \\
\hline 06-Mar-1997' & [ & -1.3123] \\
\hline 07-Mar-1997' & [ & \(1.6695]\) \\
\hline 10-Mar-1997' & [ & \(1.8229]\) \\
\hline 11-Mar-1997' & [ & \(1.9835]\) \\
\hline 12-Mar-1997' & [ & -0.9852] \\
\hline '13-Mar-1997' & [ & -2.9801] \\
\hline 14-Mar-1997' & [ & -1.4827] \\
\hline '17-Mar-1997' & [ & \(2.3556]\) \\
\hline 18-Mar-1997' & [ & 2.8988 ] \\
\hline 19-Mar-1997' & [ & \(3.0928]\) \\
\hline 20-Mar-1997' & [ & \(1.3592]\) \\
\hline 21-Mar-1997' & [ & -1.4975] \\
\hline 24-Mar-1997' & [ & -1.3145] \\
\hline 25-Mar-1997' & [ & -2.6033] \\
\hline 26-Mar-1997' & [ & -2.4311] \\
\hline 27-Mar-1997' & [ & -0.4975] \\
\hline 28-Mar-1997' & [ & \(\mathrm{NaN}]\) \\
\hline 31-Mar-1997' & [ & -2.5083] \\
\hline 01-Apr-1997' & [ & -4.7685] \\
\hline 02-Apr-1997' & [ & -4.1403] \\
\hline 03-Apr-1997' & [ & -3.1680] \\
\hline 04-Apr-1997' & [ & -1.0067] \\
\hline 07-Apr-1997' & [ & -0.3405] \\
\hline 08-Apr-1997' & [ & -1.5000] \\
\hline 09-Apr-1997' & [ & -1.3405] \\
\hline 10-Apr-1997' & [ & -1.6585] \\
\hline '11-Apr-1997' & [ & -3.5000] \\
\hline '14-Apr-1997' & [ & NaN ] \\
\hline '15-Apr-1997' & [ & \(1.3708]\) \\
\hline 16-Apr-1997' & [ & 4.4891 ] \\
\hline '17-Apr-1997' & [ & 4.6632] \\
\hline 18-Apr-1997' & [ & \(5.6799]\) \\
\hline '21-Apr-1997' & [ & \(4.2387]\) \\
\hline '22-Apr-1997' & [ & \(6.1018]\) \\
\hline '23-Apr-1997' & [ & \(7.1066]\) \\
\hline 24-Apr-1997' & [ & \(6.1018]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '25-Apr-1997' & [ & \(4.5607]\) \\
\hline '28-Apr-1997' & [ & \(7.2539]\) \\
\hline '29-Apr-1997' & [ & \(13.5355]\) \\
\hline '30-Apr-1997' & [ & \(10.6599]\) \\
\hline ' 01-May-1997' & [ & \(7.1089]\) \\
\hline '02-May-1997' & [ & \(6.1069]\) \\
\hline '05-May-1997' & [ & \(7.0047]\) \\
\hline '06-May-1997' & [ & \(6.9932]\) \\
\hline '07-May-1997' & [ & \(2.8754]\) \\
\hline ' 08-May-1997' & [ & \(2.6844]\) \\
\hline '09-May-1997' & [ & \(5.1144]\) \\
\hline '12-May-1997' & [ & \(9.2083]\) \\
\hline '13-May-1997' & [ & \(7.7295]\) \\
\hline '14-May-1997' & [ & \(3.5591]\) \\
\hline '15-May-1997' & [ & \(1.3761]\) \\
\hline '16-May-1997' & [ & -0.1556] \\
\hline '19-May-1997' & [ & \(3.5757]\) \\
\hline '20-May-1997' & [ & \(1.6731]\) \\
\hline '21-May-1997' & [ & -0.1532] \\
\hline '22-May-1997' & [ & \(2.0199]\) \\
\hline '23-May-1997' & [ & \(2.4628]\) \\
\hline '26-May-1997' & [ & NaN] \\
\hline ' 27 -May-1997' & [ & -0.8876] \\
\hline '28-May-1997' & [ & \(0.2978]\) \\
\hline '29-May-1997' & [ & -0.8969] \\
\hline ' 30-May-1997' & [ & -1.2054] \\
\hline '02-Jun-1997' & [ & 0] \\
\hline '03-Jun-1997' & [ & -3.1532] \\
\hline '04-Jun-1997' & [ & -4.3402] \\
\hline '05-Jun-1997' & [ & -1.6731] \\
\hline '06-Jun-1997' & [ & -0.9132] \\
\hline '09-Jun-1997' & [ & -2.7027] \\
\hline '10-Jun-1997' & [ & NaN] \\
\hline '11-Jun-1997' & [ & -2.8370] \\
\hline '12-Jun-1997' & [ & -2.6826] \\
\hline '13-Jun-1997' & [ & \(0.7529]\) \\
\hline '16-Jun-1997' & [ & \(2.4403]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 17-Jun-1997 ' & [ & \(3.8653]\) \\
\hline 18-Jun-1997' & [ & \(2.3256]\) \\
\hline 19-Jun-1997' & [ & \(4.3831]\) \\
\hline 20-Jun-1997' & [ & 1.8576 ] \\
\hline 23-Jun-1997' & [ & -0.9217] \\
\hline 24-Jun-1997' & [ & \(1.8519]\) \\
\hline 25-Jun-1997' & [ & \(0.1502]\) \\
\hline 26-Jun-1997' & [ & \(0.2323]\) \\
\hline 27-Jun-1997' & [ & -2.0656] \\
\hline 30-Jun-1997' & [ & -3.8911] \\
\hline 01-Jul-1997' & [ & -6.3309] \\
\hline 02-Jul-1997' & [ & -8.4821] \\
\hline 03-Jul-1997' & [ & -6.3636] \\
\hline 04-Jul-1997' & [ & NaN ] \\
\hline 07-Jul-1997' & [ & -7.6011] \\
\hline 08-Jul-1997' & [ & -3.1777] \\
\hline '09-Jul-1997' & [ & -6.5891] \\
\hline 10-Jul-1997' & [ & -6.2489] \\
\hline '11-Jul-1997' & [ & -6.2859] \\
\hline 14-Jul-1997' & [ & -3.2050] \\
\hline '15-Jul-1997' & [ & -2.8822] \\
\hline 16-Jul-1997' & [ & 0.3971 ] \\
\hline 17-Jul-1997' & [ & \(1.1395]\) \\
\hline 18-Jul-1997' & [ & -1.7786] \\
\hline 21-Jul-1997' & [ & NaN ] \\
\hline '22-Jul-1997' & [ & \(2.1395]\) \\
\hline '23-Jul-1997' & [ & -0.1614] \\
\hline '24-Jul-1997' & [ & \(2.9197]\) \\
\hline 25-Jul-1997' & [ & \(2.7629]\) \\
\hline '28-Jul-1997' & [ & \(4.1721]\) \\
\hline '29-Jul-1997' & [ & \(3.5515]\) \\
\hline '30-Jul-1997' & [ & \(3.8493]\) \\
\hline '31-Jul-1997' & [ & 2.4570 ] \\
\hline '01-Aug-1997' & [ & \(3.6154]\) \\
\hline '04-Aug-1997' & [ & \(6.6701]\) \\
\hline '05-Aug-1997' & [ & \(6.3161]\) \\
\hline '06-Aug-1997' & [ & \(4.1082]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 07-Aug-1997 \({ }^{\prime}\) & [ & \(1.5243]\) \\
\hline 08-Aug-1997' & [ & -0.1589] \\
\hline '11-Aug-1997' & [ & \(0.7937]\) \\
\hline '12-Aug-1997' & [ & -1.5711] \\
\hline '13-Aug-1997' & [ & -1.4041] \\
\hline '14-Aug-1997' & [ & -2.5464] \\
\hline '15-Aug-1997' & [ & -5.1823] \\
\hline '18-Aug-1997' & [ & -2.4056] \\
\hline '19-Aug-1997' & [ & -1.5419] \\
\hline '20-Aug-1997' & [ & \(0.5479]\) \\
\hline '21-Aug-1997' & [ & -2.3981] \\
\hline '22-Aug-1997' & [ & -1.2626] \\
\hline '25-Aug-1997' & [ & -1.1062] \\
\hline '26-Aug-1997' & [ & -2.6712] \\
\hline '27-Aug-1997' & [ & \(0.1608]\) \\
\hline '28-Aug-1997' & [ & -1.5798] \\
\hline '29-Aug-1997' & [ & -2.6168] \\
\hline '01-Sep-1997' & [ & NaN ] \\
\hline '02-Sep-1997' & [ & \(0.4770]\) \\
\hline '03-Sep-1997' & [ & -0.1581] \\
\hline '04-Sep-1997' & [ & -3.3443] \\
\hline 05-Sep-1997' & [ & -0.8710] \\
\hline 08-Sep-1997' & [ & -0.3226] \\
\hline '09-Sep-1997' & [ & \(0.2413]\) \\
\hline '10-Sep-1997' & [ & \(0.3252]\) \\
\hline '11-Sep-1997' & [ & -3.5044] \\
\hline '12-Sep-1997' & [ & -0.8064] \\
\hline '15-Sep-1997' & [ & \(0.4882]\) \\
\hline '16-Sep-1997' & [ & NaN ] \\
\hline '17-Sep-1997' & [ & -0.1557] \\
\hline '18-Sep-1997' & [ & -0.3130] \\
\hline '19-Sep-1997' & [ & \(2.8962]\) \\
\hline '22-Sep-1997' & [ & 1.7573 ] \\
\hline '23-Sep-1997' & [ & 1.4446 ] \\
\hline '24-Sep-1997' & [ & \(0.2369]\) \\
\hline '25-Sep-1997' & [ & \(2.4115]\) \\
\hline '26-Sep-1997' & [ & \(4.9505]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '29-Sep-1997' & [ & \(3.7304]\) \\
\hline '30-Sep-1997' & [ & \(4.4541]\) \\
\hline '01-0ct-1997' & [ & \(3.7148]\) \\
\hline '02-0ct-1997' & [ & \(6.2605]\) \\
\hline '03-0ct-1997' & [ & \(6.3810]\) \\
\hline '06-0ct-1997' & [ & \(3.8317]\) \\
\hline '07-0ct-1997' & [ & \(7.0699]\) \\
\hline '08-0ct-1997' & [ & \(6.3305]\) \\
\hline '09-0ct-1997' & [ & \(6.9923]\) \\
\hline '10-Oct-1997' & [ & 5.1013 ] \\
\hline '13-0ct-1997' & [ & \(6.4453]\) \\
\hline '14-Oct-1997' & [ & \(8.0474]\) \\
\hline '15-0ct-1997' & [ & \(7.7507]\) \\
\hline '16-0ct-1997' & [ & \(3.5854]\) \\
\hline '17-0ct-1997' & [ & -1.4174] \\
\hline '20-0ct-1997' & [ & -0.9636] \\
\hline '21-0ct-1997' & [ & \(0.8277]\) \\
\hline '22-Oct-1997' & [ & -2.4933] \\
\hline '23-0ct-1997' & [ & -2.0071] \\
\hline '24-Oct-1997' & [ & -2.1559] \\
\hline '27-Oct-1997' & [ & -7.0942] \\
\hline '28-0ct-1997' & [ & -2.7297] \\
\hline '29-0ct-1997' & [ & -4.0503] \\
\hline '30-0ct-1997' & [ & -7.1932] \\
\hline '31-0ct-1997' & [ & -3.0198] \\
\hline '03-Nov-1997' & [ & 3.4783 ] \\
\hline '04-Nov-1997' & [ & 3.2168 ] \\
\hline ' \(05-\) Nov-1997' & [ & \(1.7171]\) \\
\hline '06-Nov-1997' & [ & 3.9873 ] \\
\hline '07-Nov-1997' & [ & \(4.8582]\) \\
\hline '10-Nov-1997' & [ & \(3.7184]\) \\
\hline '11-Nov-1997' & [ & 10.6108] \\
\hline '12-Nov-1997' & [ & \(0.9111]\) \\
\hline '13-Nov-1997' & [ & \(2.1088]\) \\
\hline '14-Nov-1997' & [ & \(7.5200]\) \\
\hline '17-Nov-1997' & [ & 8.0450] \\
\hline '18-Nov-1997' & [ & \(4.3860]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '19-Nov-1997' & [ & \(5.9409]\) \\
\hline '20-Nov-1997' & [ & \(6.5339]\) \\
\hline '21-Nov-1997' & [ & \(9.6937]\) \\
\hline '24-Nov-1997' & [ & \(8.4703]\) \\
\hline ' 25-Nov-1997' & [ & \(9.5825]\) \\
\hline ' 26-Nov-1997' & [ & \(9.8824]\) \\
\hline ' 27 -Nov-1997' & [ & NaN] \\
\hline ' 28 -Nov-1997' & [ & 12.1046] \\
\hline '01-Dec-1997' & [ & 12.6177] \\
\hline '02-Dec-1997' & [ & 8.4977] \\
\hline '03-Dec-1997' & [ & \(6.6521]\) \\
\hline '04-Dec-1997' & [ & \(2.3967]\) \\
\hline '05-Dec-1997' & [ & \(3.6521]\) \\
\hline '08-Dec-1997' & [ & -0.3958] \\
\hline ' 09-Dec-1997' & [ & \(0.7370]\) \\
\hline '10-Dec-1997' & [ & \(0.2019]\) \\
\hline '11-Dec-1997' & [ & -1.7841] \\
\hline '12-Dec-1997' & [ & NaN] \\
\hline '15-Dec-1997' & [ & \(2.3036]\) \\
\hline '16-Dec-1997' & [ & -1.6655] \\
\hline '17-Dec-1997' & [ & \(0.2579]\) \\
\hline '18-Dec-1997' & [ & \(2.2345]\) \\
\hline '19-Dec-1997' & [ & 2.4048 ] \\
\hline '22-Dec-1997' & [ & \(3.5905]\) \\
\hline '23-Dec-1997' & [ & \(3.3124]\) \\
\hline '24-Dec-1997' & [ & \(0.7284]\) \\
\hline '25-Dec-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '26-Dec-1997' & [ & \(2.4242]\) \\
\hline '29-Dec-1997' & [ & 3.6048 ] \\
\hline '30-Dec-1997' & [ & \(1.9305]\) \\
\hline '31-Dec-1997' & [ & \(3.1250]\) \\
\hline '01-Jan-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '02-Jan-1998' & [ & \(2.3738]\) \\
\hline '05-Jan-1998' & [ & \(3.1311]\) \\
\hline '06-Jan-1998' & [ & \(1.0937]\) \\
\hline '07-Jan-1998' & [ & \(1.0246]\) \\
\hline '08-Jan-1998' & [ & \(2.8294]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 09-Jan-1998 \({ }^{\text {' }}\) & [ & NaN ] \\
\hline '12-Jan-1998' & [ & -0.6596] \\
\hline '13-Jan-1998' & [ & -2.0598] \\
\hline '14-Jan-1998' & [ & -2.5242] \\
\hline '15-Jan-1998' & [ & -3.3455] \\
\hline '16-Jan-1998' & [ & NaN ] \\
\hline '19-Jan-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '20-Jan-1998' & [ & \(0.5677]\) \\
\hline '21-Jan-1998' & [ & \(0.4419]\) \\
\hline '22-Jan-1998' & [ & -2.0284] \\
\hline '23-Jan-1998' & [ & \(0.9581]\) \\
\hline '26-Jan-1998' & [ & 1.4312] \\
\hline '27-Jan-1998' & [ & 8.8027] \\
\hline '28-Jan-1998' & [ & \(10.5252]\) \\
\hline '29-Jan-1998' & [ & \(10.1035]\) \\
\hline '30-Jan-1998' & [ & 11.6911] \\
\hline '02-Feb-1998' & [ & 13.1983] \\
\hline '03-Feb-1998' & [ & NaN ] \\
\hline '04-Feb-1998' & [ & \(8.9932]\) \\
\hline '05-Feb-1998' & [ & \(9.5455]\) \\
\hline '06-Feb-1998' & [ & \(12.5004]\) \\
\hline '09-Feb-1998' & [ & \(9.1894]\) \\
\hline '10-Feb-1998' & [ & 11.4271] \\
\hline '11-Feb-1998' & [ & \(7.8482]\) \\
\hline '12-Feb-1998' & [ & \(4.8800]\) \\
\hline '13-Feb-1998' & [ & \(4.8818]\) \\
\hline '16-Feb-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '17-Feb-1998' & [ & 3.8488 ] \\
\hline '18-Feb-1998' & [ & \(6.3667]\) \\
\hline '19-Feb-1998' & [ & \(5.4260]\) \\
\hline '20-Feb-1998' & [ & \(5.5977]\) \\
\hline '23-Feb-1998' & [ & \(5.0652]\) \\
\hline '24-Feb-1998' & [ & \(3.9475]\) \\
\hline '25-Feb-1998' & [ & \(2.5327]\) \\
\hline '26-Feb-1998' & [ & -0.7337] \\
\hline '27-Feb-1998' & [ & 1.6481 ] \\
\hline '02-Mar-1998' & [ & -1.8522] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '03-Mar-1998' & [ & NaN] \\
\hline '04-Mar-1998' & [ & -5.4212] \\
\hline '05-Mar-1998' & [ & -8.4326] \\
\hline '06-Mar-1998' & [ & -7.5007] \\
\hline '09-Mar-1998' & [ & -7.4859] \\
\hline '10-Mar-1998' & [ & -7.1776] \\
\hline '11-Mar-1998' & [ & -6.3651] \\
\hline '12-Mar-1998' & [ & -4.7731] \\
\hline '13-Mar-1998' & [ & -3.6381] \\
\hline '16-Mar-1998' & [ & -2.0663] \\
\hline '17-Mar-1998' & [ & -1.5415] \\
\hline '18-Mar-1998' & [ & -2.4436] \\
\hline '19-Mar-1998' & & -0.5249] \\
\hline '20-Mar-1998' & [ & 1.7226] \\
\hline '23-Mar-1998' & [ & -2.4852] \\
\hline '24-Mar-1998' & [ & 1.0632] \\
\hline '25-Mar-1998' & [ & \(0.9436]\) \\
\hline '26-Mar-1998' & [ & \(2.7420]\) \\
\hline '27-Mar-1998' & [ & 1.2375] \\
\hline '30-Mar-1998' & [ & -0.4104] \\
\hline '31-Mar-1998' & [ & -2.6244] \\
\hline '01-Apr-1998' & [ & -1.5684] \\
\hline '02-Apr-1998' & [ & \(1.4565]\) \\
\hline '03-Apr-1998' & [ & \(4.3484]\) \\
\hline '06-Apr-1998' & [ & 1.2841] \\
\hline '07-Apr-1998' & [ & \(4.7331]\) \\
\hline '08-Apr-1998' & [ & \(0.0589]\) \\
\hline '09-Apr-1998' & [ & \(2.0463]\) \\
\hline '10-Apr-1998' & & \(\mathrm{NaN}]\) \\
\hline '13-Apr-1998' & [ & 2.7972] \\
\hline '14-Apr-1998' & [ & 7.2212] \\
\hline '15-Apr-1998' & [ & \(6.3823]\) \\
\hline '16-Apr-1998' & [ & \(5.6604]\) \\
\hline '17-Apr-1998' & [ & \(4.1331]\) \\
\hline '20-Apr-1998' & [ & \(3.9996]\) \\
\hline '21-Apr-1998' & [ & \(7.7287]\) \\
\hline '22-Apr-1998' & [ & \(13.0958]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '23-Apr-1998' & [ & \(15.5942]\) \\
\hline '24-Apr-1998' & [ & \(11.9767]\) \\
\hline '27-Apr-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '28-Apr-1998' & [ & \(12.0190]\) \\
\hline '29-Apr-1998' & [ & \(9.4437]\) \\
\hline '30-Apr-1998' & [ & 9.6872 ] \\
\hline '01-May-1998' & [ & \(12.2224]\) \\
\hline '04-May-1998' & [ & \(12.1269]\) \\
\hline '05-May-1998' & [ & 9.8055] \\
\hline '06-May-1998' & [ & \(6.3700]\) \\
\hline '07-May-1998' & [ & -2.3065] \\
\hline '08-May-1998' & [ & -3.3860] \\
\hline '11-May-1998' & [ & -1.0219] \\
\hline '12-May-1998' & [ & -1.7587] \\
\hline '13-May-1998' & [ & -4.0494] \\
\hline '14-May-1998' & [ & -6.3063] \\
\hline '15-May-1998' & [ & -11.1895] \\
\hline '18-May-1998' & [ & -12.7291] \\
\hline '19-May-1998' & [ & -12.7339] \\
\hline '20-May-1998' & [ & -9.5219] \\
\hline '21-May-1998' & [ & -6.6432] \\
\hline '22-May-1998' & [ & -2.4113] \\
\hline '25-May-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '26-May-1998' & [ & -7.5499] \\
\hline '27-May-1998' & [ & -3.7875] \\
\hline '28-May-1998' & [ & -4.3241] \\
\hline '29-May-1998' & [ & -2.4245] \\
\hline '01-Jun-1998' & [ & \(0.1708]\) \\
\hline '02-Jun-1998' & [ & \(0.3966]\) \\
\hline '03-Jun-1998' & [ & -1.2385] \\
\hline '04-Jun-1998' & , & -4.4153] \\
\hline '05-Jun-1998' & [ & -1.0790] \\
\hline '08-Jun-1998' & [ & -0.3766] \\
\hline '09-Jun-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '10-Jun-1998' & [ & 5.8738 ] \\
\hline '11-Jun-1998' & [ & \(1.6402]\) \\
\hline '12-Jun-1998' & [ & 1.4871] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 15-Jun-1998' & [ & -0.9377] \\
\hline '16-Jun-1998' & [ & \(1.8599]\) \\
\hline '17-Jun-1998' & [ & \(3.8030]\) \\
\hline '18-Jun-1998' & [ & \(2.2234]\) \\
\hline '19-Jun-1998' & [ & -1.8263] \\
\hline '22-Jun-1998' & [ & -5.1767] \\
\hline '23-Jun-1998' & [ & -5.2867] \\
\hline '24-Jun-1998' & [ & -3.2704] \\
\hline '25-Jun-1998' & [ & -4.9140] \\
\hline '26-Jun-1998' & [ & -4.8956] \\
\hline '29-Jun-1998' & [ & -1.6296] \\
\hline '30-Jun-1998' & [ & -6.3509] \\
\hline '01-Jul-1998' & [ & -5.8684] \\
\hline '02-Jul-1998' & [ & -6.8890] \\
\hline '03-Jul-1998' & [ & NaN ] \\
\hline '06-Jul-1998' & [ & -1.6260] \\
\hline '07-Jul-1998' & [ & -2.0110] \\
\hline '08-Jul-1998' & [ & -1.3094] \\
\hline '09-Jul-1998' & [ & -1.4988] \\
\hline '10-Jul-1998' & [ & 1.6667 ] \\
\hline '13-Jul-1998' & [ & \(6.9014]\) \\
\hline '14-Jul-1998' & [ & \(5.6879]\) \\
\hline '15-Jul-1998' & [ & 12.4325] \\
\hline '16-Jul-1998' & [ & \(11.0004]\) \\
\hline '17-Jul-1998' & [ & \(10.9811]\) \\
\hline '20-Jul-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '21-Jul-1998' & [ & \(7.0284]\) \\
\hline '22-Jul-1998' & [ & \(4.6930]\) \\
\hline '23-Jul-1998' & [ & \(0.4044]\) \\
\hline '24-Jul-1998' & [ & -0.5054] \\
\hline '27-Jul-1998' & [ & -3.9344] \\
\hline '28-Jul-1998' & [ & -10.1587] \\
\hline '29-Jul-1998' & [ & -11.2853] \\
\hline '30-Jul-1998' & [ & -10.3162] \\
\hline '31-Jul-1998' & [ & -12.4005] \\
\hline '03-Aug-1998' & [ & -11.9035] \\
\hline '04-Aug-1998' & [ & -14.9107] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '05-Aug-1998' & [ & -11.0914] \\
\hline '06-Aug-1998' & [ & -10.4200] \\
\hline '07-Aug-1998' & [ & -7.9310] \\
\hline '10-Aug-1998' & [ & -10.6973] \\
\hline '11-Aug-1998' & [ & -12.2867] \\
\hline '12-Aug-1998' & [ & -8.3025] \\
\hline '13-Aug-1998' & [ & -10.0693] \\
\hline '14-Aug-1998' & [ & -10.0898] \\
\hline '17-Aug-1998' & [ & -6.5335] \\
\hline '18-Aug-1998' & [ & -3.4248] \\
\hline '19-Aug-1998' & [ & \(0.9508]\) \\
\hline '20-Aug-1998' & [ & 0.1847 ] \\
\hline '21-Aug-1998' & [ & -0.1891] \\
\hline '24-Aug-1998' & [ & 0] \\
\hline '25-Aug-1998' & [ & \(3.6137]\) \\
\hline '26-Aug-1998' & [ & \(2.7237]\) \\
\hline '27-Aug-1998' & [ & -2.1210] \\
\hline '28-Aug-1998' & [ & -3.7343] \\
\hline '31-Aug-1998' & [ & -13.5811] \\
\hline '01-Sep-1998' & [ & -5.6325] \\
\hline '02-Sep-1998' & [ & -10.8209] \\
\hline '03-Sep-1998' & [ & -14.5268] \\
\hline '04-Sep-1998' & [ & -15.9851] \\
\hline '07-Sep-1998' & [ & NaN ] \\
\hline '08-Sep-1998' & [ & -12.7341] \\
\hline '09-Sep-1998' & [ & -18.3484] \\
\hline '10-Sep-1998' & [ & -17.9909] \\
\hline '11-Sep-1998' & [ & -18.6992] \\
\hline '14-Sep-1998' & [ & -20.2024] \\
\hline '15-Sep-1998' & [ & -7.0632] \\
\hline '16-Sep-1998' & [ & -15.2263] \\
\hline '17-Sep-1998' & [ & -14.0151] \\
\hline '18-Sep-1998' & [ & -9.7129] \\
\hline '21-Sep-1998' & [ & -11.0619] \\
\hline '22-Sep-1998' & [ & NaN ] \\
\hline '23-Sep-1998' & [ & -7.9382] \\
\hline '24-Sep-1998' & [ & -6.9680] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 25-Sep-1998 \({ }^{\text {' }}\) & [ & -5.3135] \\
\hline '28-Sep-1998' & [ & \(1.6929]\) \\
\hline '29-Sep-1998' & [ & \(6.3917]\) \\
\hline '30-Sep-1998' & [ & -0.4902] \\
\hline '01-0ct-1998' & [ & -3.1534] \\
\hline 02-Oct-1998' & [ & -1.7051] \\
\hline '05-0ct-1998' & [ & -1.9560] \\
\hline 06-0ct-1998' & [ & \(0.9950]\) \\
\hline 07-Oct-1998' & [ & -0.9925] \\
\hline 08-Oct-1998' & [ & -12.3559] \\
\hline '09-0ct-1998' & [ & -8.4522] \\
\hline 12-Oct-1998' & [ & -3.9024] \\
\hline '13-0ct-1998' & [ & -2.8571] \\
\hline '14-Oct-1998' & [ & -6.2500] \\
\hline '15-0ct-1998' & [ & \(1.9704]\) \\
\hline '16-0ct-1998' & [ & \(2.2536]\) \\
\hline '19-0ct-1998' & [ & \(3.2198]\) \\
\hline 20-Oct-1998' & [ & \(7.9799]\) \\
\hline '21-0ct-1998' & [ & 8.6227] \\
\hline 22-Oct-1998' & [ & 12.2785] \\
\hline 23-Oct-1998' & [ & 18.0851] \\
\hline '26-0ct-1998' & [ & 17.9416] \\
\hline '27-0ct-1998' & [ & 8.8853] \\
\hline '28-0ct-1998' & [ & \(3.6784]\) \\
\hline '29-0ct-1998' & [ & \(9.2308]\) \\
\hline '30-0ct-1998' & [ & \(4.1082]\) \\
\hline '02-Nov-1998' & [ & 12.9922] \\
\hline '03-Nov-1998' & [ & \(13.4290]\) \\
\hline '04-Nov-1998' & [ & \(5.7717]\) \\
\hline '05-Nov-1998' & [ & \(9.5236]\) \\
\hline '06-Nov-1998' & [ & 8.0357] \\
\hline '09-Nov-1998' & [ & \(6.5333]\) \\
\hline '10-Nov-1998' & [ & \(3.3539]\) \\
\hline '11-Nov-1998' & [ & \(7.6903]\) \\
\hline '12-Nov-1998' & [ & 8.0377] \\
\hline '13-Nov-1998' & [ & \(9.3897]\) \\
\hline '16-Nov-1998' & [ & 7.8885] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '17-Nov-1998' & [ & 0.8677 ] \\
\hline '18-Nov-1998' & [ & -1.9044] \\
\hline '19-Nov-1998' & [ & -1.0900] \\
\hline '20-Nov-1998' & [ & -5.5916] \\
\hline '23-Nov-1998' & [ & -2.4793] \\
\hline '24-Nov-1998' & [ & \(0.8457]\) \\
\hline '25-Nov-1998' & [ & \(7.1446]\) \\
\hline '26-Nov-1998' & [ & NaN ] \\
\hline '27-Nov-1998' & [ & \(11.5954]\) \\
\hline '30-Nov-1998' & [ & \(10.5167]\) \\
\hline '01-Dec-1998' & [ & \(8.3852]\) \\
\hline '02-Dec-1998' & [ & \(7.3117]\) \\
\hline '03-Dec-1998' & [ & \(6.4655]\) \\
\hline '04-Dec-1998' & [ & \(10.8148]\) \\
\hline '07-Dec-1998' & [ & \(9.2105]\) \\
\hline '08-Dec-1998' & [ & 8.4746] \\
\hline '09-Dec-1998' & [ & \(12.5784]\) \\
\hline '10-Dec-1998' & [ & \(4.8484]\) \\
\hline '11-Dec-1998' & [ & NaN ] \\
\hline '14-Dec-1998' & [ & -3.9216] \\
\hline '15-Dec-1998' & [ & -4.4675] \\
\hline '16-Dec-1998' & [ & -2.3810] \\
\hline '17-Dec-1998' & [ & -1.0036] \\
\hline '18-Dec-1998' & [ & -0.2008] \\
\hline '21-Dec-1998' & [ & -1.1952] \\
\hline '22-Dec-1998' & [ & -3.8137] \\
\hline '23-Dec-1998' & [ & -3.3188] \\
\hline '24-Dec-1998' & [ & -8.9384] \\
\hline '25-Dec-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '28-Dec-1998' & [ & -4.8813] \\
\hline '29-Dec-1998' & [ & -0.6106] \\
\hline '30-Dec-1998' & [ & -2.8455] \\
\hline '31-Dec-1998' & [ & -2.4390] \\
\hline '01-Jan-1999' & [ & NaN ] \\
\hline '04-Jan-1999' & [ & -4.0567] \\
\hline '05-Jan-1999' & [ & -1.4097] \\
\hline '06-Jan-1999' & [ & \(3.3402]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '07-Jan-1999' & [ & \(2.6246]\) \\
\hline '08-Jan-1999' & [ & \(6.5439]\) \\
\hline '11-Jan-1999' & [ & \(\mathrm{NaN}]\) \\
\hline '12-Jan-1999' & [ & \(24.8439]\) \\
\hline '13-Jan-1999' & [ & \(18.6839]\) \\
\hline '14-Jan-1999' & [ & \(20.7130]\) \\
\hline '15-Jan-1999' & [ & 20] \\
\hline '18-Jan-1999' & [ & NaN ] \\
\hline '19-Jan-1999' & [ & \(23.4651]\) \\
\hline '20-Jan-1999' & [ & \(17.7895]\) \\
\hline '21-Jan-1999' & [ & 11.7170 ] \\
\hline '22-Jan-1999' & [ & \(7.4803]\) \\
\hline '25-Jan-1999' & [ & \(7.2936]\) \\
\hline '26-Jan-1999' & [ & -1.9489] \\
\hline '27-Jan-1999' & [ & -13.3211] \\
\hline '28-Jan-1999' & [ & -7.2664] \\
\hline '29-Jan-1999' & [ & -8.4935] \\
\hline '01-Feb-1999' & [ & -6.4222] \\
\hline '02-Feb-1999' & [ & \(\mathrm{NaN}]\) \\
\hline '03-Feb-1999' & [ & -7.8767] \\
\hline '04-Feb-1999' & [ & -7.9861] \\
\hline '05-Feb-1999' & [ & -0.9056] \\
\hline '08-Feb-1999' & [ & -0.3663] \\
\hline '09-Feb-1999' & [ & -4.1159] \\
\hline '10-Feb-1999' & [ & -1.4466] \\
\hline '11-Feb-1999' & [ & 6.8310] \\
\hline '12-Feb-1999' & [ & \(5.7851]\) \\
\hline '15-Feb-1999' & [ & \(\mathrm{NaN}]\) \\
\hline '16-Feb-1999' & [ & \(4.0816]\) \\
\hline '17-Feb-1999' & [ & \(4.4944]\) \\
\hline '18-Feb-1999' & [ & \(2.6022]\) \\
\hline '19-Feb-1999' & [ & \(3.0189]\) \\
\hline '22-Feb-1999 ' & [ & 1.8248 ] \\
\hline '23-Feb-1999' & [ & \(2.5735]\) \\
\hline '24-Feb-1999' & [ & \(4.6657]\) \\
\hline '25-Feb-1999' & [ & 1.2829] \\
\hline '26-Feb-1999' & [ & 0] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 01-Mar-1999 ' & [ & -1.7636] \\
\hline 02-Mar-1999' & [ & NaN ] \\
\hline 03-Mar-1999' & [ & -1.6057] \\
\hline 04-Mar-1999' & [ & \(0.8975]\) \\
\hline 05-Mar-1999' & [ & \(3.8058]\) \\
\hline 08-Mar-1999' & [ & \(6.7780]\) \\
\hline 09-Mar-1999' & [ & -0.5362] \\
\hline 10-Mar-1999' & [ & -1.0753] \\
\hline 11-Mar-1999' & [ & -1.0695] \\
\hline 12-Mar-1999' & [ & \(4.5304]\) \\
\hline 15-Mar-1999' & [ & \(1.9524]\) \\
\hline 16-Mar-1999' & [ & 0.7181 ] \\
\hline '17-Mar-1999' & [ & \(0.9126]\) \\
\hline 18-Mar-1999' & [ & \(2.7188]\) \\
\hline '19-Mar-1999' & [ & -0.3552] \\
\hline 22-Mar-1999' & [ & -4.0153] \\
\hline 23-Mar-1999' & [ & -8.9193] \\
\hline 24-Mar-1999' & [ & -4.3243] \\
\hline 25-Mar-1999' & [ & -3.2609] \\
\hline 26-Mar-1999' & [ & -5.0450] \\
\hline 29-Mar-1999' & [ & -8.3188] \\
\hline
\end{tabular}

Price Rate of Change for Disney


\author{
References Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 243-245.
}

See Also volroc

\section*{Purpose Price of discounted security}
```

Syntax Price = prdisc(Settle, Maturity, Face, Discount, Basis)

```

\section*{Arguments}

Settle Enter as serial date number or date string. Settle must be earlier than Maturity.

Maturity Enter as serial date number or date string.
Face Redemption (par, face) value.
Discount Bank discount rate of the security. Enter as decimal fraction.

Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

\section*{Description}

Price = prdisc(Settle, Maturity, Face, Discount, Basis)
returns the price of a security whose yield is quoted as a bank discount rate (for example, U. S. Treasury bills).

\section*{Examples Calculate the Price of a Security Whose Yield is Quoted as a Bank Discount Rate}

This example shows how to return the price of a security whose yield is quoted as a bank discount rate (for example, U. S. Treasury bills).
```

Settle = '10/14/2000';
Maturity = '03/17/2001';
Face = 100;
Discount = 0.087;
Basis = 2;
Price = prdisc(Settle, Maturity, Face, Discount, Basis)

```
Price =
96.2783
References

See Also acrudisc | bndprice | discrate | prmat | ylddisc
\begin{tabular}{ll} 
Purpose & Price and volume chart \\
Syntax & priceandvol \((X)\) \\
Arguments &
\end{tabular}

X M-by-6 matrix where the columns are date, open, high, low, close, and volume.
priceandvol(X) plots the asset data displaying the open, high, low, and closing prices on one axis and the volume on a second axis.

\section*{Examples Create a Price Volume Chart}

This example shows how to create a price volume chart, given asset X as an M-by-6 matrix for date, open, high, low, close, and volume.
\(\mathrm{X}=[.\).
\begin{tabular}{lllll}
733299.00 & 41.93 & 42.15 & 41.83 & 41.99 \\
733300.00 & 42.09 & 42.24 & 41.76 & 42.14 \\
733303.00 & 42.00 & 42.20 & 41.78 & 41.93 \\
733304.00 & 41.82 & 42.16 & 41.70 & 41.98 \\
733305.00 & 41.94 & 42.19 & 41.70 & 41.75 \\
733306.00 & 42.00 & 42.57 & 41.50 & 41.61 \\
733307.00 & 41.93 & 42.35 & 41.74 & 42.29 \\
733310.00 & 42.01 & 42.70 & 42.01 & 42.19 \\
733311.00 & 42.18 & 42.72 & 41.73 & 41.82 \\
733312.00 & 42.57 & 42.57 & 41.33 & 41.93 \\
733313.00 & 41.86 & 42.35 & 41.71 & 41.81 \\
733314.00 & 41.70 & 41.90 & 41.04 & 41.37 \\
733317.00 & 40.98 & 41.49 & 40.82 & 41.17 \\
733318.00 & 41.50 & 42.15 & 41.21 & 42.02
\end{tabular}
priceandvol(X)



See Also
bolling | candle | highlow | kagi | linebreak | movavg | pointfig | renko | volarea

\section*{Purpose}

Price with interest at maturity

\author{
Syntax \\ [Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face, CouponRate, Yield, Basis)
}
\begin{tabular}{ll} 
Settle & \begin{tabular}{l} 
Enter as serial date number or date string. \\
Settle must be earlier than Maturity.
\end{tabular} \\
Maturity & Enter as serial date number or date string. \\
Issue & Enter as serial date number or date string. \\
Face & Redemption (par, face) value. \\
CouponRate & Enter as decimal fraction. \\
Yield & Annual yield. Enter as decimal fraction. \\
Basis & (Optional) Day-count basis of the instrument. A \\
& vector of integers. \\
& - \(0=\) actual/actual (default) \\
& - \(1=30 / 360\) (SIA) \\
& - \(2=\) actual/360 \\
& - \(3=\) actual/365 \\
& - \(4=30 / 360\) (BMA) \\
& - \(5=30 / 360\) (ISDA) \\
& - \(6=30 / 360\) (European) \\
& - \(7=\) actual/365 (Japanese) \\
& - \(8=\) actual/actual (ICMA) \\
& - \(9=\) actual/360 (ICMA) \\
& - \(10=\) actual/365 (ICMA) \\
& - \(11=30 / 360 E\) (ICMA)
\end{tabular}
- \(12=\) actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

\section*{Description [Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face, CouponRate, Yield, Basis) returns the price and accrued interest of a security that pays interest at maturity. This function also applies to zero-coupon bonds or pure discount securities by setting CouponRate \(=0\). \\ Examples Compute the Price and Accrued Interest of a Security That Pays Interest at Maturity}

This example shows how to compute the price and accrued interest of a security that pays interest at maturity.
```

Settle = '02/07/2002';
Maturity = '04/13/2002';
Issue = '10/11/2001';
Face = 100;
CouponRate = 0.0608;
Yield = 0.0608;
Basis = 1;
[Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face,...
CouponRate, Yield, Basis)

```
Price =
    99.9784

AccruInterest =

\title{
References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition. Formula 4.
}

\author{
See Also \\ acrubond | acrudisc | bndprice | prdisc | yldmat
}

Purpose Price of Treasury bill
Syntax Price = prtbill(Settle, Maturity, Face, Discount)
Arguments

\section*{Description}

\section*{Examples}

\section*{Calculate the Price for a Treasury Bill}

This example shows how to return the price for a Treasury bill, where the settlement date of a Treasury bill is February 10, 2002, the maturity date is August 6,2002 , the discount rate is \(3.77 \%\), and the par value is \(\$ 1000\).

Price \(=\) prtbill('2/10/2002', '8/6/2002', 1000, 0.0377)

Price =
981.4642

References Bodie, Kane, and Marcus, Investments, pages 41-43.
See Also beytbill | yldtbill

\section*{Purpose}

Present value with fixed periodic payments

\section*{Syntax}

PresentVal = pvfix(Rate, NumPeriods, Payment, ExtraPayment, Due)

\section*{Arguments}
rate
NumPeriods
Payment
ExtraPayment

Due

Periodic interest rate, as a decimal fraction.
Number of periods.
Periodic payment.
(Optional) Payment received other than Payment in the last period. Default \(=0\).
(Optional) When payments are due or made: 0 = end of period (default), or \(1=\) beginning of period.

\section*{Description}

PresentVal = pvfix(Rate, NumPeriods, Payment, ExtraPayment, Due) returns the present value of a series of equal payments.

\section*{Examples}

\section*{Calculate the Present Value of a Series of Equal Payments}

This example shows how to return the present value of a series of equal payments, where \(\$ 200\) is paid monthly into a savings account earning \(6 \%\). The payments are made at the end of the month for five years.

PresentVal = pvfix(0.06/12, 5*12, 200, 0, 0)

PresentVal =
\(1.0345 e+04\)

See Also fvfix | fvvar | payper | pvvar

Purpose Price and Volume Trend (PVT)
Syntax pvt = pvtrend(closep, tvolume)
pvt = pvtrend([closep tvolume])
pvtts = pvtrend(tsobj)
pvtts = pvtrend(tsobj, ParameterName, ParameterValue, ...)

\section*{Arguments}
\begin{tabular}{ll} 
closep & Closing price. \\
tvolume & Volume traded. \\
tsobj & Financial time series object. \\
ParameterName & Valid parameter names are: \\
- CloseName: closing prices series name \\
ParameterValue & \begin{tabular}{l} 
- VolumeName: volume traded series name
\end{tabular} \\
& \begin{tabular}{l} 
Parameter values are the strings that \\
represent the valid parameter names.
\end{tabular}
\end{tabular}

\section*{Description}
pvt = pvtrend(closep, tvolume) calculates the Price and Volume Trend (PVT) from the stock closing price (closep) data and the volume traded (tvolume) data.
pvt = pvtrend([closep tvolume]) accepts a two-column matrix in which the first column contains the closing prices (closep) and the second contains the volume traded (tvolume).
pvtts = pvtrend(tsobj) calculates the PVT from the stock data contained in the financial time series object tsobj. The object tsobj must contain the closing price series Close and the volume traded series Volume. The output pvtts is a financial time series object with dates similar to tsobj and a data series named PVT.

> pvtts = pvtrend(tsobj, ParameterName, ParameterValue, ...) accepts parameter name/ parameter value pairs as input. These pairs specify the name(s) for the required data series if it is different from the expected default name(s). Parameter values are the strings that represent the valid parameter names.

\section*{Examples Calculate the Price and Volume Trend (PVT)}

This example shows how to calculate the PVT for Disney stock and plot the results.
```

load disney.mat
dis_PVTrend = pvtrend(dis)
plot(dis_PVTrend)
title('Price and Volume Trend for Disney')

```
dis_PVTrend =
    desc: PVTrend: Walt Disney Company (DIS)
    freq: Unknown (0)
    'dates: (782)' 'PVT: (782)
    '29-Mar-1996' [ 3373800]
    '01-Apr-1996' [ 3.4167e+06]
    '02-Apr-1996' [ 3.4589e+06]
    '03-Apr-1996' [ 3.4644e+06]
    '04-Apr-1996' [ 3.4293e+06]
    '05-Apr-1996' [ NaN]
    '08-Apr-1996' [ 3.3781e+06]
    '09-Apr-1996' [ 3.3374e+06]
    '10-Apr-1996' [ 2.9489e+06]
    '11-Apr-1996' [ 2.8558e+06]
    '12-Apr-1996' [ 2.9843e+06]
    '15-Apr-1996' [ 3.0213e+06]
    '16-Apr-1996' [ 3.0432e+06]
    '17-Apr-1996' [ 3.0507e+06]
\begin{tabular}{|c|c|}
\hline 18-Apr-1996' & \(3.0739 \mathrm{e}+06]\) \\
\hline '19-Apr-1996' & [ 3.0900e+06] \\
\hline '22-Apr-1996' & [ 3.0516e+06] \\
\hline '23-Apr-1996' & [ 2.9554e+06] \\
\hline '24-Apr-1996' & [ 2.6562e+06] \\
\hline '25-Apr-1996' & [ 2.7365e+06] \\
\hline '26-Apr-1996' & [ 2.7912e+06] \\
\hline '29-Apr-1996' & [ 2.7912e+06] \\
\hline '30-Apr-1996' & [ 2.7972e+06] \\
\hline '01-May-1996' & [ 2.6315e+06] \\
\hline '02-May-1996' & \(2.5832 \mathrm{e}+06]\) \\
\hline '03-May-1996' & [ 2.4583e+06] \\
\hline '06-May-1996' & \(2.5677 \mathrm{e}+06]\) \\
\hline 07-May-1996' & [ 2.5147e+06] \\
\hline 08-May-1996' & [ 2.4698e+06] \\
\hline '09-May-1996' & [ 2.3936e+06] \\
\hline '10-May-1996' & [ 2.4698e+06] \\
\hline '13-May-1996' & [ 2.6141e+06] \\
\hline '14-May-1996' & [ 2.6216e+06] \\
\hline '15-May-1996' & [ 2.5740e+06] \\
\hline '16-May-1996' & [ 2.5977e+06] \\
\hline '17-May-1996' & [ 2.6374e+06] \\
\hline '20-May-1996' & [ 2.6838e+06] \\
\hline '21-May-1996' & [ 2.7165e+06] \\
\hline '22-May-1996' & [ 2.7400e+06] \\
\hline '23-May-1996' & [ 2.6913e+06] \\
\hline '24-May-1996' & [ 2.7259e+06] \\
\hline '27-May-1996' & \(\mathrm{NaN}]\) \\
\hline '28-May-1996' & [ 2.7052e+06] \\
\hline '29-May-1996' & [ 2.5942e+06] \\
\hline '30-May-1996' & \(2.6459 \mathrm{e}+06]\) \\
\hline '31-May-1996' & [ 2.6189e+06] \\
\hline '03-Jun-1996' & [ 2.5991e+06] \\
\hline '04-Jun-1996' & [ 2.5740e+06] \\
\hline '05-Jun-1996' & [ 2.6051e+06] \\
\hline '06-Jun-1996' & [ 2.8479e+06] \\
\hline '07-Jun-1996' & [ 2.9244e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 10-Jun-1996 \({ }^{\text {' }}\) & \(2.8820 \mathrm{e}+06]\) \\
\hline '11-Jun-1996' & [ \(2.8820 \mathrm{e}+06\) ] \\
\hline '12-Jun-1996' & [ 2.8820e+06] \\
\hline '13-Jun-1996' & [ 2.8606e+06] \\
\hline '14-Jun-1996' & [ 2.8471e+06] \\
\hline '17-Jun-1996' & [ 2.8647e+06] \\
\hline '18-Jun-1996' & [ 2.8081e+06] \\
\hline '19-Jun-1996' & [ \(2.8151 \mathrm{e}+06\) ] \\
\hline '20-Jun-1996' & [ 2.8537e+06] \\
\hline '21-Jun-1996' & [ 3.0314e+06] \\
\hline '24-Jun-1996' & [ 2.9899e+06] \\
\hline '25-Jun-1996' & [ 3.0642e+06] \\
\hline '26-Jun-1996' & 3.0146e+06] \\
\hline '27-Jun-1996' & [ 3.0522e+06] \\
\hline '28-Jun-1996' & 3.0336e+06] \\
\hline '01-Jul-1996' & [ 3.0015e+06] \\
\hline '02-Jul-1996' & [ 2.9267e+06] \\
\hline 03-Jul-1996' & [ 2.8992e+06] \\
\hline '04-Jul-1996' & \(\mathrm{NaN}]\) \\
\hline '05-Jul-1996' & [ 2.8082e+06] \\
\hline '08-Jul-1996' & [ 2.7677e+06] \\
\hline '09-Jul-1996' & [ 2.6033e+06] \\
\hline '10-Jul-1996' & [ 2.6679e+06] \\
\hline '11-Jul-1996' & [ 2.4044e+06] \\
\hline '12-Jul-1996' & [ 2.4817e+06] \\
\hline '15-Jul-1996' & [ 2.1826e+06] \\
\hline '16-Jul-1996' & [ 2.4503e+06] \\
\hline '17-Jul-1996' & [ 2.4503e+06] \\
\hline '18-Jul-1996' & [ \(2.5474 \mathrm{e}+06\) ] \\
\hline '19-Jul-1996' & [ 2.5565e+06] \\
\hline '22-Jul-1996' & [ 2.4510e+06] \\
\hline '23-Jul-1996' & [ 2.4100e+06] \\
\hline '24-Jul-1996' & [ 2.3128e+06] \\
\hline '25-Jul-1996' & [ 2.3128e+06] \\
\hline '26-Jul-1996' & [ 2.2703e+06] \\
\hline '29-Jul-1996' & [ 2.1896e+06] \\
\hline '30-Jul-1996' & [ \(2.3814 \mathrm{e}+06\) ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline '31-Jul-1996' & \(2.4223 e+06]\) \\
\hline '01-Aug-1996' & \(2.5951 \mathrm{e}+06]\) \\
\hline '02-Aug-1996' & [ 2.6438e+06] \\
\hline ' 05-Aug-1996 ' & [ 2.6629e+06] \\
\hline ' 06-Aug-1996 ' & [ 2.7083e+06] \\
\hline '07-Aug-1996 ' & [ 2.6693e+06] \\
\hline '08-Aug-1996 ' & [ 2.6106e+06] \\
\hline '09-Aug-1996' & [ 2.5921e+06] \\
\hline '12-Aug-1996 ' & [ 2.6629e+06] \\
\hline '13-Aug-1996 ' & [ 2.6415e+06] \\
\hline '14-Aug-1996 ' & [ 2.6475e+06] \\
\hline '15-Aug-1996 ' & [ 2.6387e+06] \\
\hline '16-Aug-1996 ' & [ 2.6500e+06] \\
\hline '19-Aug-1996 ' & [ 2.6452e+06] \\
\hline ' 20-Aug-1996 ' & [ 2.6132e+06] \\
\hline '21-Aug-1996' & [ 2.6401e+06] \\
\hline '22-Aug-1996 ' & [ 2.6547e+06] \\
\hline '23-Aug-1996 ' & [ 2.6676e+06] \\
\hline '26-Aug-1996 ' & [ 2.7227e+06] \\
\hline '27-Aug-1996 ' & [ 2.7061e+06] \\
\hline '28-Aug-1996 ' & [ 2.6853e+06] \\
\hline '29-Aug-1996 ' & [ 2.6611e+06] \\
\hline '30-Aug-1996 ' & [ 2.6065e+06] \\
\hline '02-Sep-1996' & \(\mathrm{NaN}]\) \\
\hline '03-Sep-1996' & [ 2.6065e+06] \\
\hline '04-Sep-1996' & [ 2.5967e+06] \\
\hline '05-Sep-1996' & [ 2.5377e+06] \\
\hline '06-Sep-1996' & [ 2.6366e+06] \\
\hline '09-Sep-1996' & [ 2.6970e+06] \\
\hline '10-Sep-1996' & [ 2.6713e+06] \\
\hline '11-Sep-1996' & [ 2.7082e+06] \\
\hline '12-Sep-1996' & [ 2.9216e+06] \\
\hline '13-Sep-1996' & [ 2.9439e+06] \\
\hline '16-Sep-1996' & [ 2.9115e+06] \\
\hline '17-Sep-1996' & [ 2.9690e+06] \\
\hline '18-Sep-1996' & [ 2.9746e+06] \\
\hline '19-Sep-1996' & [ 3.2260e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 20-Sep-1996 \({ }^{\prime}\) & \(3.1790 \mathrm{e}+06]\) \\
\hline '23-Sep-1996' & [ 3.2004e+06] \\
\hline '24-Sep-1996' & [ 3.1528e+06] \\
\hline '25-Sep-1996' & [ 3.1470e+06] \\
\hline '26-Sep-1996' & [ 3.1154e+06] \\
\hline '27-Sep-1996' & [ 3.1465e+06] \\
\hline '30-Sep-1996' & [ 3.1606e+06] \\
\hline '01-0ct-1996' & [ 3.1285e+06] \\
\hline '02-Oct-1996' & [ 3.1475e+06] \\
\hline '03-Oct-1996' & [ 3.1590e+06] \\
\hline '04-0ct-1996' & [ 3.2350e+06] \\
\hline '07-0ct-1996' & [ 3.2350e+06] \\
\hline '08-0ct-1996' & [ 3.2148e+06] \\
\hline '09-0ct-1996' & [ 3.2091e+06] \\
\hline '10-0ct-1996' & [ 3.2131e+06] \\
\hline '11-0ct-1996' & [ 3.2222e+06] \\
\hline '14-Oct-1996' & [ 3.2256e+06] \\
\hline '15-0ct-1996' & [ 3.2359e+06] \\
\hline '16-0ct-1996' & [ 3.3046e+06] \\
\hline '17-0ct-1996' & [ 3.2784e+06] \\
\hline '18-0ct-1996' & [ 3.2843e+06] \\
\hline '21-Oct-1996' & [ 3.3139e+06] \\
\hline '22-Oct-1996' & [ 3.3710e+06] \\
\hline '23-0ct-1996' & [ 3.3379e+06] \\
\hline '24-Oct-1996' & [ 3.3077e+06] \\
\hline '25-Oct-1996' & [ 3.3398e+06] \\
\hline '28-0ct-1996' & [ 3.3459e+06] \\
\hline '29-0ct-1996' & [ 3.3239e+06] \\
\hline '30-Oct-1996' & [ 3.3206e+06] \\
\hline '31-0ct-1996' & [ 3.3315e+06] \\
\hline '01-Nov-1996' & [ 3.3145e+06] \\
\hline '04-Nov-1996' & [ 3.3851e+06] \\
\hline '05-Nov-1996' & [ 3.4260e+06] \\
\hline '06-Nov-1996' & [ 3.4319e+06] \\
\hline '07-Nov-1996' & [ 3.5177e+06] \\
\hline '08-Nov-1996' & [ 3.4906e+06] \\
\hline '11-Nov-1996' & [ 3.6288e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ' 12-Nov-1996' & \(3.6706 e+06]\) \\
\hline '13-Nov-1996' & [ 3.6576e+06] \\
\hline '14-Nov-1996' & [ 3.6576e+06] \\
\hline '15-Nov-1996' & [ 3.8797e+06] \\
\hline '18-Nov-1996' & [ 3.8406e+06] \\
\hline '19-Nov-1996' & [ 3.8197e+06] \\
\hline '20-Nov-1996' & [ 3.8707e+06] \\
\hline '21-Nov-1996' & [ 3.8915e+06] \\
\hline '22-Nov-1996' & [ 3.8844e+06] \\
\hline '25-Nov-1996' & [ 3.9731e+06] \\
\hline '26-Nov-1996' & [ 4.4643e+06] \\
\hline '27-Nov-1996' & [ 4.2770e+06] \\
\hline '28-Nov-1996' & \(\mathrm{NaN}]\) \\
\hline '29-Nov-1996' & [ 4.2770e+06] \\
\hline '02-Dec-1996 ' & [ 4.2770e+06] \\
\hline '03-Dec-1996' & [ 4.1698e+06] \\
\hline '04-Dec-1996' & [ 4.1782e+06] \\
\hline '05-Dec-1996' & [ 4.1725e+06] \\
\hline '06-Dec-1996' & [ 4.1494e+06] \\
\hline '09-Dec-1996' & [ 4.2328e+06] \\
\hline '10-Dec-1996' & [ 4.2381e+06] \\
\hline '11-Dec-1996' & [ 4.1596e+06] \\
\hline '12-Dec-1996' & [ 4.0250e+06] \\
\hline '13-Dec-1996' & [ 4.0250e+06] \\
\hline '16-Dec-1996' & [ 3.9815e+06] \\
\hline '17-Dec-1996 ' & [ 4.1103e+06] \\
\hline '18-Dec-1996' & [ 4.1472e+06] \\
\hline '19-Dec-1996' & [ 4.1917e+06] \\
\hline '20-Dec-1996' & [ 4.1917e+06] \\
\hline '23-Dec-1996' & [ 4.1833e+06] \\
\hline '24-Dec-1996' & [ 4.1734e+06] \\
\hline '25-Dec-1996' & \(\mathrm{NaN}]\) \\
\hline '26-Dec-1996' & [ 4.1704e+06] \\
\hline '27-Dec-1996 ' & [ 4.1679e+06] \\
\hline '30-Dec-1996' & [ 4.1180e+06] \\
\hline '31-Dec-1996' & [ 4.1085e+06] \\
\hline '01-Jan-1997' & \(\mathrm{NaN}]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 02-Jan-1997' & \(3.8359 \mathrm{e}+06\) ] \\
\hline '03-Jan-1997' & [ 3.9635e+06] \\
\hline '06-Jan-1997' & [ 3.9506e+06] \\
\hline '07-Jan-1997' & [ 3.9441e+06] \\
\hline '08-Jan-1997' & [ 3.8980e+06] \\
\hline '09-Jan-1997' & [ 3.8729e+06] \\
\hline '10-Jan-1997' & [ 3.9018e+06] \\
\hline '13-Jan-1997' & [ 3.9103e+06] \\
\hline '14-Jan-1997' & [ 3.9965e+06] \\
\hline '15-Jan-1997' & [ 3.9870e+06] \\
\hline '16-Jan-1997' & [ 3.9708e+06] \\
\hline '17-Jan-1997' & [ 4.0606e+06] \\
\hline '20-Jan-1997' & [ 4.0921e+06] \\
\hline '21-Jan-1997' & [ 4.0397e+06] \\
\hline '22-Jan-1997' & [ 4.1133e+06] \\
\hline '23-Jan-1997' & [ 4.0707e+06] \\
\hline '24-Jan-1997' & [ 4.1280e+06] \\
\hline '27-Jan-1997' & [ 4.1536e+06] \\
\hline '28-Jan-1997' & [ 4.2655e+06] \\
\hline '29-Jan-1997' & [ 4.3605e+06] \\
\hline '30-Jan-1997' & [ 4.2817e+06] \\
\hline '31-Jan-1997' & [ 4.3008e+06] \\
\hline '03-Feb-1997' & [ 4.3008e+06] \\
\hline ' 04-Feb-1997' & [ 4.2931e+06] \\
\hline '05-Feb-1997' & [ 4.3015e+06] \\
\hline '06-Feb-1997' & [ 4.3922e+06] \\
\hline '07-Feb-1997' & [ 4.4520e+06] \\
\hline '10-Feb-1997' & [ 4.5007e+06] \\
\hline '11-Feb-1997' & [ 4.4706e+06] \\
\hline '12-Feb-1997' & [ 4.5422e+06] \\
\hline '13-Feb-1997' & [ 4.5989e+06] \\
\hline '14-Feb-1997' & [ 4.6539e+06] \\
\hline '17-Feb-1997' & NaN ] \\
\hline '18-Feb-1997' & [ 4.6208e+06] \\
\hline '19-Feb-1997' & [ 4.5574e+06] \\
\hline '20-Feb-1997' & [ 4.5030e+06] \\
\hline '21-Feb-1997' & [ 4.5342e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 24-Feb-1997' & \(4.5437 e+06]\) \\
\hline '25-Feb-1997' & [ 4.5645e+06] \\
\hline '26-Feb-1997' & [ 4.5285e+06] \\
\hline '27-Feb-1997' & [ 4.5440e+06] \\
\hline '28-Feb-1997' & [ 4.4771e+06] \\
\hline '03-Mar-1997' & [ 4.4236e+06] \\
\hline '04-Mar-1997' & [ 4.3881e+06] \\
\hline '05-Mar-1997' & [ 4.4355e+06] \\
\hline '06-Mar-1997' & \(4.5373 \mathrm{e}+06]\) \\
\hline '07-Mar-1997' & \(4.5924 \mathrm{e}+06]\) \\
\hline '10-Mar-1997' & [ 4.6176e+06] \\
\hline '11-Mar-1997' & [ 4.6323e+06] \\
\hline '12-Mar-1997' & [ 4.5520e+06] \\
\hline '13-Mar-1997' & [ 4.4646e+06] \\
\hline '14-Mar-1997' & [ 4.5525e+06] \\
\hline '17-Mar-1997' & [ 4.6090e+06] \\
\hline '18-Mar-1997' & [ 4.5885e+06] \\
\hline '19-Mar-1997' & [ 4.5695e+06] \\
\hline '20-Mar-1997' & [ 4.5525e+06] \\
\hline '21-Mar-1997' & [ 4.5248e+06] \\
\hline '24-Mar-1997' & [ 4.5757e+06] \\
\hline '25-Mar-1997' & [ 4.5631e+06] \\
\hline '26-Mar-1997' & \(4.5837 e+06]\) \\
\hline '27-Mar-1997' & [ 4.5706e+06] \\
\hline '28-Mar-1997' & \(\mathrm{NaN}]\) \\
\hline '31-Mar-1997' & [ 4.4282e+06] \\
\hline '01-Apr-1997' & [ 4.3989e+06] \\
\hline '02-Apr-1997' & [ 4.3989e+06] \\
\hline '03-Apr-1997' & [ 4.4104e+06] \\
\hline '04-Apr-1997' & [ 4.4651e+06] \\
\hline '07-Apr-1997' & [ 4.4651e+06] \\
\hline '08-Apr-1997' & [ 4.4688e+06] \\
\hline '09-Apr-1997' & [ 4.4651e+06] \\
\hline '10-Apr-1997' & [ 4.4788e+06] \\
\hline '11-Apr-1997' & [ 4.3653e+06] \\
\hline '14-Apr-1997' & [ 4.2911e+06] \\
\hline '15-Apr-1997' & [ 4.4304e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 16-Apr-1997' & 4.5560e+06] \\
\hline '17-Apr-1997' & [ 4.5616e+06] \\
\hline '18-Apr-1997' & [ 4.6060e+06] \\
\hline '21-Apr-1997' & [ 4.6130e+06] \\
\hline '22-Apr-1997' & [ 4.7284e+06] \\
\hline '23-Apr-1997' & [ 4.8037e+06] \\
\hline '24-Apr-1997' & [ 4.7576e+06] \\
\hline '25-Apr-1997' & [ 4.7198e+06] \\
\hline '28-Apr-1997' & [ 4.7296e+06] \\
\hline '29-Apr-1997' & [ 4.9982e+06] \\
\hline '30-Apr-1997' & [ 5.0846e+06] \\
\hline '01-May-1997' & [ \(5.0535 \mathrm{e}+06\) ] \\
\hline '02-May-1997' & [ 5.0265e+06] \\
\hline ' 05-May-1997' & [ 5.1192e+06] \\
\hline '06-May-1997' & [ 5.1259e+06] \\
\hline '07-May-1997' & [ 5.0525e+06] \\
\hline '08-May-1997' & 5.0967e+06] \\
\hline '09-May-1997' & [ 5.1396e+06] \\
\hline '12-May-1997' & [ 5.2678e+06] \\
\hline '13-May-1997' & [ 5.2312e+06] \\
\hline '14-May-1997' & [ 5.2312e+06] \\
\hline '15-May-1997' & [ 5.2081e+06] \\
\hline '16-May-1997' & [ 5.0747e+06] \\
\hline '19-May-1997' & [ 5.1584e+06] \\
\hline '20-May-1997' & [ 5.1703e+06] \\
\hline '21-May-1997' & [ 5.1187e+06] \\
\hline '22-May-1997' & [ 5.1187e+06] \\
\hline '23-May-1997' & [ 5.1389e+06] \\
\hline '26-May-1997' & \(\mathrm{NaN}]\) \\
\hline '27-May-1997' & [ 5.1548e+06] \\
\hline '28-May-1997' & [ \(5.1585 \mathrm{e}+06\) ] \\
\hline '29-May-1997' & [ 5.1272e+06] \\
\hline '30-May-1997' & [ 5.0813e+06] \\
\hline '02-Jun-1997' & [ 5.0504e+06] \\
\hline '03-Jun-1997' & [ 5.0423e+06] \\
\hline '04-Jun-1997' & [ 5.0175e+06] \\
\hline '05-Jun-1997' & [ 5.0498e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline '06-Jun-1997' & \(5.0793 e+06]\) \\
\hline '09-Jun-1997' & \(5.0646 \mathrm{e}+06]\) \\
\hline '10-Jun-1997' & \(5.1040 \mathrm{e}+06]\) \\
\hline '11-Jun-1997' & \(5.0795 \mathrm{e}+06]\) \\
\hline '12-Jun-1997' & \(5.0947 \mathrm{e}+06]\) \\
\hline '13-Jun-1997' & [ 5.2254e+06] \\
\hline '16-Jun-1997' & \(5.2431 \mathrm{e}+06]\) \\
\hline '17-Jun-1997' & [ 5.2497e+06] \\
\hline '18-Jun-1997' & [ 5.1912e+06] \\
\hline '19-Jun-1997' & \(5.2424 \mathrm{e}+06]\) \\
\hline '20-Jun-1997' & [ 5.1694e+06] \\
\hline '23-Jun-1997' & [ 5.1158e+06] \\
\hline '24-Jun-1997' & [ 5.2162e+06] \\
\hline '25-Jun-1997' & [ 5.1864e+06] \\
\hline ' 26-Jun-1997' & [ 5.1649e+06] \\
\hline '27-Jun-1997' & [ 5.0568e+06] \\
\hline '30-Jun-1997' & [ 5.0861e+06] \\
\hline '01-Jul-1997' & [ 4.9533e+06] \\
\hline '02-Jul-1997' & [ 4.7618e+06] \\
\hline '03-Jul-1997' & \(4.7878 e^{+06]}\) \\
\hline '04-Jul-1997' & \(\mathrm{NaN}]\) \\
\hline '07-Jul-1997' & [ 4.6231e+06] \\
\hline '08-Jul-1997' & [ 4.8573e+06] \\
\hline '09-Jul-1997' & [ 4.7739e+06] \\
\hline '10-Jul-1997' & [ 4.7616e+06] \\
\hline '11-Jul-1997' & [ 4.7300e+06] \\
\hline '14-Jul-1997' & [ 4.8016e+06] \\
\hline '15-Jul-1997' & [ 4.8369e+06] \\
\hline '16-Jul-1997' & [ 4.9121e+06] \\
\hline '17-Jul-1997' & [ 4.8273e+06] \\
\hline '18-Jul-1997' & [ 4.6555e+06] \\
\hline '21-Jul-1997' & [ 4.6122e+06] \\
\hline '22-Jul-1997' & [ 4.8840e+06] \\
\hline '23-Jul-1997' & [ 4.9095e+06] \\
\hline '24-Jul-1997' & [ 5.0019e+06] \\
\hline '25-Jul-1997' & [ 4.9853e+06] \\
\hline '28-Jul-1997' & [ 5.0093e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 29-Jul-1997' & \(5.0374 \mathrm{e}+06\) ] \\
\hline '30-Jul-1997' & 5.0857e+06] \\
\hline '31-Jul-1997' & 5.0799e+06] \\
\hline '01-Aug-1997' & \(5.0668 \mathrm{e}+06]\) \\
\hline '04-Aug-1997' & \(5.0843 \mathrm{e}+06]\) \\
\hline '05-Aug-1997' & \(5.0387 \mathrm{e}+06]\) \\
\hline '06-Aug-1997' & \(5.0766 \mathrm{e}+06]\) \\
\hline '07-Aug-1997' & \(5.0039 \mathrm{e}+06]\) \\
\hline '08-Aug-1997' & \(5.0070 \mathrm{e}+06]\) \\
\hline '11-Aug-1997' & \(5.0287 \mathrm{e}+06]\) \\
\hline '12-Aug-1997' & 4.9429e+06] \\
\hline '13-Aug-1997' & [ 4.9862e+06] \\
\hline '14-Aug-1997' & [ 4.9790e+06] \\
\hline '15-Aug-1997' & [ 4.8359e+06] \\
\hline '18-Aug-1997' & \(4.9871 \mathrm{e}+06]\) \\
\hline '19-Aug-1997' & \(5.0865 \mathrm{e}+06]\) \\
\hline '20-Aug-1997' & \(5.1209 \mathrm{e}+06]\) \\
\hline '21-Aug-1997' & 5.0649e+06] \\
\hline '22-Aug-1997' & 5.0307e+06] \\
\hline '25-Aug-1997' & \(5.0371 \mathrm{e}+06]\) \\
\hline '26-Aug-1997' & \(5.0067 \mathrm{e}+06]\) \\
\hline '27-Aug-1997' & \(5.0510 \mathrm{e}+06]\) \\
\hline '28-Aug-1997' & \(5.0112 \mathrm{e}+06]\) \\
\hline '29-Aug-1997' & \(4.9778 \mathrm{e}+06]\) \\
\hline '01-Sep-1997' & NaN ] \\
\hline '02-Sep-1997' & \(5.0547 \mathrm{e}+06]\) \\
\hline '03-Sep-1997' & [ 5.0762e+06] \\
\hline '04-Sep-1997' & [ \(4.9541 \mathrm{e}+06\) ] \\
\hline '05-Sep-1997' & [ 4.9762e+06] \\
\hline '08-Sep-1997' & [ 4.9671e+06] \\
\hline '09-Sep-1997' & [ 4.9894e+06] \\
\hline '10-Sep-1997' & [ 4.9684e+06] \\
\hline '11-Sep-1997' & [ 4.7837e+06] \\
\hline '12-Sep-1997' & [ 4.8682e+06] \\
\hline '15-Sep-1997' & [ 4.8701e+06] \\
\hline '16-Sep-1997' & [ 4.9588e+06] \\
\hline '17-Sep-1997' & [ 4.9502e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline '18-Sep-1997' & \(4.9794 \mathrm{e}+06\) ] \\
\hline '19-Sep-1997' & [ 5.0105e+06] \\
\hline '22-Sep-1997' & \(4.9969 \mathrm{e}+06]\) \\
\hline '23-Sep-1997' & [ 4.9779e+06] \\
\hline '24-Sep-1997' & [ 4.9660e+06] \\
\hline '25-Sep-1997' & [ 5.0029e+06] \\
\hline '26-Sep-1997' & [ 4.9977e+06] \\
\hline '29-Sep-1997' & [ 5.0175e+06] \\
\hline '30-Sep-1997' & [ 5.0465e+06] \\
\hline '01-0ct-1997' & [ 5.1180e+06] \\
\hline '02-0ct-1997' & [ 5.2311e+06] \\
\hline '03-0ct-1997' & [ 5.2683e+06] \\
\hline '06-0ct-1997' & [ 5.2254e+06] \\
\hline '07-0ct-1997' & [ 5.3119e+06] \\
\hline '08-0ct-1997' & [ 5.2511e+06] \\
\hline '09-0ct-1997' & [ 5.2564e+06] \\
\hline '10-0ct-1997' & [ 5.2400e+06] \\
\hline '13-0ct-1997' & [ 5.2565e+06] \\
\hline '14-0ct-1997' & [ 5.3358e+06] \\
\hline '15-0ct-1997' & [ 5.3623e+06] \\
\hline '16-0ct-1997' & [ 5.2741e+06] \\
\hline '17-0ct-1997' & [ 5.1141e+06] \\
\hline '20-0ct-1997' & [ 5.1502e+06] \\
\hline '21-0ct-1997' & [ 5.1545e+06] \\
\hline '22-0ct-1997' & [ 5.1312e+06] \\
\hline '23-0ct-1997' & [ 5.0955e+06] \\
\hline '24-0ct-1997' & [ 5.1003e+06] \\
\hline '27-0ct-1997' & [ 4.8000e+06] \\
\hline '28-0ct-1997' & [ 5.3292e+06] \\
\hline '29-0ct-1997' & [ 5.3671e+06] \\
\hline '30-0ct-1997' & [ 5.2654e+06] \\
\hline '31-0ct-1997' & [ 5.3408e+06] \\
\hline '03-Nov-1997' & [ 5.4785e+06] \\
\hline ' 04 -Nov-1997' & [ 5.5086e+06] \\
\hline '05-Nov-1997' & [ 5.4563e+06] \\
\hline '06-Nov-1997' & [ 5.5176e+06] \\
\hline '07-Nov-1997' & [ 5.5145e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 10-Nov-1997 \({ }^{\text {' }}\) & \(5.4931 \mathrm{e}+06]\) \\
\hline 11-Nov-1997' & 5.5047e+06] \\
\hline '12-Nov-1997' & [ 5.3568e+06] \\
\hline '13-Nov-1997' & 5.4417e+06] \\
\hline '14-Nov-1997' & [ 5.5549e+06] \\
\hline '17-Nov-1997' & \(5.6881 \mathrm{e}+06]\) \\
\hline '18-Nov-1997' & [ 5.7058e+06] \\
\hline '19-Nov-1997' & [ \(5.8219 \mathrm{e}+06\) ] \\
\hline '20-Nov-1997' & [ 5.7689e+06] \\
\hline '21-Nov-1997' & [ 6.1049e+06] \\
\hline '24-Nov-1997' & [ 6.0207e+06] \\
\hline '25-Nov-1997' & [ 6.0207e+06] \\
\hline '26-Nov-1997' & 6.0575e+06] \\
\hline '27-Nov-1997' & \(\mathrm{NaN}]\) \\
\hline '28-Nov-1997' & [ 6.0651e+06] \\
\hline '01-Dec-1997' & [ 6.1701e+06] \\
\hline '02-Dec-1997' & \(6.1219 \mathrm{e}+06]\) \\
\hline '03-Dec-1997' & [ 6.0719e+06] \\
\hline '04-Dec-1997' & 5.9516e+06] \\
\hline '05-Dec-1997' & [ 5.9768e+06] \\
\hline 08-Dec-1997' & 5.9899e+06] \\
\hline '09-Dec-1997' & [ \(5.9875 \mathrm{e}+06\) ] \\
\hline 10-Dec-1997' & [ 5.9725e+06] \\
\hline '11-Dec-1997' & [ \(5.9361 \mathrm{e}+06\) ] \\
\hline 12-Dec-1997' & [ 5.9695e+06] \\
\hline '15-Dec-1997' & [ 6.1817e+06] \\
\hline '16-Dec-1997' & [ 6.1324e+06] \\
\hline '17-Dec-1997' & [ 6.1560e+06] \\
\hline '18-Dec-1997' & [ 6.1774e+06] \\
\hline '19-Dec-1997' & [ 6.0568e+06] \\
\hline '22-Dec-1997' & [ 6.1105e+06] \\
\hline '23-Dec-1997' & [ 6.1159e+06] \\
\hline '24-Dec-1997' & 6.0738e+06] \\
\hline '25-Dec-1997' & \(\mathrm{NaN}]\) \\
\hline '26-Dec-1997' & [ 6.0742e+06] \\
\hline '29-Dec-1997' & [ 6.1206e+06] \\
\hline '30-Dec-1997' & [ 6.2444e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline '31-Dec-1997' & \(6.2444 \mathrm{e}+06]\) \\
\hline '01-Jan-1998' & \(\mathrm{NaN}]\) \\
\hline '02-Jan-1998' & [ 6.2629e+06] \\
\hline '05-Jan-1998' & [ 6.1675e+06] \\
\hline '06-Jan-1998' & [ 6.1514e+06] \\
\hline '07-Jan-1998' & [ 6.1541e+06] \\
\hline '08-Jan-1998' & [ 6.1312e+06] \\
\hline '09-Jan-1998' & [ 6.0386e+06] \\
\hline '12-Jan-1998' & [ 5.9399e+06] \\
\hline '13-Jan-1998' & [ 5.9698e+06] \\
\hline '14-Jan-1998' & [ 6.0231e+06] \\
\hline '15-Jan-1998' & [ 5.9979e+06] \\
\hline '16-Jan-1998' & [ 6.0182e+06] \\
\hline '19-Jan-1998' & \(\mathrm{NaN}]\) \\
\hline '20-Jan-1998' & [ 6.1537e+06] \\
\hline '21-Jan-1998' & [ 6.1360e+06] \\
\hline '22-Jan-1998' & [ 6.0721e+06] \\
\hline '23-Jan-1998' & [ 6.1923e+06] \\
\hline '26-Jan-1998' & [ 6.1535e+06] \\
\hline '27-Jan-1998' & [ 6.6891e+06] \\
\hline '28-Jan-1998' & [ 6.8826e+06] \\
\hline '29-Jan-1998' & [ 6.9480e+06] \\
\hline '30-Jan-1998' & [ 6.9731e+06] \\
\hline '02-Feb-1998' & [ 7.0729e+06] \\
\hline '03-Feb-1998' & [ 7.0418e+06] \\
\hline '04-Feb-1998' & [ 7.0516e+06] \\
\hline ' 05-Feb-1998' & [ 7.0516e+06] \\
\hline '06-Feb-1998' & [ 7.0568e+06] \\
\hline ' 09-Feb-1998 ' & [ 7.0359e+06] \\
\hline '10-Feb-1998 ' & [ 7.0613e+06] \\
\hline '11-Feb-1998' & [ 7.1438e+06] \\
\hline '12-Feb-1998' & [ 7.1182e+06] \\
\hline '13-Feb-1998' & [ 7.1527e+06] \\
\hline '16-Feb-1998' & \(\mathrm{NaN}]\) \\
\hline '17-Feb-1998' & [ 7.2147e+06] \\
\hline '18-Feb-1998' & [ 7.2743e+06] \\
\hline '19-Feb-1998' & [ 7.2523e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 20-Feb-1998 \({ }^{\text {' }}\) & \(7.2591 \mathrm{e}+06]\) \\
\hline '23-Feb-1998' & 7.2468e+06] \\
\hline '24-Feb-1998' & 7.1535e+06] \\
\hline '25-Feb-1998' & 7.1280e+06] \\
\hline '26-Feb-1998' & \(7.0790 \mathrm{e}+06]\) \\
\hline '27-Feb-1998' & 7.1585e+06] \\
\hline '02-Mar-1998' & 7.0740e+06] \\
\hline '03-Mar-1998' & [ 7.0919e+06] \\
\hline '04-Mar-1998' & [ 6.7650e+06] \\
\hline '05-Mar-1998' & [ 6.6619e+06] \\
\hline '06-Mar-1998' & [ 6.6783e+06] \\
\hline '09-Mar-1998' & [ 6.6843e+06] \\
\hline '10-Mar-1998' & [ 6.6861e+06] \\
\hline '11-Mar-1998' & [ 6.6510e+06] \\
\hline '12-Mar-1998' & [ 6.6859e+06] \\
\hline '13-Mar-1998' & [ 6.6876e+06] \\
\hline '16-Mar-1998' & [ 6.8171e+06] \\
\hline '17-Mar-1998' & [ 6.7589e+06] \\
\hline '18-Mar-1998' & \(6.7484 \mathrm{e}+06]\) \\
\hline '19-Mar-1998' & 6.7183e+06] \\
\hline '20-Mar-1998' & [ 6.7509e+06] \\
\hline '23-Mar-1998' & 6.4629e+06] \\
\hline '24-Mar-1998' & [ 6.7658e+06] \\
\hline '25-Mar-1998' & [ 6.7637e+06] \\
\hline '26-Mar-1998' & [ 6.7880e+06] \\
\hline '27-Mar-1998' & [ 6.7752e+06] \\
\hline '30-Mar-1998' & [ 6.7319e+06] \\
\hline '31-Mar-1998' & [ 6.7735e+06] \\
\hline '01-Apr-1998' & [ 6.7418e+06] \\
\hline '02-Apr-1998' & [ 6.8667e+06] \\
\hline '03-Apr-1998' & [ 6.9478e+06] \\
\hline '06-Apr-1998' & [ 6.8770e+06] \\
\hline '07-Apr-1998' & [ 6.8658e+06] \\
\hline '08-Apr-1998' & [ 6.8398e+06] \\
\hline '09-Apr-1998' & [ 6.9112e+06] \\
\hline '10-Apr-1998' & NaN ] \\
\hline '13-Apr-1998' & [ 6.9513e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ' 14-Apr-1998' & \(7.0794 \mathrm{e}+06]\) \\
\hline '15-Apr-1998' & \(7.0993 \mathrm{e}+06]\) \\
\hline '16-Apr-1998' & [ 7.0451e+06] \\
\hline '17-Apr-1998' & [ 7.0941e+06] \\
\hline '20-Apr-1998' & [ 7.1877e+06] \\
\hline '21-Apr-1998' & [ 7.2439e+06] \\
\hline '22-Apr-1998' & [ 7.4139e+06] \\
\hline '23-Apr-1998' & [ 7.7885e+06] \\
\hline '24-Apr-1998' & [ 7.5926e+06] \\
\hline '27-Apr-1998' & [ 7.5218e+06] \\
\hline '28-Apr-1998' & [ 7.6813e+06] \\
\hline '29-Apr-1998' & [ 7.6946e+06] \\
\hline '30-Apr-1998' & [ 7.7226e+06] \\
\hline '01-May-1998' & [ 7.7561e+06] \\
\hline '04-May-1998' & [ 7.8064e+06] \\
\hline '05-May-1998' & [ 7.7930e+06] \\
\hline '06-May-1998' & [ 7.7329e+06] \\
\hline '07-May-1998' & [ 7.2904e+06] \\
\hline '08-May-1998' & [ 7.3063e+06] \\
\hline '11-May-1998' & [ 7.3509e+06] \\
\hline '12-May-1998' & [ 7.2887e+06] \\
\hline '13-May-1998' & [ 7.2777e+06] \\
\hline '14-May-1998' & [ 7.1305e+06] \\
\hline '15-May-1998' & [ 6.4240e+06] \\
\hline '18-May-1998' & [ 6.3473e+06] \\
\hline '19-May-1998' & [ 6.4269e+06] \\
\hline '20-May-1998' & [ 6.6504e+06] \\
\hline '21-May-1998' & [ 6.7150e+06] \\
\hline '22-May-1998' & [ 6.7276e+06] \\
\hline '25-May-1998' & \(\mathrm{NaN}]\) \\
\hline '26-May-1998' & [ 6.4981e+06] \\
\hline '27-May-1998' & [ 6.6615e+06] \\
\hline '28-May-1998' & [ 6.6322e+06] \\
\hline '29-May-1998' & [ 6.6287e+06] \\
\hline '01-Jun-1998' & [ 6.5418e+06] \\
\hline '02-Jun-1998' & [ 6.5027e+06] \\
\hline '03-Jun-1998' & [ 6.4828e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline '04-Jun-1998 ' & \(6.4828 e+06]\) \\
\hline '05-Jun-1998' & \(6.8934 \mathrm{e}+06]\) \\
\hline '08-Jun-1998' & \(6.9567 e+06]\) \\
\hline '09-Jun-1998' & \(6.9786 \mathrm{e}+06]\) \\
\hline '10-Jun-1998' & 7.0864e+06] \\
\hline '11-Jun-1998' & [ 7.0033e+06] \\
\hline '12-Jun-1998' & [ 6.9474e+06] \\
\hline '15-Jun-1998' & \(6.8305 e+06]\) \\
\hline '16-Jun-1998' & [ 6.8676e+06] \\
\hline '17-Jun-1998' & [ 6.9497e+06] \\
\hline '18-Jun-1998' & [ 6.8039e+06] \\
\hline '19-Jun-1998' & \(5.9783 \mathrm{e}+06]\) \\
\hline '22-Jun-1998' & [ 6.1457e+06] \\
\hline '23-Jun-1998' & [ 6.2025e+06] \\
\hline '24-Jun-1998' & [ 6.3676e+06] \\
\hline '25-Jun-1998' & [ 6.3573e+06] \\
\hline '26-Jun-1998' & [ 6.2764e+06] \\
\hline '29-Jun-1998' & [ 6.4058e+06] \\
\hline '30-Jun-1998' & [ 4.8229e+06] \\
\hline '01-Jul-1998' & [ 4.9836e+06] \\
\hline '02-Jul-1998' & [ 4.9978e+06] \\
\hline '03-Jul-1998' & \(\mathrm{NaN}]\) \\
\hline '06-Jul-1998' & [ 4.9523e+06] \\
\hline '07-Jul-1998' & [ 5.0152e+06] \\
\hline '08-Jul-1998' & [ 5.1713e+06] \\
\hline '09-Jul-1998' & [ 5.4897e+06] \\
\hline '10-Jul-1998' & [ 5.9651e+06] \\
\hline '13-Jul-1998' & [ 6.4600e+06] \\
\hline '14-Jul-1998' & [ 6.6198e+06] \\
\hline '15-Jul-1998' & [ 6.5121e+06] \\
\hline '16-Jul-1998' & [ 6.4963e+06] \\
\hline '17-Jul-1998' & [ 6.5054e+06] \\
\hline '20-Jul-1998' & [ 6.3752e+06] \\
\hline '21-Jul-1998' & [ 6.2409e+06] \\
\hline '22-Jul-1998' & [ 6.1144e+06] \\
\hline '23-Jul-1998' & [ 5.9980e+06] \\
\hline '24-Jul-1998' & [ 6.0636e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 27-Jul-1998 & \(6.0439 \mathrm{e}+06]\) \\
\hline '28-Jul-1998' & [ 5.8319e+06] \\
\hline '29-Jul-1998' & [ 5.8319e+06] \\
\hline '30-Jul-1998' & [ 5.8222e+06] \\
\hline '31-Jul-1998' & [ 5.7278e+06] \\
\hline '03-Aug-1998' & [ 5.7581e+06] \\
\hline '04-Aug-1998' & [ 5.3450e+06] \\
\hline '05-Aug-1998' & [ 5.5216e+06] \\
\hline ' 06-Aug-1998' & [ 5.4810e+06] \\
\hline '07-Aug-1998' & [ 5.4901e+06] \\
\hline '10-Aug-1998' & [ 5.4232e+06] \\
\hline '11-Aug-1998' & [ 5.2294e+06] \\
\hline '12-Aug-1998' & [ 5.2973e+06] \\
\hline '13-Aug-1998' & [ 5.2040e+06] \\
\hline '14-Aug-1998' & [ 5.1952e+06] \\
\hline '17-Aug-1998' & [ 5.2555e+06] \\
\hline '18-Aug-1998' & [ 5.4928e+06] \\
\hline '19-Aug-1998' & [ 5.4420e+06] \\
\hline '20-Aug-1998' & [ 5.4993e+06] \\
\hline '21-Aug-1998' & [ 5.4406e+06] \\
\hline '24-Aug-1998' & [ 5.4531e+06] \\
\hline '25-Aug-1998' & [ 5.5409e+06] \\
\hline '26-Aug-1998' & [ 5.3708e+06] \\
\hline '27-Aug-1998 ' & [ 5.0929e+06] \\
\hline '28-Aug-1998' & [ 4.8458e+06] \\
\hline '31-Aug-1998' & [ 3.6638e+06] \\
\hline '01-Sep-1998' & [ 5.2911e+06] \\
\hline '02-Sep-1998' & [ 5.1565e+06] \\
\hline '03-Sep-1998' & [ 4.7776e+06] \\
\hline '04-Sep-1998' & [ 4.7606e+06] \\
\hline '07-Sep-1998' & \(\mathrm{NaN}]\) \\
\hline '08-Sep-1998' & [ 5.0339e+06] \\
\hline '09-Sep-1998' & [ 4.6565e+06] \\
\hline '10-Sep-1998' & [ 4.4340e+06] \\
\hline '11-Sep-1998' & [ 4.1020e+06] \\
\hline '14-Sep-1998' & [ 2.8399e+06] \\
\hline '15-Sep-1998' & [ 3.3142e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{'17-Sep-1998'} \\
\hline \multicolumn{2}{|l|}{'17-Sep-1998'} \\
\hline \multicolumn{2}{|l|}{21-Sep-1998'} \\
\hline & 2-Sep \\
\hline \multicolumn{2}{|l|}{'23-Sep-1998'} \\
\hline & -p \\
\hline \multicolumn{2}{|l|}{25-Sep-1998'} \\
\hline & Sep \\
\hline \multicolumn{2}{|l|}{29-Sep-1998} \\
\hline & - \\
\hline \multicolumn{2}{|l|}{01-0ct-1998} \\
\hline & -Oct-1 \\
\hline \multicolumn{2}{|l|}{-Oct-1998'} \\
\hline & -Oct-1 \\
\hline \multicolumn{2}{|l|}{7-0ct-1998} \\
\hline & -0 \\
\hline \multicolumn{2}{|l|}{09-0ct-1998'} \\
\hline & -0 \\
\hline \multicolumn{2}{|l|}{13-0ct} \\
\hline \multicolumn{2}{|l|}{14-Oct-199} \\
\hline & -0c-1998 \\
\hline \multicolumn{2}{|l|}{-0ct-19} \\
\hline \multicolumn{2}{|l|}{19-0ct-1998'} \\
\hline & 20-0ct \\
\hline \multicolumn{2}{|l|}{'21-Oct-1998'} \\
\hline \multicolumn{2}{|l|}{'22-Oct-1998'} \\
\hline \multicolumn{2}{|l|}{'23-0ct-1998'} \\
\hline \multicolumn{2}{|l|}{26-0ct-1998} \\
\hline \multicolumn{2}{|l|}{'27-Oct-1998'} \\
\hline \multicolumn{2}{|l|}{28-0ct-1998} \\
\hline \multicolumn{2}{|l|}{'29-0ct-1998'} \\
\hline \multicolumn{2}{|l|}{30-Oct-1998'} \\
\hline \multicolumn{2}{|l|}{'02-Nov-1998'} \\
\hline \multicolumn{2}{|l|}{03-Nov-1998'} \\
\hline \multicolumn{2}{|l|}{' 04 -Nov-19} \\
\hline & \\
\hline
\end{tabular}
[ 3.4092e+06]
[ \(3.3943 \mathrm{e}+06\) ]
[ 3.3558e+06]
[ \(3.2712 \mathrm{e}+06\) ]
[ 3.2866e+06]
[ 3.8359e+06]
[ 3.6177e+06]
[ 3.5756e+06]
[ 3.6802e+06]
[ 3.6381e+06]
[ \(3.5155 \mathrm{e}+06\) ]
[ 3.3963e+06]
[ 3.4616e+06]
[ 3.4304e+06]
[ \(3.4884 \mathrm{e}+06\) ]
[ \(3.4085 \mathrm{e}+06\) ]
[ 2.8486e+06]
[ 2.8977e+06]
[ 3.0764e+06]
[ \(3.2490 \mathrm{e}+06\) ]
[ 3.0179e+06]
[ \(3.3385 \mathrm{e}+06\) ]
[ 3.2458e+06]
[ \(3.3579 \mathrm{e}+06\) ]
[ 3.6589e+06]
[ 3.7530e+06]
[ 3.8103e+06]
[ 3.7758e+06]
[ 3.7986e+06]
[ \(3.5580 \mathrm{e}+06\) ]
[ \(3.4789 \mathrm{e}+06\) ]
[ 3.5056e+06]
[ 3.5626e+06]
[ 4.0669e+06]
[ 4.2862e+06]
[ 4.0090e+06]
[ 4.3941e+06]
\begin{tabular}{|c|c|}
\hline 06-Nov-1998 \({ }^{\text {' }}\) & \(4.4064 \mathrm{e}+06]\) \\
\hline '09-Nov-1998' & [ 4.2952e+06] \\
\hline '10-Nov-1998' & [ 4.1463e+06] \\
\hline '11-Nov-1998' & [ 4.1463e+06] \\
\hline '12-Nov-1998' & \(4.1012 \mathrm{e}+06\) ] \\
\hline '13-Nov-1998' & [ 4.1855e+06] \\
\hline '16-Nov-1998' & [ 4.1748e+06] \\
\hline '17-Nov-1998' & [ 4.1748e+06] \\
\hline '18-Nov-1998' & [ 4.1631e+06] \\
\hline '19-Nov-1998' & [ 3.9979e+06] \\
\hline '20-Nov-1998' & 4.0380e+06] \\
\hline 23-Nov-1998' & [ 4.2780e+06] \\
\hline 24-Nov-1998' & 4.3860e+06] \\
\hline 25-Nov-1998' & [ 4.6248e+06] \\
\hline 26-Nov-1998' & NaN ] \\
\hline 27-Nov-1998' & [ 4.7564e+06] \\
\hline '30-Nov-1998' & [ 4.8473e+06] \\
\hline 01-Dec-1998' & [ 4.7124e+06] \\
\hline 02-Dec-1998' & [ 4.6671e+06] \\
\hline 03-Dec-1998' & [ 4.6217e+06] \\
\hline 04-Dec-1998' & [ 4.6848e+06] \\
\hline 07-Dec-1998' & [ 4.6492e+06] \\
\hline 08-Dec-1998' & [ 4.8177e+06] \\
\hline '09-Dec-1998' & [ 5.1608e+06] \\
\hline '10-Dec-1998' & [ 4.9751e+06] \\
\hline '11-Dec-1998' & [ 4.9127e+06] \\
\hline '14-Dec-1998' & [ 4.6815e+06] \\
\hline '15-Dec-1998' & [ 4.7034e+06] \\
\hline '16-Dec-1998' & [ 4.7034e+06] \\
\hline '17-Dec-1998' & [ 4.7180e+06] \\
\hline '18-Dec-1998' & [ 4.7056e+06] \\
\hline '21-Dec-1998' & [ 4.7408e+06] \\
\hline 22-Dec-1998' & [ 4.5106e+06] \\
\hline '23-Dec-1998' & [ 4.7061e+06] \\
\hline '24-Dec-1998' & [ 4.6842e+06] \\
\hline '25-Dec-1998' & \(\mathrm{NaN}]\) \\
\hline '28-Dec-1998' & [ 4.6654e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline '29-Dec-1998' & 4.6654e+06] \\
\hline '30-Dec-1998' & 4.5713e+06] \\
\hline '31-Dec-1998' & 4.5946e+06] \\
\hline '01-Jan-1999' & \(\mathrm{NaN}]\) \\
\hline '04-Jan-1999' & 4.4911e+06] \\
\hline '05-Jan-1999' & 4.7015e+06] \\
\hline '06-Jan-1999' & 4.8299e+06] \\
\hline '07-Jan-1999' & 5.1177e+06] \\
\hline '08-Jan-1999' & [ 5.3912e+06] \\
\hline '11-Jan-1999' & \(6.8183 \mathrm{e}+06]\) \\
\hline '12-Jan-1999' & [ 8.4777e+06] \\
\hline '13-Jan-1999' & 7.7084e+06] \\
\hline '14-Jan-1999' & [ 7.6955e+06] \\
\hline '15-Jan-1999' & \(7.6841 \mathrm{e}+06]\) \\
\hline '18-Jan-1999' & \(\mathrm{NaN}]\) \\
\hline '19-Jan-1999' & 7.7817e+06] \\
\hline '20-Jan-1999' & [ 7.6800e+06] \\
\hline '21-Jan-1999' & [ 7.3825e+06] \\
\hline '22-Jan-1999' & 7.3184e+06] \\
\hline '25-Jan-1999' & 7.4165e+06] \\
\hline '26-Jan-1999' & 7.3556e+06] \\
\hline '27-Jan-1999' & 6.8090e+06] \\
\hline '28-Jan-1999' & 7.0157e+06] \\
\hline '29-Jan-1999' & 6.8835e+06] \\
\hline '01-Feb-1999' & 7.0125e+06] \\
\hline '02-Feb-1999' & 6.9569e+06] \\
\hline '03-Feb-1999' & \(7.0063 \mathrm{e}+06\) ] \\
\hline '04-Feb-1999' & \(6.9198 \mathrm{e}+06]\) \\
\hline '05-Feb-1999' & 7.1697e+06] \\
\hline '08-Feb-1999' & 7.1346e+06] \\
\hline '09-Feb-1999' & [ 7.0497e+06] \\
\hline '10-Feb-1999' & [ 7.1516e+06] \\
\hline '11-Feb-1999' & 7.3676e+06] \\
\hline '12-Feb-1999' & [ 7.4148e+06] \\
\hline '15-Feb-1999' & \(\mathrm{NaN}]\) \\
\hline '16-Feb-1999' & [ 7.3620e+06] \\
\hline '17-Feb-1999' & [ 7.3380e+06] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 18-Feb-1999 ' & 7.2861e+06] \\
\hline '19-Feb-1999' & 7.2516e+06] \\
\hline '22-Feb-1999' & \(7.3712 \mathrm{e}+06]\) \\
\hline '23-Feb-1999' & [ 7.3712e+06] \\
\hline '24-Feb-1999' & \(7.4044 \mathrm{e}+06]\) \\
\hline 25-Feb-1999 ' & 7.3187e+06] \\
\hline '26-Feb-1999' & 7.4337e+06] \\
\hline 01-Mar-1999' & [ 7.3845e+06] \\
\hline 02-Mar-1999' & [ 7.3068e+06] \\
\hline 03-Mar-1999' & [ 7.3518e+06] \\
\hline '04-Mar-1999' & [ 7.4538e+06] \\
\hline '05-Mar-1999' & [ 7.5467e+06] \\
\hline '08-Mar-1999' & 7.6523e+06] \\
\hline '09-Mar-1999' & [ 7.2539e+06] \\
\hline '10-Mar-1999' & 7.2236e+06] \\
\hline '11-Mar-1999' & [ 7.2528e+06] \\
\hline '12-Mar-1999' & 7.5991e+06] \\
\hline '15-Mar-1999' & [ 7.5701e+06] \\
\hline 16-Mar-1999' & [ 7.4750e+06] \\
\hline '17-Mar-1999' & [ 7.4073e+06] \\
\hline '18-Mar-1999' & [ 7.5517e+06] \\
\hline '19-Mar-1999' & [ 7.4928e+06] \\
\hline '22-Mar-1999' & [ 7.4077e+06] \\
\hline '23-Mar-1999' & [ 7.0695e+06] \\
\hline '24-Mar-1999' & [ 7.0695e+06] \\
\hline '25-Mar-1999' & [ 7.1143e+06] \\
\hline '26-Mar-1999' & [ 7.0415e+06] \\
\hline '29-Mar-1999' & [ 7.0655e+06] \\
\hline
\end{tabular}


\footnotetext{
References Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 239-240.
}
```

Purpose Present value of varying cash flow
Syntax PresentVal = pvvar(CashFlow, Rate, CFDates)

```

\section*{Arguments}

CashFlow A vector of varying cash flows. Include the initial investment as the initial cash flow value (a negative number). If CashFlow is a matrix, each column is treated as a separate cash-flow stream.

Rate Periodic interest rate. Enter as a decimal fraction. If CashFlow is a matrix, a scalar Rate is allowed when the same rate applies to all cash-flow streams in CashFlow. When multiple cash-flow streams require different discount rates, Rate must be a vector whose length equals the number of columns in CashFlow.
CFDates (Optional) A vector of serial date numbers or date strings on which the cash flows occur. Specify CFDates when there are irregular (nonperiodic) cash flows. The default assumes that CashFlow contains regular (periodic) cash flows. If CashFlow is a matrix, and all cash-flow streams share the same dates, CFDates can be a vector whose length matches the number of rows in CashFlow. When different cash-flow streams have different payment dates, specify CFDates as a matrix the same size as CashFlow.

Description

Examples

PresentVal = pvvar(CashFlow, Rate, CFDates) returns the net present value of a varying cash flow. Present value is calculated at the time the first cash flow occurs.

This cash flow represents the yearly income from an initial investment of \(\$ 10,000\). The annual interest rate is \(8 \%\).
\begin{tabular}{ll} 
Year 1 & \(\$ 2000\) \\
Year 2 & \(\$ 1500\) \\
Year 3 & \(\$ 3000\) \\
Year 4 & \(\$ 3800\) \\
Year 5 & \(\$ 5000\)
\end{tabular}

To calculate the net present value of this regular cash flow
PresentVal = pvvar([-10000 2000 150030003800 5000], 0.08)
returns
PresentVal =
1715.39

An investment of \(\$ 10,000\) returns this irregular cash flow. The original investment and its date are included. The periodic interest rate is \(9 \%\).
\begin{tabular}{ll} 
Cash Flow & Dates \\
\((\$ 10000)\) & January 12, 1987 \\
\(\$ 2500\) & February 14, 1988 \\
\(\$ 2000\) & March 3, 1988 \\
\(\$ 3000\) & June 14, 1988 \\
\(\$ 4000\) & December 1, 1988
\end{tabular}

To calculate the net present value of this irregular cash flow
CashFlow \(=[-10000,2500,2000,3000,4000]\);
CFDates = ['01/12/1987'
```

 '02/14/1988'
 '03/03/1988'
 '06/14/1988'
 '12/01/1988'];
 PresentVal = pvvar(CashFlow, 0.09, CFDates)
returns
PresentVal =
142.16

```

The net present value of the same investment under different discount rates of \(7 \%, 9 \%\), and \(11 \%\) is obtained in a single call:
```

PresentVal = pvvar(repmat(CashFlow,3,1)', [.07 .09 .11], CFDates)

```
\(p v=\)
    \(419.0136 \quad 142.1648\)-122.1275

See Also fvfix | fvvar | irr | payuni | pvfix

\author{
Purpose \\ Zero curve given par yield curve \\ Syntax \\ [ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle, Compounding, Basis, InputCompounding)
}

\section*{Arguments}
\begin{tabular}{ll} 
ParRates & \begin{tabular}{l} 
Column vector of annualized implied par \\
yield rates, as decimal fractions. (Par yields \\
= coupon rates.) In aggregate, the yield rates \\
in ParRates constitute an implied par yield \\
curve for the investment horizon represented \\
by CurveDates. \\
Column vector of maturity dates (as serial date \\
numbers) that correspond to the par rates.
\end{tabular} \\
CurveDates & \begin{tabular}{l} 
Serial date number that is the common \\
settlement date for the par rates. \\
(Optional) Scalar value representing the \\
periodicity in which the output zero rates are \\
compounded when annualized. Allowed values \\
are:
\end{tabular} \\
Compounding & \begin{tabular}{l}
1
\end{tabular} \\
2 & Annual compounding
\end{tabular}

Basis (Optional) Day-count basis used to annualize the zero rates.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- \(12=\) actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

InputCompounding (Optional) Scalar value representing the periodicity in which the input par rates were compounded when annualized. The default is the value for Compounding.

\section*{Description}
[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle, Compounding, Basis, InputCompounding) returns a zero curve given a par yield curve and its maturity dates.
```

Note pyld2zero uses zbtprice for computations.

```
\begin{tabular}{ll} 
ZeroRates & \begin{tabular}{l} 
Column vector of decimal fractions. In aggregate, the \\
rates in ZeroRates constitute a zero curve for the \\
investment horizon represented by CurveDates.
\end{tabular} \\
CurveDates & \begin{tabular}{l} 
Column vector of maturity dates (as serial date \\
numbers) corresponding to the zero rates. This vector \\
is the same as the input vector CurveDates.
\end{tabular}
\end{tabular}

\section*{Examples Given}
- A par yield curve over a set of maturity dates
- A settlement date
- Annual compounding for the input par rates and monthly compounding for the output zero curve
compute a zero yield curve.
```

ParRates = [0.0479

```
            0.0522
            0.0540
            0.0540
            0.0536
            0.0532
            0.0532
            0.0539
            0.0558
            0.0543];
CurveDates \(=\) [datenum('06-Nov-2000')
    datenum('11-Dec-2000')
```

 datenum('15-Jan-2001')
 datenum('05-Feb-2001')
 datenum('04-Mar-2001')
 datenum('02-Apr-2001')
 datenum('30-Apr-2001')
 datenum('25-Jun-2001')
 datenum('04-Sep-2001')
 datenum('12-Nov-2001')];
 Settle = datenum('03-Nov-2000');
InputCompounding = 1;
Compounding = 12;
[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates,...
Settle, Compounding, [], InputCompounding)
ZeroRates =
0.0455
0.0492
0.0512
0.0513
0.0504
0.0504
0.0502
0.0514
0.0535
0.0523
CurveDates =
730796
7 3 0 8 3 1
7 3 0 8 6 6
7 3 0 8 8 7
7 3 0 9 1 4

```

730943
730971
731027
731098
731167

For readability, ParRates and ZeroRates are shown only to the basis point. However, MATLAB computes them at full precision. If you enter ParRates as shown, ZeroRates may differ due to rounding.

\author{
See Also zero2pyld \\ How To . "Term Structure of Interest Rates" on page 2-41
}

\section*{rdivide}

Purpose Financial time series division
```

Syntax
newfts = tsobj_1 ./ tsobj_2
newfts = tsobj ./ array
newfts = array ./ tsobj

```

\section*{Arguments}
\[
\begin{array}{ll}
\text { tsobj_1, tsobj_2 } & \begin{array}{l}
\text { Pair of financial time series objects. } \\
\text { array }
\end{array} \\
& \begin{array}{l}
\text { Scalar value or array with the number of rows } \\
\text { equal to the number of dates in tsobj and the } \\
\text { number of columns equal to the number of data } \\
\text { series in tsobj. }
\end{array}
\end{array}
\]

\section*{Description}

See Also minus | mrdivide | plus | times

\section*{Purpose Renko chart}

\section*{Syntax renko(X)}
renko(X, threshold)

\section*{Arguments}

\section*{Description}

\section*{Examples}

\section*{Plot Asset Price With Respect to Dates}

This example shows how to plot asset price with respect to dates, given asset X as an M-by-2 matrix of date numbers and asset prices, generate a Renko chart.

X = [...
\begin{tabular}{ll}
733299.00 & \(41.99 ; \ldots\) \\
733300.00 & \(42.14 ; \ldots\) \\
733303.00 & \(41.93 ; \ldots\) \\
733304.00 & \(41.98 ; \ldots\) \\
733305.00 & \(41.75 ; \ldots\) \\
733306.00 & \(41.61 ; \ldots\) \\
733307.00 & \(42.29 ; \ldots\) \\
733310.00 & \(42.19 ; \ldots\) \\
733311.00 & \(41.82 ; \ldots\) \\
733312.00 & \(41.93 ; \ldots\)
\end{tabular}
```

733313.00
7 3 3 3 1 4 . 0 0
733317.00
733318.00
41.81;...
41.37;...
41.17;...
42.02];
renko(X,.1)

```


See Also
bolling | candle | highlow | kagi | linebreak | movavg | pointfig | priceandvol | volarea

\section*{Purpose Downsample data}
```

Syntax newfts = resamplets(oldfts, samplestep)

```

Description newfts = resamplets (oldfts, samplestep) downsamples the data contained in the financial time series object oldfts every samplestep periods. For example, to have the new financial time series object contain every other data element from oldfts, set samplestep to 2.
newfts is a financial time series object containing the same data series (names) as the input oldfts.

\section*{See Also \\ filter}

\author{
Purpose Convert return series to price series \\ Syntax [TickSeries, TickTimes] = ret2tick(RetSeries, StartPrice, RetIntervals, StartTime, Method)
}

\section*{Arguments}
\(\left.\begin{array}{ll}\text { RetSeries } & \begin{array}{l}\text { Number of observations (NUMOBS) by number } \\ \text { of assets (NASSETS) time series array of } \\ \text { asset returns associated with the prices in }\end{array} \\ \text { TickSeries. The } i \text { th return is quoted for the } \\ \text { period TickTimes (i) to TickTimes (i+1) and is } \\ \text { not normalized by the time increment between } \\ \text { successive price observations. } \\ \text { (Optional) 1-by-NASSETS vector of initial asset } \\ \text { prices or a single scalar initial price applied to } \\ \text { all assets. Prices start at 1 if StartPrice is } \\ \text { not specified. }\end{array}\right\}\)

\section*{Description}
[TickSeries, TickTimes] = ret2tick(RetSeries, StartPrice, RetIntervals, StartTime, Method) generates price values from the starting prices of NASSETS investments and NUMOBS incremental return observations.

TickSeries is a NUMOBS+1-by-NASSETS times series array of equity prices. The first row contains the oldest observations and the last row the most recent. Observations across a given row occur at the same time for all columns. Each column is a price series of an individual asset. If Method is unspecified or 'Simple', the prices are
```

TickSeries(i+1) = TickSeries(i)*[1 + RetSeries(i)]

```

If Method is 'Continuous', the prices are
```

TickSeries(i+1) = TickSeries(i)*exp[RetSeries(i)]

```

TickTimes is a NUMOBS+1 column vector of monotonically increasing observation times associated with the prices in TickSeries. The initial time is zero unless specified in StartTime, and sequential observation times occur at unit increments unless specified in RetIntervals.

\section*{Examples Convert a Return Series to a Price Series}

This example shows how to compute the price increase of two stocks over a year's time based on three incremental return observations.
```

RetSeries = [0.10 0.12
0.05 0.04
-0.05 0.05];
RetIntervals = [182
91
92];
StartTime = datenum('18-Dec-2000');
[TickSeries,TickTimes] = ret2tick(RetSeries,[],RetIntervals,...

```
```

StartTime)
datestr(TickTimes)
TickSeries =
1.0000 1.0000
1.1000 1.1200
1.1550 1.1648
1.0973 1.2230
TickTimes =
730838
731020
7 3 1 1 1 1
7 3 1 2 0 3
ans =
18-Dec-2000
18-Jun-2001
17-Sep-2001
18-Dec-2001

```

\section*{See Also}
portsim | tick2ret

\section*{Purpose}

Convert return series to price series for time series object
Syntax
```

priceFts = ret2tick(returnFts)
priceFts = ret2tick(returnFts, 'PARAM1', VALUE1,
'PARAM2', VALUE2', ...)

```

Arguments
returnFts Financial time series object of returns.
'PARAM1 ' (Optional) StartPrice is a Numeric value and is a scalar or 1-by-N vector of initial prices for each asset. If StartPrice is unspecified or empty, the initial price of all assets is 1.
' PARAM2 \({ }^{\text {' (Optional) StartTime is Date value for a scalar }}\) date number or a single date string specifying the starting time for the first observation. This date is applied to the price series of all assets.

Note The first period price value of the resulting price series will not be reported if StartTime is not specified. The resulting price series will be scaled based on the StartPrice, even if StartTime is not supplied.
' PARAM3'
(Optional) Method is a character string indicating the method to convert asset returns to prices. The value must be defined as 'Simple' (default) or 'Continuous'. If Method is 'Simple', ret2tick uses simple periodic returns. If Method is 'Continuous', the function uses continuously compounded returns. Case is ignored for Method.

\section*{Description}
priceFts = ret2tick(returnFts, 'PARAM1', VALUE1, 'PARAM2', VALUE2', ...) generates a financial time series object of prices.

If Method is unspecified or 'Simple', the prices are
```

PriceSeries(i+1) = PriceSeries(i)*[1 + ReturnSeries(i)]

```

If Method is 'Continuous', the prices are
```

PriceSeries(i+1) = PriceSeries(i)*exp[ReturnSeries(i)]

```

\section*{Examples Compute the price series from the following return series:}
```

RetSeries = [0.10 0.12
0.05 0.04
-0.05 0.05]

```

Use the following dates:
Dates \(=\) \{'18-Jun-2001'; '17-Sep-2001'; '18-Dec-2001'\}
where
```

ret = fints(Dates, RetSeries)
ret =
desc: (none)
freq: Unknown (0)

```
\begin{tabular}{llll} 
'dates: (3)' & 'series1: (3)' & 'series2: (3)' \\
'18-Jun-2001' & [ & \(0.1000]\) & [ \\
'17-Sep-2001' & [ & \(0.0500]\) & [ \\
'18-Dec-2001' & [ & \(-0.0500]\) & [
\end{tabular}

PriceFtS is computed as:
```

PriceFts = ret2tick(ret, 'StartPrice', 100, 'StartTime', '18-Dec-2000')

```
PriceFts =
```

desc: (none)
freq: Unknown (0)

```
\begin{tabular}{llll} 
'dates: (4)' & 'series1: (4)' & 'series2: (4)' \\
'18-Dec-2000' & {\([\)} & \(100]\) & {\([\)}
\end{tabular}

\section*{See Also \\ portsim | tick2ret}

Purpose Remove data series
Syntax fts = rmfield(tsobj, fieldname)
Arguments
tsobj Financial time series object.
fieldname String array containing the data series name to remove a single series from the object. Cell array of data series names to remove multiple data series from the object at the same time.

\section*{Description}

See Also
chfield | extfield | fieldnames | getfield | isfield
fts = rmfield(tsobj, fieldname) removes the data series fieldname and its contents from the financial time series object \(t s o b j\).

\section*{Purpose Relative Strength Index (RSI)}

\section*{Syntax rsi = rsindex(closep, nperiods)}
rsits = rsindex(tsobj, nperiods)
rsits = rsindex(tsobj, nperiods, ParameterName, ParameterValue)

\section*{Arguments}
\begin{tabular}{ll} 
closep & Vector of closing prices. \\
nperiods & (Optional) Number of periods. Default \(=14\). \\
tsobj & Financial time series object.
\end{tabular}

\section*{Description}
rsi = rsindex(closep, nperiods) calculates the Relative Strength Index (RSI) from the closing price vector closep.
rsits = rsindex(tsobj, nperiods) calculates the RSI from the closing price series in the financial time series object tsobj. The object tsobj must contain at least the series Close, representing the closing prices. The output rsits is a financial time series object whose dates are the same as tsobj and whose data series name is RSI.
rsits = rsindex(tsobj, nperiods, ParameterName, ParameterValue) accepts a parameter name/parameter value pair as input. This pair specifies the name for the required data series if it is different from the expected default name. The valid parameter name is

CloseName: closing prices series name
The parameter value is the string that represents the valid parameter name.

1 The relative strength factor is calculated by dividing the average of the gains by the average of the losses within a specified time period: RS = (average gains)/(average losses).

2 The first value of RSI, RISI(1), is set as NaN to preserve the dimensions of CLOSEP.

\section*{Examples Calculate the Relative Strength Index (RSI)}

This example shows how to calculate the RSI for Disney stock and plot the results.
```

load disney.mat
dis_RSI = rsindex(dis)
plot(dis_RSI)
title('Relative Strength Index for Disney')

```
dis_RSI =
    desc: RSIndex: Walt Disney Company (DIS)
    freq: Unknown (0)
    'dates: (782)' 'RSI: (782)
    '29-Mar-1996' [ NaN]
    '01-Apr-1996' [ NaN]
    '02-Apr-1996' [ NaN]
    '03-Apr-1996' [ NaN]
    '04-Apr-1996' [ NaN]
    '05-Apr-1996' [ NaN]
    '08-Apr-1996' [ NaN]
    '09-Apr-1996' [ NaN]
    '10-Apr-1996' [ NaN]
    '11-Apr-1996' [ NaN]
    '12-Apr-1996' [ NaN]
    '15-Apr-1996' [ NaN]
    '16-Apr-1996' [ NaN]
    '17-Apr-1996' [ NaN]
    18-Apr-1996' [ NaN]
    '19-Apr-1996' [ 46.1538]
    '22-Apr-1996' [ 37.8405]
    '23-Apr-1996' [ 30.2715]
\begin{tabular}{|c|c|c|}
\hline 24-Apr-1996' & [ & 26.1925] \\
\hline '25-Apr-1996' & [ & \(32.1531]\) \\
\hline '26-Apr-1996' & [ & \(38.1034]\) \\
\hline '29-Apr-1996' & [ & 41.0335] \\
\hline '30-Apr-1996' & [ & \(57.8881]\) \\
\hline '01-May-1996' & [ & \(50.7749]\) \\
\hline '02-May-1996' & [ & \(40.9984]\) \\
\hline '03-May-1996' & [ & \(32.3247]\) \\
\hline '06-May-1996' & [ & 38.0405] \\
\hline '07-May-1996' & [ & \(34.2172]\) \\
\hline '08-May-1996' & [ & \(29.3572]\) \\
\hline '09-May-1996' & [ & \(25.3265]\) \\
\hline '10-May-1996' & [ & \(33.7381]\) \\
\hline '13-May-1996' & [ & 45.4595] \\
\hline '14-May-1996' & [ & 51.2597] \\
\hline '15-May-1996' & [ & \(45.5650]\) \\
\hline '16-May-1996' & [ & 44.1571] \\
\hline '17-May-1996' & [ & 46.9194] \\
\hline '20-May-1996' & [ & 49.4071] \\
\hline '21-May-1996' & [ & 59.7382] \\
\hline '22-May-1996' & [ & \(64.4774]\) \\
\hline '23-May-1996' & [ & \(66.2127]\) \\
\hline '24-May-1996' & [ & \(63.7565]\) \\
\hline '27-May-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '28-May-1996' & [ & 66.6545] \\
\hline '29-May-1996' & [ & \(57.8964]\) \\
\hline '30-May-1996' & [ & 65.7928] \\
\hline '31-May-1996' & [ & 58.3333] \\
\hline '03-Jun-1996' & [ & \(47.6190]\) \\
\hline '04-Jun-1996' & [ & 45.3113] \\
\hline '05-Jun-1996' & [ & 50.8003] \\
\hline '06-Jun-1996' & [ & 59.2101] \\
\hline '07-Jun-1996' & [ & \(60.2525]\) \\
\hline '10-Jun-1996' & [ & 52.5068] \\
\hline '11-Jun-1996' & [ & 50] \\
\hline '12-Jun-1996' & [ & \(47.9434]\) \\
\hline '13-Jun-1996' & [ & 48.5991] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '14-Jun-1996' & [ & 44.2882] \\
\hline '17-Jun-1996' & [ & \(49.3067]\) \\
\hline '18-Jun-1996' & [ & \(53.0182]\) \\
\hline '19-Jun-1996' & [ & \(49.1739]\) \\
\hline '20-Jun-1996' & & 56.4460 ] \\
\hline '21-Jun-1996' & [ & \(65.2174]\) \\
\hline '24-Jun-1996' & & \(61.6371]\) \\
\hline '25-Jun-1996' & & 64.0923] \\
\hline '26-Jun-1996' & & \(49.2870]\) \\
\hline '27-Jun-1996' & [ & \(49.2870]\) \\
\hline '28-Jun-1996' & & \(53.1109]\) \\
\hline '01-Jul-1996' & [ & 49.2698] \\
\hline '02-Jul-1996' & [ & 44.1571 ] \\
\hline '03-Jul-1996' & [ & 45.9468 ] \\
\hline '04-Jul-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '05-Jul-1996' & [ & \(40.0056]\) \\
\hline '08-Jul-1996' & [ & 35.7143 ] \\
\hline '09-Jul-1996' & [ & 34.0971 ] \\
\hline '10-Jul-1996' & [ & \(36.9520]\) \\
\hline '11-Jul-1996' & [ & \(28.1519]\) \\
\hline '12-Jul-1996' & [ & 25.2425] \\
\hline '15-Jul-1996' & [ & \(22.9295]\) \\
\hline '16-Jul-1996' & [ & \(23.6360]\) \\
\hline '17-Jul-1996' & & \(25.2389]\) \\
\hline '18-Jul-1996' & & 28.0233] \\
\hline '19-Jul-1996' & & 29.2412] \\
\hline '22-Jul-1996' & & \(27.6742]\) \\
\hline '23-Jul-1996' & & 28.6953] \\
\hline '24-Jul-1996' & & \(26.9520]\) \\
\hline '25-Jul-1996' & & \(30.3836]\) \\
\hline '26-Jul-1996' & & 30.6870 ] \\
\hline '29-Jul-1996' & & \(32.6257]\) \\
\hline '30-Jul-1996' & & 39.0489 ] \\
\hline '31-Jul-1996' & & \(47.8340]\) \\
\hline '01-Aug-1996' & [ & 52.0048] \\
\hline '02-Aug-1996' & [ & 64.0410] \\
\hline '05-Aug-1996' & [ & 61.4406] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 06-Aug-1996 \({ }^{\text {' }}\) & [ & 63.6388 ] \\
\hline '07-Aug-1996' & [ & \(55.4206]\) \\
\hline '08-Aug-1996' & [ & 50.5663] \\
\hline '09-Aug-1996' & & \(55.5556]\) \\
\hline '12-Aug-1996' & [ & 63.6388] \\
\hline '13-Aug-1996' & & \(67.4667]\) \\
\hline '14-Aug-1996' & [ & \(67.8571]\) \\
\hline '15-Aug-1996' & & \(67.8571]\) \\
\hline '16-Aug-1996' & [ & 73.7474] \\
\hline '19-Aug-1996' & [ & \(66.6545]\) \\
\hline '20-Aug-1996' & [ & \(59.4087]\) \\
\hline '21-Aug-1996' & [ & \(53.3387]\) \\
\hline '22-Aug-1996' & [ & 50.8838] \\
\hline '23-Aug-1996' & [ & 50] \\
\hline '26-Aug-1996' & [ & 52.5417] \\
\hline '27-Aug-1996' & [ & \(54.4000]\) \\
\hline '28-Aug-1996' & [ & \(55.3556]\) \\
\hline '29-Aug-1996' & [ & 54.3771 ] \\
\hline '30-Aug-1996' & [ & \(38.4686]\) \\
\hline '02-Sep-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '03-Sep-1996' & [ & 41.6792] \\
\hline '04-Sep-1996' & [ & \(38.7855]\) \\
\hline '05-Sep-1996' & [ & \(33.9332]\) \\
\hline '06-Sep-1996' & [ & \(43.0786]\) \\
\hline '09-Sep-1996' & [ & \(51.3619]\) \\
\hline '10-Sep-1996' & [ & 53.5316] \\
\hline '11-Sep-1996' & [ & \(54.1667]\) \\
\hline '12-Sep-1996' & [ & \(61.1801]\) \\
\hline '13-Sep-1996' & [ & 61.1801] \\
\hline '16-Sep-1996' & [ & 54.3111] \\
\hline '17-Sep-1996' & [ & \(59.9944]\) \\
\hline '18-Sep-1996' & [ & \(64.9970]\) \\
\hline '19-Sep-1996' & [ & 74.4703] \\
\hline '20-Sep-1996' & [ & 76.9251] \\
\hline '23-Sep-1996' & [ & \(77.8929]\) \\
\hline '24-Sep-1996' & [ & 74.0038] \\
\hline '25-Sep-1996' & [ & 80.4331] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '26-Sep-1996' & [ & \(73.2626]\) \\
\hline '27-Sep-1996' & & 72.6207] \\
\hline '30-Sep-1996' & & 75.9040] \\
\hline '01-Oct-1996' & & 68.6723] \\
\hline '02-0ct-1996' & & 63.3750] \\
\hline '03-Oct-1996' & & \(63.3874]\) \\
\hline '04-0ct-1996' & & 70.6786] \\
\hline '07-0ct-1996' & & \(67.6554]\) \\
\hline '08-0ct-1996' & & \(63.3750]\) \\
\hline '09-0ct-1996' & & 50] \\
\hline '10-Oct-1996' & & \(53.8355]\) \\
\hline '11-Oct-1996' & [ & \(52.9439]\) \\
\hline '14-Oct-1996' & & 62.2199] \\
\hline '15-Oct-1996' & [ & \(65.2219]\) \\
\hline '16-0ct-1996' & & 78.0019] \\
\hline '17-Oct-1996' & [ & \(65.9683]\) \\
\hline '18-Oct-1996' & & \(65.2401]\) \\
\hline '21-Oct-1996' & [ & 77.8015] \\
\hline '22-Oct-1996' & & 80.0192] \\
\hline '23-0ct-1996' & [ & \(73.1054]\) \\
\hline '24-Oct-1996' & & \(60.0192]\) \\
\hline '25-0ct-1996' & [ & \(64.9241]\) \\
\hline '28-Oct-1996' & & 70.4050] \\
\hline '29-0ct-1996' & & \(65.5344]\) \\
\hline '30-Oct-1996' & & 63.8095] \\
\hline '31-0ct-1996' & & 63.1690 ] \\
\hline '01-Nov-1996' & & \(59.3241]\) \\
\hline '04-Nov-1996' & & \(64.7246]\) \\
\hline '05-Nov-1996' & & \(63.0957]\) \\
\hline '06-Nov-1996' & & 68.8583] \\
\hline '07-Nov-1996' & & \(72.8645]\) \\
\hline '08-Nov-1996' & & \(66.6667]\) \\
\hline '11-Nov-1996' & & 69.7410] \\
\hline '12-Nov-1996' & & 74.9921] \\
\hline '13-Nov-1996' & & 79.1667] \\
\hline '14-Nov-1996' & & 76.9288] \\
\hline '15-Nov-1996' & [ & 80.5175] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '18-Nov-1996' & [ & 78.4868] \\
\hline '19-Nov-1996' & [ & \(76.5560]\) \\
\hline '20-Nov-1996' & [ & 77.6617] \\
\hline '21-Nov-1996' & [ & 81.4070] \\
\hline '22-Nov-1996' & [ & \(77.6549]\) \\
\hline '25-Nov-1996' & [ & \(79.0332]\) \\
\hline '26-Nov-1996' & [ & \(83.0211]\) \\
\hline '27-Nov-1996' & [ & \(68.2379]\) \\
\hline '28-Nov-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '29-Nov-1996' & [ & \(70.8955]\) \\
\hline '02-Dec-1996' & [ & \(65.9296]\) \\
\hline '03-Dec-1996' & [ & \(53.9995]\) \\
\hline '04-Dec-1996' & [ & \(55.5556]\) \\
\hline '05-Dec-1996' & [ & \(54.9952]\) \\
\hline '06-Dec-1996' & [ & \(46.6649]\) \\
\hline '09-Dec-1996' & [ & 57.28931 \\
\hline '10-Dec-1996' & [ & \(59.5761]\) \\
\hline '11-Dec-1996' & [ & 51.5466] \\
\hline '12-Dec-1996' & [ & \(42.6000]\) \\
\hline '13-Dec-1996' & [ & \(42.9917]\) \\
\hline '16-Dec-1996' & [ & \(33.9856]\) \\
\hline '17-Dec-1996' & [ & \(28.4343]\) \\
\hline '18-Dec-1996' & [ & \(38.5549]\) \\
\hline '19-Dec-1996' & [ & \(43.3369]\) \\
\hline '20-Dec-1996' & [ & 43.3369] \\
\hline '23-Dec-1996' & [ & \(51.3258]\) \\
\hline '24-Dec-1996' & [ & \(47.4963]\) \\
\hline '25-Dec-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '26-Dec-1996' & [ & \(47.5105]\) \\
\hline '27-Dec-1996' & [ & 48.7235] \\
\hline '30-Dec-1996' & [ & \(33.3333]\) \\
\hline '31-Dec-1996' & [ & \(31.5756]\) \\
\hline '01-Jan-1997' & [ & NaN] \\
\hline '02-Jan-1997' & [ & \(27.9018]\) \\
\hline '03-Jan-1997' & [ & \(45.3404]\) \\
\hline '06-Jan-1997' & [ & \(44.3142]\) \\
\hline '07-Jan-1997' & [ & 47.5563] \\
\hline
\end{tabular}

18-1383
\begin{tabular}{|c|c|c|}
\hline 08-Jan-1997 \({ }^{\text {' }}\) & [ & \(34.6154]\) \\
\hline 09-Jan-1997' & [ & \(28.9548]\) \\
\hline 10-Jan-1997' & [ & 25] \\
\hline 13-Jan-1997' & [ & 26.0355] \\
\hline 14-Jan-1997' & [ & \(35.7926]\) \\
\hline 15-Jan-1997' & [ & \(37.6676]\) \\
\hline 16-Jan-1997' & & \(37.1692]\) \\
\hline 17-Jan-1997' & [ & \(44.1809]\) \\
\hline 20-Jan-1997' & [ & 52.5053] \\
\hline 21-Jan-1997' & [ & 50] \\
\hline '22-Jan-1997' & [ & \(68.4972]\) \\
\hline 23-Jan-1997' & [ & \(57.3790]\) \\
\hline 24-Jan-1997' & [ & 63.6364] \\
\hline 27-Jan-1997' & [ & \(66.1843]\) \\
\hline 28-Jan-1997' & [ & 77.9386] \\
\hline 29-Jan-1997' & [ & 83.7820] \\
\hline 30-Jan-1997' & [ & 71.9555] \\
\hline 31-Jan-1997' & [ & 72.9455] \\
\hline 03-Feb-1997' & [ & \(69.3440]\) \\
\hline 04-Feb-1997' & [ & 68.4028] \\
\hline 05-Feb-1997' & [ & 70.6654] \\
\hline 06-Feb-1997' & [ & 71.0543] \\
\hline 07-Feb-1997' & [ & 72.4955] \\
\hline 10-Feb-1997 \({ }^{\prime}\) & [ & 79.7388] \\
\hline 11-Feb-1997' & [ & 72.3713] \\
\hline 12-Feb-1997' & [ & 79.0737] \\
\hline 13-Feb-1997' & [ & 78.8255] \\
\hline 14-Feb-1997' & [ & 79.5473] \\
\hline 17-Feb-1997' & [ & \(\mathrm{NaN}]\) \\
\hline 18-Feb-1997' & [ & 72.9325] \\
\hline 19-Feb-1997' & [ & \(60.9211]\) \\
\hline '20-Feb-1997' & [ & \(60.9211]\) \\
\hline '21-Feb-1997' & [ & \(61.3581]\) \\
\hline '24-Feb-1997' & [ & 62.2133] \\
\hline 25-Feb-1997' & [ & \(65.2231]\) \\
\hline '26-Feb-1997' & [ & 61.4654] \\
\hline 27-Feb-1997' & [ & \(58.4300]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 28-Feb-1997' & [ & \(46.8080]\) \\
\hline '03-Mar-1997' & [ & \(40.6250]\) \\
\hline '04-Mar-1997' & [ & \(40.6250]\) \\
\hline '05-Mar-1997' & [ & 35.9493 ] \\
\hline '06-Mar-1997' & [ & \(40.6250]\) \\
\hline '07-Mar-1997' & [ & \(41.2274]\) \\
\hline '10-Mar-1997' & [ & 46.9378 ] \\
\hline '11-Mar-1997' & [ & \(54.4412]\) \\
\hline '12-Mar-1997' & [ & \(52.6846]\) \\
\hline '13-Mar-1997' & [ & \(41.9067]\) \\
\hline '14-Mar-1997' & [ & \(46.9631]\) \\
\hline '17-Mar-1997' & [ & \(49.5833]\) \\
\hline '18-Mar-1997' & [ & 50] \\
\hline '19-Mar-1997' & [ & \(47.1032]\) \\
\hline '20-Mar-1997' & [ & \(50.8896]\) \\
\hline '21-Mar-1997' & [ & \(52.3023]\) \\
\hline '24-Mar-1997' & [ & \(58.0403]\) \\
\hline '25-Mar-1997' & [ & \(54.6364]\) \\
\hline '26-Mar-1997' & [ & \(50.4975]\) \\
\hline '27-Mar-1997' & [ & 45.7450 ] \\
\hline '28-Mar-1997' & [ & NaN ] \\
\hline '31-Mar-1997' & [ & 35.2322 ] \\
\hline '01-Apr-1997' & [ & \(32.0644]\) \\
\hline '02-Apr-1997' & [ & \(36.9452]\) \\
\hline '03-Apr-1997' & [ & \(46.7395]\) \\
\hline '04-Apr-1997' & [ & \(44.5779]\) \\
\hline '07-Apr-1997' & [ & \(35.9234]\) \\
\hline '08-Apr-1997' & [ & \(39.3307]\) \\
\hline '09-Apr-1997' & [ & \(41.3665]\) \\
\hline '10-Apr-1997' & [ & \(46.4408]\) \\
\hline '11-Apr-1997' & [ & \(39.9926]\) \\
\hline '14-Apr-1997' & [ & \(26.8625]\) \\
\hline '15-Apr-1997' & [ & \(45.9735]\) \\
\hline '16-Apr-1997' & [ & 51.5459] \\
\hline '17-Apr-1997' & [ & \(53.1234]\) \\
\hline '18-Apr-1997' & [ & 67.7971 ] \\
\hline '21-Apr-1997' & [ & 71.4163] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '22-Apr-1997' & [ & 74.7222] \\
\hline '23-Apr-1997' & [ & \(75.9894]\) \\
\hline '24-Apr-1997' & [ & \(68.3554]\) \\
\hline '25-Apr-1997' & [ & 63.8108] \\
\hline '28-Apr-1997' & [ & \(64.1467]\) \\
\hline '29-Apr-1997' & [ & 71.5393] \\
\hline '30-Apr-1997' & [ & 72.7898] \\
\hline '01-May-1997' & [ & \(76.7442]\) \\
\hline '02-May-1997' & [ & 79.8490] \\
\hline '05-May-1997' & [ & \(78.4561]\) \\
\hline '06-May-1997' & [ & 75.7399] \\
\hline '07-May-1997' & [ & \(66.3770]\) \\
\hline '08-May-1997' & [ & \(65.7895]\) \\
\hline '09-May-1997' & [ & \(67.7707]\) \\
\hline '12-May-1997' & [ & \(69.5351]\) \\
\hline '13-May-1997' & [ & \(64.0607]\) \\
\hline '14-May-1997' & [ & \(67.7707]\) \\
\hline '15-May-1997' & [ & \(68.3263]\) \\
\hline '16-May-1997' & [ & \(59.6956]\) \\
\hline '19-May-1997' & [ & \(57.8069]\) \\
\hline '20-May-1997' & [ & \(55.7325]\) \\
\hline '21-May-1997' & [ & \(53.5424]\) \\
\hline '22-May-1997' & [ & \(55.7325]\) \\
\hline '23-May-1997' & [ & \(53.8446]\) \\
\hline '26-May-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '27-May-1997' & [ & \(54.9980]\) \\
\hline '28-May-1997' & [ & 62.6149] \\
\hline '29-May-1997' & [ & \(55.9665]\) \\
\hline '30-May-1997' & [ & 48.6237] \\
\hline '02-Jun-1997' & [ & \(35.3455]\) \\
\hline '03-Jun-1997' & [ & \(37.2319]\) \\
\hline '04-Jun-1997' & [ & \(34.9976]\) \\
\hline '05-Jun-1997' & [ & 41.5875] \\
\hline '06-Jun-1997' & [ & 52.2273] \\
\hline '09-Jun-1997' & [ & \(37.8326]\) \\
\hline '10-Jun-1997' & [ & 41.7806] \\
\hline '11-Jun-1997' & [ & \(45.8333]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 12-Jun-1997 \({ }^{\text {' }}\) & \(47.2916]\) \\
\hline '13-Jun-1997' & 51.2451] \\
\hline '16-Jun-1997' & \(50.6229]\) \\
\hline '17-Jun-1997' & \(50.6379]\) \\
\hline '18-Jun-1997' & 48.1931] \\
\hline '19-Jun-1997' & \(57.3142]\) \\
\hline '20-Jun-1997' & \(56.6349]\) \\
\hline '23-Jun-1997' & 50] \\
\hline '24-Jun-1997' & \(60.1910]\) \\
\hline '25-Jun-1997' & \(54.9904]\) \\
\hline '26-Jun-1997' & \(50.7674]\) \\
\hline '27-Jun-1997' & 46.0858] \\
\hline '30-Jun-1997' & 43.7471] \\
\hline '01-Jul-1997' & \(40.0930]\) \\
\hline '02-Jul-1997' & \(34.8051]\) \\
\hline '03-Jul-1997' & \(27.8828]\) \\
\hline '04-Jul-1997' & \(\mathrm{NaN}]\) \\
\hline '07-Jul-1997' & 23.7552] \\
\hline '08-Jul-1997' & [ 32.4774] \\
\hline '09-Jul-1997' & \(33.4672]\) \\
\hline '10-Jul-1997' & [ 29.3658] \\
\hline '11-Jul-1997' & \(30.7049]\) \\
\hline '14-Jul-1997' & \(38.7023]\) \\
\hline '15-Jul-1997' & \(32.5373]\) \\
\hline '16-Jul-1997' & \(38.4359]\) \\
\hline '17-Jul-1997' & 36.5673 ] \\
\hline '18-Jul-1997' & 35.9369 ] \\
\hline '21-Jul-1997' & \(32.9216]\) \\
\hline '22-Jul-1997' & [ 46.9840] \\
\hline '23-Jul-1997' & \(53.7421]\) \\
\hline '24-Jul-1997' & \(56.7930]\) \\
\hline '25-Jul-1997' & 60.5219] \\
\hline '28-Jul-1997' & \(56.0964]\) \\
\hline '29-Jul-1997' & 62.4208] \\
\hline '30-Jul-1997' & \(65.6931]\) \\
\hline '31-Jul-1997' & \(67.3319]\) \\
\hline '01-Aug-1997' & \(63.3417]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '04-Aug-1997' & [ & 62.7616] \\
\hline '05-Aug-1997' & [ & \(54.4947]\) \\
\hline '06-Aug-1997' & [ & 63.2425] \\
\hline '07-Aug-1997' & [ & \(64.2763]\) \\
\hline '08-Aug-1997' & [ & \(68.5914]\) \\
\hline '11-Aug-1997' & [ & \(61.4251]\) \\
\hline '12-Aug-1997' & [ & \(52.2587]\) \\
\hline '13-Aug-1997' & [ & 48.2388] \\
\hline '14-Aug-1997' & [ & 49.2972] \\
\hline '15-Aug-1997' & [ & \(35.5408]\) \\
\hline '18-Aug-1997' & [ & \(43.6837]\) \\
\hline '19-Aug-1997' & [ & \(44.8540]\) \\
\hline '20-Aug-1997' & [ & 48.2742] \\
\hline '21-Aug-1997' & [ & 43.9518] \\
\hline '22-Aug-1997' & [ & \(40.1803]\) \\
\hline '25-Aug-1997' & [ & 43.9778] \\
\hline '26-Aug-1997' & [ & \(37.6647]\) \\
\hline '27-Aug-1997' & [ & 47.5529] \\
\hline '28-Aug-1997' & [ & 44.6528] \\
\hline '29-Aug-1997' & [ & \(39.9053]\) \\
\hline '01-Sep-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '02-Sep-1997' & [ & \(52.0976]\) \\
\hline '03-Sep-1997' & [ & \(51.9036]\) \\
\hline '04-Sep-1997' & [ & 46.4143] \\
\hline '05-Sep-1997' & [ & 55.27431 \\
\hline '08-Sep-1997' & [ & 47.1448] \\
\hline '09-Sep-1997' & [ & \(45.3214]\) \\
\hline '10-Sep-1997' & [ & \(39.7131]\) \\
\hline '11-Sep-1997' & [ & \(38.2127]\) \\
\hline '12-Sep-1997' & [ & 46.3915] \\
\hline '15-Sep-1997' & [ & \(45.9124]\) \\
\hline '16-Sep-1997' & [ & \(55.2722]\) \\
\hline '17-Sep-1997' & [ & 51.3386] \\
\hline '18-Sep-1997' & [ & \(55.7065]\) \\
\hline '19-Sep-1997' & [ & 61.6816] \\
\hline '22-Sep-1997' & [ & \(52.4378]\) \\
\hline '23-Sep-1997' & [ & 47.5622] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '24-Sep-1997' & [ & 54.9925] \\
\hline '25-Sep-1997' & [ & \(56.8802]\) \\
\hline '26-Sep-1997' & [ & \(57.9286]\) \\
\hline '29-Sep-1997' & [ & \(57.4052]\) \\
\hline '30-Sep-1997' & [ & 64.3671] \\
\hline '01-0ct-1997' & & 83.3280] \\
\hline '02-0ct-1997' & [ & 84.0770] \\
\hline '03-Oct-1997' & , & 84.8458] \\
\hline '06-0ct-1997' & [ & 70.0703] \\
\hline '07-Oct-1997' & [ & 76.7141] \\
\hline '08-0ct-1997' & [ & 68.6485] \\
\hline '09-0ct-1997' & [ & \(67.5241]\) \\
\hline '10-Oct-1997' & [ & \(66.8299]\) \\
\hline '13-0ct-1997' & [ & 72.2737] \\
\hline '14-Oct-1997' & [ & \(77.4310]\) \\
\hline '15-0ct-1997' & [ & 76.5962] \\
\hline '16-0ct-1997' & [ & 67.6190] \\
\hline '17-Oct-1997' & [ & \(57.6100]\) \\
\hline '20-Oct-1997' & [ & \(58.3632]\) \\
\hline '21-Oct-1997' & [ & \(55.1775]\) \\
\hline '22-Oct-1997' & [ & 47.5198] \\
\hline '23-0ct-1997' & , & \(43.2687]\) \\
\hline '24-0ct-1997' & [ & \(47.7599]\) \\
\hline '27-0ct-1997' & [ & \(27.3690]\) \\
\hline '28-0ct-1997' & [ & \(45.7437]\) \\
\hline '29-0ct-1997' & [ & \(46.9097]\) \\
\hline '30-0ct-1997' & [ & \(43.0554]\) \\
\hline '31-0ct-1997' & [ & 45.0800 ] \\
\hline ' \(03-\) Nov-1997 & [ & \(48.0581]\) \\
\hline '04-Nov-1997' & [ & \(48.7261]\) \\
\hline '05-Nov-1997' & [ & \(50.3927]\) \\
\hline '06-Nov-1997' & [ & 58.2891] \\
\hline '07-Nov-1997' & [ & \(56.3250]\) \\
\hline '10-Nov-1997' & [ & \(53.8872]\) \\
\hline '11-Nov-1997' & [ & \(56.5450]\) \\
\hline '12-Nov-1997' & [ & 51.5229] \\
\hline '13-Nov-1997' & [ & 54.4163] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 06-Jan-1998 \({ }^{\text {' }}\) & [ & 54.7158] \\
\hline '07-Jan-1998' & [ & \(59.7109]\) \\
\hline '08-Jan-1998' & [ & \(53.4049]\) \\
\hline '09-Jan-1998' & [ & \(45.3245]\) \\
\hline '12-Jan-1998' & [ & \(45.1222]\) \\
\hline 13-Jan-1998' & [ & \(40.9559]\) \\
\hline '14-Jan-1998' & & \(46.5535]\) \\
\hline '15-Jan-1998' & [ & \(52.6821]\) \\
\hline '16-Jan-1998' & [ & \(54.0282]\) \\
\hline '19-Jan-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '20-Jan-1998' & [ & 58.1954] \\
\hline '21-Jan-1998' & [ & \(49.5152]\) \\
\hline '22-Jan-1998' & [ & 41.8700 ] \\
\hline '23-Jan-1998' & [ & \(47.0389]\) \\
\hline '26-Jan-1998' & [ & \(45.8406]\) \\
\hline '27-Jan-1998' & [ & \(59.6612]\) \\
\hline '28-Jan-1998' & [ & 63.2668 ] \\
\hline '29-Jan-1998' & [ & \(67.1638]\) \\
\hline '30-Jan-1998' & [ & \(72.7730]\) \\
\hline '02-Feb-1998' & [ & \(79.6388]\) \\
\hline '03-Feb-1998' & [ & \(76.5275]\) \\
\hline '04-Feb-1998' & [ & \(75.3314]\) \\
\hline '05-Feb-1998' & [ & 78.05331 \\
\hline '06-Feb-1998' & [ & \(77.8704]\) \\
\hline '09-Feb-1998' & [ & 70.8440 ] \\
\hline '10-Feb-1998' & [ & 73.7668] \\
\hline 11-Feb-1998' & [ & 85.4405] \\
\hline '12-Feb-1998' & [ & 80.6493] \\
\hline '13-Feb-1998' & [ & \(87.3605]\) \\
\hline '16-Feb-1998' & & \(\mathrm{NaN}]\) \\
\hline '17-Feb-1998' & [ & 84.1495] \\
\hline '18-Feb-1998' & & 83.7433] \\
\hline '19-Feb-1998' & [ & \(78.2090]\) \\
\hline '20-Feb-1998' & [ & 77.5088 ] \\
\hline '23-Feb-1998' & [ & \(71.8641]\) \\
\hline '24-Feb-1998' & [ & \(64.7894]\) \\
\hline '25-Feb-1998' & [ & \(60.7229]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '26-Feb-1998' & [ & 55.6515] \\
\hline '27-Feb-1998' & [ & \(60.1479]\) \\
\hline '02-Mar-1998' & [ & \(54.6020]\) \\
\hline '03-Mar-1998' & [ & 54.1363] \\
\hline '04-Mar-1998' & [ & \(39.6041]\) \\
\hline '05-Mar-1998' & [ & \(37.6260]\) \\
\hline '06-Mar-1998' & [ & 34.7498] \\
\hline '09-Mar-1998' & [ & \(29.6811]\) \\
\hline '10-Mar-1998' & [ & 21.6553] \\
\hline '11-Mar-1998' & [ & 21.1556] \\
\hline '12-Mar-1998' & [ & \(25.4625]\) \\
\hline '13-Mar-1998' & [ & \(26.1955]\) \\
\hline '16-Mar-1998' & [ & 43.7286] \\
\hline '17-Mar-1998' & [ & \(40.9569]\) \\
\hline '18-Mar-1998' & [ & 42.8571] \\
\hline '19-Mar-1998' & [ & \(34.2675]\) \\
\hline '20-Mar-1998' & [ & 42.5839] \\
\hline '23-Mar-1998' & [ & \(31.9294]\) \\
\hline '24-Mar-1998' & [ & \(50.1560]\) \\
\hline '25-Mar-1998' & [ & \(54.5410]\) \\
\hline '26-Mar-1998' & [ & \(55.4482]\) \\
\hline '27-Mar-1998' & [ & 53.7439] \\
\hline '30-Mar-1998' & [ & 49.2505] \\
\hline '31-Mar-1998' & [ & \(54.6210]\) \\
\hline '01-Apr-1998' & [ & \(50.1459]\) \\
\hline '02-Apr-1998' & [ & \(56.1530]\) \\
\hline '03-Apr-1998' & [ & 53.0051] \\
\hline '06-Apr-1998' & [ & 51.5310] \\
\hline '07-Apr-1998' & [ & \(51.2432]\) \\
\hline '08-Apr-1998' & [ & \(51.5310]\) \\
\hline '09-Apr-1998' & [ & 54.3278] \\
\hline '10-Apr-1998' & [ & NaN ] \\
\hline '13-Apr-1998' & [ & \(67.2668]\) \\
\hline '14-Apr-1998' & [ & \(65.6264]\) \\
\hline '15-Apr-1998' & [ & \(66.4648]\) \\
\hline '16-Apr-1998' & [ & \(60.2365]\) \\
\hline '17-Apr-1998' & [ & \(63.9253]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 20-Apr-1998 \({ }^{\text {' }}\) & [ & 71.9876] \\
\hline 21-Apr-1998' & [ & 72.2267] \\
\hline 22-Apr-1998' & [ & 79.6333] \\
\hline 23-Apr-1998' & & 78.6935] \\
\hline 24-Apr-1998' & [ & 72.0991] \\
\hline 27-Apr-1998' & & \(76.2472]\) \\
\hline 28-Apr-1998' & [ & \(80.0577]\) \\
\hline 29-Apr-1998' & [ & 83.0921] \\
\hline 30-Apr-1998' & [ & 82.1291] \\
\hline 01-May-1998' & [ & 82.0823] \\
\hline 04-May-1998' & [ & \(80.8910]\) \\
\hline 05-May-1998' & [ & 79.0081] \\
\hline 06-May-1998' & [ & \(75.8691]\) \\
\hline 07-May-1998' & [ & \(60.6887]\) \\
\hline 08-May-1998' & [ & \(58.0892]\) \\
\hline 11-May-1998' & [ & \(58.0892]\) \\
\hline '12-May-1998' & [ & \(42.8533]\) \\
\hline '13-May-1998' & [ & 37.6128] \\
\hline '14-May-1998' & [ & \(36.1073]\) \\
\hline '15-May-1998' & [ & \(30.2141]\) \\
\hline '18-May-1998' & [ & \(21.7407]\) \\
\hline '19-May-1998' & [ & \(24.4400]\) \\
\hline 20-May-1998' & [ & 32.4468 ] \\
\hline 21-May-1998' & [ & \(32.8947]\) \\
\hline 22-May-1998' & [ & \(30.2974]\) \\
\hline '25-May-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '26-May-1998' & [ & \(26.3378]\) \\
\hline '27-May-1998' & [ & 34.3863] \\
\hline '28-May-1998' & [ & \(39.4579]\) \\
\hline '29-May-1998' & [ & \(38.5863]\) \\
\hline 01-Jun-1998' & [ & \(32.3064]\) \\
\hline 02-Jun-1998' & [ & 33.9468 ] \\
\hline 03-Jun-1998' & [ & 33.6373 ] \\
\hline 04-Jun-1998' & [ & \(36.9316]\) \\
\hline '05-Jun-1998' & [ & \(58.2702]\) \\
\hline '08-Jun-1998' & [ & \(62.4667]\) \\
\hline 09-Jun-1998' & [ & 61.4984] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '10-Jun-1998' & [ & \(58.2684]\) \\
\hline '11-Jun-1998' & [ & 50.5383] \\
\hline '12-Jun-1998' & [ & \(47.3803]\) \\
\hline '15-Jun-1998' & [ & \(50.9870]\) \\
\hline '16-Jun-1998' & [ & \(46.4629]\) \\
\hline '17-Jun-1998' & & \(52.2485]\) \\
\hline '18-Jun-1998' & [ & \(47.2806]\) \\
\hline '19-Jun-1998' & & \(43.4965]\) \\
\hline '22-Jun-1998' & [ & \(47.3059]\) \\
\hline '23-Jun-1998' & [ & 50.3585] \\
\hline '24-Jun-1998' & [ & \(55.4124]\) \\
\hline '25-Jun-1998' & [ & \(45.4329]\) \\
\hline '26-Jun-1998' & [ & \(39.1420]\) \\
\hline '29-Jun-1998' & [ & \(43.8255]\) \\
\hline '30-Jun-1998' & & \(30.0009]\) \\
\hline '01-Jul-1998' & [ & \(34.5666]\) \\
\hline '02-Jul-1998' & [ & \(36.2004]\) \\
\hline '03-Jul-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '06-Jul-1998' & [ & \(39.0090]\) \\
\hline '07-Jul-1998' & [ & \(39.1412]\) \\
\hline '08-Jul-1998' & [ & \(39.7876]\) \\
\hline '09-Jul-1998' & [ & 48.3211] \\
\hline '10-Jul-1998' & & \(61.8739]\) \\
\hline '13-Jul-1998' & [ & 64.9995] \\
\hline '14-Jul-1998' & & \(65.5518]\) \\
\hline '15-Jul-1998' & [ & \(58.9667]\) \\
\hline '16-Jul-1998' & & \(58.9726]\) \\
\hline '17-Jul-1998' & [ & 63.3818] \\
\hline '20-Jul-1998' & [ & 54.4296] \\
\hline '21-Jul-1998' & [ & \(68.1474]\) \\
\hline '22-Jul-1998' & & \(61.5224]\) \\
\hline '23-Jul-1998' & [ & \(54.5030]\) \\
\hline '24-Jul-1998' & [ & \(58.6474]\) \\
\hline '27-Jul-1998' & [ & \(56.2345]\) \\
\hline '28-Jul-1998' & [ & \(46.1716]\) \\
\hline '29-Jul-1998' & [ & \(40.5797]\) \\
\hline '30-Jul-1998' & [ & 31.4070 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 31-Jul-1998' & [ & \(15.6533]\) \\
\hline 03-Aug-1998' & [ & 12.6135] \\
\hline 04-Aug-1998' & [ & \(10.5269]\) \\
\hline 05-Aug-1998' & [ & \(18.0556]\) \\
\hline 06-Aug-1998' & [ & \(17.0113]\) \\
\hline 07-Aug-1998' & [ & \(19.2581]\) \\
\hline '10-Aug-1998' & [ & 20] \\
\hline 11-Aug-1998' & [ & \(19.5477]\) \\
\hline 12-Aug-1998' & I & \(25.2081]\) \\
\hline 13-Aug-1998' & [ & 17.7419] \\
\hline 14-Aug-1998' & I & 18.0328] \\
\hline 17-Aug-1998' & [ & 26.6109] \\
\hline '18-Aug-1998' & [ & \(38.4615]\) \\
\hline 19-Aug-1998' & [ & \(37.0348]\) \\
\hline 20-Aug-1998' & [ & 44.9585] \\
\hline 21-Aug-1998' & [ & 41.2189] \\
\hline 24-Aug-1998' & [ & \(54.3647]\) \\
\hline 25-Aug-1998' & [ & \(53.9210]\) \\
\hline 26-Aug-1998' & [ & 47.8231] \\
\hline 27-Aug-1998' & [ & \(40.3008]\) \\
\hline 28-Aug-1998' & [ & \(37.5028]\) \\
\hline 31-Aug-1998' & [ & 29.5131] \\
\hline 01-Sep-1998' & [ & 42.6651] \\
\hline 02-Sep-1998' & [ & 43.0478] \\
\hline 03-Sep-1998' & [ & \(38.8677]\) \\
\hline 04-Sep-1998' & [ & \(36.9274]\) \\
\hline 07-Sep-1998' & [ & \(\mathrm{NaN}]\) \\
\hline 08-Sep-1998' & [ & \(35.0427]\) \\
\hline 09-Sep-1998' & [ & \(32.9328]\) \\
\hline '10-Sep-1998' & [ & \(29.2499]\) \\
\hline 11-Sep-1998' & [ & \(27.7162]\) \\
\hline '14-Sep-1998' & [ & 25.0878] \\
\hline 15-Sep-1998' & [ & \(26.6179]\) \\
\hline '16-Sep-1998' & [ & 29.2833] \\
\hline '17-Sep-1998' & [ & 31.4163] \\
\hline '18-Sep-1998' & [ & \(33.4683]\) \\
\hline 21-Sep-1998' & [ & 40.7929] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 22-Sep-1998' & [ & \(23.2270]\) \\
\hline '23-Sep-1998' & [ & \(35.8398]\) \\
\hline '24-Sep-1998' & & 38.0349 ] \\
\hline '25-Sep-1998' & & \(37.3494]\) \\
\hline '28-Sep-1998' & & \(35.8025]\) \\
\hline '29-Sep-1998' & & 39.9978 ] \\
\hline '30-Sep-1998' & & \(40.5572]\) \\
\hline '01-0ct-1998' & [ & \(44.6154]\) \\
\hline '02-0ct-1998' & & 55.7491 ] \\
\hline '05-Oct-1998' & & \(46.4684]\) \\
\hline '06-0ct-1998' & & \(46.9995]\) \\
\hline '07-Oct-1998' & & \(44.3388]\) \\
\hline '08-0ct-1998' & & \(37.0039]\) \\
\hline '09-0ct-1998' & [ & 40.6531 ] \\
\hline '12-0ct-1998' & & 46.7118] \\
\hline '13-0ct-1998' & [ & \(41.5952]\) \\
\hline '14-Oct-1998' & [ & \(40.6227]\) \\
\hline '15-Oct-1998' & [ & \(51.3516]\) \\
\hline '16-0ct-1998' & [ & \(45.8324]\) \\
\hline '19-0ct-1998' & [ & 50.3383 ] \\
\hline '20-0ct-1998' & [ & 58.7136] \\
\hline '21-0ct-1998' & [ & \(63.4629]\) \\
\hline '22-0ct-1998' & & \(63.9255]\) \\
\hline '23-0ct-1998' & [ & \(63.5202]\) \\
\hline '26-0ct-1998' & & \(63.0592]\) \\
\hline '27-Oct-1998' & [ & \(58.9277]\) \\
\hline '28-Oct-1998' & [ & \(65.5647]\) \\
\hline '29-0ct-1998' & [ & \(65.5611]\) \\
\hline '30-Oct-1998' & [ & \(63.1227]\) \\
\hline '02-Nov-1998' & [ & \(66.8807]\) \\
\hline '03-Nov-1998' & [ & 77.4846] \\
\hline '04-Nov-1998' & [ & \(65.4912]\) \\
\hline '05-Nov-1998' & [ & \(73.2909]\) \\
\hline '06-Nov-1998' & [ & 71.8917] \\
\hline '09-Nov-1998' & [ & \(63.5135]\) \\
\hline '10-Nov-1998' & [ & \(56.9506]\) \\
\hline '11-Nov-1998' & [ & 54.8606] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline '12-Nov-1998' & 54.4853] \\
\hline '13-Nov-1998' & \(56.2891]\) \\
\hline '16-Nov-1998' & \(63.4344]\) \\
\hline '17-Nov-1998' & \(66.4083]\) \\
\hline '18-Nov-1998' & \(65.0794]\) \\
\hline '19-Nov-1998' & \(58.3343]\) \\
\hline '20-Nov-1998' & \(47.6147]\) \\
\hline '23-Nov-1998' & 49.5375] \\
\hline '24-Nov-1998' & \(59.6023]\) \\
\hline '25-Nov-1998' & \(56.5240]\) \\
\hline '26-Nov-1998' & \(\mathrm{NaN}]\) \\
\hline '27-Nov-1998' & \(62.2679]\) \\
\hline '30-Nov-1998' & \(71.0034]\) \\
\hline '01-Dec-1998' & \(71.0034]\) \\
\hline '02-Dec-1998' & \(67.6269]\) \\
\hline '03-Dec-1998' & \(67.6166]\) \\
\hline '04-Dec-1998' & \(67.3077]\) \\
\hline '07-Dec-1998' & \(65.4157]\) \\
\hline '08-Dec-1998' & \(69.4169]\) \\
\hline 09-Dec-1998' & 75.1738] \\
\hline '10-Dec-1998' & \(71.7082]\) \\
\hline '11-Dec-1998' & \(67.9450]\) \\
\hline '14-Dec-1998' & \(55.5545]\) \\
\hline '15-Dec-1998' & 54.7138] \\
\hline '16-Dec-1998' & 48.9335] \\
\hline '17-Dec-1998' & \(43.7516]\) \\
\hline '18-Dec-1998' & [ 41.1302] \\
\hline '21-Dec-1998' & [ 46.5517] \\
\hline '22-Dec-1998' & 42.1875] \\
\hline '23-Dec-1998' & \(50.3626]\) \\
\hline '24-Dec-1998' & [ 45.2581] \\
\hline '25-Dec-1998' & \(\mathrm{NaN}]\) \\
\hline '28-Dec-1998' & \(45.9286]\) \\
\hline '29-Dec-1998' & \(39.6720]\) \\
\hline '30-Dec-1998' & \(21.8988]\) \\
\hline '31-Dec-1998' & \(28.0834]\) \\
\hline '01-Jan-1999' & \(\mathrm{NaN}]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '04-Jan-1999' & [ & 28.0885] \\
\hline '05-Jan-1999' & [ & 49.4022] \\
\hline '06-Jan-1999' & [ & 51.7292] \\
\hline '07-Jan-1999' & [ & \(58.0026]\) \\
\hline '08-Jan-1999' & [ & \(62.1684]\) \\
\hline '11-Jan-1999' & [ & \(73.2036]\) \\
\hline '12-Jan-1999' & [ & \(78.8684]\) \\
\hline '13-Jan-1999' & [ & \(73.9120]\) \\
\hline '14-Jan-1999' & [ & \(71.3559]\) \\
\hline '15-Jan-1999' & [ & \(73.2609]\) \\
\hline '18-Jan-1999' & [ & \(\mathrm{NaN}]\) \\
\hline '19-Jan-1999' & [ & 75.1285] \\
\hline '20-Jan-1999' & [ & 72.1382] \\
\hline '21-Jan-1999' & [ & 67.4457] \\
\hline '22-Jan-1999' & [ & \(65.0011]\) \\
\hline '25-Jan-1999' & [ & \(69.0265]\) \\
\hline '26-Jan-1999' & [ & \(64.8148]\) \\
\hline '27-Jan-1999' & [ & \(56.7797]\) \\
\hline '28-Jan-1999' & [ & 56.0345] \\
\hline '29-Jan-1999' & [ & \(51.5401]\) \\
\hline '01-Feb-1999' & [ & 43.5921] \\
\hline '02-Feb-1999' & [ & 26.2845] \\
\hline '03-Feb-1999' & [ & \(34.6173]\) \\
\hline '04-Feb-1999' & [ & \(32.8468]\) \\
\hline '05-Feb-1999' & [ & \(40.9100]\) \\
\hline '08-Feb-1999' & [ & 36.6681 ] \\
\hline '09-Feb-1999' & [ & 36.6681 ] \\
\hline '10-Feb-1999' & [ & 47.0595] \\
\hline '11-Feb-1999' & [ & \(55.7841]\) \\
\hline '12-Feb-1999' & [ & \(52.8982]\) \\
\hline '15-Feb-1999' & [ & \(\mathrm{NaN}]\) \\
\hline '16-Feb-1999' & [ & \(52.8982]\) \\
\hline '17-Feb-1999' & [ & \(63.4720]\) \\
\hline '18-Feb-1999' & [ & 57.1408] \\
\hline '19-Feb-1999' & [ & \(58.1794]\) \\
\hline '22-Feb-1999' & [ & \(58.5531]\) \\
\hline '23-Feb-1999' & [ & \(61.3190]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '24-Feb-1999' & [ & \(60.9537]\) \\
\hline '25-Feb-1999' & [ & \(60.3742]\) \\
\hline '26-Feb-1999' & [ & \(57.5767]\) \\
\hline '01-Mar-1999' & [ & \(56.4371]\) \\
\hline '02-Mar-1999' & [ & \(55.3416]\) \\
\hline '03-Mar-1999' & [ & \(53.5305]\) \\
\hline '04-Mar-1999' & [ & 50] \\
\hline '05-Mar-1999' & [ & \(53.0602]\) \\
\hline '08-Mar-1999' & [ & \(60.7809]\) \\
\hline '09-Mar-1999' & [ & 48.8223] \\
\hline '10-Mar-1999' & [ & 50] \\
\hline '11-Mar-1999' & [ & 53.7211] \\
\hline '12-Mar-1999' & [ & 57.2527] \\
\hline '15-Mar-1999' & [ & \(55.9680]\) \\
\hline '16-Mar-1999' & [ & 50] \\
\hline '17-Mar-1999' & [ & 50] \\
\hline '18-Mar-1999' & [ & 51.3511] \\
\hline '19-Mar-1999' & [ & 51.3511] \\
\hline '22-Mar-1999' & [ & 51.0038] \\
\hline '23-Mar-1999' & [ & 43.5623] \\
\hline '24-Mar-1999' & [ & \(39.4759]\) \\
\hline '25-Mar-1999' & [ & \(36.5512]\) \\
\hline '26-Mar-1999' & [ & \(30.2839]\) \\
\hline '29-Mar-1999' & [ & \(38.7946]\) \\
\hline
\end{tabular}

Relative Strength Index for Disney


\author{
References Murphy, John J., Technical Analysis of the Futures Market, New York Institute of Finance, 1986, pp. 295-302.
}

See Also negvolidx | posvolidx

\section*{Purpose}

Create SDE model from user-specified functions

Syntax

\section*{Class}

Description
```

SDE = sde(DriftRate, DiffusionRate)

```
SDE = sde(DriftRate, DiffusionRate, 'Name1', Value1,
'Name2', Value2, ...)

\section*{Stochastic Differential Equations}

This constructor creates and displays SDE objects. Use SDE objects to simulate sample paths of NVARS state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation periods, approximating continuous-time stochastic processes.
This method enables you to simulate any vector-valued SDE of the form:
\[
\begin{equation*}
d X_{t}=F\left(t, X_{t}\right) d t+G\left(t, X_{t}\right) d W_{t} \tag{18-8}
\end{equation*}
\]
where:
- \(X_{t}\) is an NVARS-by-1 state vector of process variables.
- \(d W_{t}\) is an NBROWNS-by- 1 Brownian motion vector.
- \(F\) is an NVARS-by- 1 vector-valued drift-rate function.
- \(G\) is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.

\section*{Input Arguments}

DriftRate User-defined drift-rate function, denoted by \(F\). DriftRate is a function that returns an NVARS-by-1 drift-rate vector when called with two inputs:
- A real-valued scalar observation time \(t\).
- An NVARS-by- 1 state vector \(X_{t}\).

Alternatively, DriftRate may also be an object of class Drift that encapsulates the drift-rate
specification. In this case, however, sde uses only the Rate parameter of the object; it uses no other class information.

DiffusionRate User-defined diffusion-rate function, denoted by \(G\). DiffusionRate is a function that returns an NVARS-by-NBROWNS diffusion-rate matrix when called with two inputs:
- A real-valued scalar observation time \(t\).
- An NVARS-by-1 state vector \(X_{t}\).

Alternatively, DiffusionRate may also be an object of class Diffusion that encapsulates the diffusion-rate specification. In this case, however, sde uses only the Rate parameter of the object; it uses no other class information.

Optional Input Arguments

Specify optional inputs as matching parameter name/value pairs as follows:
- Specify the parameter name as a character string, followed by its corresponding value.
- You can specify parameter name/value pairs in any order.
- Parameter names are case insensitive.
- You can specify unambiguous partial string matches.

Valid parameter names are:

StartTime Scalar starting time of the first observation, applied to all state variables. If you do not specify a value for StartTime, the default is 0 .

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of initial values of the state variables. If StartState is a scalar, sde applies the same initial value to all state variables on all trials.

If StartState is a column vector, sde applies a unique initial value to each state variable on all trials.

If StartState is a matrix, sde applies a unique initial value to each state variable on each trial.

If you do not specify a value for StartState, all variables start at 1 .

Correlation Correlation between Gaussian random variates drawn to generate the Brownian motion vector (Wiener processes). Specify Correlation as an NBROWNS-by-NBROWNS positive semidefinite matrix, or as a deterministic function \(C(t)\) that accepts the current time \(t\) and returns an NBROWNS-by-NBROWNS positive semidefinite correlation matrix. A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation structure.

If you do not specify a value for Correlation, the default is an NBROWNS-by-NBROWNS identity matrix representing independent Gaussian processes.
Simulation A user-defined simulation function or SDE simulation method. If you do not specify a value for Simulation, the default method is simulation by Euler approximation (simByEuler).

Output
Arguments

\section*{Algorithms}

\section*{Examples}

SDE
Object of class sde with the following parameters:
- StartTime: Initial observation time
- StartState: Initial state at time StartTime
- Correlation: Access function for the Correlation input argument, callable as a function of time
- Drift: Composite drift-rate function, callable as a function of time and state
- Diffusion: Composite diffusion-rate function, callable as a function of time and state
- Simulation: A simulation function or method

When you specify the required input parameters as arrays, they are associated with a specific parametric form. By contrast, when you specify either required input parameter as a function, you can customize virtually any specification.
Accessing the output parameters with no inputs simply returns the original input specification. Thus, when you invoke these parameters with no inputs, they behave like simple properties and allow you to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of dynamic behavior. The parameters accept the observation time \(t\) and a state vector \(X_{t}\), and return an array of appropriate dimension. Even if you originally specified an input as an array, sde treats it as a static function of time and state, thereby guaranteeing that all parameters are accessible by the same interface.
- "Base SDE Models" on page 17-16
- Implementing Multidimensional Equity Market Models, Implementation 1: Using SDE Objects
ReferencesAit-Sahalia, Y., "Testing Continuous-Time Models of the Spot InterestRate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2,pp. 385-426.Ait-Sahalia, Y., "Transition Densities for Interest Rate and OtherNonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August1999.Glasserman, P., Monte Carlo Methods in Financial Engineering, NewYork: Springer-Verlag, 2004.
Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.
Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.
Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.
```

See Also drift | diffusion

```

Purpose
Create sdeddo model from Drift and Diffusion objects
```

SDE = sdeddo(DriftRate, DiffusionRate)

```
SDE = sdeddo(DriftRate, DiffusionRate, 'Name1', Value1,
'Name2', Value2, ...)

\section*{Class}

SDEDDO

\section*{Description}

This constructor creates and displays SDEDDO objects, specifically instantiated with objects of class drift and diffusion. These restricted SDEDDO objects contain the input drift and diffusion objects; therefore, you can directly access their displayed parameters.

This abstraction also generalizes the notion of drift and diffusion-rate objects as functions that sdeddo evaluates for specific values of time \(t\) and state \(X_{t}\). Like SDE objects, SDEDDO objects allow you to simulate sample paths of NVARS state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation periods, approximating continuous-time stochastic processes.

This method enables you to simulate any vector-valued SDE of the form:
\[
\begin{equation*}
d X_{t}=F\left(t, X_{t}\right) d t+G\left(t, X_{t}\right) d W_{t} \tag{18-9}
\end{equation*}
\]
where:
- \(X_{t}\) is an NVARS-by- 1 state vector of process variables.
- \(d W_{t}\) is an NBROWNS-by-1 Brownian motion vector.
- \(F\) is an NVARS-by-1 vector-valued drift-rate function.
- \(G\) is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.

\section*{Input Arguments}

\section*{Optional} Input Arguments

DriftRate Object of class drift that encapsulates a user-defined drift-rate specification, represented as \(F\).

DiffusionRate Object of class diffusion that encapsulates a user-defined diffusion-rate specification, represented as \(G\).

Specify optional inputs as matching parameter name/value pairs as follows:
- Specify the parameter name as a character string, followed by its corresponding value.
- You can specify parameter name/value pairs in any order.
- Parameter names are case insensitive.
- You can specify unambiguous partial string matches.

Valid parameter names are:
StartTime Scalar starting time of the first observation, applied to all state variables. If you do not specify a value for StartTime, the default is 0 .

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of initial values of the state variables. If StartState is a scalar, sdeddo applies the same initial value to all state variables on all trials.

If StartState is a column vector, sdeddo applies a unique initial value to each state variable on all trials.

If StartState is a matrix, sdeddo applies a unique initial value to each state variable on each trial.

\section*{sdeddo}

If you do not specify a value for StartState, all variables start at 1.

Correlation Correlation between Gaussian random variates drawn to generate the Brownian motion vector (Wiener processes). Specify Correlation as an NBROWNS-by-NBROWNS positive semidefinite matrix, or as a deterministic function \(C(t)\) that accepts the current time \(t\) and returns an NBROWNS-by-NBROWNS positive semidefinite correlation matrix. A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation structure.

If you do not specify a value for Correlation, the default is an NBROWNS-by-NBROWNS identity matrix representing independent Gaussian processes.

Simulation A user-defined simulation function or SDE simulation method. If you do not specify a value for Simulation, the default method is simulation by Euler approximation (simByEuler).

\section*{Output SDE \\ Arguments}

Object of class sdeddo with the following parameters:
- StartTime: Initial observation time
- StartState: Initial state at time StartTime
- Correlation: Access function for the Correlation input argument, callable as a function of time
- Drift: Composite drift-rate function, callable as a function of time and state
- Diffusion: Composite diffusion-rate function, callable as a function of time and state
- A: Access function for the drift-rate property A, callable as a function of time and state
- B: Access function for the drift-rate property B , callable as a function of time and state
- Alpha: Access function for the diffusion-rate property Alpha, callable as a function of time and state
- Sigma: Access function for the diffusion-rate property Sigma, callable as a function of time and state
- Simulation: A simulation function or method

\section*{Algorithms}

Examples

When you specify the required input parameters as arrays, they are associated with a specific parametric form. By contrast, when you specify either required input parameter as a function, you can customize virtually any specification.
Accessing the output parameters with no inputs simply returns the original input specification. Thus, when you invoke these parameters with no inputs, they behave like simple properties and allow you to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of dynamic behavior. The parameters accept the observation time \(t\) and a state vector \(X_{t}\), and return an array of appropriate dimension. Even if you originally specified an input as an array, sdeddo treats as a static function of time and state, thereby guaranteeing that all parameters are accessible by the same interface.
- "Drift and Diffusion Models" on page 17-19
- Implementing Multidimensional Equity Market Models, Implementation 2: Using SDEDDO Objects
References

Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426.
Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999.
Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.
Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.
Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.
Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.

\footnotetext{
See Also drift | diffusion \| sde

See Also
drift | diffusion | sde
}

\section*{Purpose}

Construct stochastic differential equation from linear drift-rate models
```

SDE = sdeld(A, B, Alpha, Sigma)
SDE = sdeld(A, B, Alpha, Sigma, 'Name1', Value1, 'Name2',
Value2, ...)

```

\section*{Class}

SDELD

\section*{Description}

This constructor creates and displays SDE objects whose drift rate is expressed in linear drift-rate form and that derive from the SDEDDO (SDE from drift and diffusion objects class).

Use SDELD objects to simulate sample paths of NVARS state variables expressed in linear drift-rate form. They provide a parametric alternative to the mean-reverting drift form (see sdemrd).
These state variables are driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation periods, approximating continuous-time stochastic processes with linear drift-rate functions.

This method allows you to simulate any vector-valued SDE of the form:
\[
\begin{equation*}
d X_{t}=\left(A(t)+B(t) X_{t}\right) d t+D\left(t, X_{t}^{\alpha(t)}\right) V(t) d W_{t} \tag{18-10}
\end{equation*}
\]
where:
- \(X_{t}\) is an NVARS-by- 1 state vector of process variables.
- \(A\) is an NVARS-by- 1 vector.
- \(B\) is an NVARS-by-NVARS matrix.
- \(D\) is an NVARS-by-NVARS diagonal matrix, where each element along the main diagonal is the corresponding element of the state vector raised to the corresponding power of \(\alpha\).
- \(V\) is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
- \(d W_{t}\) is an NBROWNS-by-1 Brownian motion vector.

Specify required input parameters as one of the following types:
- A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric specification. This array fully captures all implementation details, which are clearly associated with a parametric form.
- A MATLAB function. Specifying a function provides indirect support for virtually any static, dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.

The required input parameters are:
A \begin{tabular}{l} 
A represents the parameter \(A\). If you specify A as \\
an array, it must be an NVARS-by-1 column vector \\
of intercepts. If you specify A as a function, it must \\
generate an NVARS-by-1 column vector of intercepts \\
when invoked with two inputs: \\
- A real-valued scalar observation time \(t\). \\
- An NVARS-by-1 state vector \(X_{t}\).
\end{tabular}
\begin{tabular}{ll} 
Alpha & \begin{tabular}{l} 
Alpha determines the format of the parameter \(D\). \\
If you specify Alpha as an array, it represents an \\
NVARS-by-1 column vector of exponents. If you specify \\
it as a function, it must return an NVARS-by-1 column \\
vector of exponents when invoked with two inputs:
\end{tabular} \\
- A real-valued scalar observation time \(t\). \\
- An NVARS-by-1 state vector \(X_{t}\).
\end{tabular}
- A real-valued scalar observation time \(t\).
- An NVARS-by-1 state vector \(X_{t}\).

Note Although the constructor does not enforce restrictions on the signs of Alpha or Sigma, each parameter is usually specified as a positive value.

\section*{Optional Input Arguments}

Specify optional inputs as matching parameter name/value pairs as follows:
- Specify the parameter name as a character string, followed by its corresponding value.
- You can specify parameter name/value pairs in any order.

\section*{sdeld}
- Parameter names are case insensitive.
- You can specify unambiguous partial string matches.

Valid parameter names are:
StartTime Scalar starting time of the first observation, applied to all state variables. If you do not specify a value for StartTime, the default is 0 .

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of initial values of the state variables. If StartState is a scalar, sdeld applies the same initial value to all state variables on all trials.

If StartState is a column vector, sdeld applies a unique initial value to each state variable on all trials.

If StartState is a matrix, sdeld applies a unique initial value to each state variable on each trial.

If you do not specify a value for StartState, all variables start at 1 .

Correlation Correlation between Gaussian random variates drawn to generate the Brownian motion vector (Wiener processes). Specify Correlation as an NBROWNS-by-NBROWNS positive semidefinite matrix, or as a deterministic function \(C(t)\) that accepts the current time \(t\) and returns an NBROWNS-by-NBROWNS positive semidefinite correlation matrix. A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation structure.

If you do not specify a value for Correlation, the default is an NBROWNS-by-NBROWNS identity matrix representing independent Gaussian processes.
Simulation A user-defined simulation function or SDE simulation method. If you do not specify a value for Simulation, the default method is simulation by Euler approximation (simByEuler).

\section*{Output Arguments}

\section*{Algorithms}

When you specify the required input parameters as arrays, they are associated with a specific parametric form. By contrast, when you
specify either required input parameter as a function, you can customize virtually any specification.
Accessing the output parameters with no inputs simply returns the original input specification. Thus, when you invoke these parameters with no inputs, they behave like simple properties and allow you to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of dynamic behavior. The parameters accept the observation time \(t\) and a state vector \(X_{t}\), and return an array of appropriate dimension. Even if you originally specified an input as an array, sdeld treats it as a static function of time and state, thereby guaranteeing that all parameters are accessible by the same interface.

\section*{Examples}

\section*{References}
- "Linear Drift Models" on page 17-23
- Implementing Multidimensional Equity Market Models, Implementation 3: Using SDELD, CEV, and GBM Objects

Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426.
Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.

Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.
Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.

See Also drift | diffusion | sdeddo

Purpose Construct stochastic differential equation from mean-reverting drift-rate models
```

Syntax \quad SDE $=$ sdemrd(Speed, Level, Alpha, Sigma)
SDE = sdemrd(Speed, Level, Alpha, Sigma, 'Name1', Value1,
'Name2', Value2, ...)

```

\section*{Class}

SDEMRD

Description This constructor creates and displays SDE objects whose drift rate is expressed in mean-reverting drift-rate form and which derive from the SDEDDO class (SDE from drift and diffusion objects). Use SDEMRD objects to simulate of sample paths of NVARS state variables expressed in mean-reverting drift-rate form, and provide a parametric alternative to the linear drift form (see sdeld). These state variables are driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation periods, approximating continuous-time stochastic processes with mean-reverting drift-rate functions.

This method allows you to simulate any vector-valued SDE of the form:
\[
\begin{equation*}
d X_{t}=S(t)\left[L(t)-X_{t}\right] d t+D\left(t, X_{t}^{\alpha(t)}\right) V(t) d W_{t} \tag{18-11}
\end{equation*}
\]
where:
- \(X_{t}\) is an NVARS-by- 1 state vector of process variables.
- \(S\) is an NVARS-by-NVARS matrix of mean reversion speeds.
- \(L\) is an NVARS-by-1 vector of mean reversion levels.
- \(D\) is an NVARS-by-NVARS diagonal matrix, where each element along the main diagonal is the corresponding element of the state vector raised to the corresponding power of \(a\).
- \(V\) is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
- \(d W_{t}\) is an NBROWNS-by- 1 Brownian motion vector.

\section*{Input Arguments}

Specify required input parameters as one of the following types:
- A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric specification. This array fully captures all implementation details, which are clearly associated with a parametric form.
- A MATLAB function. Specifying a function provides indirect support for virtually any static, dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.

The required input parameters are:
\begin{tabular}{|c|c|}
\hline Speed & \begin{tabular}{l}
Speed represents the parameter \(S\). If you specify Speed as an array, it represents an NVARS-by-NVARS 2 -dimensional matrix of mean-reversion speeds (the rate or speed at which the state vector reverts to its long-run average Level). If you specify Speed as a function, Speed calculates the speed of mean reversion. This function must generate an NVARS-by-NVARS matrix of reversion rates when called with two inputs: \\
- A real-valued scalar observation time \(t\). \\
- An NVARS-by-1 state vector \(X_{t}\).
\end{tabular} \\
\hline Level & Level represents the parameter \(L\). If you specify Level as an array, it must be an NVARS-by- 1 column vector of reversion levels. If you specify Level as a function, it must generate an NVARS-by- 1 column vector of reversion levels when invoked with two inputs: \\
\hline
\end{tabular}
- A real-valued scalar observation time \(t\).
- An NVARS-by- 1 state vector \(X_{t}\).

Alpha Alpha determines the format of the parameter \(D\). If you specify Alpha as an array, it must be an NVARS-by- 1 column vector of exponents. If you specify it as a function, it must return an NVARS-by- 1 column vector of exponents when invoked with two inputs:
- A real-valued scalar observation time \(t\).
- An NVARS-by- 1 state vector \(X_{t}\).

Sigma Sigma represents the parameter \(V\). If you specify Sigma as an array, it must be an NVARS-by-NBROWNS 2 -dimensional matrix of instantaneous volatility rates. In this case, each row of Sigma corresponds to a particular state variable. Each column of Sigma corresponds to a particular Brownian source of uncertainty, and associates the magnitude of the exposure of state variables with sources of uncertainty. If you specify it as a function, it must generate an NVARS-by-NBROWNS matrix of volatility rates when invoked with two inputs:
- A real-valued scalar observation time \(t\).
- An NVARS-by- 1 state vector \(X_{t}\).

Note Although the constructor does not enforce restrictions on the signs of these input arguments, each argument is usually specified as a positive value.

Optional
Input
Arguments

Specify optional inputs as matching parameter name/value pairs as follows:
- Specify the parameter name as a character string, followed by its corresponding value.
- You can specify parameter name/value pairs in any order.
- Parameter names are case insensitive.
- You can specify unambiguous partial string matches.

Valid parameter names are:
StartTime Scalar starting time of the first observation, applied to all state variables. If you do not specify a value for StartTime, the default is 0 .

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of initial values of the state variables. If StartState is a scalar, sdemrd applies the same initial value to all state variables on all trials.

If StartState is a column vector, sdemrd applies a unique initial value to each state variable on all trials.

If StartState is a matrix, sdemrd applies a unique initial value to each state variable on each trial.

If you do not specify a value for StartState, all variables start at 1 .

\section*{sdemrd}
\(\left.\begin{array}{ll}\text { Correlation } & \begin{array}{l}\text { Correlation between Gaussian random variates } \\ \text { drawn to generate the Brownian motion vector } \\ \text { (Wiener processes). Specify Correlation as an }\end{array} \\ & \begin{array}{l}\text { NBROWNS-by-NBROWNS positive semidefinite matrix, } \\ \text { or as a deterministic function } C(t) \text { that accepts the } \\ \text { current time } t \text { and returns an NBROWNS-by-NBROWNS }\end{array} \\ \text { positive semidefinite correlation matrix. A }\end{array}\right\}\)

\section*{Output SDE Arguments}

Object of class SDEMRD, with the following parameters:
- StartTime: Initial observation time
- StartState: Initial state at time StartTime
- Correlation: Access function for the Correlation input argument, callable as a function of time
- Drift: Composite drift-rate function, callable as a function of time and state
- Diffusion: Composite diffusion-rate function, callable as a function of time and state
- Speed: Access function for the input argument Speed, callable as a function of time and state
- Level: Access function for the input argument Level, callable as a function of time and state
- Alpha: Access function for the input argument Alpha, callable as a function of time and state
- Sigma: Access function for the input argument Sigma, callable as a function of time and state
- Simulation: A simulation function or method

\section*{Algorithms}

Examples See "Creating Stochastic Differential Equations from Mean-Reverting Drift (SDEMRD) Models" on page 17-29.

Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426.

Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.

Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.

Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.

See Also drift | diffusion | sdeddo

\section*{Purpose}

Euler simulation of stochastic differential equations (SDEs)

\section*{Syntax}

Classes

\section*{Description}

\section*{Input Arguments \\ SDE}
[Paths, Times, Z] = SDE.simByEuler(NPERIODS)
[Paths, Times, Z] = SDE.simByEuler(NPERIODS, 'Name1',
Value1, 'Name2', Value2, ...)

All classes in the "SDE Class Hierarchy" on page 17-5.
This method simulates any vector-valued SDE of the form
\[
d X_{t}=F\left(t, X_{t}\right) d t+G\left(t, X_{t}\right) d W_{t}
\]
where:
- \(X\) is an \(N V A R S\)-by- 1 state vector of process variables (for example, short rates or equity prices) to simulate.
- \(W\) is an NBROWNS-by-1 Brownian motion vector.
- \(F\) is an NVARS-by-1 vector-valued drift-rate function.
- \(G\) is an \(N V A R S\)-by- \(N B R O W N S\) matrix-valued diffusion-rate function. simByEuler simulates NTRIALS sample paths of NVARS correlated state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation periods, using the Euler approach to approximate continuous-time stochastic processes.

NPERIODS

Stochastic differential equation object created with the sdeddo constructor.

Positive scalar integer number of simulation periods. The value of NPERIODS determines the number of rows of the simulated output series.

\section*{simByEuler}

\section*{Optional \\ Input \\ Arguments}

Specify optional inputs as matching parameter name/value pairs as follows:
- Specify the parameter name as a character string, followed by its corresponding value.
- You can specify parameter name/value pairs in any order.
- Parameter names are case insensitive.
- You can specify unambiguous partial string matches.

Valid parameter names are:
\begin{tabular}{ll} 
NTRIALS & \begin{tabular}{l} 
Positive scalar integer number of simulated trials \\
(sample paths) of NPERIODS observations each. If you \\
do not specify a value for this argument, the default is \\
DeltaTime
\end{tabular} \\
& \begin{tabular}{l} 
Scalar or NPERIODS-by-1 column vector of positive \\
time increments between observations. DeltaTime \\
represents the familiar \(d t\) found in stochastic \\
differential equations, and determines the times at \\
which the simulated paths of the output state variables
\end{tabular} \\
are reported. If you do not specify a value for this \\
argument, the default is 1.
\end{tabular}

Antithetic Scalar logical flag that indicates whether simByEuler uses antithetic sampling to generate the Gaussian random variates that drive the Brownian motion vector (Wiener processes). When Antithetic is TRUE (logical 1), simByEuler performs sampling such that all primary and antithetic paths are simulated and stored in successive matching pairs:
- Odd trials ( \(1,3,5, \ldots\) ) correspond to the primary Gaussian paths.
- Even trials (2,4,6, ..) are the matching antithetic paths of each pair derived by negating the Gaussian draws of the corresponding primary (odd) trial.
If you specify Antithetic to be any value other than TRUE, simByEuler assumes that it is FALSE (logical 0) by default, and does not perform antithetic sampling. When you specify an input noise process (see Z), simByEuler ignores the value of Antithetic.

Direct specification of the dependent random noise process used to generate the Brownian motion vector (Wiener process) that drives the simulation. Specify this argument as a function, or as an (NPERIODS * NSTEPS ) -by-NBROWNS-by-NTRIALS three-dimensional array of dependent random variates. If you specify \(Z\) as a function, it must return an NBROWNS-by- 1 column vector, and you must call it with two inputs:
- A real-valued scalar observation time \(t\).
- An NVARS-by-1 state vector \(X_{t}\).

If you do not specify a value for Z, simByEuler generates correlated Gaussian variates based on the Correlation member of the SDE object.

\section*{simByEuler}

StorePaths Scalar logical flag that indicates how the output array Paths is stored and returned to the caller. If StorePaths is TRUE (the default value) or is unspecified, simByEuler returns Paths as a three-dimensional time series array. If StorePaths is FALSE (logical 0), simByEuler returns the Paths output array as an empty matrix.

Processes Function or cell array of functions that indicates a sequence of end-of-period processes or state vector adjustments of the form
\[
X_{t}=P\left(t, X_{t}\right)
\]
simByEuler applies processing functions at the end of each observation period. These functions must accept the current observation time \(t\) and the current state vector \(X_{t}\), and return a state vector that may be an adjustment to the input state. If you specify more than one processing function, simByEuler invokes the functions in the order in which they appear in the cell array. You can use this argument to specify boundary conditions, prevent negative prices, accumulate statistics, plot graphs, and more.

If you do not specify a processing function, simByEuler makes no adjustments and performs no processing.

\section*{Output Arguments}

\author{
Paths
}

Times

Z
(NPERIODS + 1)-by-NVARS-by-NTRIALS
three-dimensional time series array, consisting of simulated paths of correlated state variables. For a given trial, each row of Paths is the transpose of the state vector \(X_{t}\) at time \(t\). When the input flag StorePaths = FALSE, simByEuler returns Paths as an empty matrix.
(NPERIODS + 1)-by-1 column vector of observation times associated with the simulated paths. Each element of Times is associated with the corresponding row of Paths.
(NPERIODS * NSTEPS)-by-NBROWNS-by-NTRIALS three-dimensional time series array of dependent random variates used to generate the Brownian motion vector (Wiener processes) that drive the simulation.

\section*{Algorithms}
- This simulation engine provides a discrete-time approximation of the underlying generalized continuous-time process. The simulation is derived directly from the stochastic differential equation of motion. Thus, the discrete-time process approaches the true continuous-time process only as DeltaTime approaches zero.
- The input argument \(Z\) allows you to directly specify the noise-generation process. This process takes precedence over the Correlation parameter of the SDE object and the value of the Antithetic input flag. If you do not specify a value for Z, simByEuler generates correlated Gaussian variates, with or without antithetic sampling as requested.
- The end-of-period Processes argument allows you to terminate a given trial early. At the end of each time step, simByEuler tests the state vector \(X_{t}\) for an all-NaN condition. Thus, to signal an early termination of a given trial, all elements of the state vector \(X_{t}\) must be NaN. This test enables a user-defined Processes function to signal early termination of a trial, and offers significant performance

\section*{simByEuler}
benefits in some situations (for example, pricing down-and-out barrier options).

\author{
Examples Implementing Multidimensional Equity Market Models, Implementation 5: Using the simByEuler Method \\ \section*{References} \\ Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426. \\ Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999. \\ Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004. \\ Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002. \\ Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995. \\ Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.
}

\section*{See Also}
simBySolution | simulate

\section*{Purpose}

Simulate approximate solution of diagonal-drift HWV and GBM processes

\section*{Syntax}

Classes
- GBM
- HWV

The simBySolution method simulates NTRIALS sample paths of NVARS correlated state variables, driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation periods, approximating continuous-time Hull-White/Vasicek (HWV) and geometric Brownian motion (GBM) short-rate models by an approximation of the closed-form solution.

Consider a separable, vector-valued HWV model of the form:
\[
\begin{equation*}
d X_{t}=S(t)\left[L(t)-X_{t}\right] d t+V(t) d W_{t} \tag{18-12}
\end{equation*}
\]
where:
- \(X\) is an \(N V A R S\)-by- 1 state vector of process variables.
- \(S\) is an \(N V A R S\)-by- NVARS matrix of mean reversion speeds (the rate of mean reversion).
- \(L\) is an \(N V A R S\)-by- 1 vector of mean reversion levels (long-run mean or level).
- \(V\) is an \(N V A R S\)-by- \(N B R O W N S\) instantaneous volatility rate matrix.
- \(W\) is an NBROWNS-by-1 Brownian motion vector.
or a separable, vector-valued GBM model of the form:
\[
\begin{equation*}
d X_{t}=\mu(t) X_{t} d t+D\left(t, X_{t}\right) V(t) d W_{t} \tag{18-13}
\end{equation*}
\]
where:

\section*{simBySolution}
- \(X_{t}\) is an NVARS-by- 1 state vector of process variables.
- \(\mu\) is an NVARS-by-NVARS generalized expected instantaneous rate of return matrix.
- \(V\) is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
- \(d W_{t}\) is an NBROWNS-by-1 Brownian motion vector.

The simBySolution method simulates the state vector \(X_{t}\) using an approximation of the closed-form solution of diagonal-drift models.
When evaluating the expressions, simBySolution assumes that all model parameters are piecewise-constant over each simulation period.
In general, this is not the exact solution to the models, because the probability distributions of the simulated and true state vectors are identical only for piecewise-constant parameters.

When parameters are piecewise-constant over each observation period, the simulated process is exact for the observation times at which \(X_{t}\) is sampled.

\section*{Input OBJ} Arguments

Hull-White/Vasicek (HWV) or geometric Brownian motion (GBM) model.

NPERIODS Positive scalar integer number of simulation periods. The value of this argument determines the number of rows of the simulated output series.

Specify optional input arguments as variable-length lists of matching parameter name/value pairs: 'Name1', Value1, 'Name2', Value2, ... and so on. The following rules apply when specifying parameter-name pairs:
- Specify the parameter name as a character string, followed by its corresponding parameter value.
- You can specify parameter name/value pairs in any order.
- Parameter names are case insensitive.

\section*{simBySolution}
- You can specify unambiguous partial string matches.

Valid parameter names are:
NTRIALS Positive scalar integer number of simulated trials (sample paths) of NPERIODS observations each. If you do not specify a value for this argument, the default is 1 , indicating a single path of correlated state variables.

DeltaTime Scalar or NPERIODS-by-1 column vector of positive time increments between observations. DeltaTime represents the familiar \(d t\) found in stochastic differential equations, and determines the times at which simBySolution reports the simulated paths of the output state variables. If you do not specify a value for this argument, the default is 1 .

NSTEPS Positive scalar integer number of intermediate time steps within each time increment \(d t\) (specified as DeltaTime). simBySolution partitions each time increment \(d t\) into NSTEPS subintervals of length \(d t /\) NSTEPS, and refines the simulation by evaluating the simulated state vector at NSTEPS - 1 intermediate points. Although simBySolution does not report the output state vector at these intermediate points, the refinement improves accuracy by allowing the simulation to more closely approximate the underlying continuous-time process. If you do not specify a value for NSTEPS, the default is 1 , indicating no intermediate evaluation.

\section*{simBySolution}

Antithetic Scalar logical flag that indicates whether antithetic sampling is used to generate the Gaussian random variates that drive the Brownian motion vector (Wiener processes). When Antithetic is TRUE (logical 1), simBySolution performs sampling such that all primary and antithetic paths are simulated and stored in successive matching pairs:
- Odd trials \((1,3,5, \ldots)\) correspond to the primary Gaussian paths
- Even trials ( \(2,4,6, \ldots\) ) are the matching antithetic paths of each pair derived by negating the Gaussian draws of the corresponding primary (odd) trial.

If you specify Antithetic to be any value other than TRUE,simBySolution assumes that it is FALSE (logical 0) by default, and does not perform antithetic sampling. When you specify an input noise process (see Z), simBySolution ignores the value of Antithetic.

Z
Direct specification of the dependent random noise process used to generate the Brownian motion vector (Wiener process) that drives the simulation. Specify this argument as a function, or as an (NPERIODS * NSTEPS)-by-NBROWNS-by-NTRIALS array of dependent random variates. If you specify \(Z\) as a function, it must return an NBROWNS-by- 1 column vector, and you must call it with two inputs:
- A real-valued scalar observation time \(t\).
- An NVARS-by-1 state vector \(X_{t}\).

If you do not specify a value for Z , simBySolution generates correlated Gaussian variates based on the Correlation member of the SDE object.

StorePaths Scalar logical flag that indicates how simBySolution stores the output array Paths and returns it to the caller. If StorePaths is TRUE(the default value) or is unspecified, simBySolution returns Paths as a three-dimensional time series array. If StorePaths is FALSE (logical 0), simBySolution returns the Paths output array as an empty matrix.

Processes Function or cell array of functions that indicates a sequence of end-of-period processes or state vector adjustments of the form
\[
X_{t}=P\left(t, X_{t}\right)
\]
simBySolution applies processing functions at the end of each observation period. These functions must accept the current observation time \(t\) and the current state vector \(X_{t}\), and return a state vector that may be an adjustment to the input state. If you specify more than one processing function, simBySolution invokes the functions in the order in which they appear in the cell array. You can use this argument to specify boundary conditions, prevent negative prices, accumulate statistics, plot graphs, and more.

If you do not specify a processing function, simBySolution makes no adjustments and performs no processing.

\section*{simBySolution}

\section*{Output \\ Arguments}
\[
\begin{array}{ll}
\text { Paths } & \begin{array}{l}
\text { (NPERIODS }+1 \text { )-by-NVARS-by-NTRIALS } \\
\text { three-dimensional time series array, consisting } \\
\text { of simulated paths of correlated state variables. For } \\
\text { a given trial, each row of Paths is the transpose of } \\
\text { the state vector } X_{t} \text { at time } t \text {. When the input flag } \\
\text { StorePaths = FALSE, simBySolution returns Paths } \\
\text { as an empty matrix. }
\end{array} \\
\text { Times } & \text { (NPERIODS + 1)-by-1 column vector of observation } \\
\text { times associated with the simulated paths. Each } \\
\text { element of Times is associated with the corresponding } \\
\text { row of Paths. } \\
\text { (NPERIODS * NSTEPS) -by-NBROWNS-by-NTRIALS } \\
& \begin{array}{l}
\text { three-dimensional time series array of dependent } \\
\text { random variates used to generate the Brownian motion } \\
\text { vector (Wiener processes) that drive the simulation. }
\end{array} \\
&
\end{array}
\]

\section*{Algorithms}
- The input argument \(Z\) allows you to directly specify the noise generation process. This process takes precedence over the Correlation parameter of the SDE object and the value of the Antithetic input flag. If you do not specify a value for \(Z\), simBySolution generates correlated Gaussian variates, with or without antithetic sampling as requested.
- Gaussian diffusion models, such as HWV, allow negative states. By default, simBySolution does nothing to prevent negative states, nor does it guarantee that the model be strictly mean-reverting. Thus, the model may exhibit erratic or explosive growth.
- The end-of-period Processes argument allows you to terminate a given trial early. At the end of each time step, simBySolution tests the state vector \(X_{t}\) for an all-NaN condition. Thus, to signal an early termination of a given trial, all elements of the state vector \(X_{t}\) must be NaN. This test enables a user-defined Processes function to signal early termination of a trial, and offers significant performance
benefits in some situations (for example, pricing down-and-out barrier options).

\author{
Examples Implementing Multidimensional Equity Market Models, Implementation 6: Using GBM Simulation Methods \\ References Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426. \\ Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999. \\ Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004. \\ Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002. \\ Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995. \\ Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.
}

\section*{See Also}
simByEuler | simulate

\section*{simulate}

Purpose
Syntax
Classes
Description

Input Arguments

Optional
Input
Arguments

Simulate multivariate stochastic differential equations (SDEs)
[Paths, Times, Z] = SDE.simulate(...)
All classes in the "SDE Class Hierarchy" on page 17-5.
This method simulates any vector-valued SDE of the form:
\[
\begin{equation*}
d X_{t}=F\left(t, X_{t}\right) d t+G\left(t, X_{t}\right) d W_{t} \tag{18-14}
\end{equation*}
\]
where:
- \(X\) is an NVARS-by-1 state vector of process variables (for example, short rates or equity prices) to simulate.
- \(W\) is an NBROWNS-by-1 Brownian motion vector.
- \(F\) is an \(N V A R S\)-by- 1 vector-valued drift-rate function.
- \(G\) is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.
[Paths, Times, Z] = SDE.simulate(...) simulates NTRIALS sample paths of NVARS correlated state variables, driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation periods, approximating continuous-time stochastic processes.

SDE Stochastic differential equation model.

The simulate method accepts any variable-length list of input arguments that the simulation method or function referenced by the SDE. Simulation parameter requires or accepts. It passes this input list directly to the appropriate SDE simulation method or user-defined simulation function.

\section*{Output Arguments}

Paths

Times

Z
(NPERIODS + 1)-by-NVARS-by-NTRIALS three-dimensional time series array, consisting of simulated paths of correlated state variables. For a given trial, each row of Paths is the transpose of the state vector \(X_{t}\) at time \(t\).
(NPERIODS +1 )-by- 1 column vector of observation times associated with the simulated paths. Each element of Times is associated with a corresponding row of Paths.

NTIMES-by-NBROWNS-by-NTRIALS three-dimensional time series array of dependent random variates used to generate the Brownian motion vector (Wiener processes) that drove the simulated results found in Paths. NTIMES is the number of time steps at which simulate samples the state vector. NTIMES includes intermediate times designed to improve accuracy, which simulate does not necessarily report in the Paths output time series.

\section*{Examples Antithetic Sampling}

Simulation methods allow you to specify a popular variance reduction technique called antithetic sampling. This technique attempts to replace one sequence of random observations with another of the same expected value, but smaller variance.

In a typical Monte Carlo simulation, each sample path is independent and represents an independent trial. However, antithetic sampling generates sample paths in pairs. The first path of the pair is referred to as the primary path, and the second as the antithetic path. Any given pair is independent of any other pair, but the two paths within each pair are highly correlated. Antithetic sampling literature often recommends averaging the discounted payoffs of each pair, effectively halving the number of Monte Carlo trials.

This technique attempts to reduce variance by inducing negative dependence between paired input samples, ideally resulting in negative

\section*{simulate}
dependence between paired output samples. The greater the extent of negative dependence, the more effective antithetic sampling is.
This example applies antithetic sampling to a path-dependent barrier option. Consider a European up-and-in call option on a single underlying stock. The evolution of this stock's price is governed by a Geometric Brownian Motion (GBM) model with constant parameters:
\[
d X_{t}=0.05 X_{t} d t+0.3 X_{t} d W_{t}
\]

Assume the following characteristics:
- The stock currently trades at 105.
- The stock pays no dividends.
- The stock volatility is \(30 \%\) per annum.
- The option strike price is 100 .
- The option expires in 3 months.
- The option barrier is 120 .
- The risk-free rate is constant at \(5 \%\) per annum.

The goal is to simulate various paths of daily stock prices, and calculate the price of the barrier option as the risk-neutral sample average of the discounted terminal option payoff. Since this is a barrier option, you must also determine if and when the barrier is crossed.

This example performs antithetic sampling by explicitly setting the Antithetic flag to true, and then specifies an end-of-period processing function to record the maximum and terminal stock prices on a path-by-path basis.

1 Create a GBM model:
\begin{tabular}{lll} 
barrier & \(=120 ;\) & \% barrier \\
strike & \(=100 ;\) & \(\%\) exercise price \\
rate & \(=0.05 ;\) & \(\%\) annualized risk-free rate \\
sigma & \(=0.3 ;\) & \(\%\) annualized volatility \\
nPeriods & \(63 ;\) & \(\% 63\) trading days
\end{tabular}
```

dt = 1 252; % time increment = 252 days
T = nPeriods * dt; % expiration time = 0.25 years
obj = gbm(rate, sigma, 'StartState', 105);

```

2 Perform a very small-scale simulation that explicitly returns two simulated paths:
```

rng('default') % make output reproducible
[X, T] = obj.simBySolution(nPeriods, 'DeltaTime', dt, ...
'nTrials', 2, 'Antithetic', true);

```

3 Perform antithetic sampling such that all primary and antithetic paths are simulated and stored in successive matching pairs. Odd paths \((1,3,5, \ldots)\) correspond to the primary Gaussian paths. Even paths \((2,4,6, \ldots)\) are the matching antithetic paths of each pair, derived by negating the Gaussian draws of the corresponding primary (odd) path.

Verify this by examining the matching paths of the primary/antithetic pair:
```

plot(T, X(:,:,1), 'blue', T, X(:,:,2), 'red')
xlabel('Time (Years)'), ylabel('Stock Price'), ...
title('Antithetic Sampling')
legend({'Primary Path' 'Antithetic Path'}, ...
'Location', 'Best')

```

\section*{simulate}


To price the European barrier option, specify an end-of-period processing function to record the maximum and terminal stock prices. This processing function is accessible by time and state, and is implemented as a nested function with access to shared information that allows the option price and corresponding standard error to be calculated.

1 Simulate 200 paths using the processing function method:
```

rng('default') % make output reproducible

```
```

barrier = 120; % barrier
strike = 100; % exercise price
rate = 0.05; % annualized risk-free rate
sigma = 0.3; % annualized volatility
nPeriods = 63; % 63 trading days
dt = 1 / 252; % time increment = 252 days
T = nPeriods * dt; % expiration time = 0.25 years
obj = gbm(rate, sigma, 'StartState', 105);
nPaths = 200; % \# of paths = 100 sets of pairs
f = Example_BarrierOption(nPeriods, nPaths);
obj.simBySolution(nPeriods, 'DeltaTime', dt, ...
'nTrials', nPaths, 'Antithetic', true, ...
'Processes', f.SaveMaxLast);

```

2 Approximate the option price with a \(95 \%\) confidence interval:
```

optionPrice = f.OptionPrice (strike, rate, barrier);
standardError = f.StandardError(strike, rate, barrier,...
true);
lowerBound = optionPrice - 1.96 * standardError;
upperBound = optionPrice + 1.96 * standardError;
fprintf(' Up-and-In Barrier Option Price: %8.4f\n', ...
optionPrice)
fprintf(' Standard Error of Price: %8.4f\n', ...
standardError)
fprintf(' Confidence Interval Lower Bound: %8.4f\n', ...
lowerBound)
fprintf(' Confidence Interval Upper Bound: %8.4f\n', ...
upperBound)

```
\begin{tabular}{rl} 
Up-and-In Barrier Option Price: & 6.6609 \\
Standard Error of Price: & 0.7301 \\
Confidence Interval Lower Bound: & 5.2299 \\
Confidence Interval Upper Bound: & \(\mathbf{8 . 0 9 2 0}\)
\end{tabular}

\section*{simulate}
References

Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426.
Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999.
Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.
Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.
Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.
Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.

\section*{See Also \\ simByEuler | simBySolution \\ See Also simByEuler | simBySolution}
Purpose Seconds of date or time
Syntax Seconds = second(Date)
Description Seconds \(=\) second (Date) returns the seconds given a serial date number or a date string.
Examples Seconds \(=\) second (738647.558427893)
or
Seconds = second('06-May-2022, 13:24:08.17')
returns
Seconds =
8.1700
See Also ..... datevec | hour | minute

\section*{selectreturn}

Purpose Portfolio configurations from 3-D efficient frontier
Syntax PortConfigs = selectreturn(AllMean, All Covariance, Target)
Arguments

\footnotetext{
Description PortConfigs = selectreturn(AllMean, All Covariance, Target) returns the portfolio configurations for a target return given the average return and covariance for a rolling efficient frontier.

PortConfigs is a NASSETS-by-NCURVES matrix of asset allocation weights needed to obtain the target rate of return.

See Also frontier
}

\section*{Superclasses AbstractPortfolio}

Purpose Set up list of identifiers for assets
Syntax obj = setAssetList(obj, varargin)
Description

Tips

Input
Arguments the assets.
- Use dot notation to set up list of identifiers for assets.
```

obj = obj.setAssetList(varargin);

```
- To clear an AssetList, call this method with[] or \{[]\}.

\section*{obi}

Portfolio object [Portfolio].
obj = setAssetList(obj, varargin) sets up a list of identifiers for

\section*{varargin}

Asset identifiers. Either a comma-separated list of strings or a vector cell array of strings. Each string is an asset identifier.

If an asset list is entered as an input, this method overwrites an existing asset list in the object if one exists.

If no asset list is entered as an input, three actions can occur:
- If NumAssets is nonempty and AssetList is empty, AssetList becomes a numbered list of assets with default names according to the hidden property in defaultforAssetList ('Asset').
- If NumAssets is nonempty and AssetList is nonempty, nothing happens.
- If NumAssets is empty and AssetList is empty, the default NumAssets \(=1\) is set and a default asset list is created ('Asset1').

\section*{Portfolio.setAssetList} "Common Operations on the Portfolio Object" on page 4-35.

\section*{Output Arguments \\ obi}

Updated Portfolio object [Portfolio].

Note The underlying object has a number of public hidden properties to format the asset list:
- defaultforAssetList - Default name for assets ('Asset '). Change this name to create default asset names such as 'ETF ', 'Bond', and so on.
- sortAssetList - Reserved for future implementation.
- uppercaseAssetList - If true, make all asset identifiers uppercase strings. Otherwise does nothing. Default is false.

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Create a Default List of Asset Names with Three Assets}

Create a default list of asset names with three assets.
```

p = Portfolio('NumAssets',3);
p = p.setAssetList;
disp(p.AssetList);

```

\section*{Asset1' 'Asset2' 'Asset3}

\section*{Create an Explicitly Named List of Asset Names with Three Assets}

Create a list of asset names for three equities AGG, EEM, and VEU.
```

p = Portfolio;
p = p.setAssetList('AGG', 'EEM', 'VEU');
disp(p.AssetList);

```
'AGG' 'EEM' 'VEU'

\section*{See Also Portfolio}
Related
- "Setting Up a List of Asset Identifiers" on page 4-36
Examples
- "Common Operations on the Portfolio Object" on page 4-35

\section*{PortfolioCVaR.setAssetList}

Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input
Arguments

Set up list of identifiers for assets for PortfolioCVaR object
obj = setAssetList(obj, varargin)
obj = setAssetList(obj, varargin) sets up a list of identifiers for the assets.
- Use dot notation to set up list of identifiers for assets.
obj = obj.setAssetList(varargin);
- To clear an AssetList, call this method with [] or \{[]\}.

\section*{obj}

CVaR portfolio object [PortfolioCVaR].

\section*{varargin}

Asset identifiers. Either a comma-separated list of strings or a vector cell array of strings. Each string is an asset identifier.

If an asset list is entered as an input, this method overwrites an existing asset list in the object if one exists.
If no asset list is entered as an input, three actions can occur:
- If NumAssets is nonempty and AssetList is empty, AssetList becomes a numbered list of assets with default names according to the hidden property in defaultforAssetList ('Asset').
- If NumAssets is nonempty and AssetList is nonempty, nothing happens.
- If NumAssets is empty and AssetList is empty, the default NumAssets \(=1\) is set and a default asset list is created ('Asset1').

\section*{PortfolioCVaR.setAssetList}

\section*{Output \\ obj}

Arguments

Updated CVaR portfolio object [PortfolioCVaR].

Note The underlying object has many public hidden properties to format the asset list:
- defaultforAssetList - Default name for assets ('Asset'). Change this name to create default asset names such as 'ETF', 'Bond', and so on.
- sortAssetList - Reserved for future implementation.
- uppercaseAssetList - If true, make all asset identifiers uppercase strings. Otherwise, it does nothing. Default is false.

\section*{Attributes}

\section*{Examples}

Access
Static
Hidden
alse
false
To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Create a Default List of Asset Names with Three Assets}

For more information on setting up a list of asset identifiers, see "Common Operations on the PortfolioCVaR Object" on page 5-37.

Create a default list of asset names with three assets.
```

p = PortfolioCVaR('NumAssets',3);
p = p.setAssetList;
disp(p.AssetList);

```

\section*{PortfolioCVaR.setAssetList}

\section*{'Asset1' 'Asset2' 'Asset3}

\section*{Create an Explicitly Named List of Asset Names with Three Assets}

Create a list of asset names for three equities AGG, EEM, and VEU.
```

p = PortfolioCVaR;
p = p.setAssetList('AGG', 'EEM', 'VEU');
disp(p.AssetList);

```
    'AGG' 'EEM' 'VEU'

See Also PortfoliocVaR
Related
- "Setting Up a List of Asset Identifiers" on page 5-38
Examples
- "Common Operations on the PortfolioCVaR Object" on page 5-37

\section*{PortfolioMAD.setAssetList}

\section*{Superclasses AbstractPortfolio}

Purpose
Syntax
Description

Tips

Input
Arguments

Set up list of identifiers for assets for PortfolioMAD object
obj = setAssetList(obj, varargin)
obj = setAssetList(obj, varargin) sets up a list of identifiers for the assets.
- Use dot notation to set up list of identifiers for assets.
```

obj = obj.setAssetList(varargin);

```
- To clear an AssetList, call this method with [] or \{[ ]\}.

\section*{obi}

MAD portfolio object [PortfolioMAD].

\section*{varargin}

Asset identifiers specified as either a comma-separated list of strings or a vector cell array of strings. Each string is an asset identifier.

If an asset list is entered as an input, this method overwrites an existing asset list in the object if one exists.
If no asset list is entered as an input, three actions can occur:
- If NumAssets is nonempty and AssetList is empty, AssetList becomes a numbered list of assets with default names according to the hidden property in defaultforAssetList ('Asset').
- If NumAssets is nonempty and AssetList is nonempty, nothing happens.
- If NumAssets is empty and AssetList is empty, the default NumAssets \(=1\) is set and a default asset list is created ('Asset1').

\section*{PortfolioMAD.setAssetList}
method accepts empty strings as identifiers and, depending upon the existing value for NumAssets, either pads or truncates the list of assets with default names according to the property defaultforAssetList (currently 'Asset').

For more information on setting up a list of asset identifiers, see "Common Operations on the PortfolioCVaR Object" on page 5-37.

\section*{Output Arguments}

Updated MAD portfolio object [PortfolioMAD].

Note The underlying object has many public hidden properties to format the asset list:
- defaultforAssetList - Default name for assets ('Asset'). Change this name to create default asset names such as 'ETF', 'Bond', and so on.
- sortAssetList - Reserved for future implementation.
- uppercaseAssetList - If true, make all asset identifiers uppercase strings. Otherwise, it does nothing. Default is false.

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Create a Default List of Asset Names with Three Assets}

Create a default list of asset names with three assets.
```

p = PortfolioMAD('NumAssets',3);
p = p.setAssetList;
disp(p.AssetList);
'Asset1' 'Asset2' 'Asset3'

```

\section*{Create an Explicitly Named List of Asset Names with Three Assets}

Create a list of asset names for three equities AGG, EEM, and VEU.
```

p = PortfolioMAD;
p = p.setAssetList('AGG', 'EEM', 'VEU');
disp(p.AssetList);
AGG' 'EEM' 'VEU'

```
Related
- "Setting Up a List of Asset Identifiers" on page 6-37
Examples
- "Common Operations on the PortfolioMAD Object" on page 6-36

\section*{Portfolio.setAssetMoments}
```

Purpose Set moments (mean and covariance) of asset returns

```

Syntax

Description

Tips

Input
Arguments
```

Set moments (mean and covariance) of asset returns
obj = setAssetMoments(obj,AssetMean)
obj = setAssetMoments(obj,AssetMean,AssetCovar,NumAssets)
obj = setAssetMoments(obj,AssetMean) sets the mean of asset returns.
obj = setAssetMoments(obj,AssetMean,AssetCovar,NumAssets) sets moments (mean and covariance) of the asset returns with additional options for AssetCovar and NumAssets.

- Use dot notation to set moments (mean and covariance) of the asset returns.
obj = obj.setAssetMoments(obj, AssetMean, AssetCovar, NumAssets);
- To clear AssetMean and AssetCovar, use this method to set these respective inputs to [].

```

\section*{obi}
```

Portfolio object [Portfolio].

```

\section*{AssetMean}
```

Mean of asset returns [vector].

```

Note If AssetMean is a scalar and the number of assets is known, scalar expansion occurs. If the number of assets cannot be determined, this method assumes that NumAssets \(=1\).

\section*{AssetCovar}
(Optional) Covariance of asset returns [matrix].

Note AssetCovar must be a symmetric positive-semidefinite
matrix.
If AssetCovar is a scalar and the number of assets is known, a diagonal matrix is formed with the scalar value along the diagonals. If it is not possible to determine the number of assets, this method assumes that NumAssets \(=1\).

If AssetCovar is a vector, a diagonal matrix is formed with the vector along the diagonal.

\section*{NumAssets}
(Optional) Number of assets [integer].

Note If NumAssets is not already set in the object, NumAssets can be entered to resolve array expansions with AssetMean or AssetCovar.

\section*{Output obi \\ Arguments \\ Updated Portfolio object [Portfolio].}

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Portfolio.setAssetMoments}

\section*{Examples Set Asset Moments}

Set the asset moment properties, given the mean and covariance of asset returns in the variables m and C .
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

```
m = m/12;
C = C/12;
p = Portfolio;
p = p.setAssetMoments(m, C);
[assetmean, assetcovar] = p.getAssetMoments
assetmean =
```

0.0042
0 . 0 0 8 3
0 . 0 1 0 0
0.0150

```
assetcovar =
\begin{tabular}{rrrr}
0.0005 & 0.0003 & 0.0002 & 0 \\
0.0003 & 0.0024 & 0.0017 & 0.0010 \\
0.0002 & 0.0017 & 0.0048 & 0.0028 \\
0 & 0.0010 & 0.0028 & 0.0102
\end{tabular}

\footnotetext{
See Also
estimateAssetMoments | estimateFrontierByRisk | Portfolio
}

\title{
Related \\ - "Asset Returns and Moments of Asset Returns" on page 4-42 \\ Examples
}

Concepts - "Portfolio Optimization Theory" on page 4-2

\section*{Portfolio.setBounds}

Superclasses AbstractPortfolio
Purpose Set up bounds for portfolio weights

\author{
Syntax \\ Description
}
obj = setBounds(obj,LowerBound)
obj = setBounds(obj,LowerBound,UpperBound,NumAssets)
obj = setBounds(obj, LowerBound) sets up the lower bound for portfolio weights.
obj \(=\) setBounds(obj,LowerBound,UpperBound,NumAssets) sets up bounds for portfolio weights with additional options for UpperBound, and NumAssets.

Given bound constraints LowerBound and UpperBound, every weight in a portfolio Port must satisfy the following:

LowerBound <= Port <= UpperBound

Tips
Use dot notation to set up the bounds for portfolio weights.
```

obj = obj.setBounds(LowerBound, UpperBound, NumAssets);

```

\section*{Input \\ obi}

Arguments
Portfolio object [Portfolio].

\section*{LowerBound}

Lower-bound weight for each asset [vector].

\section*{UpperBound}
(Optional) Upper-bound weight each asset [vector].

\section*{NumAssets}
(Optional) Number of assets in portfolio [scalar]. NumAssets cannot be used to change the dimension of a Portfolio object.

\section*{Portfolio.setBounds}

Note If either LowerBound or UpperBound are input as empties with [ ], the corresponding attributes in the Portfolio object are cleared and set to [].

If LowerBound or UpperBound are specified as scalars and NumAssets exists or can be imputed, then they undergo scalar expansion. The default value for NumAssets is 1 .

If both LowerBound and UpperBound exist and they are not ordered correctly, this method switches bounds if necessary.

\section*{Output obi \\ Arguments \\ Updated Portfolio object [Portfolio].}

\section*{Attributes}

\section*{Examples}

\section*{Set Bound Constraints}

Suppose you have a balanced fund with stocks that can range from \(50 \%\) to \(75 \%\) of your portfolio and bonds that can range from \(25 \%\) to \(50 \%\) of your portfolio. To set the bound constraints for a balanced fund.
```

lb = [0.5; 0.25];
ub = [0.75; 0.5];
p = Portfolio;
p = p.setBounds(lb, ub);

```

\section*{Portfolio.setBounds}
```

disp(p.NumAssets);
disp(p.LowerBound);
disp(p.UpperBound);
2
0.5000
0.2500
0.7500
0.5000

```
See Also getBounds | Portfolio
Related - "Working with Bound Constraints" on page 4-62
Concepts - "Working with Portfolio Constraints" on page 4-59

\section*{PortfolioCVaR.setBounds}

\section*{Superclasses AbstractPortfolio}

Purpose
Set up bounds for portfolio weights in PortfolioCVaR object

\section*{Syntax}

Description
obj = setBounds(obj, LowerBound)
obj \(=\) setBounds(obj,LowerBound,UpperBound,NumAssets)
obj = setBounds(obj, LowerBound) sets up the lower bound for portfolio weights.
obj \(=\) setBounds(obj,LowerBound,UpperBound, NumAssets) sets up bounds for portfolio weights with additional options for UpperBound, and NumAssets.

Given bound constraints LowerBound and UpperBound, every weight in a portfolio Port must satisfy the following:

LowerBound <= Port <= UpperBound

\section*{Tips}

Use dot notation to set up the bounds for portfolio weights.
```

obj = obj.setBounds(LowerBound, UpperBound, NumAssets);

```
obi
CVaR portfolio object [PortfolioCVaR].

\section*{LowerBound}

Lower-bound weight for each asset [vector].

\section*{UpperBound}
(Optional) Upper-bound weight for each asset [vector].

\section*{NumAssets}

\section*{PortfolioCVaR.setBounds}
(Optional) Number of assets in CVaR portfolio object [scalar]. NumAssets cannot be used to change the dimension of a CVaR portfolio object.

Note If LowerBound or UpperBound is input as empty with [], the corresponding attributes in the CVaR portfolio object are cleared and set to [].

If LowerBound or UpperBound is specified as scalars and NumAssets exists or can be imputed, then they undergo scalar expansion. The default value for NumAssets is 1 .

If both LowerBound and UpperBound exist and they are not ordered correctly, this method switches bounds if necessary.
```

Output obi
Arguments

```

\section*{Attributes}

\section*{Examples Set Bound Constraints}

Suppose you have a balanced fund with stocks that can range from 50\% to \(75 \%\) of your portfolio and bonds that can range from \(25 \%\) to \(50 \%\) of your portfolio. To set the bound constraints for a balanced fund.
lb = [ 0.5; 0.25 ];

\section*{PortfolioCVaR.setBounds}
```

ub = [0.75; 0.5];
p = PortfolioCVaR;
p = p.setBounds(lb, ub);
disp(p.NumAssets);
disp(p.LowerBound);
disp(p.UpperBound);
2
0.5000
0.2500
0.7500
0.5000

```

\section*{See Also \\ PortfolioCVaR | getBounds}

Related Examples

\section*{Concepts \\ - "Portfolio Set for Portfolio Optimization" on page 5-8}

\section*{PortfolioMAD.setBounds}

Superclasses AbstractPortfolio

Purpose
Syntax

Description

Set up bounds for portfolio weights in PortfolioMAD object
obj = setBounds(obj,LowerBound)
obj = setBounds(obj,LowerBound,UpperBound,NumAssets)
obj = setBounds(obj, LowerBound) sets up the lower bound for portfolio weights.
obj = setBounds(obj,LowerBound,UpperBound,NumAssets) sets up bounds for portfolio weights with additional options for UpperBound, and NumAssets.

Given bound constraints LowerBound and UpperBound, every weight in a portfolio Port must satisfy the following:

LowerBound <= Port <= UpperBound

Use dot notation to set up the bounds for portfolio weights.
```

obj = obj.setBounds(LowerBound, UpperBound, NumAssets);

```
obi
MAD portfolio object [PortfolioMAD].

\section*{LowerBound}

Lower-bound weight for each asset [vector].

\section*{UpperBound}
(Optional) Upper-bound weight for each asset [vector].

\section*{NumAssets}
(Optional) Number of assets in a PortfolioMAD object [scalar]. NumAssets cannot be used to change the dimension of a PortfolioMAD object.

Note If LowerBound or UpperBound is input as empty with [], the corresponding attributes in the MAD portfolio object are cleared and set to [].

If LowerBound or UpperBound is specified as scalars and NumAssets exists or can be imputed, then they undergo scalar expansion. The default value for NumAssets is 1 .

If both LowerBound and UpperBound exist and they are not ordered correctly, this method switches bounds if necessary.

\section*{Output obi \\ Arguments}

\section*{Attributes}

\section*{Examples}

\section*{Set Bound Constraints}

Suppose you have a balanced fund with stocks that can range from 50\% to \(75 \%\) of your portfolio and bonds that can range from \(25 \%\) to \(50 \%\) of your portfolio. To set the bound constraints for a balanced fund.
lb = [ 0.5; 0.25 ];

\section*{PortfolioMAD.setBounds}
```

ub = [0.75; 0.5];
p = PortfolioMAD;
p = p.setBounds(lb, ub);
disp(p.NumAssets);
disp(p.LowerBound);
disp(p.UpperBound);
2
0.5000
0.2500
0.7500
0.5000

```
See Also PortfoliomAD | getBounds
Related Examples

- "Working with Bound Constraints" on page 6-64

Concepts
- "Portfolio Set for Portfolio Optimization" on page 6-8

\section*{Portfolio.setBudget}
Superclasses AbstractPortfolio
Purpose Set up budget constraints
Syntax

obj = setBudget(obj,LowerBudget)

obj = setBudget(obj,LowerBudget,UpperBudget)
Description obj = setBudget(obj,LowerBudget) sets up the lower budgetconstraint.
obj = setBudget(obj,LowerBudget,UpperBudget) sets up budget
constraints with an additional option for UpperBudget.
TipsInputArguments

Use dot notation to set up the budget constraints.
```

obj = obj.setBudget(LowerBudget, UpperBudget);

```
obi
Portfolio object [Portfolio].

\section*{LowerBudget}

Lower-bound for budget constraint [scalar].

\section*{UpperBudget}
(Optional) Upper-bound for budget constraint [scalar].

\section*{Portfolio.setBudget}
```

Note Given bounds for a budget constraints in either LowerBudget or UpperBudget, budget constraints require any portfolio in Port to satisfy:
LowerBudget <= sum(Port) <= UpperBudget

```

One or both constraints may be specified. The usual budget constraint for a fully-invested portfolio is to have LowerBudget = UpperBudget \(=1\). However, if the portfolio has allocations in cash, the budget constraints can be used to specify the cash constraints. For example, if the portfolio can hold between \(0 \%\) and \(10 \%\) in cash, the budget constraint would be set up with
```

obj = obj.setBudget(0.9, 1)

```
```

Output obi
Arguments

```

\section*{Attributes}

\section*{Examples}

\section*{Set Budget Constraint}

Assume you have a fund that permits up to \(10 \%\) leverage, which means that your portfolio can be from \(100 \%\) to \(110 \%\) invested in risky assets. Given a Portfolio object p, set the budget constraint.
```

p = Portfolio;

```
```

p = p.setBudget(1, 1.1);
disp(p.LowerBudget);
disp(p.UpperBudget);

```

1
1.1000

\section*{See Also getBudget | Portfolio}

Related - "Working with Budget Constraints" on page 4-64
Examples
Concepts • "Working with Portfolio Constraints" on page 4-59

\section*{PortfolioCVaR.setBudget}

Superclasses AbstractPortfolio
Purpose Set up budget constraints for PortfolioCVaR object
Syntax \(\quad\)\begin{tabular}{rl} 
obj & \(=\operatorname{setBudget}(o b j\), LowerBudget \()\) \\
\(o b j\) & \(=\operatorname{setBudget}(o b j\), LowerBudget, UpperBudget \()\)
\end{tabular}

Description
obj = setBudget(obj, LowerBudget) sets up the lower budget constraint.
obj = setBudget(obj,LowerBudget,UpperBudget) sets up budget constraints with an additional option for UpperBudget.

Tips Use dot notation to set up the budget constraints.
obj = obj.setBudget(LowerBudget, UpperBudget);
Input
obj
Arguments
CVaR portfolio object [PortfolioCVaR].

\section*{LowerBudget}

Lower bound for budget constraint [scalar].

\section*{UpperBudget}
(Optional) Upper bound for budget constraint [scalar].

\section*{PortfolioCVaR.setBudget}
```

Note Given bounds for budget constraints in either LowerBudget or UpperBudget, budget constraints require any portfolio in Port to satisfy:
LowerBudget <= sum(Port) <= UpperBudget

```

One or both constraints can be specified. The usual budget constraint for a fully invested portfolio is to have LowerBudget = UpperBudget \(=1\). However, if the portfolio has allocations in cash, the budget constraints can be used to specify the cash constraints. For example, if the portfolio can hold from \(0 \%\) to \(10 \%\) in cash, the budget constraint would be set up with
```

obj = obj.setBudget(0.9, 1)

```

\section*{Output Arguments}

\section*{Attributes}

\section*{Examples}

\section*{ob}

Updated CVaR portfolio object [PortfolioCVaR].
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Set Budget Constraint}

Assume you have a fund that permits up to \(10 \%\) leverage, which means that your portfolio can be from \(100 \%\) to \(110 \%\) invested in risky assets. Given a CVaR portfolio object p, set the budget constraint.
p = PortfolioCVaR;

\section*{PortfolioCVaR.setBudget}
```

p = p.setBudget(1, 1.1);
disp(p.LowerBudget);
disp(p.UpperBudget);
1
1.1000

```

\author{
See Also PortfoliocVaR | getBudget \\ Related - "Working with Budget Constraints" on page 5-66 \\ Examples
}

Concepts - "Portfolio Set for Portfolio Optimization" on page 5-8

\section*{PortfolioMAD.setBudget}
Superclasses AbstractPortfolio
Purpose Set up budget constraints for PortfolioMAD object
Syntax

obj = setBudget(obj,LowerBudget)

obj = setBudget(obj,LowerBudget,UpperBudget)
Description obj = setBudget(obj,LowerBudget) sets up the lower budgetconstraint.
obj = setBudget(obj,LowerBudget,UpperBudget) sets up budget
constraints with an additional option for UpperBudget.

\section*{Tips}
input Arguments

Use dot notation to set up the budget constraints.
obj = obj.setBudget(LowerBudget, UpperBudget);
obi
MAD portfolio object [PortfolioMAD].

\section*{LowerBudget}

Lower bound for budget constraint [scalar].

\section*{UpperBudget}
(Optional) Upper bound for budget constraint [scalar].

\section*{PortfolioMAD.setBudget}
```

Note Given bounds for budget constraints in either LowerBudget or UpperBudget, budget constraints require any portfolio in Port to satisfy:
LowerBudget <= sum(Port) <= UpperBudget

```

One or both constraints can be specified. The usual budget constraint for a fully invested portfolio is to have LowerBudget = UpperBudget \(=1\). However, if the portfolio has allocations in cash, the budget constraints can be used to specify the cash constraints. For example, if the portfolio can hold from \(0 \%\) to \(10 \%\) in cash, the budget constraint would be set up with
```

obj = obj.setBudget(0.9, 1)

```
```

Output obi
Arguments

```

\section*{Attributes}

\section*{Examples Set Budget Constraint}

Assume you have a fund that permits up to \(10 \%\) leverage, which means that your portfolio can be from \(100 \%\) to \(110 \%\) invested in risky assets. Given PortfolioMAD object \(p\), set the budget constraint.
p = PortfolioMAD;
```

p = p.setBudget(1, 1.1);
disp(p.LowerBudget);
disp(p.UpperBudget);

```

1
1.1000

\section*{See Also PortfoliomAD | getBudget \\ Related - "Working with Budget Constraints" on page 6-66 \\ Examples}
Concepts
- "Portfolio Set for Portfolio Optimization" on page 6-8

\section*{Portfolio.setCosts}

\section*{Superclasses AbstractPortfolio}

\section*{Purpose Set up proportional transaction costs}

\author{
Syntax \\ Description
}
obj = setCosts(obj,BuyCost)
obj \(=\) setCosts(obj,BuyCost,SellCost,InitPort,NumAssets)
obj = setCosts(obj,BuyCost) sets up proportional transaction costs to purchase assets.
obj = setCosts(obj, BuyCost, SellCost, InitPort,NumAssets) sets up proportional transaction costs with additional options specified for SellCost, InitPort, and NumAssets.

Given proportional transaction costs and an initial portfolio in the variables BuyCost, SellCost, and InitPort, the transaction costs for any portfolio Port reduce expected portfolio return by:
```

BuyCost' * max{0, Port - InitPort} + SellCost' * max{0, InitPort - Port}

```
- Use dot notation to set up proportional transaction costs.
```

obj = obj.setCosts(BuyCost, SellCost, InitPort, NumAssets);

```
- If BuyCost or SellCost are input as empties with [], the corresponding attributes in the Portfolio object are cleared and set to []. If InitPort is set to empty with [ ], it will only be cleared and set to [] if BuyCost, SellCost, and Turnover are also empty. Otherwise, it is an error.

\section*{Input Arguments}

\section*{obj}

Portfolio object [Portfolio].

\section*{BuyCost}

Proportional transaction cost to purchase each asset [vector].

\section*{SellCost}

Proportional transaction cost to sell each asset [vector].

\section*{InitPort}

Initial or current portfolio weights [vector].

Note If no InitPort is specified, that value is assumed to be 0 .

\section*{NumAssets}

Number of assets in portfolio [scalar]. NumAssets cannot be used to change the dimension of a Portfolio object.

Note If BuyCost, SellCost, or InitPort are specified as scalars and NumAssets exists or can be imputed, then these values undergo scalar expansion. The default value for NumAssets is 1.

Transaction costs in BuyCost and SellCost are positive valued if they introduce a cost to trade. In some cases, they can be negative valued, which implies trade credits.

\section*{Output Arguments \\ Updated Portfolio object [Portfolio].}

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Portfolio.setCosts}

\section*{Examples Set Up Transaction Costs}

Assume you have the same costs and initial portfolio as in the previous example. Given a Portfolio object p with an initial portfolio already set, use the setCosts method to set up transaction costs.
```

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = Portfolio('InitPort', x0);
p = p.setCosts(bc, sc);
disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);

```
    5
    0.0013
    0.0013
    0.0013
    0.0013
    0.0013
    0.0013
    0.0070
    0.0013
    0.0013
    0.0024
    0.4000
    0.2000
    0.2000
    0.1000
    0.1000

\author{
See Also \\ setInitPort | Portfolio \\ Related - "Working with Transaction Costs" on page 4-54 Examples
}

\section*{PortfolioCVaR.setCosts}

\section*{Superclasses AbstractPortfolio}

\section*{Purpose Set up proportional transaction costs for PortfolioCVaR object}

\author{
Syntax \\ Description
}
obj = setCosts(obj,BuyCost)
obj \(=\) setCosts(obj,BuyCost,SellCost,InitPort,NumAssets)
obj = setCosts(obj,BuyCost) sets up proportional transaction costs to purchase assets.
obj = setCosts(obj, BuyCost, SellCost, InitPort,NumAssets) sets up proportional transaction costs with additional options specified for SellCost, InitPort, and NumAssets.

Given proportional transaction costs and an initial portfolio in the variables BuyCost, SellCost, and InitPort, the transaction costs for any portfolio Port reduce expected portfolio return by:
```

BuyCost' * max{0, Port - InitPort} + SellCost' * max{0, InitPort - Port}

```
- Use dot notation to set up proportional transaction costs.
```

obj = obj.setCosts(BuyCost, SellCost, InitPort, NumAssets);

```
- If BuyCost or SellCost is input as empty with [ ], the corresponding attributes in the CVaR portfolio object are cleared and set to []. If InitPort is set to empty with [], it is only cleared and set to [] if BuyCost, SellCost, and Turnover are also empty. Otherwise, it is an error.

\section*{Input Arguments}

\section*{obj}

CVaR portfolio object [PortfolioCVaR].

\section*{BuyCost}

Proportional transaction cost to purchase each asset [vector].

\section*{SellCost}

Proportional transaction cost to sell each asset [vector].

\section*{InitPort}

Initial or current portfolio weights [vector].

Note If no InitPort is specified, that value is assumed to be 0 .

\section*{NumAssets}

Number of assets in a portfolio [scalar]. NumAssets cannot be used to change the dimension of a PortfolioCVaR object.

Note If BuyCost, SellCost, or InitPort are specified as scalars and NumAssets exists or can be imputed, then these values undergo scalar expansion. The default value for NumAssets is 1 .

Transaction costs in BuyCost and SellCost are positive valued if they introduce a cost to trade. In some cases, they can be negative valued, which implies trade credits.

\section*{Output obi}

Arguments
Updated CVaR portfolio object [PortfolioCVaR].

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{PortfolioCVaR.setCosts}

\section*{Examples Set Up Transaction Costs}

Given a CVaR portfolio object p with an initial portfolio already set, use the setCosts method to set up transaction costs.
```

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = PortfolioCVaR('InitPort', x0);
p = p.setCosts(bc, sc);
disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);

```

5
0.0013
0.0013
0.0013
0.0013
0.0013
0.0013
0.0070
0.0013
0.0013
0.0024
0.4000
0.2000
0.2000
0.1000
0.1000

\author{
See Also PortfolioCVaR | setInitPort | getCosts \\ Related - "Working with Transaction Costs" on page 5-56 \\ Examples
}

\section*{PortfolioMAD.setCosts}

\section*{Superclasses AbstractPortfolio}

\section*{Purpose \\ Set up proportional transaction costs for PortfolioMAD object}

\author{
Syntax \\ Description
}
obj = setCosts(obj,BuyCost)
obj \(=\) setCosts(obj, BuyCost,SellCost,InitPort,NumAssets)
obj = setCosts(obj,BuyCost) sets up proportional transaction costs to purchase assets.
obj = setCosts(obj, BuyCost, SellCost, InitPort,NumAssets) sets up proportional transaction costs with additional options specified for SellCost, InitPort, and NumAssets.

Given proportional transaction costs and an initial portfolio in the variables BuyCost, SellCost, and InitPort, the transaction costs for any portfolio Port reduce expected portfolio return by:
```

BuyCost' * max{0, Port - InitPort} + SellCost' * max{0, InitPort - Port}

```
- Use dot notation to set up proportional transaction costs:
```

obj = obj.setCosts(BuyCost, SellCost, InitPort, NumAssets);

```
- If BuyCost or SellCost is input as empty with [], the corresponding attributes in the PortfolioMAD object are cleared and set to [ ]. If InitPort is set to empty with [], it is only cleared and set to [] if BuyCost, SellCost, and Turnover are also empty. Otherwise, it is an error.

\section*{Input Arguments}

\section*{obj}

MAD portfolio object [PortfolioMAD].

\section*{BuyCost}

Proportional transaction cost to purchase each asset [vector].

\section*{PortfolioMAD.setCosts}

\section*{SellCost}

Proportional transaction cost to sell each asset [vector].

\section*{InitPort}

Initial or current portfolio weights [vector].

Note If no InitPort is specified, that value is assumed to be 0 .

\section*{NumAssets}

Number of assets in a portfolio [scalar]. NumAssets cannot be used to change the dimension of a PortfolioMAD object.

Note If BuyCost, SellCost, or InitPort are specified as scalars and NumAssets exists or can be imputed, then these values undergo scalar expansion. The default value for NumAssets is 1 .

Transaction costs in BuyCost and SellCost are positive valued if they introduce a cost to trade. In some cases, they can be negative valued, which implies trade credits.

\section*{Output obi}

Arguments
Updated MAD portfolio object [PortfolioMAD].

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{PortfolioMAD.setCosts}

\section*{Examples Set Up Transaction Costs}

Given PortfolioMAD object p with an initial portfolio already set, use the setCosts method to set up transaction costs.
```

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = PortfolioMAD('InitPort', x0);
p = p.setCosts(bc, sc);
disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);

```

5
0.0013
0.0013
0.0013
0.0013
0.0013
0.0013
0.0070
0.0013
0.0013
0.0024
0.4000
0.2000
0.2000
0.1000
0.1000

\section*{PortfolioMAD.setCosts}

\author{
See Also PortfoliomAD | setInitPort | getCosts \\ Related - "Working with Transaction Costs" on page 6-56 \\ Examples
}

\section*{Portfolio.setDefaultConstraints}

Superclasses AbstractPortfolio

Purpose
Syntax
Description

Tips

Input
Arguments

Set up portfolio constraints with nonnegative weights that sum to 1
obj = setDefaultConstraints(obj)
obj = setDefaultConstraints(obj,NumAssets)
obj = setDefaultConstraints(obj) sets up the portfolio constraints with nonnegative weights that must sum to 1 .
obj = setDefaultConstraints(obj, NumAssets) sets up the portfolio constraints with nonnegative weights that must sum to 1 with an additional option for NumAssets.
A "default" portfolio set has LowerBound \(=0\) and LowerBudget \(=\) UpperBudget \(=1\) such that a portfolio Port must satisfy sum (Port) \(=\) 1 with Port >= 0 .
- Use dot notation to set up the default portfolio set.
```

obj = obj.setDefaultConstraints(NumAssets);

```
- This method does not modify any existing constraints in a Portfolio object other than the bound and budget constraints. If an UpperBound constraint exists, it is cleared and set to [].

\section*{obj}

Portfolio object [Portfolio].

\section*{NumAssets}
(Optional) Number of assets in portfolio [scalar]. NumAssets cannot be used to change the dimension of a Portfolio object.

\section*{Default: 1}

\section*{Portfolio.setDefaultConstraints}

\section*{Output obi \\ Arguments}

Updated Portfolio object [Portfolio].

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Define Default Constraints for the Portfolio Object}

Assuming you have 20 assets, you can define the "default" portfolio set.
```

p = Portfolio('NumAssets', 20);
p = p.setDefaultConstraints;
disp(p);

```
    Portfolio with properties:
            BuyCost: []
            SellCost: []
        RiskFreeRate: []
            AssetMean: []
            AssetCovar: []
            Turnover: []
        BuyTurnover: []
        SellTurnover: []
            Name: []
        NumAssets: 20
        AssetList: []
            InitPort: []
        AInequality: []
        bInequality: []
            AEquality: []

\section*{Portfolio.setDefaultConstraints}
```

 bEquality: []
 LowerBound: [20x1 double]
 UpperBound: []
 LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```
\begin{tabular}{ll} 
See Also & setBounds | getBounds | setBudget | Portfolio \\
\begin{tabular}{l} 
Related \\
Examples
\end{tabular} & - "Setting Default Constraints for Portfolio Weights" on page 4-59 \\
Concepts & - "Default Portfolio Problem" on page 4-15
\end{tabular}

\section*{PortfolioCVaR.setDefaultConstraints}

\section*{Superclasses AbstractPortfolio}
Purpose
Syntax
Description

Tips

Input
Arguments

Set up portfolio constraints with nonnegative weights that sum to 1 for PortfolioCVaR object
obj = setDefaultConstraints(obj)
obj = setDefaultConstraints(obj,NumAssets)
obj = setDefaultConstraints(obj) sets up portfolio constraints with nonnegative weights that must sum to 1 .
obj = setDefaultConstraints(obj,NumAssets) sets up portfolio constraints with nonnegative weights that must sum to 1 with an additional option for NumAssets.

A "default" portfolio set has LowerBound = 0 and LowerBudget = UpperBudget \(=1\) such that a portfolio Port must satisfy sum (Port) = 1 with Port >= 0 .
- Use dot notation to set up the default portfolio set.
```

obj = obj.setDefaultConstraints(NumAssets);

```
- This method does not modify any existing constraints in a PortfolioCVaR object other than the bound and budget constraints. If an UpperBound constraint exists, it is cleared and set to [].

\section*{obi}

CVaR portfolio object [PortfolioCVaR].

\section*{NumAssets}
(Optional) Number of assets in a portfolio [scalar]. NumAssets cannot be used to change the dimension of a PortfolioCVaR object.

Default: 1

\section*{PortfolioCVaR.setDefaultConstraints}
Output ..... objArgumentsUpdated CVaR portfolio object [PortfolioCVaR].
Attributes
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}
To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Define Default Constraints for the PortfolioCVaR Object}
Assuming you have 20 assets, you can define the "default" portfolio set.
```

p = PortfolioCVaR('NumAssets', 20);
p = p.setDefaultConstraints;
disp(p);

```
    PortfolioCVaR with properties:
            BuyCost: []
            SellCost: []
        RiskFreeRate: []
        ProbabilityLevel: []
            Turnover: []
            BuyTurnover: []
            SellTurnover: []
            NumScenarios: []
                Name: []
            NumAssets: 20
            AssetList: []
            InitPort: []
            AInequality: []
            bInequality: []
            AEquality: []

\section*{PortfolioCVaR.setDefaultConstraints}
```

 bEquality: []
 LowerBound: [20x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```
\begin{tabular}{ll} 
See Also & PortfolioCVaR | setBounds | getBounds | setBudget \\
Related & - "Setting Default Constraints for Portfolio Weights" on page 5-61 \\
Examples & \\
Concepts & - "Default Portfolio Problem" on page 5-15
\end{tabular}

\section*{PortfolioMAD.setDefaultConstraints}

Superclasses

Purpose

Syntax

Description

Tips

Input
Arguments

AbstractPortfolio
Set up portfolio constraints with nonnegative weights that sum to 1 for PortfolioMAD object
obj = setDefaultConstraints(obj)
obj = setDefaultConstraints(obj,NumAssets)
obj = setDefaultConstraints(obj) sets up portfolio constraints with nonnegative weights that must sum to 1 .
obj = setDefaultConstraints(obj,NumAssets) sets up portfolio constraints with nonnegative weights that must sum to 1 with an additional option for NumAssets.
A "default" portfolio set has LowerBound \(=0\) and LowerBudget \(=\) UpperBudget \(=1\) such that a portfolio Port must satisfy sum (Port) \(=\) 1 with Port >= 0 .
- Use dot notation to set up the default portfolio set.
```

obj = obj.setDefaultConstraints(NumAssets);

```
- This method does not modify any existing constraints in a PortfolioMAD object other than the bound and budget constraints. If an UpperBound constraint exists, it is cleared and set to [ ].

\section*{obj}

MAD portfolio object [PortfolioMAD].

\section*{NumAssets}
(Optional) Number of assets in a PortfolioMAD object [scalar]. NumAssets cannot be used to change the dimension of a PortfolioMAD object.

Default: 1

\section*{PortfolioMAD.setDefaultConstraints}

\section*{Output obi \\ Arguments}

Updated MAD portfolio object [PortfolioMAD].

\section*{Attributes}

\section*{Examples Define Default Constraints for the PortfolioMAD Object}

Assuming you have 20 assets, you can define the "default" portfolio set.
```

p = PortfolioMAD('NumAssets', 20);
p = p.setDefaultConstraints;
disp(p);

```
    PortfolioMAD with properties:
            BuyCost: []
            SellCost: []
            RiskFreeRate: []
            Turnover: []
        BuyTurnover: []
        SellTurnover: []
        NumScenarios: []
            Name: []
            NumAssets: 20
            AssetList: []
            InitPort: []
            AInequality: []
            bInequality: []
            AEquality: []
            bEquality: []

\section*{PortfolioMAD.setDefaultConstraints}
```

 LowerBound: [20x1 double]
 UpperBound: []
 LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```
See Also PortfoliomAD | setBounds | getBounds | setBudget
Related Examples
Concepts - "Default Portfolio Problem" on page 6-15

\section*{Portfolio.setEquality}

\section*{Superclasses AbstractPortfolio}

Purpose
Syntax
Description

Tips

\section*{Input Arguments}

Set up linear equality constraints for portfolio weights
obj = setEquality(obj,AEquality, bEquality)
obj = setEquality(obj,AEquality,bEquality) sets up linear equality constraints for portfolio weights.

Given linear equality constraint matrix AEquality and vector bEquality, every weight in a portfolio Port must satisfy the following:
```

AEquality * Port = bEquality

```
- Use dot notation to set up linear equality constraints for portfolio weights.
```

obj = obj.setEquality(AEquality, bEquality);

```
- Linear equality constraints can be removed from a Portfolio object by entering [] for each property you want to remove.

\section*{obi}

Portfolio object [Portfolio].

\section*{AEquality}

Matrix to form linear equality constraints [matrix].

\section*{bEquality}

Vector to form linear equality constraints [vector].

Note An error results if AEquality is empty and bEquality is nonempty or if AEquality is nonempty and bEquality is empty.

\section*{Portfolio.setEquality}

\section*{Output obj \\ Arguments \\ Attributes \\ \begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Set Linear Inequality Constraints}

Suppose you have a portfolio of five assets, and you want to ensure that the first three assets are \(50 \%\) of your portfolio. Given a Portfolio object p , set the linear equality constraints with the following.
```

A = [1 1 1 1 0 0];
b = 0.5;
p = Portfolio;
p = p.setEquality(A, b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);

```
    5
    \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
    0.5000
See Also addEquality | getEquality | Portfolio

\title{
Related \\ - "Working with Linear Equality Constraints" on page 4-73 \\ Examples
}

Concepts - "Portfolio Set for Portfolio Optimization" on page 4-8

\section*{PortfolioCVaR.setEquality}

Superclasses AbstractPortfolio

Purpose

Syntax
Description

Tips

Input
Arguments

Set up linear equality constraints for portfolio weights in PortfolioCVaR object
obj = setEquality(obj,AEquality,bEquality)
obj = setEquality(obj,AEquality,bEquality) sets up linear equality constraints for portfolio weights.

Given linear equality constraint matrix AEquality and vector bEquality, every weight in a portfolio Port must satisfy the following:
```

AEquality * Port = bEquality

```
- Use dot notation to set up linear equality constraints for portfolio weights.
```

obj = obj.setEquality(AEquality, bEquality);

```
- Linear equality constraints can be removed from a PortfolioCVaR object by entering [ ] for each property you want to remove.

\section*{obj}

CVaR portfolio object [PortfolioCVaR].

\section*{AEquality}

Matrix to form linear equality constraints [matrix].

\section*{bEquality}

Vector to form linear equality constraints [vector].

Note An error results if AEquality is empty and bEquality is
nonempty or if AEquality is nonempty and bEquality is empty.

\section*{Output obi \\ Arguments \\ Updated CVaR portfolio object [PortfolioCVaR].}

\section*{Attributes}

\section*{Examples Set Linear Inequality Constraints}

Suppose you have a portfolio of five assets and you want to ensure that the first three assets are no more than \(50 \%\) of your portfolio. Given a CVaR portfolio object \(p\), set the linear inequality constraints with the following.
```

A = [1 1 1 1 0 0];
b = 0.5;
p = PortfolioCVaR;
p = p.setInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

```

\section*{5}

\section*{PortfolioCVaR.setEquality}

\subsection*{0.5000}

\author{
See Also PortfolioCVaR \| addEquality | getEquality \\ Related Examples \\ Concepts - "Portfolio Set for Portfolio Optimization" on page 5-8
}

\section*{PortfolioMAD.setEquality}

\section*{Superclasses AbstractPortfolio}

Purpose

Syntax
Description

Tips

\section*{Input \\ Arguments}

Set up linear equality constraints for portfolio weights in PortfolioMAD object
```

obj = setEquality(obj,AEquality,bEquality)

```
obj = setEquality(obj,AEquality, bEquality) sets up linear equality constraints for portfolio weights.

Given linear equality constraint matrix AEquality and vector bEquality, every weight in a portfolio Port must satisfy the following:

AEquality * Port = bEquality
- Use dot notation to set up linear equality constraints for portfolio weights:.
obj = obj.setEquality(AEquality, bEquality);
- Linear equality constraints can be removed from a PortfolioMAD object by entering [ ] for each property you want to remove.

\section*{obi}

MAD portfolio object [PortfolioMAD].

\section*{AEquality}

Matrix to form linear equality constraints [matrix].

\section*{bEquality}

Vector to form linear equality constraints [vector].

\section*{PortfolioMAD.setEquality}

> Note An error results if AEquality is empty and bEquality is nonempty or if AEquality is nonempty and bEquality is empty.

\section*{Output obi \\ Arguments}

\section*{Attributes}

\section*{Examples Set Linear Inequality Constraints}

Suppose you have a portfolio of five assets and you want to ensure that the first three assets are no more than \(50 \%\) of your portfolio. Given PortfolioMAD object p, set the linear inequality constraints with the following.
```

A = [1 1 1 1 0 0];
b = 0.5;
p = PortfolioMAD;
p = p.setInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

```
5
    \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)

\section*{PortfolioMAD.setEquality}
See Also PortfolioMAD \| addEquality | getEquality
Related - "Working with Linear Equality Constraints" on page 6-75Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 6-8

\section*{Portfolio.setGroupRatio}

Superclasses AbstractPortfolio
Purpose Set up group ratio constraints for portfolio weights
Syntax obj = setGroupRatio(obj, GroupA)
obj = setGroupRatio(obj,GroupA,GroupB,LowerRatio, UpperRatio)

\section*{Description}
obj = setGroupRatio(obj, GroupA) sets up the group ratio constraints for portfolio weights with lower bound on the ratio between groups.
obj = setGroupRatio(obj,GroupA, GroupB, LowerRatio, UpperRatio) to set up group ratio constraints for portfolio weights with an additional option specified for UpperRatio.
Given base and comparison group matrices GroupA and GroupB and LowerRatio or UpperRatio bounds, group ratio constraints require any portfolio in Port to satisfy the following:
```

(GroupB * Port) .* LowerRatio <= GroupA * Port <= (GroupB * Port) .* UpperRatio

```

\section*{Caution}

This collection of constraints usually requires that portfolio weights be nonnegative and that the products GroupA * Port and GroupB * Port are always nonnegative. Although negative portfolio weights and non-Boolean group ratio matrices are supported, use with caution.

Tips
- Use dot notation to set up group ratio constraints for portfolio weight.
obj = obj.setGroupRatio(GroupA, GroupB, LowerRatio, UpperRatio);
- To remove group ratio constraints, enter empty arrays for the corresponding arrays. To add to existing group ratio constraints, use addGroupRatio.

\section*{Portfolio.setGroupRatio}

\section*{Input Arguments}

\section*{obj}

Portfolio object [Portfolio].

\section*{GroupA}

Matrix that forms base groups for comparison [matrix].

\section*{GroupB}

Matrix that forms comparison groups [matrix].

Note The group matrices GroupA and GroupB are usually indicators of membership in groups, which means that their elements are usually either 0 or 1 . Because of this interpretation, GroupA and GroupB matrices can be either logical or numerical arrays.

\section*{LowerRatio}

Lower bound for ratio of GroupB groups to GroupA groups [vector].

Note If input is scalar, LowerRatio undergoes scalar expansion to be conformable with the group matrices.

\section*{UpperRatio}
(Optional) Upper bound for ratio of GroupB groups to GroupA groups [vector].

Note If input is scalar, UpperRatio undergoes scalar expansion to be conformable with the group matrices.

\section*{Portfolio.setGroupRatio}

\section*{Output obj \\ Arguments}

\section*{Attributes}

\section*{Examples Set Group Ratio Constraints}

Suppose you want to ensure that the ratio of financial to nonfinancial companies in your portfolio never exceeds 50\%. Assume you have six assets with three financial companies (assets 1-3) and three nonfinanical companies (assets 4-6). Group ratio constraints can be set with:
```

GA = [true true true false false false]; % financial companies
GB = [false false false true true true]; % nonfinancial companies
p = Portfolio;
p = p.setGroupRatio(GA, GB, [], 0.5);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.UpperRatio);

```
    6
    \(\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 0\end{array}\)
    \(\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 1\end{array}\)
    0.5000

\section*{Portfolio.setGroupRatio}

\author{
See Also addGroupRatio | getGroupRatio | Portfolio \\ Related - "Working with Group Ratio Constraints" on page 4-69 \\ Examples \\ Concepts - "Portfolio Set for Portfolio Optimization" on page 4-8
}

\section*{PortfolioCVaR.setGroupRatio}

Superclasses AbstractPortfolio
Purpose Set up group ratio constraints for portfolio weights in PortfolioCVaR object

Syntax
obj = setGroupRatio(obj,GroupA)
obj = setGroupRatio(obj, GroupA, GroupB, LowerRatio, UpperRatio)

\section*{Description}
obj \(=\) setGroupRatio(obj, GroupA) sets up the group ratio constraints for CVaR portfolio weights with lower bound on the ratio between groups.
obj = setGroupRatio(obj,GroupA, GroupB, LowerRatio, UpperRatio) to set up group ratio constraints for portfolio weights with an additional option specified for UpperRatio.

Given base and comparison group matrices GroupA and GroupB and LowerRatio or UpperRatio bounds, group ratio constraints require any portfolio in Port to satisfy the following:
```

(GroupB * Port) . * LowerRatio <= GroupA * Port <= (GroupB * Port) . * UpperRatio

```

\section*{Caution}

This collection of constraints usually requires that portfolio weights be nonnegative and that the products GroupA * Port and GroupB * Port are always nonnegative. Although negative portfolio weights and non-Boolean group ratio matrices are supported, use with caution.

Tips
- Use dot notation to set up group ratio constraints for portfolio weight.
obj = obj.setGroupRatio(GroupA, GroupB, LowerRatio, UpperRatio);
- To remove group ratio constraints, enter empty arrays for the corresponding arrays. To add to existing group ratio constraints, use addGroupRatio.

\section*{PortfolioCVaR.setGroupRatio}

\section*{Input Arguments}

\section*{obj}

CVaR portfolio object [PortfolioCVaR].

\section*{GroupA}

Matrix that forms base groups for comparison [matrix].

\section*{GroupB}

Matrix that forms comparison groups [matrix].

Note The group matrices GroupA and GroupB often indicate membership in groups, which means that their elements are usually either 0 or 1 . Because of this interpretation, GroupA and GroupB matrices can be either logical or numerical arrays.

\section*{LowerRatio}

Lower bound for ratio of GroupB groups to GroupA groups [vector].

Note If input is scalar, LowerRatio undergoes scalar expansion to conform with the group matrices.

\section*{UpperRatio}
(Optional) Upper bound for ratio of GroupB groups to GroupA groups [vector].

Note If input is scalar, UpperRatio undergoes scalar expansion to conform with the group matrices.
```

Output obi
Arguments

```

Updated CVaR portfolio object [PortfolioCVaR].

\section*{PortfolioCVaR.setGroupRatio}

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Set Group Ratio Constraints}

Suppose you want to ensure that the ratio of financial to nonfinancial companies in your portfolio never exceeds 50\%. Assume you have six assets with three financial companies (assets 1-3) and three nonfinanical companies (assets 4-6). Group ratio constraints can be set with:
```

GA = [true true true false false false]; % financial companies
GB = [false false false true true true]; % nonfinancial companies
p = PortfolioCVaR;
p = p.setGroupRatio(GA, GB, [], 0.5);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.UpperRatio);

```

6
\begin{tabular}{llllll}
1 & 1 & 1 & 0 & 0 & 0
\end{tabular}
0.5000

See Also PortfolioCVaR | addGroupRatio | getGroupRatio

\section*{PortfolioCVaR.setGroupRatio}
Related
- "Working with Group Ratio Constraints" on page 5-71
Examples

Concepts - "Portfolio Set for Portfolio Optimization" on page 5-8

\section*{PortfolioMAD.setGroupRatio}

Superclasses AbstractPortfolio
Purpose Set up group ratio constraints for portfolio weights in PortfolioMAD object

Syntax
obj = setGroupRatio(obj,GroupA)
obj = setGroupRatio(obj,GroupA, GroupB, LowerRatio, UpperRatio)

\section*{Description}
obj = setGroupRatio(obj, GroupA) sets up the group ratio constraints for MAD portfolio weights with lower bound on the ratio between groups.
obj = setGroupRatio(obj, GroupA, GroupB, LowerRatio, UpperRatio) to set up group ratio constraints for portfolio weights with an additional option specified for UpperRatio.

Given base and comparison group matrices GroupA and GroupB and LowerRatio or UpperRatio bounds, group ratio constraints require any portfolio in Port to satisfy the following:
```

(GroupB * Port) .* LowerRatio <= GroupA * Port <= (GroupB * Port) . * UpperRatio

```

\section*{Caution}

This collection of constraints usually requires that portfolio weights be nonnegative and that the products GroupA * Port and GroupB * Port are always nonnegative. Although negative portfolio weights and non-Boolean group ratio matrices are supported, use with caution.

\section*{Tips}
- Use dot notation to set up group ratio constraints for portfolio weight.
obj = obj.setGroupRatio(GroupA, GroupB, LowerRatio, UpperRatio);
- To remove group ratio constraints, enter empty arrays for the corresponding arrays. To add to existing group ratio constraints, use addGroupRatio.

\section*{PortfolioMAD.setGroupRatio}

\section*{Input Arguments}

\section*{obi}

MAD portfolio object [PortfolioMAD].

\section*{GroupA}

Matrix that forms base groups for comparison [matrix].

\section*{GroupB}

Matrix that forms comparison groups [matrix].

Note The group matrices GroupA and GroupB often indicate membership in groups, which means that their elements are usually either 0 or 1 . Because of this interpretation, GroupA and GroupB matrices can be either logical or numerical arrays.

\section*{LowerRatio}

Lower bound for ratio of GroupB groups to GroupA groups [vector].

Note If input is scalar, LowerRatio undergoes scalar expansion to conform with the group matrices.

\section*{UpperRatio}
(Optional) Upper bound for ratio of GroupB groups to GroupA groups [vector].

Note If input is scalar, UpperRatio undergoes scalar expansion to conform with the group matrices.

\section*{Output obi}

Arguments

Updated MAD portfolio object [PortfolioMAD].

\section*{PortfolioMAD.setGroupRatio}

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Set Group Ratio Constraints}

Suppose you want to ensure that the ratio of financial to nonfinancial companies in your portfolio never exceeds 50\%. Assume you have six assets with three financial companies (assets 1-3) and three nonfinanical companies (assets 4-6). Group ratio constraints can be set with:
```

GA = [true true true false false false]; % financial companies
GB = [false false false true true true]; % nonfinancial companies
p = PortfolioMAD;
p = p.setGroupRatio(GA, GB, [], 0.5);
disp(p.NumAssets);
disp(p.GroupA);
disp(p.GroupB);
disp(p.UpperRatio);

```

6
\begin{tabular}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{tabular}
0.5000

See Also PortfoliomAD | addGroupRatio | getGroupRatio

\section*{PortfolioMAD.setGroupRatio}
Related
- "Working with Group Ratio Constraints" on page 6-72
Examples

Concepts - "Portfolio Set for Portfolio Optimization" on page 6-8

\section*{Portfolio.setGroups}

Superclasses AbstractPortfolio
Purpose Set up group constraints for portfolio weights
Syntax
Description

Tips

Input
Arguments

Set up group constraints for portfolio weights
obj = setGroups(obj,GroupMatrix, LowerGroup)
obj \(=\) setGroups(obj,GroupMatrix, LowerGroup,UpperGroup)
obj = setGroups(obj,GroupMatrix,LowerGroup) sets up group constraints for portfolio weights subject to a lower bound on groups.
obj = setGroups(obj,GroupMatrix, LowerGroup,UpperGroup) to set up group constraints for portfolio weights with an additional options specified for UpperGroup.

Given GroupMatrix and either LowerGroup or UpperGroup, a portfolio Port must satisfy the following:

LowerGroup <= GroupMatrix * Port <= UpperGroup
- Use dot notation to set up group constraints for portfolio weights.
obj = obj.setGroups(GroupMatrix, LowerGroup, UpperGroup);
- To remove group constraints, enter empty arrays for the corresponding arrays. To add to existing group constraints, use addGroups.

\section*{obj}

Portfolio object [Portfolio].

\section*{GroupMatrix}

Group constraint matrix [matrix].

\section*{Portfolio.setGroups}

Note The group matrix GroupMatrix is usually an indicator of membership in groups, which means that its elements are usually either 0 or 1 . Because of this interpretation, GroupMatrix can be either a logical or numerical matrix.

\section*{LowerGroup}

Lower bound for group constraints [vector].

Note If input is scalar, LowerGroup undergoes scalar expansion to be conformable with GroupMatrix.

\section*{UpperGroup}

Upper bound for group constraints [vector].

Note If input is scalar, UpperGroup undergoes scalar expansion to be conformable with GroupMatrix.

\section*{Output obi}

Arguments
Updated Portfolio object [Portfolio].

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Portfolio.setGroups}

\section*{Examples Set Group Constraints}

Suppose you have a portfolio of five assets and you want to ensure that the first three assets constitute at most \(30 \%\) of your portfolio. Given a Portfolio object \(p\), set the group constraints with the following.
```

G = [true true true false false];
p = Portfolio;
p = p.setGroups(G, [], 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

```
    5
    \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
    0.3000

See Also addGroups | getGroups | Portfolio
Related Examples

\section*{Concepts}
- "Portfolio Set for Portfolio Optimization" on page 4-8

\section*{PortfolioCVaR.setGroups}
\begin{tabular}{|c|c|}
\hline Superclasses & AbstractPortfolio \\
\hline Purpose & Set up group constraints for portfolio weights in PortfolioCVaR object \\
\hline Syntax & \begin{tabular}{l}
obj = setGroups(obj,GroupMatrix,LowerGroup) \\
obj = setGroups(obj,GroupMatrix,LowerGroup,UpperGroup)
\end{tabular} \\
\hline Description & \begin{tabular}{l}
obj = setGroups(obj,GroupMatrix, LowerGroup) sets up group constraints for portfolio weights subject to a lower bound on groups. \\
obj = setGroups(obj,GroupMatrix,LowerGroup,UpperGroup) to set up group constraints for portfolio weights with an additional options specified for UpperGroup.
\end{tabular} \\
\hline & \begin{tabular}{l}
Given GroupMatrix and either LowerGroup or UpperGroup, a PortfolioCVaR object Port must satisfy the following: \\
LowerGroup <= GroupMatrix * Port <= UpperGroup
\end{tabular} \\
\hline Tips & \begin{tabular}{l}
- Use dot notation to set up group constraints for portfolio weights. \\
obj = obj.setGroups(GroupMatrix, LowerGroup, UpperGroup); \\
- To remove group constraints, enter empty arrays for the corresponding arrays. To add to existing group constraints, use addGroups.
\end{tabular} \\
\hline Input Arguments & obi \({ }^{\text {ebar portfolio object [PortfolioCVaR]. }}\) \\
\hline & GroupMatrix \\
\hline & Group constraint matrix [matrix]. \\
\hline
\end{tabular}

\section*{PortfolioCVaR.setGroups}

> Note The group matrix GroupMatrix is usually an indicator of membership in groups, which means that its elements are usually either 0 or 1 . Because of this interpretation, GroupMatrix can be either a logical or numerical matrix.

\section*{LowerGroup}

Lower bound for group constraints [vector].

Note If input is scalar, LowerGroup undergoes scalar expansion to conform with GroupMatrix.

\section*{UpperGroup}

Upper bound for group constraints [vector].

Note If input is scalar, UpperGroup undergoes scalar expansion to conform with GroupMatrix.

\section*{Output obi}

Arguments

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{PortfolioCVaR.setGroups}

\section*{Examples Set Group Constraints}

Suppose you have a portfolio of five assets and you want to ensure that the first three assets constitute at most \(30 \%\) of your portfolio. Given a CVaR portfolio object \(p\), set the group constraints with the following.
```

G = [true true true false false];
p = PortfolioCVaR;
p = p.setGroups(G, [], 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

```
    5
    \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
    0.3000

See Also PortfolioCVaR | addGroups | getGroups

Related Examples

\section*{Concepts}
- "Working with Group Constraints" on page 5-68
- "Portfolio Set for Portfolio Optimization" on page 5-8

\section*{PortfolioMAD.setGroups}

Superclasses AbstractPortfolio

Purpose
Set up group constraints for portfolio weights in PortfolioMAD object
Syntax
Description

Tips

Input
Arguments
obj = setGroups(obj,GroupMatrix, LowerGroup)
obj \(=\) setGroups(obj,GroupMatrix, LowerGroup,UpperGroup)
obj = setGroups(obj,GroupMatrix,LowerGroup) sets up group constraints for portfolio weights subject to a lower bound on groups.
obj = setGroups(obj,GroupMatrix, LowerGroup, UpperGroup) to set up group constraints for portfolio weights with an additional options specified for UpperGroup.

Given GroupMatrix and either LowerGroup or UpperGroup, a PortfolioMAD object Port must satisfy the following:

LowerGroup <= GroupMatrix * Port <= UpperGroup
- Use dot notation to set up group constraints for portfolio weights.
obj = obj.setGroups(GroupMatrix, LowerGroup, UpperGroup);
- To remove group constraints, enter empty arrays for the corresponding arrays. To add to existing group constraints, use addGroups.

\section*{obj}

MAD portfolio object [PortfolioMAD].

\section*{GroupMatrix}

Group constraint matrix [matrix].

\section*{PortfolioMAD.setGroups}

Note The group matrix GroupMatrix is usually an indicator of membership in groups, which means that its elements are usually either 0 or 1 . Because of this interpretation, GroupMatrix can be either a logical or numerical matrix.

\section*{LowerGroup}

Lower bound for group constraints [vector].

Note If input is scalar, LowerGroup undergoes scalar expansion to conform with GroupMatrix.

\section*{UpperGroup}

Upper bound for group constraints [vector].

Note If input is scalar, UpperGroup undergoes scalar expansion to conform with GroupMatrix.

\section*{Output obi}

Arguments
Updated MAD portfolio object [PortfolioMAD].

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{PortfolioMAD.setGroups}

\section*{Examples Set Group Constraints}

Suppose you have a portfolio of five assets and you want to ensure that the first three assets constitute at most \(30 \%\) of your portfolio. Given PortfolioMAD object p , set the group constraints with the following.
```

G = [true true true false false];
p = PortfolioMAD;
p = p.setGroups(G, [], 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

```
    5
    \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
    0.3000

See Also PortfolioMAD | addGroups | getGroups
Related Examples

\section*{Concepts}
- "Portfolio Set for Portfolio Optimization" on page 6-8

\section*{Portfolio.setInequality}
Superclasses AbstractPortfolio
Purpose Set up linear inequality constraints for portfolio weights
Syntax obj = setInequality(obj,AInequality,bInequality)
Description obj = setInequality(obj,AInequality,bInequality) sets up linear
Tipsinequality constraints for portfolio weights.
Given a linear inequality constraint matrix AInequality and vectorbInequality, every weight in a portfolio Port must satisfy thefollowing:
AInequality * Port <= bInequality- Use dot notation to set up linear inequality constraints for portfolioweights.
```

obj = obj.setInequality(AInequality, bInequality);

```
- To remove inequality constraints enter empty arguments. To add to existing inequality constraints, use addInequality.
Input
Arguments
obi
Portfolio object [Portfolio].
AlnequalityMatrix to form linear inequality constraints [matrix].
bInequality
Vector to form linear inequality constraints [vector].

Note An error results if AInequality is empty and bInequality is nonempty or if AInequality is nonempty and bInequality is empty.

\section*{Portfolio.setInequality}

\section*{Output obj \\ Arguments}

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Set Linear Inequality Constraints}

Suppose you have a portfolio of five assets and you want to ensure that the first three assets are no more than \(50 \%\) of your portfolio. Given a Portfolio object p , set the linear inequality constraints with the following.
```

A = [1 1 1 0 0];
b = 0.5;
p = Portfolio;
p = p.setInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

```
    5
    \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
    0.5000

See Also addInequality | getInequality | Portfolio

\section*{Portfolio.setInequality}

\section*{Related \\ Examples}
- "Working with Linear Inequality Constraints" on page 4-75

Concepts - "Portfolio Set for Portfolio Optimization" on page 4-8

\section*{PortfolioCVaR.setInequality}

Superclasses AbstractPortfolio
Purpose Set up linear inequality constraints for portfolio weights in PortfolioCVaR object

Syntax obj = setInequality(obj,AInequality, bInequality)
Description

Tips

\section*{Input}

Arguments
- Use dot notation to set up linear inequality constraints for portfolio weights.
```

obj = obj.setInequality(AInequality, bInequality);

```
- To remove inequality constraints, enter empty arguments. To add to existing inequality constraints, use addInequality.

\section*{obj}

CVaR portfolio object [PortfolioCVaR].

\section*{Alnequality}

Matrix to form linear inequality constraints [matrix].

\section*{bInequality}

Vector to form linear inequality constraints [vector].

Note An error results if AInequality is empty and bInequality is nonempty or if AInequality is nonempty and bInequality is empty.

\section*{Output obi}

Arguments
Updated CVaR portfolio object [PortfolioCVaR].

\section*{Attributes}

\section*{Examples Set Linear Inequality Constraints}

Suppose you have a portfolio of five assets and you want to ensure that the first three assets are no more than \(50 \%\) of your portfolio. Given a CVaR portfolio object \(p\), set the linear inequality constraints with the following.
```

A = [1 1 1 1 0 0];
b = 0.5;
p = PortfolioCVaR;
p = p.setInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

```
    5
    \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
0.5000

See Also PortfolioCVaR \| addInequality | getInequality

\section*{PortfolioCVaR.setInequality}

\author{
Related Examples \\ Concepts - "Portfolio Set for Portfolio Optimization" on page 5-8
}

\section*{PortfolioMAD.setInequality}
Superclasses AbstractPortfolio
Purpose Set up linear inequality constraints for portfolio weights inPortfolioMAD object
Syntax obj = setInequality(obj,AInequality,bInequality)
Description obj = setInequality(obj,AInequality,bInequality) sets up linearinequality constraints for portfolio weights.
Given a linear inequality constraint matrix AInequality and vector bInequality, every weight in portfolio Port must satisfy the following:
```

AInequality * Port <= bInequality

```
Tips- Use dot notation to set up linear inequality constraints for portfolioweights.
```

obj = obj.setInequality(AInequality, bInequality);

```
- To remove inequality constraints, enter empty arguments. To add to existing inequality constraints, use addInequality.

\section*{Input Arguments}

\section*{obi}
MAD portfolio object [PortfolioMAD].

\section*{Alnequality}
Matrix to form linear inequality constraints [matrix].

\section*{bInequality}
Vector to form linear inequality constraints [vector].
Note An error results if AInequality is empty and bInequality is nonempty or if AInequality is nonempty and bInequality is empty.

\section*{PortfolioMAD.setInequality}

\section*{Output obj \\ Arguments \\ Attributes \\ \begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Set Linear Inequality Constraints}

Suppose you have a portfolio of five assets and you want to ensure that the first three assets are no more than \(50 \%\) of your portfolio. Given PortfolioMAD object p, set the linear inequality constraints with the following.
```

A = [1 1 1 0 0];
b = 0.5;
p = PortfolioMAD;
p = p.setInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

```
    5
    \(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\)
    0.5000

See Also PortfoliomAD | addInequality | getInequality

\section*{PortfolioMAD.setInequality}

\section*{Related \\ Examples}

\section*{Concepts \\ - "Portfolio Set for Portfolio Optimization" on page 6-8}

\section*{Portfolio.setlnitPort}

Superclasses AbstractPortfolio
Purpose Set up initial or current portfolio
Syntax obj = setInitPort(obj, InitPort)
obj = setInitPort(obj,InitPort,NumAssets)
Description
obj = setInitPort(obj,InitPort) sets up the initial or current portfolio.
obj \(=\) setInitPort(obj, InitPort,NumAssets) sets up the initial or current portfolio with an additional options specified for NumAssets.
- Use dot notation to set up an initial or current portfolio.
```

obj = obj.setInitPort(InitPort, NumAssets);

```
- To remove an initial portfolio, call this method with an empty argument [] for InitPort.

Input
Arguments

\section*{obi}

Portfolio object [Portfolio].

\section*{InitPort}

Initial or current portfolio weights [vector].

Note If InitPort is specified as a scalar and NumAssets exists, then InitPort undergoes scalar expansion.

\section*{NumAssets}
(Optional) Number of assets in portfolio [scalar].

\section*{Portfolio.setInitPort}

Note If it is not possible to obtain a value for NumAssets, it is assumed that NumAssets is 1 .

\section*{Output obi \\ Arguments \\ Updated Portfolio object [Portfolio].}

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Set the InitPort Property}

Given an initial portfolio in \(\times 0\), use the setInitPort method to set the InitPort property.
```

p = Portfolio('NumAssets', 4);
x0 = [0.3; 0.2; 0.2; 0.0];
p = p.setInitPort(x0);
disp(p.InitPort);

```
0.3000
0.2000
0.2000

0

\section*{Portfolio.setInitPort}

\section*{Set InitPort to Create an Equally-Weighted Portfolio of Four Assets}

Create an equally weighted portfolio of four assets using the setInitPort method.
```

p = Portfolio('NumAssets', 4);
p = p.setInitPort(1/4, 4);
disp(p.InitPort);

```
0.2500
0.2500
0.2500
0.2500

\section*{See Also}
setTurnover | setCosts | Portfolio
Related - "Setting Up an Initial or Current Portfolio" on page 4-39
Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 4-8

\section*{PortfolioCVaR.setInitPort}

\section*{Superclasses AbstractPortfolio}

Purpose
Set up initial or current portfolio for PortfolioCVaR object
Syntax
obj = setInitPort(obj, InitPort)
obj \(=\) setInitPort(obj,InitPort,NumAssets)
Description

Tips

\section*{Input}

Arguments

\section*{obj}

CVaR portfolio object [PortfolioCVaR].

\section*{InitPort}

Initial or current portfolio weights [vector].

Note If InitPort is specified as a scalar and NumAssets exists, then InitPort undergoes scalar expansion.

\section*{NumAssets}
(Optional) Number of assets in CVaR portfolio [scalar].

\section*{PortfolioCVaR.setInitPort}

Note If it is not possible to obtain a value for NumAssets, it is assumed that NumAssets is 1 .

\section*{Output obi \\ Arguments \\ Updated CVaR portfolio object [PortfolioCVaR].}

\section*{Attributes}

\section*{Examples}

\section*{Set the InitPort Property}

Given an initial portfolio in \(\times 0\), use the setInitPort method to set the InitPort property.
p = PortfolioCVaR('NumAssets', 4);
x0 = [ 0.3; 0.2; 0.2; 0.0 ];
\(\mathrm{p}=\mathrm{p} . \operatorname{setInitPort(x0)}\);
disp(p.InitPort);
0.3000
0.2000
0.2000

0

\section*{PortfolioCVaR.setInitPort}

\section*{Set InitPort to Create an Equally-Weighted Portfolio of Four Assets}

Create an equally weighted portfolio of four assets using the setInitPort method.
```

p = PortfolioCVaR('NumAssets', 4);
p = p.setInitPort(1/4, 4);
disp(p.InitPort);

```
0.2500
0.2500
0.2500
0.2500

\section*{See Also}

PortfolioCVaR | setTurnover | setCosts

\section*{Related \\ Examples}
- "Setting Up an Initial or Current Portfolio" on page 5-41
Concepts
- "Portfolio Set for Portfolio Optimization" on page 5-8

\section*{PortfolioMAD.setInitPort}

Superclasses AbstractPortfolio

Purpose
Syntax

Description

Tips

Input
Arguments

Set up initial or current portfolio for PortfolioMAD object
obj = setInitPort(obj,InitPort)
obj = setInitPort(obj, InitPort,NumAssets)
obj = setInitPort(obj,InitPort) sets up the initial or current portfolio.
obj \(=\) setInitPort(obj, InitPort,NumAssets) sets up the initial or current portfolio with an additional options specified for NumAssets.
- Use dot notation to set up an initial or current portfolio.
```

obj = obj.setInitPort(InitPort, NumAssets);

```
- To remove an initial portfolio, call this method with an empty argument [] for InitPort.

\section*{obi}

MAD portfolio object [PortfolioMAD].

\section*{InitPort}

Initial or current portfolio weights [vector].

Note If InitPort is specified as a scalar and NumAssets exists, then InitPort undergoes scalar expansion.

\section*{NumAssets}
(Optional) Number of assets in MAD portfolio [scalar].

\section*{PortfolioMAD.setInitPort}

Note If it is not possible to obtain a value for NumAssets, it is assumed that NumAssets is 1 .
\begin{tabular}{lll}
\begin{tabular}{lll} 
Output \\
Arguments
\end{tabular} & obi & \\
& & Updated MAD portfolio object [PortfolioMAD]. \\
Attributes & & \\
& Access & public \\
& Static & false \\
& Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Set the InitPort Property}

Given an initial portfolio in \(\times 0\), use the setInitPort method to set the InitPort property.
```

p = PortfolioMAD('NumAssets', 4);
xO = [0.3; 0.2; 0.2; 0.0];
p = p.setInitPort(x0);
disp(p.InitPort);

```
0.3000
0.2000
0.2000

0

\section*{PortfolioMAD.setInitPort}

\section*{Set InitPort to Create an Equally-Weighted Portfolio of Four Assets}

Create an equally weighted portfolio of four assets using the setInitPort method.
p = PortfolioMAD('NumAssets', 4);
\(p=p . s e t I n i t P o r t(1 / 4,4) ;\)
disp(p.InitPort);
0.2500
0.2500
0.2500
0.2500

\section*{See Also PortfoliomAD | setTurnover | setCosts}

Related - "Setting Up an Initial or Current Portfolio" on page 6-40
Examples
Concepts - "Portfolio Set for Portfolio Optimization" on page 6-8

\section*{Portfolio.setOneWayTurnover}
Purpose Set up one-way portfolio turnover constraints
Syntax

obj = setOneWayTurnover(obj,BuyTurnover)
obj = setOneWayTurnover(obj,BuyTurnover,SellTurnover,
InitPort,NumAssets)

\section*{Description}
obj = setOneWayTurnover(obj,BuyTurnover) sets up one-way portfolio turnover constraints.
obj = setOneWayTurnover(obj,BuyTurnover,SellTurnover, InitPort, NumAssets) to set up one-way portfolio turnover constraints with additional options specified by SellTurnover, InitPort, and NumAssets.
Given an initial portfolio in InitPort and an upper bound for portfolio turnover on purchases in BuyTurnover or sales in SellTurnover, the one-way turnover constraints require any portfolio Port to satisfy the following:
```

1' * max{0, Port - InitPort} <= BuyTurnover
1' * max{0, InitPort - Port} <= SellTurnover

```
Note If Turnover \(=\) BuyTurnover \(=\) SellTurnover, the constraint is not equivalent to:
```

1' * | Port - InitPort | <= Turnover

```
To set this constraint, use setTurnover.

Tips Use dot notation to set up one-way portfolio turnover constraints.
obj = obj.setOneWayTurnover(BuyTurnover,SellTurnover, InitPort,NumAssets)
Input obi
Arguments

Portfolio object [Portfolio].

\section*{Portfolio.setOneWayTurnover}

\section*{BuyTurnover}

Turnover constraint on purchases [scalar].

Note BuyTurnover must be nonnegative and finite.

\section*{SellTurnover}
(Optional) Turnover constraint on sales [scalar].

Note SellTurnover must be nonnegative and finite.

\section*{InitPort}
(Optional) Initial or current portfolio weights [vector].

Note InitPort must be a finite vector with NumAssets \(>0\) elements.

If no InitPort is specified, that value is assumed to be 0 .
If InitPort is specified as a scalar and NumAssets exists, then InitPort undergoes scalar expansion.

\section*{NumAssets}
(Optional) Number of assets in the portfolio [scalar].

Note If it is impossible to obtain a value for NumAssets, it is assumed that NumAssets is 1 .

\section*{Portfolio.setOneWayTurnover}

\section*{Output \\ obi}

Updated Portfolio object [Portfolio].

\section*{Definitions}

\section*{One-Way Turnover Constraint}

One-way turnover constraints ensure that estimated optimal portfolios differ from an initial portfolio by no more than specified amounts according to whether the differences are purchases or sales. The constraints take the form
\[
\begin{aligned}
& 1^{T} \max \left\{0, x-x_{0}\right\} \leq \tau_{B} \\
& 1^{T} \max \left\{0, x_{0}-x\right\} \leq \tau_{S}
\end{aligned}
\]
with
- x - The portfolio (NumAssets vector)
- \(\mathrm{x}_{0}\) - Initial portfolio (NumAssets vector)
- \(\tau_{B}\) - Upper-bound for turnover constraint on purchases (scalar)
- \(\tau_{S}\) - Upper-bound for turnover constraint on sales (scalar)

To specify one-way turnover constraints, use the following properties in the Portfolio object: BuyTurnover for \(\tau_{B}\), SellTurnover for \(\tau_{S}\), and InitPort for x 0 .

Note The average turnover constraint (see setTurnover) is not just the combination of the one-way turnover constraints with the same value for the constraint.

\section*{Portfolio.setOneWayTurnover}

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Set One-Way Turnover Constraints}

Set one-way turnover constraints.
```

p = Portfolio('AssetMean',[0.1, 0.2, 0.15], 'AssetCovar',...
[0.005, -0.010, 0.004; -0.010, 0.040, -0.002; 0.004, -0.002, 0.023])
p = p.setBudget(1, 1);
p = p.setOneWayTurnover(1.3, 0.3, 0); %130-30 portfolio
p.plotFrontier;

```

\section*{Portfolio.setOneWayTurnover}

\(\begin{array}{ll}\text { See Also } & \begin{array}{l}\text { setInitPort | setTurnover I getOneWayTurnover I setCosts | } \\ \text { Portfolio }\end{array} \\ \begin{array}{ll}\text { Related } & \text { - "Working with One-Way Turnover Constraints" on page 4-79 } \\ \text { Examples } & \\ \text { Concepts } & \text { - "Portfolio Set for Portfolio Optimization" on page 4-8 }\end{array}\end{array}\)

\section*{PortfolioCVaR.setOneWayTurnover}

Purpose
Syntax

\section*{Description}

Tips

\section*{Input obi}

Arguments
obj = setOneWayTurnover (obj, BuyTurnover) sets up one-way CVaR portfolio object turnover constraints.
obj = setOneWayTurnover(obj,BuyTurnover,SellTurnover, InitPort, NumAssets) sets up one-way portfolio turnover constraints with additional options specified by SellTurnover, InitPort, and NumAssets.

Given an initial portfolio in InitPort and an upper bound for portfolio turnover on purchases in BuyTurnover or sales in SellTurnover, the one-way turnover constraints require any portfolio in Port to satisfy the following:

1' * \(\max \{0\), Port - InitPort \(\}<=\) BuyTurnover
1' * \(\max \{0\), InitPort - Port\} <= SellTurnover

Note If Turnover \(=\) BuyTurnover \(=\) SellTurnover, the constraint is not equivalent to:

To set this constraint, use setTurnover.

Use dot notation to set up one-way portfolio turnover constraints.

> obj = obj.setOneWayTurnover(BuyTurnover,SellTurnover,InitPort,NumAssets)

Set up one-way portfolio turnover constraints for PortfolioCVaR object
obj = setOneWayTurnover(obj,BuyTurnover)
obj = setOneWayTurnover(obj,BuyTurnover,SellTurnover, InitPort,NumAssets)
```

l`max{0, InitPort Port} <a SellTurnover

```
```

1' * | Port - InitPort | <= Turnover
1' * | Port - InitPort | <= Turnover

```

CVaR portfolio object [PortfolioCVaR].

\section*{PortfolioCVaR.setOneWayTurnover}

\section*{BuyTurnover}

Turnover constraint on purchases [scalar].

Note BuyTurnover must be nonnegative and finite.

\section*{SellTurnover}
(Optional) Turnover constraint on sales [scalar].

Note SellTurnover must be nonnegative and finite.

\section*{InitPort}
(Optional) Initial or current portfolio weights [vector].

Note InitPort must be a finite vector with NumAssets \(>0\) elements.

If no InitPort is specified, that value is assumed to be 0 .
If InitPort is specified as a scalar and NumAssets exists, then InitPort undergoes scalar expansion.

\section*{NumAssets}
(Optional) Number of assets in the portfolio [scalar].

Note If it is impossible to obtain a value for NumAssets, it is assumed that NumAssets is 1 .

\section*{PortfolioCVaR.setOneWayTurnover}

\section*{Output obi \\ Arguments}

\section*{Definitions}

\section*{One-Way Turnover Constraint}

One-way turnover constraints ensure that estimated optimal CVaR portfolios differ from an initial CVaR portfolio by no more than specified amounts according to whether the differences are purchases or sales. The constraints take the form
\[
\begin{aligned}
& 1^{T} \times \max \left\{0, x-x_{0}\right\} \leq \tau_{B} \\
& 1^{T} \times \max \left\{0, x_{0}-x\right\} \leq \tau_{S}
\end{aligned}
\]
with
- x - CVaR portfolio (NumAssets vector)
- \(\mathrm{x}_{0}\) - Initial CVaR portfolio (NumAssets vector)
- \(\tau_{B}\) - Upper bound for turnover constraint on purchases (scalar)
- \(\tau_{S}\) - Upper bound for turnover constraint on sales (scalar)

To specify one-way turnover constraints, use these properties in the CVaR portfolio object: BuyTurnover for \(\tau_{B}\), SellTurnover for \(\tau_{S}\), and InitPort for x 0 .

Note The average turnover constraint (see setTurnover) is not just the combination of the one-way turnover constraints with the same value for the constraint.

\section*{PortfolioCVaR.setOneWayTurnover}

\section*{Attributes}

\section*{Examples Set One-Way Turnover Constraints}

Set one-way turnover constraints.
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = PortfolioCVaR('InitPort', x0);
p = p.setOneWayTurnover(0.3, 0.2);
disp(p.NumAssets);
disp(p.BuyTurnover)
disp(p.SellTurnover)
disp(p.InitPort);

```

\section*{10}
0.3000
0.2000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

\section*{PortfolioCVaR.setOneWayTurnover}

\author{
See Also PortfolioCVaR \| setInitPort \| setTurnover \| getOneWayTurnover \\ Related - "Working with One-Way Turnover Constraints" on page 5-82 \\ Examples \\ Concepts - "Portfolio Set for Portfolio Optimization" on page 5-8
}

\section*{PortfolioMAD.setOneWayTurnover}

\section*{Purpose}

Set up one-way portfolio turnover constraints for PortfolioMAD object
Syntax
obj = setOneWayTurnover(obj,BuyTurnover)
obj = setOneWayTurnover(obj,BuyTurnover,SellTurnover, InitPort,NumAssets)

\section*{Description}
obj = setOneWayTurnover(obj,BuyTurnover) sets up one-way PortfolioMAD object turnover constraints.
obj = setOneWayTurnover(obj,BuyTurnover,SellTurnover, InitPort, NumAssets) sets up one-way portfolio turnover constraints with additional options specified by SellTurnover, InitPort, and NumAssets.

Given an initial portfolio in InitPort and an upper bound for portfolio turnover on purchases in BuyTurnover or sales in SellTurnover, the one-way turnover constraints require any portfolio in Port to satisfy the following:
```

1' * max{0, Port - InitPort} <= BuyTurnover
1' * max{0, InitPort - Port} <= SellTurnover

```

Note If Turnover \(=\) BuyTurnover \(=\) SellTurnover, the constraint is not equivalent to:
```

1' * | Port - InitPort | <= Turnover

```

To set this constraint, use setTurnover.

Use dot notation to set up one-way portfolio turnover constraints.
```

obj = obj.setOneWayTurnover(BuyTurnover,SellTurnover,InitPort,NumAssets)

```

\section*{Input} Arguments

MAD portfolio object [PortfolioMAD].

\section*{PortfolioMAD.setOneWayTurnover}

\section*{BuyTurnover}

Turnover constraint on purchases [scalar].

Note BuyTurnover must be nonnegative and finite.

\section*{SellTurnover}
(Optional) Turnover constraint on sales [scalar].

Note SellTurnover must be nonnegative and finite.

\section*{InitPort}
(Optional) Initial or current portfolio weights [vector].

Note InitPort must be a finite vector with NumAssets \(>0\) elements.

If no InitPort is specified, that value is assumed to be 0 .
If InitPort is specified as a scalar and NumAssets exists, then InitPort undergoes scalar expansion.

\section*{NumAssets}
(Optional) Number of assets in the portfolio [scalar].

Note If it is impossible to obtain a value for NumAssets, it is assumed that NumAssets is 1 .

\section*{PortfolioMAD.setOneWayTurnover}

\section*{Output \\ obi}

Updated MAD portfolio object [PortfolioMAD].

\section*{Definitions}

\section*{One-Way Turnover Constraint}

One-way turnover constraints ensure that estimated optimal MAD portfolios differ from an initial MAD portfolio by no more than specified amounts according to whether the differences are purchases or sales. The constraints take the form
\[
\begin{aligned}
& 1^{T} \times \max \left\{0, x-x_{0}\right\} \leq \tau_{B} \\
& 1^{T} \times \max \left\{0, x_{0}-x\right\} \leq \tau_{S}
\end{aligned}
\]
with
- x — MAD portfolio (NumAssets vector)
- \(\mathrm{x}_{0}\) - Initial MAD portfolio (NumAssets vector)
- \(\tau_{B}\) - Upper bound for turnover constraint on purchases (scalar)
- \(\tau_{S}\) - Upper bound for turnover constraint on sales (scalar)

To specify one-way turnover constraints, use these properties in the PortfolioMAD object: BuyTurnover for \(\tau_{B}\), SellTurnover for \(\tau_{S}\), and InitPort for x 0 .

Note The average turnover constraint (see setTurnover) is not just the combination of the one-way turnover constraints with the same value for the constraint.

\section*{PortfolioMAD.setOneWayTurnover}

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Set One-Way Turnover Constraints}

Set one-way turnover constraints.
```

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];
p = PortfolioMAD('InitPort', x0);
p = p.setOneWayTurnover(0.3, 0.2);
disp(p.NumAssets);
disp(p.BuyTurnover)
disp(p.SellTurnover)
disp(p.InitPort);

```
0.2000
0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

\section*{PortfolioMAD.setOneWayTurnover}
\begin{tabular}{ll} 
See Also & PortfolioMAD | setInitPort | setTurnover | getOneWayTurnover \\
Related & - "Working with One-Way Turnover Constraints" on page 6-82 \\
Examples & \\
Concepts & - "Portfolio Set for Portfolio Optimization" on page 6-8
\end{tabular}

\section*{Portfolio.setOptions}

Superclasses AbstractPortfolio
Purpose Set hidden properties in Portfolio object
Syntax obj = setOptions(obj)
obj = setOptions(obj,varargin)
Description
obj = setOptions(obj) to set the hidden properties in a Portfolio object.
obj = setOptions(obj, varargin) to set the hidden properties in a Portfolio object with additional options specified by one or more Name, Value pair arguments.

\section*{Warning}

This method is currently nonfunctional and issues the following warning message:

Warning: The method setOptions, which will enable modification of hidden properties, is not supported yet

The only way to modify hidden properties in a Portfolio object is by direct assignment. An exception is the method setSolver, which permits modification of hidden properties associated with the solvers used by the Portfolio object. In addition, the only way to get or display hidden properties is by direct access.

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{See Also setSolver}

\section*{Superclasses AbstractPortfolio}

Purpose Set hidden properties in PortfolioCVaR object
Syntax obj = setOptions(obj)
obj = setOptions(obj, varargin)
Description obj = setOptions (obj) to set the hidden properties in a PortfolioCVaR object.
obj = setOptions(obj, varargin) to set the hidden properties in a PortfolioCVaR object with additional options specified by one or more Name, Value pair arguments.

\section*{Warning}

This method is currently nonfunctional and issues the following warning message:

Warning: The method setOptions, which will enable modification of hidden properties, is not supported yet

The only way to modify hidden properties in a PortfolioCVaR object is by direct assignment. An exception is the method setSolver, which permits modification of hidden properties associated with the solvers used by the PortfolioCVaR object. In addition, the only way to get or display hidden properties is by direct access.

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\author{
See Also setSolver
}

\section*{PortfolioMAD.setOptions}

Superclasses AbstractPortfolio
Purpose Set hidden properties in PortfolioMAD object
Syntax obj = setOptions(obj)
obj = setOptions(obj, varargin)
Description
obj \(=\) setOptions (obj) to set the hidden properties in a PortfolioMAD object.
obj = setOptions(obj, varargin) to set the hidden properties in a PortfolioMAD object with additional options specified by one or more Name, Value pair arguments.

\section*{Warning}

This method is currently nonfunctional and issues the following warning message:

Warning: The method setOptions, which will enable modification of hidden properties, is not supported yet

The only way to modify hidden properties in a PortfolioMAD object is by direct assignment. An exception is the method setSolver, which permits modification of hidden properties associated with the solvers used by the PortfolioMAD object. In addition, the only way to get or display hidden properties is by direct access.

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{See Also setSolver}

\section*{PortfolioCVaR.setProbabilityLevel}

\section*{Superclasses AbstractPortfolio}

Purpose
Syntax
obj = setProbabilityLevel(obj,ProbabilityLevel)
Description

Tips

Input
Arguments
Set probability level for VaR and CVaR calculations
obj = setProbabilityLevel(obj, ProbabilityLevel) to set the probability level for VaR and CVaR calculations.

Use dot notation to set the probability level for VaR and CVaR calculations:
```

obj = obj.setProbabilityLevel(ProbabilityLevel)

```

\section*{obi}

CVaR portfolio object [PortfolioCVaR].

\section*{ProbabilityLevel}

Probability level which is 1 minus the probability of losses greater than the value-at-risk. [scalar].

Note ProbabilityLevel must be a value from 0 to 1 and, in most cases, should be a value from 0.9 to 0.99 .

\section*{Output obi}

Arguments

\section*{Attributes}

Updated CVaR portfolio object [PortfolioCVaR].
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

\section*{PortfolioCVaR.setProbabilityLevel}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Set Probability Level}

Set the ProbabilityLevel for a CVaR portfolio object.
```

p = PortfolioCVaR;
p = p.setProbabilityLevel(0.95);
disp(p.ProbabilityLevel)

```
0.9500

See Also PortfolioCVaR
Related
- "What Are Scenarios?" on page 5-45
Examples

Concepts • "Conditional Value-at-Risk" on page 5-6
- "Default Portfolio Problem" on page 5-15

\section*{Superclasses AbstractPortfolio}

Purpose

Syntax

\section*{Description}

Tips

Input
Arguments

Choose main solver and specify associated solver options for portfolio optimization
obj = setSolver(obj, solverType)
obj = setSolver(obj,solverType,varargin)
obj = setSolver(obj, solverType) chooses the solver for portfolio optimization.
obj = setSolver(obj, solverType, varargin) chooses the solver and specifies associated solver options with additional options specified by one or more Name, Value pair arguments or an optimoptions object.

After you specify a solver, the varargin argument accepts either name-value pair arguments to set options or, for the case of solvers from Optimization Toolbox software, a structure created by optimoptions.

Use dot notation to choose the solver and specify associated solver options.
```

obj = obj.setSolver(solverType, varargin);

```

\section*{obj}

Portfolio object [Portfolio].

\section*{solverType}

Solver to use for portfolio optimization [string]. The default solver for the Portfolio object is 'lcprog' with the control variables 'maxiter', 'tiebreak', 'tolpiv'.

Default: 'lcprog'

\section*{Name-Value Pair Arguments or optimoptions Object}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding

\section*{Portfolio.setSolver}
value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'varargin'}

Options to control the solver specified in solverType as name-value pair arguments or an optimoptions object. Note, optimoptions is the default and recommended method to set solver options, however optimset is also supported.

Note The default solver for the Portfolio object is 'lcprog'. The Portfolio object can also use 'quadprog', which has several different options that can be set with optimoptions. Unlike Optimization Toolbox software which uses the trust-region-reflective algorithm as the default algorithm for quadprog, the portfolio optimization tools use the interior-point-convex algorithm. For more information about quadprog and quadratic programming algorithms and options, see "Quadratic Programming Algorithms".

\section*{Output obi \\ Arguments \\ Updated Portfolio object [Portfolio].}

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.
Examples Set Solver TypeIf you use the quadprog function as the solverType, the default is theinterior-point-convex version of quadprog.
load CAPMuniverse
p = Portfolio('AssetList',Assets(1:12));
p = p.setDefaultConstraints;
p = p.setSolver('quadprog');
display(p.solverType);
quadprog
You can switch back to lcprog with:
```

p = p.setSolver('lcprog');

```
display(p.solverType);

\section*{lcprog}
See Also set0ptions | optimoptions | quadprog
Related - "Choosing and Controlling the Solver" on page 4-101Examples

\section*{PortfolioCVaR.setSolver}

Superclasses AbstractPortfolio
Purpose Choose main solver and solver options for CVaR portfolio optimization
Syntax
Description
obj = setSolver(obj, solverType)
obj = setSolver(obj, solverType, varargin)

Tips
Description

Input
Arguments
obj = setSolver(obj, solverType) chooses the solver for CVaR portfolio optimization.
obj = setSolver(obj, solverType, varargin) chooses the solver and specifies associated solver options with additional options specified by one or more Name, Value pair arguments or an optimoptions object.
After you specify a solver, the varargin argument accepts either name-value pair arguments to set options or, for the case of solvers from Optimization Toolbox software, an object created by optimoptions.

Use dot notation to choose the solver and specify associated solver options:
```

obj = obj.setSolver(solverType, varargin);

```
obi
CVaR portfolio object [PortfolioCVaR].

\section*{solverType}

Solver to use for CVaR portfolio optimization [string]. The supported solverType are:
- 'fmincon'
- 'cuttingplane'

Use optimoptions to specify further options for CVaR portfolio optimization.

\section*{PortfolioCVaR.setSolver}

Default: 'fmincon' using the 'sqp' algorithm

\section*{Name-Value Pair Arguments or optimoptions Object}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'varargin'}

Options to control the solver specified in solverType as name-value pair arguments or an optimoptions object. optimoptions is the default and recommended method to set solver options, however optimset is also supported.

\section*{Note}
- For the default solver, 'fmincon', PortfolioCVaR by default sets the algorithm to 'sqp' and turns the display off. All fmincon options are supported, except for gradients using 'GradObj', either as name-value pair arguments or using an optimoptions object. For more information about fmincon and quadratic programming algorithms and options, see "Quadratic Programming Algorithms".
- For the cuttingplane solver, the following solver options are available as name-value pair arguments:
- 'MaxIter'
- 'AbsTol'
- 'RelTol'
- 'MasterSolverOptions'

\section*{PortfolioCVaR.setSolver}

\section*{'Maxlter '}

Positive integer number for the maximum number of iterations.
Default: 1000

\section*{'AbsTol '}

Positive scalar value for the absolute stopping tolerance.
Default: 1e-6

\section*{'RelTol'}

Positive scalar for the relative stopping tolerance.
Default: 1e-5

\section*{'MasterSolverOptions'}
optimoptions object for the options for the master solver linprog. For more information about linprog and linear programming algorithms and options, see "Linear Programming Algorithms".

\section*{Default:} optimoptions('linprog','Algorithm','Simplex','Display','off')

\section*{Output obi}

Arguments

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{PortfolioCVaR.setSolver}

\section*{Examples Set the Solver Type as 'fmincon'}

Use 'fmincon' as the solverType.
p = PortfolioCVaR;
p = p.setSolver('fmincon');
display(p.solverType);
fmincon

\section*{Set the Solver Type as 'fmincon' and Use Name-Value Pair Arguments to Set the Algorithm}

Use 'fmincon' as the solverType and use name-value pair arguments to set the algorithm to|'trust-region-reflective'| and to turn off the display.
p = PortfolioCVaR;
p = p.setSolver('fmincon', 'Algorithm', 'trust-region-reflective', 'D: display(p.solverOptions.Algorithm); display(p.solverOptions.Display);
trust-region-reflective
off

\section*{Set the Solver Type as 'fmincon' and Use an optimoptions Object to Set the Algorithm}

Use 'fmincon' as the solverType and use an optimoptions object to set the algorithm to 'trust-region-reflective' and to turn off the display.
```

p = PortfolioCVaR;
options = optimoptions('fmincon', 'Algorithm', 'trust-region-reflecti
p = p.setSolver('fmincon', options);
display(p.solverOptions.Algorithm);
display(p.solverOptions.Display);

```

\section*{PortfolioCVaR.setSolver}
```

trust-region-reflective
off

```

\section*{Set 'cuttingplane' as the Solver Type with Default Options}

Use 'cuttingplane' as the solverType with default options.
p = PortfolioCVaR;
p = setSolver( p, 'cuttingplane');
display(p.solverType);
cuttingplane

\section*{Set 'cuttingplane' as the Solver Type with Maximum Iterations}

Use the Name-Value pair 'MaxIter' to set the maximum number of iterations to 1500.
```

p = PortfolioCVaR;
p = setSolver(p,'cuttingplane','MaxIter',1500);
display(p.solverType);
display(p.solverOptions);
cuttingplane
MaxIter: 1500
AbsTol: 1.0000e-06
RelTol: 1.0000e-05
MasterSolverOptions: [1x1 optim.options.Linprog]

```

\section*{PortfolioCVaR.setSolver}

\section*{Set 'cuttingplane' as the Solver Type and Change the Master Solver Option}

For the master solver, continue using the simplex algorithm with no display, but tighten its termination tolerance to 1e-8.
```

p = PortfolioCVaR;
options = optimoptions('linprog','Algorithm', 'Simplex', 'Display','o
p = setSolver(p,'cuttingplane','MasterSolverOptions',options);
display(p.solverType)
display(p.solverOptions)
display(p.solverOptions.MasterSolverOptions.Algorithm)
display(p.solverOptions.MasterSolverOptions.Display)
display(p.solverOptions.MasterSolverOptions.TolFun)

```
cuttingplane
    MaxIter: 1000
    AbsTol: 1.0000e-06
    RelTol: 1.0000e-05
    MasterSolverOptions: [1x1 optim.options.Linprog]
simplex
off
ans \(=\)
\(1.0000 \mathrm{e}-08\)

For the master solver, use the interior-point algorithm with no display, and with a termination tolerance of 1e-7.
```

p = PortfolioCVaR;
options = optimoptions('linprog','Algorithm','interior-point','Displa
p = setSolver(p,'cuttingplane','MasterSolverOptions',options);
display(p.solverType)
display(p.solverOptions)

```

\section*{PortfolioCVaR.setSolver}
```

display(p.solverOptions.MasterSolverOptions.Algorithm)
display(p.solverOptions.MasterSolverOptions.Display)
display(p.solverOptions.MasterSolverOptions.TolFun)
cuttingplane
MaxIter: 1000
AbsTol: 1.0000e-06
RelTol: 1.0000e-05
MasterSolverOptions: [1x1 optim.options.Linprog]
interior-point
off
ans =
1.0000e-07

```

\section*{Algorithms}

One version of the CVaR portfolio optimization problem minimizes risk, measured as the CVaR of the portfolio, subject to a target return and other linear constraints on the portfolio. For the definition of the CVaR function, see "Risk Proxy" on page 5-5.
\[
\begin{aligned}
& \text { minimize }_{x} C V a R_{\alpha}(x) \\
& \text { subject to } \bar{y}^{T} x \geq \text { TargetReturn }
\end{aligned}
\]
\[
A x \leq b
\]
\[
A_{e q} x=b_{e q}
\]
\[
l b \leq x \leq u b
\]

Vector \(\bar{y}\) is the mean return vector (the column-wise mean of the scenario matrix \(Y\) ), so that \(\bar{y}^{T} x\) is the expected return of portfolio \(x\).

\section*{PortfolioCVaR.setSolver}

The first constraint says that the expected return must be at least as good as a target return.

An alternative version of the CVaR portfolio optimization problem maximizes the expected return of the portfolio, subject to a target risk and other linear constraints on the portfolio.
\[
\begin{aligned}
& \operatorname{maximize}_{x} \bar{y}^{T} x \\
& \text { subject to } \quad C V a R_{\alpha}(x) \leq C V a R L i m i t \\
& A x \leq b \\
& A_{e q} x=b_{e q} \\
& l b \leq x \leq u b
\end{aligned}
\]

The first constraint in this case says that the portfolio CVaR cannot exceed a given CVaR limit.

By default, the CVaR portfolio object uses fmincon to solve the CVaR portfolio optimization problems. For information about fmincon and quadratic programming algorithms and options, see "Quadratic Programming Algorithms".

Alternatively, the CVaR portfolio optimization problems can be solved with 'cuttingplane', an implementation of Kelley's cutting-plane method. For more information, see Kelley [45] at "Portfolio Optimization" on page A-12.

\section*{References}

Kelley, J. E., "The Cutting-Plane Method for Solving Convex Programs," Journal of the Society for Industrial and Applied Mathematics, Vol. 8, No. 4, December 1960, pp. 703-712.

Rockafellar, R. T. and S. Uryasev, "Optimization of Conditional Value-at-Risk," Journal of Risk, Vol. 2, No. 3, Spring 2000, pp. 21-41.

\section*{PortfolioCVaR.setSolver}

\author{
Rockafellar, R. T. and S. Uryasev, "Conditional Value-at-Risk for General Loss Distributions," Journal of Banking and Finance, Vol. 26, 2002, pp. 1443-1471. \\ See Also \\ setOptions | PortfolioCVaR | optimoptions | fmincon | linprog \\ Related \\ - "Choosing and Controlling the Solver" on page 5-101 \\ Examples \\ - "Asset Returns and Scenarios" on page 5-44
}

\section*{PortfolioMAD.setSolver}
Superclasses AbstractPortfolio
Purpose Choose main solver and solver options for MAD portfolio optimization
Syntax

obj = setSolver(obj,solverType)
obj = setSolver(obj,solverType, varargin)
Description obj = setSolver(obj, solverType) chooses the solver for MAD
portfolio optimization.
obj = setSolver(obj, solverType, varargin) chooses the solver and
specifies associated solver options with additional options specified by
one or more Name, Value pair arguments or an optimoptions object.
After you specify a solver, the varargin argument accepts either name-value pair arguments to set options or, for the case of solvers from Optimization Toolbox software, an object created by optimoptions.
Tips
Use dot notation to choose the solver and specify associated solver options.
```

obj = obj.setSolver(solverType, varargin);

```

\section*{Input Arguments}

MAD portfolio object [PortfolioMAD].

\section*{solverType}

Solver to use for MAD portfolio optimization [string]. The supported solverType is:
- 'fmincon'

Use optimoptions to specify further options for MAD portfolio optimization.

Default: 'fmincon' using the 'sqb' algorithm and 'GradObj' set to 'on'

\section*{PortfolioMAD.setSolver}

\section*{Name-Value Pair Arguments or optimoptions Object}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'varargin'}

Options to control the solver specified in solverType as name-value pair arguments or an optimoptions object.

\section*{Note}
- For the default solver 'fmincon', PortfolioMAD, by default, sets the algorithm to ' sqp ' and turns the display off. While all variations of fmincon from Optimization Toolbox are accepted, use of 'sqp' and 'active-set' algorithms for fmincon are recommended and the use of 'interior-point' and 'trust-region-reflective' algorithms are not recommended for MAD portfolio optimization.
- All fmincon options are supported either as name-value pair arguments or using an optimoptions object.
- optimoptions is the default and recommended method to set solver options, however optimset is also supported. For details about fmincon and constrained nonlinear optimization algorithms and options, see "Constrained Nonlinear Optimization Algorithms".
Output Arguments
Updated MAD portfolio object [PortfolioMAD].

\section*{PortfolioMAD.setSolver}

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Set Solver Type as 'fmincon'}

Use 'fmincon' as the solverType.
```

p = PortfolioMAD;
p = p.setSolver('fmincon');
display(p.solverType);

```

\section*{fmincon}

\section*{Set the Solver Type as 'fmincon' and Use Name-Value Pair Arguments to Set the Algorithm}

Use 'fmincon' as the solverType and use name-value pair arguments to set the algorithm to|'sqp'| and to turn on the display.
```

p = PortfolioMAD;
p = p.setSolver('fmincon', 'Algorithm', 'sqp', 'Display', 'final');
display(p.solverOptions.Algorithm);
display(p.solverOptions.Display);

```
sqp
final

\section*{PortfolioMAD.setSolver}

\section*{Set Solver Type as 'fmincon' and Use an optimoptions Structure to Set the Algorithm}

Use 'fmincon' as the solverType and use an optimoptions object to set the algorithm to 'trust-region-reflective' and to turn off the display.
```

p = PortfolioMAD;
options = optimoptions('fmincon', 'Algorithm', 'trust-region-reflective',
p = p.setSolver('fmincon', options);
display(p.solverOptions.Algorithm);
display(p.solverOptions.Display);

```
trust-region-reflective
off

\section*{Set the Solver Type as 'fmincon' and Use an optimoptions Structure to Set the Algorithm and Use of Gradients}

Use 'fmincon' as the solverType and use an optimoptions object to set the algorithm to 'active-set' and to set the gradients flag 'on' for 'GradObj' and turn off the display.
```

p = PortfolioMAD;
options = optimoptions('fmincon','algorithm','active-set','display','off'
p = p.setSolver('fmincon',options);
p = p.setSolver('fmincon', options);
display(p.solverOptions.Algorithm);
display(p.solverOptions.Display);

```
active-set
off

References Rockafellar, R. T. and S. Uryasev, "Optimization of Conditional
Value-at-Risk," Journal of Risk, Vol. 2, No. 3, Spring 2000, pp. 21-41.

Rockafellar, R. T. and S. Uryasev, "Conditional Value-at-Risk for General Loss Distributions," Journal of Banking and Finance, Vol. 26, 2002, pp. 1443-1471.

See Also setOptions | PortfolioMAD | optimoptions | fmincon

\section*{Related \\ Examples}
- "Choosing and Controlling the Solver" on page 6-101
- "Asset Returns and Scenarios" on page 6-44

\section*{PortfolioCVaR.setScenarios}

Superclasses AbstractPortfolio
Purpose Set asset returns scenarios by direct matrix for PortfolioCVaR object

\author{
Syntax \\ Description
}
obj = setScenarios(obj,AssetScenarios)
obj = setScenarios(obj,AssetScenarios, varargin)

Tips
obj = setScenarios(obj,AssetScenarios) sets asset returns scenarios by direct matrix.
obj = setScenarios(obj,AssetScenarios, varargin) sets asset returns scenarios by direct matrix using the optional input varagin with additional options specified by one or more Name, Value pair arguments.

Use dot notation to set asset return scenarios.
obj = obj.setScenarios(AssetScenarios, varargin);
Input
Arguments
obj
CVaR portfolio object [PortfolioCVaR].

\section*{AssetScenarios}

Matrix of scenarios for asset returns or prices [matrix]. If the input data are prices, they can be converted into returns with the DataFormat Name/Value argument, where the default format is assumed to be returns. Be careful using price data because portfolio optimization usually requires total returns and not simply price returns.

This method sets up a function handle to indirectly access input AssetScenarios without needing to make a copy of the data.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can

\section*{PortfolioCVaR.setScenarios}
specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

\section*{DataFormat}

DataFormat values are:
- Returns - Data in AssetScenarios are asset total returns.
- Prices - Data in AssetScenarios are asset total return prices.

Default: Returns

\section*{GetAssetList}

GetAssetList values are:
- false - Do not extract or create asset names.
- true - Extract or create asset names from fints object.

If a fints object is passed into this method and the GetAssetList flag is true, the series names from the fints object are used as asset names in obj.AssetList.

If a matrix is passed and the GetAssetList flag is true, default asset names are created based on the AbstractPortfolio property defaultforAssetList, which is currently Asset.

If the GetAssetList flag is false, nothing happens, which is the default.

Default: false

\section*{Output obi \\ Arguments}

\section*{PortfolioCVaR.setScenarios}

\section*{Attributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{Examples Set Asset Returns Scenarios}

Given a PortfolioCVaR object p, use the setScenarios method to set asset return scenarios.
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
disp(p)

```
    PortfolioCVaR with properties:
        BuyCost: []
        SellCost: []
        RiskFreeRate: []
        ProbabilityLevel: 0.9500
        Turnover: []
```

 BuyTurnover: []
 SellTurnover: []
NumScenarios: 20000
Name: []
NumAssets: 4
AssetList: []
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: [4x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```
See Also Portfoliocvar
Related - "Setting Scenarios Using the PortfolioCVaR Constructor" on page Examples ..... 5-46
Concepts - "How Stochastic Optimization Works" on page 5-44

\section*{PortfolioMAD.setScenarios}

Superclasses AbstractPortfolio
Purpose Set asset returns scenarios by direct matrix for PortfolioMAD object

\author{
Syntax \\ Description
}
obj = setScenarios(obj,AssetScenarios)
obj = setScenarios(obj,AssetScenarios, varargin)

Tips
obj = setScenarios(obj,AssetScenarios) sets asset returns scenarios by direct matrix.
obj = setScenarios(obj,AssetScenarios, varargin) sets asset returns scenarios by direct matrix using the optional input varagin with additional options specified by one or more Name, Value pair arguments.

Use dot notation to set asset return scenarios.
obj = obj.setScenarios(AssetScenarios, varargin);
Input Arguments
obj
MAD portfolio object [PortfolioMAD].

\section*{AssetScenarios}

Matrix of scenarios for asset returns or prices [matrix]. If the input data are prices, they can be converted into returns with the DataFormat Name/Value argument, where the default format is assumed to be returns. Be careful using price data because portfolio optimization usually requires total returns and not simply price returns.

This method sets up a function handle to indirectly access input AssetScenarios without needing to make a copy of the data.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can

\section*{PortfolioMAD.setScenarios}
specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

\section*{DataFormat}

DataFormat values are:
- Returns - Data in AssetScenarios are asset total returns.
- Prices - Data in AssetScenarios are asset total return prices.

Default: Returns

\section*{GetAssetList}

GetAssetList values are:
- false - Do not extract or create asset names.
- true - Extract or create asset names from fints object.

If a fints object is passed into this method and the GetAssetList flag is true, the series names from the fints object are used as asset names in obj.AssetList.

If a matrix is passed and the GetAssetList flag is true, default asset names are created based on the AbstractPortfolio property defaultforAssetList, which is currently Asset.

If the GetAssetList flag is false, nothing happens, which is the default.

Default: false
```

Output obi
Arguments

PortfolioMAD.setScenarios

Attributes

| Access | public |
| :--- | :--- |
| Static | false |
| Hidden | false |

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Examples Set Asset Returns Scenarios

Given PortfolioMAD object p, use the setScenarios method to set asset return scenarios.

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
disp(p)
```

PortfolioMAD with properties:

BuyCost: []

SellCost: []
RiskFreeRate: []
Turnover: []
BuyTurnover: []
SellTurnover: []

```
NumScenarios: 20000
                Name: []
    NumAssets: 4
    AssetList: []
        InitPort: []
    AInequality: []
    bInequality: []
        AEquality: []
        bEquality: []
    LowerBound: [4x1 double]
    UpperBound: []
    LowerBudget: 1
    UpperBudget: 1
    GroupMatrix: []
    LowerGroup: []
    UpperGroup: []
        GroupA: []
        GroupB: []
    LowerRatio: []
    UpperRatio: []
```

See Also Portfoliomad
Related

- "Setting Scenarios Using the PortfolioMAD Constructor" on page 6-46
Examples
- "Setting Scenarios Using the setScenarios Method" on page 6-47
Concepts • "How Stochastic Optimization Works" on page 6-44

Portfolio.setTurnover

```
Purpose Set up maximum portfolio turnover constraint
Syntax
obj = setTurnover(obj,Turnover)
obj = setTurnover(obj,Turnover,InitPort,NumAssets)
```

Description

Tips

Input
Arguments

Set up maximum portfolio turnover constraint
obj = setTurnover(obj,Turnover)
obj = setTurnover(obj,Turnover,InitPort,NumAssets)
obj = setTurnover(obj, Turnover) sets up the maximum portfolio turnover constraint.
obj = setTurnover(obj,Turnover, InitPort,NumAssets) sets up the maximum portfolio turnover constraint with additional options specified by InitPort and NumAssets.

Given an upper bound for portfolio turnover in Turnover and an initial portfolio in InitPort, the turnover constraint requires any portfolio in Port to satisfy the following:

1' * | Port - InitPort | <= Turnover

Use dot notation to set up the maximum portfolio turnover constraint.
obj = obj.setTurnover(Turnover, InitPort, NumAssets);
obj
Portfolio object [Portfolio].

Turnover

Portfolio turnover constraint [scalar].

Note Turnover must be nonnegative and finite.

InitPort

(Optional) Initial or current portfolio weights [vector].

Portfolio.setTurnover

Note InitPort must be a finite vector with NumAssets >0 elements.

If no InitPort is specified, that value is assumed to be 0 .
If InitPort is specified as a scalar and NumAssets exists, then InitPort undergoes scalar expansion.

NumAssets

(Optional) Number of assets in the portfolio [scalar].

Note If it is not possible to obtain a value for NumAssets, it is assumed that NumAssets is 1.

Output Arguments
 obi
 Updated Portfolio object [Portfolio].

Attributes

Examples Set Turnover Constraint for a Portfolio Object

Given a Portfolio object p, to ensure that average turnover is no more than 30% with an initial portfolio of 10 assets in a variable $\times 0$, use the setTurnover method to set the turnover constraint.

Portfolio.setTurnover

```
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = Portfolio('InitPort', x0);
p = p.setTurnover(0.3);
disp(p.NumAssets);
disp(p.Turnover);
disp(p.InitPort);
    1 0
    0.3000
    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000
```

See Also
setInitPort | Portfolio
Related Examples

> Concepts • "Portfolio Set for Portfolio Optimization" on page 4-8

- "Working with Average Turnover Constraints" on page 4-77

PortfolioCVaR.setTurnover

Purpose Set up maximum turnover constraint in PortfolioCVaR object
Syntax
obj = setTurnover(obj,Turnover) obj = setTurnover(obj,Turnover,InitPort,NumAssets)

Tips

Input
Arguments
obj = setTurnover(obj,Turnover) sets up the maximum turnover constraint for a portfolio.
obj = setTurnover(obj,Turnover,InitPort,NumAssets) sets up the maximum turnover constraint for a portfolio with additional options specified by InitPort and NumAssets.
Given an upper bound for portfolio turnover in Turnover and an initial portfolio in InitPort, the turnover constraint requires any portfolio in Port to satisfy the following:
1^{\prime} * | Port - InitPort | <= Turnover
Use dot notation to set up the maximum turnover constraint for a portfolio.

```
obj = obj.setTurnover(Turnover, InitPort, NumAssets);
```


obi

CVaR portfolio object [PortfolioCVaR].

Turnover

Portfolio turnover constraint [scalar].

Note Turnover must be nonnegative and finite.

InitPort

(Optional) Initial or current portfolio weights [vector].

PortfolioCVaR.setTurnover

> Note InitPort must be a finite vector with NumAssets >0 elements.
> If no InitPort is specified, that value is assumed to be 0 .
> If InitPort is specified as a scalar and NumAssets exists, then InitPort undergoes scalar expansion.

NumAssets

(Optional) Number of assets in the portfolio [scalar].

Note If it is not possible to obtain a value for NumAssets, it is assumed that NumAssets is 1 .

Output
 obi

 ArgumentsUpdated CVaR portfolio object [PortfolioCVaR].

Attributes

| Access | public |
| :--- | :--- |
| Static | false |
| Hidden | false |

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Examples Set Turnover Constraint for a CVaR Portfolio Object

Given a CVaR portfolio object p , to ensure that average turnover is no more than 30% with an initial portfolio of 10 assets in a variable $\times 0$, use the setTurnover method to set the turnover constraint.

```
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = PortfolioCVaR('InitPort', x0);
p = p.setTurnover(0.3);
disp(p.NumAssets);
disp(p.Turnover);
disp(p.InitPort);
    10
    0.3000
    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000
```

See Also
PortfolioCVaR | setInitPort | setOneWayTurnover

Related Examples

- "Working with Average Turnover Constraints" on page 5-79
- "Portfolio Set for Portfolio Optimization" on page 5-8

PortfolioMAD.setTurnover

Note InitPort must be a finite vector with NumAssets >0 elements.

If no InitPort is specified, that value is assumed to be 0 .
If InitPort is specified as a scalar and NumAssets exists, then InitPort undergoes scalar expansion.

NumAssets

(Optional) Number of assets in the portfolio [scalar].

Note If it is not possible to obtain a value for NumAssets, it is assumed that NumAssets is 1.

```
Output Arguments
```


Attributes

| Access | public |
| :--- | :--- |
| Static | false |
| Hidden | false |

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

Examples Set Turnover Constraint for a MAD Portfolio Object

Given PortfolioMAD object p, to ensure that average turnover is no more than 30% with an initial portfolio of 10 assets in a variable $\times 0$, use the setTurnover method to set the turnover constraint.

PortfolioMAD.setTurnover

```
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = PortfolioMAD('InitPort', x0);
p = p.setTurnover(0.3);
disp(p.NumAssets);
disp(p.Turnover);
disp(p.InitPort);
    1 0
    0.3000
    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000
```

See Also PortfoliomAD \| setInitPort \| setOneWayTurnover

Related Examples

- "Working with Average Turnover Constraints" on page 6-79

Concepts - "Portfolio Set for Portfolio Optimization" on page 6-8

PortfolioCVaR.simulateNormalScenariosByData

| Superclasses | AbstractPortfolio |
| :--- | :--- |
| Purpose | Simulate multivariate normal asset return scenarios from data for
 PortfolioCVaR object |
| Syntax | obj = simulateNormalScenariosByData (obj , AssetReturns,
 NumScenarios)
 obj = simulateNormalScenariosByData (obj , AssetReturns,
 NumScenarios, varargin) |
| Description | obj = simulateNormalScenariosByData (obj , AssetReturns,
 NumScenarios) to simulate multivariate normal asset return scenarios
 for a CVaR portfolio object from data.
 obj = simulateNormalScenariosByData (obj , AssetReturns,
 NumScenarios, varargin) to simulate multivariate normal asset return
 scenarios for a CVaR portfolio object from data using the optional input
 varagin with additional options specified by one or more Name, Value
 pair arguments. |
| This method estimates the mean and covariance of asset returns from
 either price or return data and then uses these estimates to generate
 the specified number of scenarios with the function mvnrnd. | |
| Data can in be either a NumSamples-by-NumAssets matrix of NumSamples
 prices or returns at a a given periodicity for a collection of NumAssets
 assets or a f fints object with NumSamples observations and NumAssets
 time series. | |

Note If you want to use the method multiple times and you want to simulate identical scenarios each time the function is called, precede each function call with rng(seed) using a specified integer seed.

[^9]
PortfolioCVaR.simulateNormalScenariosByData

obj = obj.simulateNormalScenariosByData(AssetReturns, NumScenarios, varargin);

Input obi

A CVaR portfolio object [PortfolioCVaR].

AssetReturns

Either a matrix or fints object that contains asset data that can be converted into asset returns [NumSamples-by-NumAssets] matrix.

NumScenarios

Number of scenarios to simulate [positive integer].

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

DataFormat

DataFormat values are:

- Returns - Data in AssetReturns are asset total returns.
- Prices - Data in AssetReturns are asset total return prices.

Default: Returns

MissingData

MissingData values are:

- false - Do not use ECM algorithm to handle NaN values (just exclude NaN values).
- true - Use ECM algorithm to handle NaN values.

PortfolioCVaR.simulateNormalScenariosByData

Default: false

GetAssetList

GetAssetList values are:

- false - Do not extract or create asset names.
- true - Extract or create asset names from fints object.
If a fints object is passed into this method and the GetAssetList flag is true, the series names from the fints object are used as asset names in obj.AssetList.
If a matrix is passed and the GetAssetList flag is true, default asset names are created based on the AbstractPortfolio property defaultforAssetList, which is currently Asset.
If the GetAssetList flag is false, nothing happens, which is the default.
Default: false

Output obi
 Arguments
 Updated CVaR portfolio object [PortfolioCVaR].

Attributes

| Access | public |
| :--- | :--- |
| Static | false |
| Hidden | false |

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

PortfolioCVaR.simulateNormalScenariosByData

```
Examples Simulate Multivariate Normal Asset Return Scenarios from
Data
Given a PortfolioCVaR object p, use the simulateNormalScenariosByData method to simulate multivariate normal asset return scenarios from data.
```

```
m = [ 0.05; 0.1; 0.12; 0.18 ];
```

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
C = [0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];
0 0.0119 0.0336 0.1225];
m = m/12;
m = m/12;
C = C/12;
C = C/12;
RawData = mvnrnd(m, C, 240);
RawData = mvnrnd(m, C, 240);
NumScenarios = 2000;
NumScenarios = 2000;
p = PortfolioCVaR;
p = PortfolioCVaR;
p = p.simulateNormalScenariosByData(RawData, NumScenarios)
p = p.simulateNormalScenariosByData(RawData, NumScenarios)
p = p.setDefaultConstraints;
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.9);
p = p.setProbabilityLevel(0.9);
disp(p);
disp(p);
p =
PortfolioCVaR with properties:
BuyCost: []
SellCost: []
RiskFreeRate: []
ProbabilityLevel: []
Turnover: []
BuyTurnover: []
SellTurnover: []

```

\section*{PortfolioCVaR.simulateNormalScenariosByData}
NumScenarios: 2000
Name: [
NumAssets: 4
AssetList: [
InitPort: []
AInequality: [
bInequality: []
AEquality: []
bEquality: []
LowerBound: []
UpperBound: []
LowerBudget: []
UpperBudget: []
GroupMatrix: []
LowerGroup: []
UpperGroup: ..... []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []
PortfolioCVaR with properties:
BuyCost: ..... []
SellCost: [
RiskFreeRate: []
ProbabilityLevel: 0.9000
Turnover: ..... []
BuyTurnover: [
SellTurnover: []
NumScenarios: 2000
Name:
NumAssets: 4
AssetList: [
InitPort: []
AInequality: [
bInequality: []

\section*{PortfolioCVaR.simulateNormalScenariosByData}
```

 AEquality: []
 bEquality: []
 LowerBound: [4x1 double]
 UpperBound: []
 LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

\section*{Simulate Multivariate Normal Asset Return Scenarios from Market Data}

Create a PortfolioCVaR object \(p\) and use the simulateNormalScenariosByData method with market data loaded from CAPMuniverse.mat to simulate multivariate normal asset return scenarios.
```

load CAPMuniverse
p = PortfolioCVaR('AssetList',Assets(1:12));
disp(p);

```
    PortfolioCVaR with properties:
            BuyCost: []
            SellCost: []
        RiskFreeRate: []
        ProbabilityLevel: []
            Turnover: []
        BuyTurnover: []
        SellTurnover: []

\section*{PortfolioCVaR.simulateNormalScenariosByData}
```

NumScenarios: []
Name: []
NumAssets: 12
AssetList: {1x12 cell}
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: []
UpperBound: []
LowerBudget: []
UpperBudget: []
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

Simulate the scenarios from the data for each of the 12 assets from CAPMuniverse.mat.
p = p.simulateNormalScenariosByData(Data(:,1:12), 20000 ,'missingdata
See Also PortfolioCVaR | simulateNormalScenariosByMoments | rng
Related
- "Simulating Normal Scenarios" on page 5-48

Examples
Concepts - "How Stochastic Optimization Works" on page 5-44

\section*{PortfolioMAD.simulateNormalScenariosByData}
\begin{tabular}{|c|c|}
\hline Superclasses & AbstractPortfolio \\
\hline Purpose & Estimate mean and covariance of asset returns from data for PortfolioMAD object \\
\hline Syntax & ```
obj = simulateNormalScenariosByData(obj,AssetReturns,...
NumScenarios)
obj = simulateNormalScenariosByData(obj,AssetReturns,...
NumScenarios,varargin)
``` \\
\hline \multirow[t]{5}{*}{Description} & obj = simulateNormalScenariosByData(obj,AssetReturns,... NumScenarios) to estimate mean and covariance of asset returns from data for a PortfolioMAD object. \\
\hline & obj = simulateNormalScenariosByData(obj,AssetReturns,... NumScenarios, varargin) to estimate mean and covariance of asset returns from data for a PortfolioMAD object using the optional input varagin with additional options specified by one or more Name, Value pair arguments. \\
\hline & This method estimates the mean and covariance of asset returns from either price or return data and then uses these estimates to generate the specified number of scenarios with the function mvnrnd. \\
\hline & Data can in be either a NumSamples-by-NumAssets matrix of NumSamples prices or returns at a given periodicity for a collection of NumAssets assets or a fints object with NumSamples observations and NumAssets time series. \\
\hline & Note If you want to use the method multiple times and you want to simulate identical scenarios each time the function is called, precede each function call with rng(seed) using a specified integer seed. \\
\hline Tips & Use dot notation to estimate mean and covariance of asset returns from data for a PortfolioMAD object. \\
\hline
\end{tabular}

\section*{PortfolioMAD.simulateNormalScenariosByData}
obj = obj.simulateNormalScenariosByData(AssetReturns, NumScenarios, varargin);

\section*{Input Arguments \\ obj \\ A MAD portfolio object [PortfolioMAD].}

\section*{AssetReturns}

Either a matrix or fints object that contains asset data that can be converted into asset returns [NumSamples-by-NumAssets] matrix.

\section*{NumScenarios}

Number of scenarios to simulate [positive integer].

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{DataFormat}

DataFormat values are:
- Returns - Data in AssetReturns are asset total returns.
- Prices - Data in AssetReturns are asset total return prices.

Default: Returns

\section*{MissingData}

MissingData values are:
- false - Do not use ECM algorithm to handle NaN values (just exclude NaN values).
- true - Use ECM algorithm to handle NaN values.

\section*{PortfolioMAD.simulateNormalScenariosByData}

Default: false

\section*{GetAssetList}

GetAssetList values are:
- false - Do not extract or create asset names.
- true - Extract or create asset names from fints object.

If a fints object is passed into this method and the GetAssetList flag is true, the series names from the fints object are used as asset names in obj.AssetList.
If a matrix is passed and the GetAssetList flag is true, default asset names are created based on the AbstractPortfolio property defaultforAssetList, which is currently Asset.

If the GetAssetList flag is false, nothing happens, which is the default.

Default: false

\section*{Output obi \\ Arguments \\ Updated MAD portfolio object [PortfolioMAD].}

\section*{Attributes}
\begin{tabular}{ll}
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{PortfolioMAD.simulateNormalScenariosByData}
```

Examples
Estimate Mean and Covariance of Asset Returns from Data
Given a PortfolioMAD object p, use the
simulateNormalScenariosByData method to simulate multivariate
normal asset return scenarios from data.
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
RawData = mvnrnd(m, C, 240);
NumScenarios = 2000;
p = PortfolioMAD;
p = p.simulateNormalScenariosByData(RawData, NumScenarios);
p = p.setDefaultConstraints;
disp(p);

```
 PortfolioMAD with properties:
 BuyCost: []
 SellCost: []
 RiskFreeRate: []
 Turnover: []
 BuyTurnover: []
 SellTurnover: []
 NumScenarios: 2000
 Name: []
 NumAssets: 4
 AssetList: []
 InitPort: []
 AInequality: []

\section*{PortfolioMAD.simulateNormalScenariosByData}
```

bInequality: []
AEquality: []
bEquality: []
LowerBound: [4x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

\section*{Estimate Mean and Covariance of Asset Returns from Market Data}

Create a PortfolioMAD object \(p\) and use the simulateNormalScenariosByData method with market data loaded from CAPMuniverse.mat to simulate multivariate normal asset return scenarios.
load CAPMuniverse
```

p = PortfolioMAD('AssetList',Assets(1:12));

```
disp(p);

PortfolioMAD with properties:
BuyCost: []
SellCost: []
RiskFreeRate: []
Turnover: []
BuyTurnover: []
SellTurnover: []

\section*{PortfolioMAD.simulateNormalScenariosByData}
```

NumScenarios: []
Name: []
NumAssets: 12
AssetList: {1x12 cell}
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: []
UpperBound: []
LowerBudget: []
UpperBudget: []
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

```

Simulate the scenarios from the data for each of the 12 assets from CAPMuniverse.mat.
p = p.simulateNormalScenariosByData(Data(:,1:12), 20000 ,'missingdata
See Also PortfolioMAD | simulateNormalScenariosByMoments | rng
Related
- "Simulating Normal Scenarios" on page 6-48

Examples
Concepts - "How Stochastic Optimization Works" on page 6-44

\section*{PortfolioCVaR.simulateNormalScenariosByMoments}

Superclasses AbstractPortfolio

Purpose

Syntax

Description

Simulate multivariate normal asset return scenarios from mean and covariance of asset returns for PortfolioCVaR object
obj = simulateNormalScenariosByMoments(obj, AssetMean, AssetCovar,NumScenarios)
obj = simulateNormalScenariosByMoments(obj,AssetMean, AssetCovar, NumScenarios,NumAsssets)
obj = simulateNormalScenariosByMoments(obj,AssetMean, AssetCovar, NumScenarios) to simulate multivariate normal asset return scenarios from a mean and covariance of asset returns or a CVaR portfolio object.
obj = simulateNormalScenariosByMoments(obj,AssetMean, AssetCovar, NumScenarios, NumAsssets) to simulate multivariate normal asset return scenarios from a mean and covariance of asset returns for a CVaR portfolio object.

Note This method overwrites existing scenarios associated with the PortfolioCVaR object, and also, possibly, NumScenarios.

If you want to use the method multiple times and you want to simulate identical scenarios each time the function is called, precede each function call with rng(seed) using a specified integer seed.

\author{
Tips
}

Use dot notation to simulate multivariate normal asset return scenarios from a mean and covariance of asset returns for a CVaR portfolio object.
obj = obj.simulateNormalScenariosByMoments(AssetMean, AssetCovar, NumScenarios, NumAssets);

\section*{Input \\ Arguments \\ CVaR portfolio object [PortfolioCVaR].}

\section*{PortfolioCVaR.simulateNormalScenariosByMoments}

\section*{AssetMean}

Mean of asset returns [vector]. If AssetMean is a scalar and the number of assets is known, scalar expansion occurs. If it is not possible to determine the number of assets, this method assumes that NumAssets \(=1\).

\section*{AssetCovar}

Covariance of asset returns [matrix]. AssetCovar must be a symmetric positive-semidefinite matrix.
- If AssetCovar is a scalar and the number of assets is known, a diagonal matrix is formed with the scalar value along the diagonals. If it is not possible to determine the number of assets, this method assumes that NumAssets \(=1\).
- If AssetCovar is a vector, a diagonal matrix is formed with the vector along the diagonal.

\section*{NumScenarios}

Number of scenarios to simulate.

\section*{NumAssets}
(Optional) Number of assets [scalar].

\section*{Output obi \\ Arguments \\ Updated CVaR portfolio object [PortfolioCVaR].}

\section*{Attributes}
\begin{tabular}{ll}
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

\section*{PortfolioCVaR.simulateNormalScenariosByMoments}
```

Examples Simulate Multivariate Normal Asset Return Scenarios from Moments
Given PortfolioCVaR object p, use the simulateNormalScenariosByMoments method to simulate multivariate normal asset return scenarios from moments.

```
```

m = [ 0.05; 0.1; 0.12; 0.18 ];

```
m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;
C = [0.0064 0.00408 0.00192 0;
 0.00408 0.0289 0.0204 0.0119;
 0.00408 0.0289 0.0204 0.0119;
 0.00192 0.0204 0.0576 0.0336;
 0.00192 0.0204 0.0576 0.0336;
 0 0.0119 0.0336 0.1225];
 0 0.0119 0.0336 0.1225];
m = m/12;
m = m/12;
C = C/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = PortfolioCVaR;
p = p.setScenarios(AssetScenarios);
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;
p = p.setDefaultConstraints;
p = p.setProbabilityLevel(0.95);
p = p.setProbabilityLevel(0.95);
AssetMean = [.5]
AssetMean = [.5]
AssetCovar = [.5]
AssetCovar = [.5]
NumScenarios = 100
NumScenarios = 100
p = simulateNormalScenariosByMoments(p, AssetMean, AssetCovar, NumScenari
p = simulateNormalScenariosByMoments(p, AssetMean, AssetCovar, NumScenari
AssetMean =
 0.5000
AssetCovar =
 0.5000
```


## PortfolioCVaR with properties:

> BuyCost: []

SellCost: []
RiskFreeRate: []
ProbabilityLevel: 0.9500
Turnover: []
BuyTurnover: []
SellTurnover: []
NumScenarios: 100
Name: []
NumAssets: 4
AssetList: []
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: [4x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []

## PortfolioCVaR.simulateNormalScenariosByMoments

## UpperRatio: []

See Also PortfolioCVaR | simulateNormalScenariosByData | rng<br>Related<br>- "Simulating Normal Scenarios" on page 5-48<br>Examples<br>Concepts - "How Stochastic Optimization Works" on page 5-44

## PortfolioMAD.simulateNormalScenariosByMoments

## Superclasses AbstractPortfolio

Purpose

Syntax

Description

Simulate multivariate normal asset return scenarios from mean and covariance of asset returns for PortfolioMAD object
obj = simulateNormalScenariosByMoments(obj,AssetMean,... AssetCovar,NumScenarios)
obj = simulateNormalScenariosByMoments(obj,AssetMean,... AssetCovar, NumScenarios, NumAsssets)
obj = simulateNormalScenariosByMoments(obj,AssetMean,... AssetCovar, NumScenarios) to simulate multivariate normal asset return scenarios from a mean and covariance of asset returns or a MAD portfolio object.
obj = simulateNormalScenariosByMoments(obj,AssetMean,... AssetCovar, NumScenarios, NumAsssets) to simulate multivariate normal asset return scenarios from a mean and covariance of asset returns for a MAD portfolio object.

Note This method overwrites existing scenarios associated with the PortfolioMAD object, and also, possibly, NumScenarios.

If you want to use the method multiple times and you want to simulate identical scenarios each time the function is called, precede each function call with rng(seed) using a specified integer seed.

## Tips

Use dot notation to simulate multivariate normal asset return scenarios from a mean and covariance of asset returns for a MAD portfolio object.
obj = obj.simulateNormalScenariosByMoments(AssetMean, AssetCovar, NumScenarios, NumAssets);

## Input <br> obi

Arguments

MAD portfolio object [PortfolioMAD].

## PortfolioMAD.simulateNormalScenariosByMoments

## AssetMean

Mean of asset returns [ vector]. If AssetMean is a scalar and the number of assets is known, scalar expansion occurs. If it is not possible to determine the number of assets, this method assumes that NumAssets $=1$.

## AssetCovar

Covariance of asset returns [matrix]. AssetCovar must be a symmetric positive-semidefinite matrix.

- If AssetCovar is a scalar and the number of assets is known, a diagonal matrix is formed with the scalar value along the diagonals. If it is not possible to determine the number of assets, this method assumes that NumAssets $=1$.
- If AssetCovar is a vector, a diagonal matrix is formed with the vector along the diagonal.


## NumScenarios

Number of scenarios to simulate.

## NumAssets

(Optional) Number of assets [scalar].

```
Output obi
Arguments
Updated MAD portfolio object [PortfoliomAD].
```


## Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB Object-Oriented Programming documentation.

## PortfolioMAD.simulateNormalScenariosByMoments

## Examples Simulate Multivariate Normal Asset Return Scenarios from Moments

Given PortfolioMAD object p, use the simulateNormalScenariosByMoments method to simulate multivariate normal asset return scenarios from moments.
m = [ 0.05; 0.1; 0.12; 0.18 ];
$C=[0.00640 .004080 .001920$;
0.004080 .02890 .02040 .0119 ;
0.001920 .02040 .05760 .0336 ;
00.01190 .03360 .1225 ];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = p.setScenarios(AssetScenarios);
p = p.setDefaultConstraints;

AssetMean = [.5]
AssetCovar = [.5]
NumScenarios = 100
$\mathrm{p}=$ simulateNormalScenariosByMoments(p, AssetMean, AssetCovar, NumScer

AssetMean =
0.5000

AssetCovar =
0.5000

## PortfolioMAD.simulateNormalScenariosByMoments

NumScenarios =100
$\mathrm{p}=$
PortfolioMAD with properties:
BuyCost: []
SellCost: []
RiskFreeRate: []
Turnover: []
BuyTurnover: []
SellTurnover: []
NumScenarios: 100
Name: []
NumAssets: ..... 4
AssetList: []
InitPort: []
AInequality: []
bInequality: ..... []
AEquality: ..... []
bEquality: []
LowerBound: [4x1 double]
UpperBound: []
LowerBudget: ..... 1
UpperBudget: ..... 1
GroupMatrix: [ ..... []
LowerGroup: ..... []
UpperGroup: ..... []
GroupA ..... []
GroupB: [ ..... []
LowerRatio: []
UpperRatio: []

## PortfolioMAD.simulateNormalScenariosByMoments

See Also PortfoliomAD \| simulateNormalScenariosByData \| rng<br>Related - "Simulating Normal Scenarios" on page 6-48 Examples<br>Concepts - "How Stochastic Optimization Works" on page 6-44

## Purpose <br> Set content of specific field

```
Syntax
newfts = setfield(tsobj, field, V)
newfts = setfield(tsobj, field, {dates}, V)
```


## Description

## Examples

Example 1. Set the closing value for all days to 3890.

```
load dji30short
format bank
myfts1 = setfield(myfts1, 'Close', 3890)
myfts1 =
```

    desc: DJI30MAR94.dat
    freq: Daily (1)
    | 'dates: (20) |  | (20) ${ }^{\prime}$ |  | (20) ' | 'Low: (20)' |  | 'Close: (20)' |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| '04-Mar-1994' | [ | $3830.90]$ | [ | $3868.04]$ | [ | $3800.50]$ | [ | $3890.00]$ |
| '07-Mar-1994' | [ | $3851.72]$ | [ | $3882.40]$ | [ | 3824.71 ] | [ | $3890.00]$ |
| '08-Mar-1994' | [ | 3858.48] | [ | 3881.55] | [ | 3822.45] | [ | $3890.00]$ |
| '09-Mar-1994' | [ | $3853.97]$ | [ | 3874.52] | [ | 3817.95] | [ | $3890.00]$ |
| '10-Mar-1994' | [ | $3852.57]$ | [ | 3865.51 ] | [ | 3801.63] | [ | $3890.00]$ |
| '11-Mar-1994' | [ | 3832.58] | [ | 3872.83] | [ | 3806.69] | [ | $3890.00]$ |
| '14-Mar-1994' |  | 3870.29] |  | $3894.21]$ | [ | $3835.96]$ | [ | $3890.00]$ |
| '15-Mar-1994' |  | 3863.41 ] | [ | $3888.46]$ | [ | $3826.85]$ | [ | $3890.00]$ |

$\left.\begin{array}{llllllll}\text { '16-Mar-1994' } & {[ } & 3851.03] & {[ } & 3879.53] & {[ } & 3819.94] & {[ }\end{array} 3890.00\right]$

Example 2. Set values for specific times on specific days.
First create a financial time series containing time-of-day data.

```
 'My FINTS')
myfts =
 desc: My FINTS
 freq: Daily (1)
```

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times $=\left[{ }^{\prime} 11: 00 ' ; ' 12: 00^{\prime} ; ' 11: 00 ' ; ' 12: 00^{\prime} ; ' 11: 00 ' ; ' 12: 00 '\right] ;$
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...
times]);
myfts $=$ fints(dates_times, $[(1: 4)$ '; nan; 6],\{'Data1'\},1, $\ldots$

dates: (6)'	'times:	(6) '	'Data1:	(6) '
'01-Jan-2001'	'11:00'		[	$1]$
' " '	'12:00'		[	$2]$
'02-Jan-2001'	'11:00'		[	$3]$
' " '	'12:00'		[	4]
'03-Jan-2001'	'11:00'		[	NaN ]
' " '	'12:00'		[	$6]$

Now use setfield to replace the data in myfts with new data starting at 12:00 on January 1, 2001 and ending at 11:00 on January 3, 2001.
s = setfield(myfts,'Data1',...
\{'01-Jan-2001 12:00::03-Jan-2001 11:00'\},(102:105)')

S =

```
desc: My FINTS
freq: Daily (1)
```

dates: (6)'	'times:	(6) '	Data1: (6)'
01-Jan-2001'	'11:00'		$1.00]$
"	'12:00'		102.00]
'02-Jan-2001'	'11:00'		103.00]
' "	'12:00'		104.00]
'03-Jan-2001'	'11:00'		$105.00]$
" '	'12:00'		$6.00]$

## See Also

chfield | fieldnames | getfield | isfield | rmfield

## Purpose Compute Sharpe ratio for one or more assets

```
Syntax
sharpe(Asset)
sharpe(Asset, Cash)
Ratio = sharpe(Asset, Cash)
```


## Arguments

Asset	NUMSAMPLES-by-NUMSERIES matrix with   NUMSAMPLES observations of asset returns for   Cash      NUMSERIES asset return series.
	(Optional) Either a scalar return for a riskless   asset or a vector of asset returns to be a proxy   for a riskless asset. In either case, the return   periodicity must be the same as the periodicity   of Asset. For example, if Asset is monthly   data, then Cash must be monthly returns. If   no value is supplied, the default value for Cash   returns is 0.

Given NUMSERIES assets with NUMSAMPLES returns for each asset in a NUMSAMPLES-by-NUMSERIES matrix Asset and given either a scalar Cash asset return or a vector of Cash asset returns, the Sharpe ratio is computed for each asset.

The output is Ratio, a 1-by-NUMSERIES row vector of Sharpe ratios for each series in Asset. Any series in Asset with standard deviation of returns equal to 0 will have a NaN value for its Sharpe ratio.

Note If Cash is a vector, Asset and Cash need not have the same number of returns but must have the same periodicity of returns. The classic Sharpe ratio assumes that Cash is riskless. In reality, a short-term cash rate is not necessarily riskless. NaN values in the data are ignored.

Examples<br>References William F. Sharpe, "Mutual Fund Performance," Journal of Business, Vol. 39, No. 1, Part 2, January 1966, pp. 119-138.

See Also<br>inforatio | portalpha

Purpose	Number of dates and data series
Syntax	szfts $=$ size $(t s o b j$, dim $)$    numRows, numCols] = size(tsobj)

## Arguments

tsobj	Financial time series object.
dim	(Optional) A scalar that specifies the following   dimension:
	dim $=1$ returns number of dates (rows).
	dim $=2$ returns number of data series (columns).

## Description

See Also length | size

Purpose Smooth data

```
Syntax output = smoothts(input)
output = smoothts(input, 'b', wsize)
output = smoothts(input, 'g', wsize, stdev)
output = smoothts(input, 'e', n)
```

Arguments

input	Financial time series object or a row-oriented matrix In a row-oriented matrix, each row represents an individual set of observations.
$\begin{aligned} & \text { 'b', 'g', or } \\ & \text { 'e' } \end{aligned}$	Smoothing method (essentially the type of filter used). Can be Exponential (e), Gaussian (g), or Box (b). Default = b.
wsize	Window size (scalar). Default $=5$.
stdev	Scalar that represents the standard deviation of the Gaussian window. Default $=0.65$.
n	For Exponential method, specifies window size or exponential factor, depending upon value.   - $n>1$ (window size) or period length   - $\mathrm{n}<1$ and $>0$ (exponential factor: alpha)   - $\mathrm{n}=1$ (either window size or alpha)   If n is not supplied, the defaults are wsize $=5$ and alpha $=0.3333$.

## Description

smoothts smooths the input data using the specified method.
output = smoothts(input) smooths the input data using the default Box method with window size, wsize, of 5 .
output = smoothts(input, 'b', wsize) smooths the input data using the Box (simple, linear) method. wsize specifies the width of the box to be used.
output = smoothts(input, 'g', wsize, stdev) smooths the input data using the Gaussian window method.
output = smoothts(input, 'e', n) smooths the input data using the Exponential method. $n$ can represent the window size (period length) or alpha. If $n>1$, $n$ represents the window size. If $0<n<1$, n represents alpha, where

$$
\alpha=\frac{2}{w \operatorname{size}+1} .
$$

If input is a financial time series object, output is a financial time series object identical to input except for contents. If input is a row-oriented matrix, output is a row-oriented matrix of the same length.

## See Also tsmovavg

Purpose Sort financial time series

```
Syntax sfts = sortfts(tsobj)
sfts = sortfts(tsobj, flag)
sfts = sortfts(tsobj, seriesnames, flag)
[sfts, sidx] = sortfts(...)
```


## Arguments

$$
\begin{array}{ll}
\text { tsobj } & \text { Financial time series object. } \\
\text { flag } & \text { (Optional) Sort order: } \\
& \text { flag }=1 \text {; increasing order (default) } \\
& \text { flag }=-1 \text {; decreasing order } \\
\text { seriesnames } & \begin{array}{l}
\text { (Optional) String containing a data series name or } \\
\text { cell array containing a list of data series names. }
\end{array}
\end{array}
$$

## Description

sfts = sortfts(tsobj) sorts the financial time series object tsobj in increasing order based only upon the 'dates' vector if tsobj does not contain time-of-day information. If the object includes time-of-day information, the sort is based upon a combination of the 'dates' and 'times ' vectors. The 'times' vector cannot be sorted individually.
sfts $=$ sortfts(tsobj, flag) sets the order of the sort. flag $=1$ : increasing date and time order. flag $=-1$ : decreasing date and time order.
sfts = sortfts(tsobj, seriesnames, flag) sorts the financial time series object tsobj based upon the data series name(s) seriesnames. The seriesnames argument can be a single string containing a data series name or a cell array containing a list of data series names. If the optional flag is set to -1 , the sort is in decreasing order.
[sfts, sidx] = sortfts(...) additionally returns the index of the original object tsobj sorted based on 'dates' or specified data series name(s).

See Also issorted | sort | sortrows

Purpose Slow stochastics

```
Syntax
[spctk, spctd] = spctkd(fastpctk, fastpctd)
[spctk, spctd] = spctkd([fastpctk fastpctd])
[spctk, spctd] = spctkd(fastpctk, fastpctd, dperiods, dmamethod)
[spctk, spctd] = spctkd([fastpctk fastpctd], dperiods, dmamethod)
skdts = spctkd(tsobj)
skdts = spctkd(tsobj, dperiods, dmamethod)
skdts = spctkd(tsobj, dperiods, dmamethod, ParameterName,
ParameterValue, ...)
```


## Arguments

fastpctk	Fast stochastic F\%K (vector).
fastpctd	Fast stochastic F\%D (vector).
dperiods	(Optional) \%D periods. Default = 3.
dmamethod	(Optional) \%D moving average method. Default =
	'e' (exponential).
tsobj	Financial time series object.

Description [spctk, spctd] = spctkd(fastpctk, fastpctd) calculates the slow stochastics $\mathrm{S} \% \mathrm{~K}$ and $\mathrm{S} \% \mathrm{D}$. spctk and spctd are column vectors representing the respective slow stochastics. The inputs must be single column-oriented vectors containing the fast stochastics $\mathrm{F} \% \mathrm{~K}$ and $\mathrm{F} \% \mathrm{D}$.
[spctk, spctd] = spctkd([fastpctk fastpctd]) accepts a two-column matrix as input. The first column contains the fast stochastic F\%K values, and the second contains the fast stochastic F\%D values.
[spctk, spctd] = spctkd(fastpctk, fastpctd, dperiods, dmamethod) calculates the slow stochastics, $\mathrm{S} \% \mathrm{~K}$ and $\mathrm{S} \% \mathrm{D}$, using the value of dperiods to set the number of periods and dmamethod to indicate the moving average method. The inputs fastpctk and
fastpctk must contain the fast stochastics, F\%K and F\%D, in column orientation. spctk and spctd are column vectors representing the respective slow stochastics.

Valid moving average methods for \%D are exponential ('e'), triangular ('t'), and modified ('m'). See tsmovavg for explanations of these methods.

```
[spctk, spctd] = spctkd([fastpctk fastpctd], dperiods,
``` dmamethod) accepts a two-column matrix rather than two separate vectors. The first column contains the F\%K values, and the second contains the \(\mathrm{F} \% \mathrm{D}\) values.
skdts = spctkd(tsobj) calculates the slow stochastics, S\%K and S\%D. tsobj must contain the fast stochastics, F\%K and F\%D, in data series named PercentK and PercentD. The skdts output is a financial time series object with the same dates as tsobj. Within tsobj the two series SlowPctK and SlowPctD represent the respective slow stochastics.
skdts = spctkd(tsobj, dperiods, dmamethod) lets you specify the length and the method of the moving average used to calculate \(\mathrm{S} \% \mathrm{D}\) values.
skdts = spctkd(tsobj, dperiods, dmamethod, ParameterName, ParameterValue, ...) accepts parameter name/parameter value pairs as input. These pairs specify the name(s) for the required data series if it is different from the expected default name(s). Valid parameter names are
- KName: F\%K series name
- DName: F\%D series name

Parameter values are the strings that represent the valid parameter names.

\section*{Examples Calculate the Slow Stochastics}

This example shows how to calculate the slow stochastics for Disney stock and plot the results.
```

load disney.mat
dis_FastStoch = fpctkd(dis);
dis_SlowStoch = spctkd(dis_FastStoch);
plot(dis_SlowStoch)
title('Slow Stochastics for Disney')

```


References Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 268-271.

See Also fpctkd | stochosc | tsmovavg
Purpose Standard deviation
```

Syntax tsstd = std(tsobj)
tsstd = std(tsobj, flag)

```

\section*{Arguments}
\begin{tabular}{ll} 
tsobj & Financial time series object. \\
flag & (Optional) Normalization factor: \\
& flag \(=1\) normalizes by n (number of observations). \\
& flag \(=0\) normalizes by n-1.
\end{tabular}

\section*{Description}

See Also
tsstd \(=\) std(tsobj) computes the standard deviation of each data series in the financial time series object tsobj and returns the results in tsstd. The tsstd output is a structure with field name(s) identical to the data series name(s).
tsstd \(=\) std(tsobj, flag) normalizes the data as indicated by flag.
hist | mean

\section*{Purpose}

Syntax
```

stosc = stochosc(highp, lowp, closep)
stosc = stochosc([highp lowp closep])
stosc = stochosc(highp, lowp, closep, kperiods, dperiods, dmamethod)
stosc = stochosc([highp lowp closep], kperiods, dperiods, dmamethod)
stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod)
stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod,
ParameterName, ParameterValue, ...)

```

\section*{Arguments}
\begin{tabular}{ll} 
highp & High price (vector). \\
lowp & Low price (vector). \\
closep & Closing price (vector). \\
kperiods & (Optional) \%K periods. Default \(=10\). \\
dperiods & (Optional) \%D periods. Default \(=3\). \\
damethod & (Optional) \%D moving average method. Default \(=\) \\
& 'e' (exponential). \\
tsobj & Financial time series object.
\end{tabular}

\section*{Description}
stosc \(=\) stochosc(highp, lowp, closep) calculates the fast stochastics F\%K and F\%D from the stock price data highp (high prices), lowp (low prices), and closep (closing prices). stosc is a two-column matrix whose first column is the \(\mathrm{F} \% \mathrm{~K}\) values and second is the \(\mathrm{F} \% \mathrm{D}\) values.
stosc \(=\) stochosc([highp lowp closep]) accepts a three-column matrix of high (highp), low (lowp), and closing prices (closep), in that order.
```

stosc = stochosc(highp, lowp, closep, kperiods, dperiods,
dmamethod) calculates the fast stochastics F%K and F%D from the

```
stock price data highp (high prices), lowp (low prices), and closep (closing prices). kperiods sets the \%K period. dperiods sets the \%D period. damethod specifies the \%D moving average method. Valid moving average methods for \(\% \mathrm{D}\) are exponential ('e') and triangular ('t'). See tsmovavg for explanations of these methods.
stosc= stochosc([highp lowp closep], kperiods, dperiods, dmamethod) accepts a three-column matrix of high (highp), low (lowp), and closing prices (closep), in that order.
```

stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod)

``` calculates the fast stochastics \(\mathrm{F} \% \mathrm{~K}\) and \(\mathrm{F} \% \mathrm{D}\) from the stock price data in the financial time series object tsobj. tsobj must minimally contain the series High (high prices), Low (low prices), and Close (closing prices). stoscts is a financial time series object with similar dates to tsobj and two data series named SOK and SOD.
stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod, ParameterName, ParameterValue, ...) accepts parameter name/parameter value pairs as input. These pairs specify the name(s) for the required data series if it is different from the expected default name(s). Valid parameter names are
- HighName: high prices series name
- LowName: low prices series name
- CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter names.

\section*{Examples Compute the Stochastic Oscillator}

This example shows how to compute the stochastic oscillator for Disney stock and plot the results.
```

load disney.mat
dis_StochOsc = stochosc(dis)
plot(dis_StochOsc)
title('Stochastic Oscillator for Disney')

```
```

dis_StochOsc =

```
    desc: StochOsc: Walt Disney Company (DIS)
    freq: Unknown (0)
\begin{tabular}{|c|c|c|}
\hline dates: (782)' & 'SOK: (782)' & 'SOD: (782)' \\
\hline '29-Mar-1996' & 68.1942] & NaN ] \\
\hline '01-Apr-1996' & 86.3612] & \(\mathrm{NaN}]\) \\
\hline '02-Apr-1996' & \(97.7087]\) & \(90.8983]\) \\
\hline '03-Apr-1996' & 100] & \(95.4492]\) \\
\hline '04-Apr-1996' & \(88.6525]\) & \(92.0508]\) \\
\hline '05-Apr-1996' & \(\mathrm{NaN}]\) & NaN ] \\
\hline '08-Apr-1996' & \(77.2504]\) & \(84.6506]\) \\
\hline '09-Apr-1996' & 63.6116] & 74.1311] \\
\hline '10-Apr-1996' & 13.6388] & [ 43.8850] \\
\hline '11-Apr-1996' & \(4.5281]\) & \(24.2065]\) \\
\hline '12-Apr-1996' & \(22.6950]\) & \(23.4508]\) \\
\hline '15-Apr-1996' & \(31.8058]\) & \(27.6283]\) \\
\hline '16-Apr-1996' & \(38.6252]\) & \(33.1267]\) \\
\hline '17-Apr-1996' & 40.9165] & \(37.0216]\) \\
\hline '18-Apr-1996' & \(56.3692]\) & \(46.6954]\) \\
\hline '19-Apr-1996' & \(61.5385]\) & \(54.1169]\) \\
\hline '22-Apr-1996' & 55.5333] & 54.8251] \\
\hline '23-Apr-1996' & \(46.3979]\) & \(50.6115]\) \\
\hline '24-Apr-1996' & \(22.5407]\) & 36.5761 ] \\
\hline '25-Apr-1996' & \(38.7297]\) & \(37.6529]\) \\
\hline '26-Apr-1996' & \(54.8412]\) & 46.2470 ] \\
\hline '29-Apr-1996' & \(54.8412]\) & \(50.5441]\) \\
\hline '30-Apr-1996' & \(58.0945]\) & [ 54.3193] \\
\hline '01-May-1996' & \(19.3648]\) & \(36.8421]\) \\
\hline '02-May-1996' & \(9.3773]\) & \(23.1097]\) \\
\hline '03-May-1996' & \(9.7775]\) & [ 16.4436] \\
\hline '06-May-1996' & \(38.2498]\) & 27.3467 ] \\
\hline '07-May-1996' & 20.6069] & 23.9768 ] \\
\hline '08-May-1996' & \(23.0769]\) & \(23.5269]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 09-May-1996 \({ }^{\text {' }}\) & [ & 7.6923] & [ & \(15.6096]\) \\
\hline '10-May-1996' & [ & \(32.3446]\) & [ & 23.9771 ] \\
\hline '13-May-1996' & [ & 67.6554] & [ & 45.8162 ] \\
\hline '14-May-1996' & [ & 77.4593] & [ & \(61.6378]\) \\
\hline '15-May-1996' & [ & 71.4408] & [ & \(66.5393]\) \\
\hline '16-May-1996' & [ & 82.1612] & [ & \(74.3503]\) \\
\hline '17-May-1996' & [ & 90] & & \(82.1751]\) \\
\hline '20-May-1996' & [ & \(96.9455]\) & [ & \(89.5603]\) \\
\hline '21-May-1996' & [ & \(97.3394]\) & I & \(93.4498]\) \\
\hline '22-May-1996' & [ & \(97.5390]\) & [ & \(95.4944]\) \\
\hline '23-May-1996' & [ & 74.4000] & & 84.9472] \\
\hline '24-May-1996' & [ & 80] & [ & \(82.4736]\) \\
\hline '27-May-1996' & [ & \(\mathrm{NaN}]\) & & NaN ] \\
\hline 28-May-1996' & [ & \(66.6667]\) & [ & 74.5701] \\
\hline '29-May-1996' & [ & 18.5778] & & \(46.5740]\) \\
\hline '30-May-1996' & [ & \(33.4000]\) & [ & 39.9870 ] \\
\hline '31-May-1996' & [ & \(16.7000]\) & [ & \(28.3435]\) \\
\hline 03-Jun-1996' & [ & \(4.2000]\) & [ & \(16.2717]\) \\
\hline 04-Jun-1996' & [ & 13.8245] & [ & 15.0481 ] \\
\hline 05-Jun-1996' & [ & \(26.7200]\) & [ & 20.8841 ] \\
\hline 06-Jun-1996' & [ & 70.5716] & [ & 45.7278 ] \\
\hline '07-Jun-1996' & [ & 88.2145] & & \(66.9712]\) \\
\hline '10-Jun-1996' & [ & 67.6782] & [ & \(67.3247]\) \\
\hline '11-Jun-1996' & [ & 67.6782] & & \(67.5014]\) \\
\hline '12-Jun-1996' & [ & 67.6782] & [ & \(67.5898]\) \\
\hline '13-Jun-1996' & [ & \(52.9287]\) & & \(60.2593]\) \\
\hline '14-Jun-1996' & [ & 47.0713] & [ & \(53.6653]\) \\
\hline '17-Jun-1996' & [ & \(58.8567]\) & & \(56.2610]\) \\
\hline '18-Jun-1996' & [ & \(35.2858]\) & & \(45.7734]\) \\
\hline '19-Jun-1996' & [ & \(8.6639]\) & & \(27.2186]\) \\
\hline '20-Jun-1996' & [ & \(34.9340]\) & & 31.0763 ] \\
\hline '21-Jun-1996' & [ & 84.9940] & & \(58.0352]\) \\
\hline '24-Jun-1996' & [ & \(61.0667]\) & & \(59.5509]\) \\
\hline '25-Jun-1996' & [ & \(94.9580]\) & & \(77.2544]\) \\
\hline '26-Jun-1996' & [ & \(60.0240]\) & [ & \(68.6392]\) \\
\hline '27-Jun-1996' & [ & \(90.0360]\) & [ & \(79.3376]\) \\
\hline '28-Jun-1996' & [ & \(69.5198]\) & [ & \(74.4287]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline '01-Jul-1996' & [ & \(47.8079]\) & [ & 61.1183] \\
\hline '02-Jul-1996' & [ & \(13.0480]\) & [ & \(37.0832]\) \\
\hline '03-Jul-1996' & [ & \(26.6400]\) & [ & \(31.8616]\) \\
\hline '04-Jul-1996' & [ & \(\mathrm{NaN}]\) & & NaN] \\
\hline '05-Jul-1996' & [ & \(0]\) & [ & \(15.9308]\) \\
\hline '08-Jul-1996' & [ & \(5.0390]\) & & \(10.4849]\) \\
\hline '09-Jul-1996' & [ & \(0]\) & & \(5.2424]\) \\
\hline '10-Jul-1996' & [ & 13.4749] & & \(9.3586]\) \\
\hline '11-Jul-1996' & [ & 1.5873] & & \(5.4730]\) \\
\hline '12-Jul-1996' & [ & 12.9333] & & \(9.2032]\) \\
\hline '15-Jul-1996' & [ & 3.2508] & & \(6.2270]\) \\
\hline '16-Jul-1996' & [ & \(28.3600]\) & [ & 17.2935] \\
\hline '17-Jul-1996' & [ & \(32.7180]\) & & \(25.0058]\) \\
\hline '18-Jul-1996' & [ & \(51.9151]\) & [ & \(38.4604]\) \\
\hline '19-Jul-1996' & [ & \(55.9981]\) & & 47.2293] \\
\hline '22-Jul-1996' & [ & \(39.5647]\) & [ & \(43.3970]\) \\
\hline '23-Jul-1996' & [ & \(37.1487]\) & & 40.2729] \\
\hline '24-Jul-1996' & [ & 11.7855] & [ & \(26.0292]\) \\
\hline '25-Jul-1996' & [ & 11.7855] & & 18.9073] \\
\hline '26-Jul-1996' & [ & 13.5538] & [ & \(16.2306]\) \\
\hline '29-Jul-1996' & [ & \(2.8000]\) & & 9.5153] \\
\hline '30-Jul-1996' & [ & \(44.4667]\) & [ & \(26.9910]\) \\
\hline '31-Jul-1996' & [ & \(52.8000]\) & & 39.8955] \\
\hline '01-Aug-1996' & [ & \(91.6667]\) & [ & 65.7811] \\
\hline '02-Aug-1996' & [ & \(86.3612]\) & & 76.0711] \\
\hline '05-Aug-1996' & [ & \(93.1806]\) & [ & 84.6258] \\
\hline '06-Aug-1996' & [ & \(97.9060]\) & & 91.2659] \\
\hline '07-Aug-1996' & [ & \(87.2319]\) & [ & 89.2489] \\
\hline '08-Aug-1996' & [ & 72.3698] & [ & 80.8093] \\
\hline '09-Aug-1996' & [ & \(65.9857]\) & [ & \(73.3975]\) \\
\hline '12-Aug-1996' & [ & \(89.1441]\) & [ & 81.2708] \\
\hline '13-Aug-1996' & [ & 74.2798] & [ & \(77.7753]\) \\
\hline '14-Aug-1996' & [ & \(68.0115]\) & [ & \(72.8934]\) \\
\hline '15-Aug-1996' & [ & \(52.4571]\) & [ & \(62.6753]\) \\
\hline '16-Aug-1996' & [ & \(61.9429]\) & [ & \(62.3091]\) \\
\hline '19-Aug-1996' & [ & \(57.1429]\) & [ & \(59.7260]\) \\
\hline '20-Aug-1996' & [ & \(29.9760]\) & [ & \(44.8510]\) \\
\hline
\end{tabular}

\begin{tabular}{rrr}
\(57.9545]\) & {\([\)} & \(51.4028]\) \\
\(68.4343]\) & {\([\)} & \(59.9186]\) \\
\(78.9141]\) & {\([\)} & \(69.4163]\) \\
\(100]\) & {\([\)} & \(84.7082]\) \\
\(73.9312]\) & {\([\)} & \(79.3197]\) \\
\(47.8624]\) & {\([\)} & \(63.5910]\) \\
\(33.3000]\) & {\([\)} & \(48.4455]\) \\
\(18.4889]\) & {\([\)} & \(33.4672]\) \\
\(\mathrm{NaN}]\) & {\([\)} & \(\mathrm{NaN}]\) \\
\(18.4889]\) & {\([\)} & \(25.9780]\) \\
\(11.1111]\) & {\([\)} & \(18.5446]\) \\
\(0]\) & {\([\)} & \(9.2723]\) \\
\(33.3091]\) & {\([\)} & \(21.2907]\) \\
\(63.6364]\) & {\([\)} & \(42.4635]\) \\
\(66.6667]\) & {\([\)} & \(54.5651]\) \\
\(100]\) & {\([\)} & \(77.2825]\) \\
\(97.5390]\) & {\([\)} & \(87.4108]\) \\
\(93.1806]\) & {\([\)} & \(90.2957]\) \\
\(75.5022]\) & {\([\)} & \(82.8989]\) \\
\(89.8089]\) & {\([\)} & \(86.3539]\) \\
\(91.8667]\) & {\([\)} & \(89.1103]\) \\
\(100]\) & {\([\)} & \(94.5552]\) \\
\(94.1176]\) & {\([\)} & \(94.3364]\) \\
\(100]\) & {\([\)} & \(97.1682]\) \\
\(83.6925]\) & {\([\)} & \(90.4303]\) \\
\(76.9231]\) & {\([\)} & \(83.6767]\) \\
\(54.8762]\) & {\([\)} & \(69.2764]\) \\
\(80.6502]\) & {\([\)} & \(74.9633]\) \\
\(84.3328]\) & {\([\)} & \(79.6481]\) \\
\(55.9501]\) & {\([\)} & \(67.7991]\) \\
\(66.6000]\) & {\([\)} & \(67.1995]\) \\
\(66.6667]\) & {\([\)} & \(66.9331]\) \\
\(80.0192]\) & {\([\)} & \(73.4762]\) \\
\(80.0192]\) & {\([\)} & \(76.7477]\) \\
\(63.9769]\) & {\([\)} & \(70.3623]\) \\
\(60.0384]\) & {\([\)} & \(65.2004]\) \\
\(63.9769]\) & {\([\)} & \(64.5887]\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline '11-Oct-1996' & [ & \(66.6667]\) & [ & \(65.6277]\) \\
\hline '14-0ct-1996' & [ & 72.2667] & [ & 68.9472] \\
\hline '15-0ct-1996' & [ & 83.3333] & [ & 76.1402] \\
\hline '16-0ct-1996' & [ & \(95.6159]\) & & 85.8781] \\
\hline '17-0ct-1996' & [ & 68.0115] & & 76.9448] \\
\hline '18-0ct-1996' & I & \(72.0461]\) & & 74.4955] \\
\hline '21-0ct-1996' & [ & \(92.0269]\) & & 83.2612] \\
\hline '22-0ct-1996' & [ & \(96.8492]\) & & \(90.0552]\) \\
\hline '23-0ct-1996' & [ & \(83.3600]\) & & 86.7076] \\
\hline '24-0ct-1996' & [ & \(57.7101]\) & & 72.2088] \\
\hline '25-0ct-1996' & [ & \(84.5799]\) & & 78.3944] \\
\hline '28-0ct-1996' & [ & \(83.5951]\) & [ & \(80.9947]\) \\
\hline '29-0ct-1996' & [ & \(59.5918]\) & & 70.2933] \\
\hline '30-0ct-1996' & [ & \(46.1255]\) & [ & \(58.2094]\) \\
\hline '31-Oct-1996' & [ & \(56.3346]\) & & \(57.2720]\) \\
\hline '01-Nov-1996' & [ & \(30.2326]\) & [ & 43.7523] \\
\hline '04-Nov-1996' & [ & 93.8438] & & 68.7981] \\
\hline '05-Nov-1996' & [ & 100] & [ & \(84.3990]\) \\
\hline '06-Nov-1996' & [ & \(91.6000]\) & & 87.9995] \\
\hline '07-Nov-1996' & [ & 100] & [ & 93.9998] \\
\hline '08-Nov-1996' & [ & 87.0743] & & \(90.5370]\) \\
\hline '11-Nov-1996' & [ & 100] & [ & \(95.2685]\) \\
\hline '12-Nov-1996' & [ & 90.2118] & & 92.7401] \\
\hline '13-Nov-1996' & [ & 86.3059] & [ & \(89.5230]\) \\
\hline '14-Nov-1996' & [ & 86.3059] & & 87.9144] \\
\hline '15-Nov-1996' & [ & \(90.1614]\) & [ & 89.0379] \\
\hline '18-Nov-1996' & [ & \(74.5412]\) & & 81.7895] \\
\hline '19-Nov-1996' & [ & \(68.6588]\) & [ & 75.2242] \\
\hline '20-Nov-1996' & [ & 76.7728] & [ & 75.9985] \\
\hline '21-Nov-1996' & [ & \(85.3630]\) & [ & 80.6807] \\
\hline '22-Nov-1996' & [ & \(74.4000]\) & [ & 77.5404] \\
\hline '25-Nov-1996' & [ & 96.8516] & [ & \(87.1960]\) \\
\hline '26-Nov-1996' & [ & \(83.5956]\) & [ & 85.3958] \\
\hline '27-Nov-1996' & [ & \(55.7435]\) & [ & 70.5696] \\
\hline '28-Nov-1996' & [ & NaN] & [ & \(\mathrm{NaN}]\) \\
\hline '29-Nov-1996' & [ & \(49.0489]\) & [ & \(59.8093]\) \\
\hline '02-Dec-1996' & [ & \(49.0489]\) & [ & \(54.4291]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 03-Dec-1996 \({ }^{\prime}\) & [ & 18.8406] & [ & \(36.6348]\) \\
\hline 04-Dec-1996' & [ & \(23.6475]\) & [ & \(30.1412]\) \\
\hline 05-Dec-1996' & [ & \(21.8150]\) & [ & 25.9781 ] \\
\hline 06-Dec-1996' & [ & \(25.7840]\) & [ & 25.8810 ] \\
\hline '09-Dec-1996' & [ & \(46.7673]\) & [ & 36.3242 ] \\
\hline '10-Dec-1996' & [ & \(63.8407]\) & [ & \(50.0824]\) \\
\hline '11-Dec-1996' & [ & \(52.5210]\) & & \(51.3017]\) \\
\hline '12-Dec-1996' & [ & \(15.0060]\) & [ & \(33.1539]\) \\
\hline '13-Dec-1996' & [ & \(17.0960]\) & & \(25.1249]\) \\
\hline 16-Dec-1996' & [ & 9.7718] & [ & \(17.4484]\) \\
\hline '17-Dec-1996' & [ & 41.0462] & & \(29.2473]\) \\
\hline 18-Dec-1996' & [ & \(53.8462]\) & [ & 41.5467 ] \\
\hline '19-Dec-1996' & [ & 71.8154] & & \(56.6810]\) \\
\hline 20-Dec-1996' & [ & 71.8154] & [ & 64.2482] \\
\hline '23-Dec-1996' & [ & \(66.7077]\) & & 65.4780] \\
\hline 24-Dec-1996' & [ & \(53.8462]\) & [ & \(59.6621]\) \\
\hline 25-Dec-1996' & [ & \(\mathrm{NaN}]\) & & \(\mathrm{NaN}]\) \\
\hline 26-Dec-1996' & [ & \(51.3231]\) & [ & \(55.4926]\) \\
\hline 27-Dec-1996' & [ & 48.7385] & [ & \(52.1155]\) \\
\hline 30-Dec-1996' & [ & \(16.6667]\) & [ & 34.3911 ] \\
\hline '31-Dec-1996' & [ & \(8.5734]\) & & \(21.4822]\) \\
\hline '01-Jan-1997' & [ & NaN ] & [ & NaN ] \\
\hline 02-Jan-1997' & [ & 8.9156] & & 15.1989 ] \\
\hline 03-Jan-1997' & [ & 44.4267] & & 29.8128] \\
\hline '06-Jan-1997' & [ & \(40.9165]\) & [ & 35.3647 ] \\
\hline '07-Jan-1997' & [ & \(39.5089]\) & & 37.4368 ] \\
\hline 08-Jan-1997' & [ & \(20.9263]\) & [ & \(29.1816]\) \\
\hline '09-Jan-1997' & [ & 13.9509] & & 21.5662] \\
\hline '10-Jan-1997' & [ & \(28.5714]\) & & 25.0688 ] \\
\hline '13-Jan-1997' & [ & 39.4182] & & \(32.2435]\) \\
\hline '14-Jan-1997' & [ & 82.0908] & & \(57.1672]\) \\
\hline '15-Jan-1997' & [ & \(78.5775]\) & & \(67.8724]\) \\
\hline '16-Jan-1997' & [ & 74.0444] & & \(70.9584]\) \\
\hline '17-Jan-1997' & [ & \(96.6400]\) & & 83.7992] \\
\hline '20-Jan-1997' & [ & \(91.6667]\) & & \(87.7329]\) \\
\hline '21-Jan-1997' & [ & 75] & [ & 81.3665] \\
\hline '22-Jan-1997' & [ & \(97.2000]\) & [ & 89.2832] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 23-Jan-1997' & [ & 76.1714] & [ & 82.7273] \\
\hline '24-Jan-1997' & [ & 90] & [ & 86.3637] \\
\hline '27-Jan-1997' & [ & \(93.5709]\) & [ & 89.9673] \\
\hline '28-Jan-1997' & [ & 66.63531 & & 78.3013] \\
\hline '29-Jan-1997' & [ & \(83.9731]\) & & 81.1372] \\
\hline '30-Jan-1997' & [ & \(59.5712]\) & & 70.3542] \\
\hline '31-Jan-1997' & [ & \(65.9215]\) & & \(68.1378]\) \\
\hline '03-Feb-1997' & [ & \(65.9215]\) & & \(67.0297]\) \\
\hline '04-Feb-1997' & [ & \(61.3413]\) & & \(64.1855]\) \\
\hline ' 05-Feb-1997' & [ & \(61.8857]\) & & \(63.0356]\) \\
\hline '06-Feb-1997' & [ & \(85.7143]\) & & \(74.3749]\) \\
\hline '07-Feb-1997' & [ & \(92.1036]\) & & 83.2393] \\
\hline '10-Feb-1997' & [ & 72.4655] & & \(77.8524]\) \\
\hline '11-Feb-1997' & [ & 59.9880] & [ & \(68.9202]\) \\
\hline '12-Feb-1997' & [ & 92.5015] & & 80.7108] \\
\hline '13-Feb-1997' & [ & \(78.1850]\) & [ & 79.4479] \\
\hline '14-Feb-1997' & [ & 84.4849] & & 81.9664] \\
\hline '17-Feb-1997' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) \\
\hline '18-Feb-1997' & [ & 75.4105] & & 78.6885] \\
\hline '19-Feb-1997' & [ & 50] & [ & 64.3442] \\
\hline '20-Feb-1997' & [ & \(10.0180]\) & & \(37.1811]\) \\
\hline '21-Feb-1997' & [ & 18.4343] & [ & \(27.8077]\) \\
\hline '24-Feb-1997' & [ & \(23.6742]\) & & \(25.7410]\) \\
\hline '25-Feb-1997' & [ & \(34.2172]\) & [ & 29.9791] \\
\hline ' 26-Feb-1997' & [ & \(34.7939]\) & [ & \(32.3865]\) \\
\hline ' \(27-\mathrm{Feb}-1997{ }^{\prime}\) & [ & \(41.3146]\) & [ & \(36.8505]\) \\
\hline ' 28-Feb-1997' & [ & \(16.6667]\) & & \(26.7586]\) \\
\hline '03-Mar-1997' & [ & \(11.8857]\) & [ & \(19.3222]\) \\
\hline '04-Mar-1997' & [ & 5.2432] & [ & 12.2827] \\
\hline ' 05-Mar-1997' & [ & \(34.1335]\) & [ & \(23.2081]\) \\
\hline '06-Mar-1997' & [ & \(65.8665]\) & [ & \(44.5373]\) \\
\hline '07-Mar-1997' & [ & \(82.9040]\) & [ & \(63.7206]\) \\
\hline '10-Mar-1997' & [ & \(95.2000]\) & [ & 79.4603] \\
\hline '11-Mar-1997' & [ & 91.4709] & [ & 85.4656] \\
\hline '12-Mar-1997' & [ & 61.6956] & [ & 73.5806] \\
\hline '13-Mar-1997' & [ & \(25.5363]\) & [ & 49.5584] \\
\hline '14-Mar-1997' & [ & 51.0725] & [ & 50.3155] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline '17-Mar-1997' & [ & 72.3187] & [ & \(61.3171]\) \\
\hline '18-Mar-1997' & [ & \(63.8407]\) & [ & 62.5789] \\
\hline '19-Mar-1997' & [ & \(39.9863]\) & [ & 51.2826] \\
\hline '20-Mar-1997' & [ & \(28.5322]\) & [ & \(39.9074]\) \\
\hline '21-Mar-1997' & [ & \(17.1468]\) & [ & \(28.5271]\) \\
\hline '24-Mar-1997' & , & \(39.9863]\) & [ & \(34.2567]\) \\
\hline '25-Mar-1997' & [ & 40] & [ & \(37.1283]\) \\
\hline '26-Mar-1997' & [ & 61.4958] & [ & 49.3121] \\
\hline '27-Mar-1997' & [ & \(53.8319]\) & [ & \(51.5720]\) \\
\hline '28-Mar-1997' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) \\
\hline '31-Mar-1997' & [ & 14.7495] & [ & \(33.1607]\) \\
\hline '01-Apr-1997' & , & 29.7210] & [ & \(31.4409]\) \\
\hline '02-Apr-1997' & [ & \(29.7210]\) & [ & \(30.5809]\) \\
\hline '03-Apr-1997' & [ & 35.1071 ] & [ & \(32.8440]\) \\
\hline '04-Apr-1997' & [ & 59.4419] & [ & \(46.1430]\) \\
\hline '07-Apr-1997' & [ & 59.4419] & [ & \(52.7924]\) \\
\hline '08-Apr-1997' & [ & \(62.1674]\) & & \(57.4799]\) \\
\hline '09-Apr-1997' & [ & \(59.4419]\) & [ & \(58.4609]\) \\
\hline '10-Apr-1997' & [ & 72.7273] & [ & \(65.5941]\) \\
\hline '11-Apr-1997' & [ & \(33.3091]\) & [ & 49.4516] \\
\hline '14-Apr-1997' & [ & 15.7828] & [ & \(32.6172]\) \\
\hline '15-Apr-1997' & [ & 73.6742] & [ & \(53.1457]\) \\
\hline '16-Apr-1997' & [ & 100] & [ & 76.5729] \\
\hline '17-Apr-1997' & [ & \(89.6000]\) & [ & 83.0864] \\
\hline '18-Apr-1997' & [ & \(96.1974]\) & [ & 89.6419] \\
\hline '21-Apr-1997' & [ & \(86.6800]\) & [ & \(88.1610]\) \\
\hline '22-Apr-1997' & [ & \(92.6253]\) & [ & \(90.3931]\) \\
\hline '23-Apr-1997' & [ & \(94.5850]\) & [ & \(92.4890]\) \\
\hline '24-Apr-1997' & [ & \(82.8860]\) & [ & 87.6875] \\
\hline '25-Apr-1997' & [ & 73.6975] & [ & 80.6925] \\
\hline '28-Apr-1997' & [ & 73.9130] & [ & 77.3028] \\
\hline '29-Apr-1997' & [ & \(98.3600]\) & [ & 87.8314] \\
\hline '30-Apr-1997' & [ & \(89.6566]\) & [ & 88.7440] \\
\hline '01-May-1997' & [ & \(78.5684]\) & [ & 83.6562] \\
\hline '02-May-1997' & [ & \(66.0106]\) & [ & 74.8334] \\
\hline '05-May-1997' & [ & \(93.8786]\) & [ & 84.3560] \\
\hline '06-May-1997' & [ & \(95.3683]\) & [ & 89.8621] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline '07-May-1997' & [ & 62.7790] & [ & 76.3206] \\
\hline '08-May-1997' & [ & 76.7299] & [ & 76.5252] \\
\hline '09-May-1997' & [ & \(95.2571]\) & [ & 85.8912] \\
\hline '12-May-1997' & [ & \(90.9250]\) & & 88.4081] \\
\hline '13-May-1997' & [ & \(72.0982]\) & & 80.2531] \\
\hline '14-May-1997' & [ & \(72.0982]\) & & \(76.1757]\) \\
\hline '15-May-1997' & [ & \(58.1473]\) & & \(67.1615]\) \\
\hline '16-May-1997' & [ & \(20.9263]\) & [ & \(44.0439]\) \\
\hline '19-May-1997' & [ & \(65.1228]\) & & 54.5833] \\
\hline ' 20-May-1997' & [ & \(69.7545]\) & [ & \(62.1689]\) \\
\hline '21-May-1997' & [ & \(44.1964]\) & & \(53.1827]\) \\
\hline '22-May-1997' & [ & 31.4129] & [ & \(42.2978]\) \\
\hline '23-May-1997' & [ & \(57.1331]\) & & \(49.7154]\) \\
\hline '26-May-1997' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) \\
\hline '27-May-1997' & [ & 77.4593] & & \(63.5874]\) \\
\hline '28-May-1997' & [ & \(92.5333]\) & [ & 78.0604] \\
\hline '29-May-1997' & [ & 62.9333] & & 70.4968] \\
\hline '30-May-1997' & [ & \(43.7781]\) & [ & \(57.1375]\) \\
\hline '02-Jun-1997' & [ & 18.7406] & & 37.9391 ] \\
\hline '03-Jun-1997' & [ & 12.5187] & [ & \(25.2289]\) \\
\hline '04-Jun-1997' & [ & \(0]\) & & 12.6144] \\
\hline '05-Jun-1997' & [ & \(20.6069]\) & [ & 16.6107] \\
\hline '06-Jun-1997' & [ & \(35.2858]\) & & \(25.9482]\) \\
\hline '09-Jun-1997' & [ & \(26.4644]\) & [ & 26.2063] \\
\hline '10-Jun-1997' & [ & \(47.0713]\) & [ & \(36.6388]\) \\
\hline '11-Jun-1997' & [ & \(36.3636]\) & [ & \(36.5012]\) \\
\hline '12-Jun-1997' & [ & \(69.9880]\) & [ & \(53.2446]\) \\
\hline '13-Jun-1997' & [ & \(87.8545]\) & [ & 70.5496] \\
\hline '16-Jun-1997' & [ & \(96.9455]\) & [ & 83.7475] \\
\hline '17-Jun-1997' & [ & \(91.6667]\) & [ & 87.7071] \\
\hline '18-Jun-1997' & [ & 58.3333] & [ & 73.0202] \\
\hline '19-Jun-1997' & [ & 76.4996] & [ & 74.7599] \\
\hline '20-Jun-1997' & [ & \(39.3316]\) & [ & \(57.0458]\) \\
\hline '23-Jun-1997' & [ & 3.2508] & [ & \(30.1483]\) \\
\hline '24-Jun-1997' & [ & \(51.6254]\) & [ & 40.8868 ] \\
\hline '25-Jun-1997' & [ & \(38.6997]\) & [ & 39.7933] \\
\hline '26-Jun-1997' & [ & \(27.4768]\) & [ & \(33.6350]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 27-Jun-1997 & [ & 1.4000 ] & [ & 17.5175] \\
\hline '30-Jun-1997' & [ & \(26.6667]\) & [ & \(22.0921]\) \\
\hline '01-Jul-1997' & [ & \(11.9979]\) & [ & \(17.0450]\) \\
\hline '02-Jul-1997' & [ & \(6.0935]\) & [ & \(11.5692]\) \\
\hline '03-Jul-1997' & & \(11.7164]\) & [ & \(11.6428]\) \\
\hline '04-Jul-1997' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) \\
\hline '07-Jul-1997' & [ & \(11.5641]\) & [ & \(11.6035]\) \\
\hline '08-Jul-1997' & [ & \(37.0645]\) & [ & \(24.3340]\) \\
\hline '09-Jul-1997' & [ & \(27.8381]\) & [ & 26.0860 ] \\
\hline '10-Jul-1997' & [ & \(26.3525]\) & [ & 26.2193] \\
\hline '11-Jul-1997' & [ & \(25.5580]\) & & 25.8887 ] \\
\hline '14-Jul-1997 & [ & 49.3598] & [ & \(37.6242]\) \\
\hline '15-Jul-1997' & [ & \(83.5951]\) & & \(60.6097]\) \\
\hline '16-Jul-1997' & [ & \(85.9364]\) & [ & \(73.2731]\) \\
\hline '17-Jul-1997' & [ & \(60.5815]\) & & 66.9273 ] \\
\hline '18-Jul-1997' & [ & \(18.3232]\) & [ & \(42.6252]\) \\
\hline '21-Jul-1997' & [ & 24.2089] & & 33.4170 ] \\
\hline '22-Jul-1997' & [ & \(67.0359]\) & [ & \(50.2265]\) \\
\hline '23-Jul-1997 & [ & 70.9494] & [ & \(60.5879]\) \\
\hline '24-Jul-1997 & [ & \(94.6336]\) & [ & \(77.6108]\) \\
\hline '25-Jul-1997 & [ & \(89.2157]\) & [ & \(83.4132]\) \\
\hline '28-Jul-1997 & [ & \(96.9000]\) & [ & \(90.1566]\) \\
\hline '29-Jul-1997' & [ & \(95.2467]\) & [ & \(92.7017]\) \\
\hline '30-Jul-1997' & [ & 95.8048] & [ & \(94.2532]\) \\
\hline '31-Jul-1997' & [ & 88.9143] & [ & 91.5838] \\
\hline '01-Aug-1997' & [ & \(85.7143]\) & [ & \(88.6490]\) \\
\hline '04-Aug-1997' & [ & \(88.3504]\) & [ & \(88.4997]\) \\
\hline ' 05-Aug-1997' & [ & \(66.2811]\) & [ & \(77.3904]\) \\
\hline ' 06-Aug-1997' & [ & 83.1695] & [ & 80.2799] \\
\hline '07-Aug-1997' & [ & \(25.4799]\) & [ & \(52.8799]\) \\
\hline ' 08-Aug-1997' & [ & \(29.8231]\) & [ & \(41.3515]\) \\
\hline '11-Aug-1997' & & \(49.2614]\) & [ & \(45.3065]\) \\
\hline '12-Aug-1997' & [ & 18.4638] & [ & 31.8851 ] \\
\hline '13-Aug-1997' & [ & \(37.6479]\) & [ & \(34.7665]\) \\
\hline '14-Aug-1997' & [ & \(37.5094]\) & [ & \(36.1379]\) \\
\hline '15-Aug-1997' & & \(2.5846]\) & [ & \(19.3613]\) \\
\hline '18-Aug-1997' & [ & 50] & [ & \(34.6806]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline '19-Aug-1997' & [ & 70.2857] & [ & \(52.4832]\) \\
\hline '20-Aug-1997' & [ & \(83.3714]\) & [ & \(67.9273]\) \\
\hline '21-Aug-1997' & [ & \(62.1920]\) & [ & \(65.0596]\) \\
\hline '22-Aug-1997' & [ & \(45.9792]\) & & \(55.5194]\) \\
\hline '25-Aug-1997' & [ & 50] & & \(52.7597]\) \\
\hline '26-Aug-1997' & [ & \(32.4254]\) & & 42.5926] \\
\hline '27-Aug-1997' & [ & 54.0856] & & 48.3391] \\
\hline '28-Aug-1997' & [ & \(37.8729]\) & & \(43.1060]\) \\
\hline '29-Aug-1997' & [ & \(17.5746]\) & & \(30.3403]\) \\
\hline '01-Sep-1997' & [ & NaN ] & & \(\mathrm{NaN}]\) \\
\hline '02-Sep-1997' & [ & \(57.3564]\) & & \(43.8483]\) \\
\hline ' 03-Sep-1997' & [ & 75.8478] & [ & \(59.8481]\) \\
\hline '04-Sep-1997' & [ & \(26.4493]\) & & \(43.1487]\) \\
\hline '05-Sep-1997' & [ & 41.5761 ] & [ & \(42.3624]\) \\
\hline '08-Sep-1997' & [ & \(32.0652]\) & & \(37.2138]\) \\
\hline '09-Sep-1997' & [ & \(50.9964]\) & [ & \(44.1051]\) \\
\hline '10-Sep-1997' & [ & \(28.3514]\) & & \(36.2283]\) \\
\hline '11-Sep-1997' & [ & \(23.0607]\) & [ & \(29.6445]\) \\
\hline '12-Sep-1997' & [ & \(47.2296]\) & & \(38.4370]\) \\
\hline '15-Sep-1997' & [ & \(48.3377]\) & [ & \(43.3874]\) \\
\hline '16-Sep-1997' & [ & 81.3193] & & 62.3533] \\
\hline '17-Sep-1997' & [ & \(76.3552]\) & [ & 69.3543] \\
\hline '18-Sep-1997 & [ & 83.8926] & & 76.6234] \\
\hline '19-Sep-1997' & [ & \(94.6309]\) & [ & \(85.6272]\) \\
\hline '22-Sep-1997' & [ & 88.1776] & & \(86.9024]\) \\
\hline '23-Sep-1997' & [ & 78.4719] & [ & \(82.6871]\) \\
\hline '24-Sep-1997' & [ & 73.1027] & & 77.8949] \\
\hline '25-Sep-1997' & [ & \(85.7339]\) & [ & 81.8144] \\
\hline '26-Sep-1997' & [ & 78.5775] & [ & \(80.1960]\) \\
\hline '29-Sep-1997' & [ & 72.4338] & [ & 76.3149] \\
\hline '30-Sep-1997' & [ & \(77.9496]\) & [ & \(77.1322]\) \\
\hline '01-Oct-1997' & [ & \(91.8884]\) & [ & 84.5103] \\
\hline '02-0ct-1997' & [ & \(97.8376]\) & [ & \(91.1739]\) \\
\hline '03-0ct-1997' & [ & \(80.9996]\) & [ & 86.0868] \\
\hline '06-0ct-1997' & [ & 62.8322] & [ & 74.4595] \\
\hline '07-0ct-1997' & [ & 91.7493] & [ & \(83.1044]\) \\
\hline '08-0ct-1997' & [ & 76.0413] & [ & 79.5728] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 09-Oct-1997 \({ }^{\text {' }}\) & [ & 75.7290] & [ & \(77.6509]\) \\
\hline 10-Oct-1997' & [ & 68.2369] & [ & \(72.9439]\) \\
\hline '13-0ct-1997' & [ & 80.4057] & [ & 76.6748 ] \\
\hline 14-Oct-1997' & [ & 92.8218] & & 84.7483] \\
\hline '15-0ct-1997' & [ & 83.1176] & [ & 83.9329] \\
\hline '16-0ct-1997' & [ & \(43.2464]\) & & \(63.5897]\) \\
\hline '17-Oct-1997' & [ & 20.2123] & [ & \(41.9010]\) \\
\hline '20-0ct-1997' & [ & 34.6101] & [ & \(38.2555]\) \\
\hline '21-0ct-1997' & [ & \(36.5482]\) & [ & \(37.4019]\) \\
\hline '22-0ct-1997' & [ & \(26.9497]\) & [ & 32.1758 ] \\
\hline '23-0ct-1997' & [ & 15.4130] & & \(23.7944]\) \\
\hline 24-Oct-1997' & [ & 16.3359] & [ & \(20.0652]\) \\
\hline '27-0ct-1997' & [ & 0] & & \(10.0326]\) \\
\hline '28-0ct-1997' & [ & \(57.0827]\) & [ & \(33.5576]\) \\
\hline '29-Oct-1997' & [ & 67.5517] & & \(50.5547]\) \\
\hline '30-0ct-1997' & [ & 56.9563] & [ & \(53.7555]\) \\
\hline '31-Oct-1997' & [ & 74.6659] & & \(64.2107]\) \\
\hline '03-Nov-1997' & [ & 100] & [ & \(82.1053]\) \\
\hline '04-Nov-1997' & [ & 99.4431] & & \(90.7742]\) \\
\hline '05-Nov-1997' & [ & 89.4988] & [ & \(90.1365]\) \\
\hline '06-Nov-1997' & [ & 96.8088] & & \(93.4726]\) \\
\hline 07-Nov-1997' & [ & 90.4968] & [ & 91.9847] \\
\hline 10-Nov-1997' & [ & 83.4893] & & \(87.7370]\) \\
\hline '11-Nov-1997' & [ & 78.5775] & [ & 83.1573] \\
\hline '12-Nov-1997' & [ & \(36.6324]\) & & \(59.8948]\) \\
\hline '13-Nov-1997' & [ & \(51.5996]\) & & 55.7472 ] \\
\hline '14-Nov-1997' & [ & 81.6768] & & 68.7120] \\
\hline '17-Nov-1997' & [ & 88.7842] & & \(78.7481]\) \\
\hline '18-Nov-1997' & [ & \(85.3477]\) & & \(82.0479]\) \\
\hline '19-Nov-1997' & [ & 100] & & \(91.0239]\) \\
\hline '20-Nov-1997' & [ & \(89.0329]\) & & \(90.0284]\) \\
\hline '21-Nov-1997' & [ & 100] & [ & \(95.0142]\) \\
\hline '24-Nov-1997' & [ & \(90.3723]\) & & \(92.6932]\) \\
\hline '25-Nov-1997' & [ & 90.3723] & & \(91.5328]\) \\
\hline '26-Nov-1997' & [ & 92.4235] & [ & 91.9781 ] \\
\hline '27-Nov-1997' & [ & \(\mathrm{NaN}]\) & [ & NaN ] \\
\hline '28-Nov-1997' & [ & 94.2565] & [ & \(93.1173]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 01-Dec-1997 \({ }^{\prime}\) & [ & \(96.9376]\) & [ & \(95.0274]\) \\
\hline 02-Dec-1997' & [ & 83.9523] & [ & 89.4899] \\
\hline 03-Dec-1997' & [ & \(63.0093]\) & [ & \(76.2496]\) \\
\hline 04-Dec-1997' & [ & \(36.9650]\) & & 56.6073 ] \\
\hline 05-Dec-1997' & [ & 26.7299] & [ & \(41.6686]\) \\
\hline 08-Dec-1997' & [ & 29.6209] & [ & 35.6447 ] \\
\hline 09-Dec-1997 \({ }^{\prime}\) & [ & \(26.6100]\) & & \(31.1273]\) \\
\hline 10-Dec-1997 \({ }^{\prime}\) & [ & 16.4642] & [ & \(23.7957]\) \\
\hline 11-Dec-1997' & [ & 12.7681] & & 18.2819] \\
\hline 12-Dec-1997' & [ & \(26.5577]\) & [ & \(22.4198]\) \\
\hline 15-Dec-1997' & [ & \(89.0237]\) & & \(55.7218]\) \\
\hline 16-Dec-1997' & [ & 74.9714] & [ & \(65.3466]\) \\
\hline '17-Dec-1997' & [ & 90.4571] & & \(77.9019]\) \\
\hline 18-Dec-1997' & [ & \(91.3361]\) & [ & \(84.6190]\) \\
\hline 19-Dec-1997' & [ & \(65.2401]\) & & \(74.9295]\) \\
\hline 22-Dec-1997' & [ & 90.3984] & [ & \(82.6640]\) \\
\hline 23-Dec-1997 \({ }^{\prime}\) & [ & 84.4755] & & 83.5697] \\
\hline 24-Dec-1997' & [ & \(45.6410]\) & [ & \(64.6054]\) \\
\hline 25-Dec-1997' & [ & \(\mathrm{NaN}]\) & & NaN ] \\
\hline 26-Dec-1997' & [ & \(34.5714]\) & [ & \(49.5884]\) \\
\hline 29-Dec-1997 ' & [ & 71.4286] & & \(60.5085]\) \\
\hline 30-Dec-1997' & [ & 82.1337] & & 71.3211] \\
\hline 31-Dec-1997' & [ & 82.1337] & & \(76.7274]\) \\
\hline 01-Jan-1998' & [ & \(\mathrm{NaN}]\) & & NaN ] \\
\hline 02-Jan-1998' & [ & 88.4721] & [ & 82.5998] \\
\hline 05-Jan-1998' & [ & 67.4078] & & \(75.0038]\) \\
\hline 06-Jan-1998' & [ & 61.0915] & & \(68.0476]\) \\
\hline 07-Jan-1998' & [ & \(61.6956]\) & & \(64.8716]\) \\
\hline 08-Jan-1998' & [ & \(47.9060]\) & & 56.3888 ] \\
\hline 09-Jan-1998' & [ & \(9.5429]\) & & 32.9658 ] \\
\hline 12-Jan-1998' & [ & 12.1503] & & \(22.5581]\) \\
\hline '13-Jan-1998' & [ & \(20.0000]\) & & \(21.2790]\) \\
\hline 14-Jan-1998' & [ & \(40.8768]\) & & \(31.0779]\) \\
\hline '15-Jan-1998' & [ & 29.5616] & & \(30.3198]\) \\
\hline '16-Jan-1998' & [ & \(35.6576]\) & & \(32.9887]\) \\
\hline '19-Jan-1998' & [ & \(\mathrm{NaN}]\) & [ & NaN ] \\
\hline '20-Jan-1998' & [ & 93.9379] & [ & \(63.4633]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 21-Jan-1998 \({ }^{\text {' }}\) & [ & \(85.8390]\) & [ & 74.6511] \\
\hline 22-Jan-1998' & [ & \(47.4782]\) & [ & \(61.0647]\) \\
\hline 23-Jan-1998' & [ & 81.8138] & [ & 71.4392] \\
\hline 26-Jan-1998' & [ & 60.4000] & [ & \(65.9196]\) \\
\hline 27-Jan-1998' & [ & 86.1715] & & 76.0456] \\
\hline 28-Jan-1998' & [ & 85.4975] & [ & 80.7715] \\
\hline 29-Jan-1998' & [ & 83.8171] & & 82.2943] \\
\hline 30-Jan-1998 \({ }^{\text {' }}\) & [ & \(87.5653]\) & [ & 84.9298] \\
\hline 02-Feb-1998' & [ & \(96.6149]\) & & \(90.7723]\) \\
\hline 03-Feb-1998' & [ & \(90.3316]\) & [ & \(90.5520]\) \\
\hline 04-Feb-1998' & [ & \(92.7429]\) & & \(91.6474]\) \\
\hline 05-Feb-1998' & [ & 91.5453] & [ & 91.5963] \\
\hline 06-Feb-1998' & [ & \(93.4545]\) & & 92.5254] \\
\hline 09-Feb-1998' & [ & 81.9754] & [ & 87.2504] \\
\hline 10-Feb-1998' & [ & 81.6357] & & 84.4430] \\
\hline 11-Feb-1998' & [ & 100] & [ & \(92.2215]\) \\
\hline 12-Feb-1998' & [ & \(87.4591]\) & & 89.8403] \\
\hline 13-Feb-1998' & [ & \(96.3700]\) & [ & \(93.1052]\) \\
\hline 16-Feb-1998' & [ & NaN ] & & NaN ] \\
\hline 17-Feb-1998 \({ }^{\text {' }}\) & [ & 100] & & \(96.5526]\) \\
\hline 18-Feb-1998' & [ & 95.7148] & & \(96.1337]\) \\
\hline 19-Feb-1998' & [ & 85.4333] & & \(90.7835]\) \\
\hline 20-Feb-1998' & [ & 87.5000] & [ & 89.1418 ] \\
\hline 23-Feb-1998' & [ & 81.7710] & & 85.4564] \\
\hline 24-Feb-1998' & [ & \(48.7697]\) & [ & \(67.1130]\) \\
\hline 25-Feb-1998' & [ & \(34.5264]\) & & \(50.8197]\) \\
\hline 26-Feb-1998' & [ & \(14.8444]\) & & 32.8321 ] \\
\hline '27-Feb-1998' & [ & \(43.5556]\) & & \(38.1938]\) \\
\hline 02-Mar-1998' & [ & \(5.5556]\) & & \(21.8747]\) \\
\hline '03-Mar-1998' & [ & \(14.8444]\) & & \(18.3596]\) \\
\hline '04-Mar-1998' & [ & \(19.7722]\) & & \(19.0659]\) \\
\hline '05-Mar-1998' & [ & \(4.5294]\) & & \(11.7976]\) \\
\hline 06-Mar-1998' & [ & 8.4622] & & 10.1299] \\
\hline 09-Mar-1998' & [ & 12.1635] & & 11.1467] \\
\hline 10-Mar-1998' & [ & 14.9660 ] & [ & \(13.0563]\) \\
\hline '11-Mar-1998' & [ & \(5.3091]\) & [ & \(9.1827]\) \\
\hline 12-Mar-1998' & [ & 18.9455] & [ & 14.0641] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline '13-Mar-1998' & [ & \(21.4597]\) & [ & 17.7619] \\
\hline '16-Mar-1998' & [ & 83.1749] & [ & 50.4684] \\
\hline '17-Mar-1998' & [ & \(58.8800]\) & [ & 54.6742] \\
\hline '18-Mar-1998' & [ & \(52.2133]\) & & \(53.4438]\) \\
\hline '19-Mar-1998' & [ & \(34.4533]\) & & \(43.9486]\) \\
\hline '20-Mar-1998' & [ & \(46.6667]\) & & \(45.3076]\) \\
\hline '23-Mar-1998' & [ & 3.4340 ] & & \(24.3708]\) \\
\hline '24-Mar-1998' & [ & \(57.7576]\) & & \(41.0642]\) \\
\hline '25-Mar-1998' & [ & \(56.8887]\) & & \(48.9764]\) \\
\hline '26-Mar-1998' & [ & \(68.1010]\) & & \(58.5387]\) \\
\hline '27-Mar-1998' & [ & \(62.0604]\) & & \(60.2996]\) \\
\hline '30-Mar-1998' & [ & \(46.9000]\) & & \(53.5998]\) \\
\hline '31-Mar-1998' & [ & 73.5245] & & \(63.5622]\) \\
\hline '01-Apr-1998' & [ & \(59.7352]\) & [ & \(61.6487]\) \\
\hline '02-Apr-1998' & [ & \(98.9821]\) & & 80.3154] \\
\hline '03-Apr-1998' & [ & 100] & [ & \(90.1577]\) \\
\hline '06-Apr-1998' & [ & 57.1298] & & \(73.6437]\) \\
\hline '07-Apr-1998' & [ & 46.9770 ] & [ & \(60.3104]\) \\
\hline '08-Apr-1998' & [ & \(33.0134]\) & & \(46.6619]\) \\
\hline '09-Apr-1998' & [ & \(65.9789]\) & [ & \(56.3204]\) \\
\hline '10-Apr-1998' & [ & \(\mathrm{NaN}]\) & & \(\mathrm{NaN}]\) \\
\hline '13-Apr-1998' & [ & 84.9808] & [ & 70.6506] \\
\hline '14-Apr-1998' & [ & \(99.2422]\) & & 84.9464] \\
\hline '15-Apr-1998' & [ & \(86.6560]\) & & 85.8012] \\
\hline '16-Apr-1998' & [ & \(69.1650]\) & & 77.4831] \\
\hline '17-Apr-1998' & [ & \(84.2538]\) & & 80.8684] \\
\hline '20-Apr-1998' & [ & \(95.0824]\) & & \(87.9754]\) \\
\hline '21-Apr-1998' & [ & \(98.3467]\) & [ & \(93.1611]\) \\
\hline '22-Apr-1998' & [ & 100] & [ & 96.5805] \\
\hline '23-Apr-1998' & [ & \(78.9212]\) & [ & \(87.7509]\) \\
\hline '24-Apr-1998' & [ & \(70.5571]\) & [ & 79.1540] \\
\hline '27-Apr-1998' & [ & \(58.5302]\) & [ & \(68.8421]\) \\
\hline '28-Apr-1998' & [ & \(74.2220]\) & [ & \(71.5320]\) \\
\hline '29-Apr-1998' & [ & 76.5654] & [ & 74.0487] \\
\hline '30-Apr-1998' & [ & \(80.8586]\) & [ & \(77.4537]\) \\
\hline '01-May-1998' & [ & 86.3396] & [ & 81.8966] \\
\hline '04-May-1998' & [ & \(90.9838]\) & [ & 86.4402] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{07-May-1998'} \\
\hline \multicolumn{2}{|l|}{08-May-1998} \\
\hline \multicolumn{2}{|l|}{'11-May-1998'} \\
\hline \multicolumn{2}{|l|}{'12-May-1998'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'15-May-1998'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'20-May-1998'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{27-May} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'02-Jun-1998'} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{'04-Jun-1998'} \\
\hline \multicolumn{2}{|l|}{'05-Jun-1998'} \\
\hline \multicolumn{2}{|l|}{un-1998} \\
\hline \multicolumn{2}{|l|}{'09-Jun-1998'} \\
\hline \multicolumn{2}{|l|}{'10-Jun-1998'} \\
\hline \multicolumn{2}{|l|}{11-Jun-1998} \\
\hline \multicolumn{2}{|l|}{'12-Jun-1998'} \\
\hline \multicolumn{2}{|l|}{'15-Jun-1998'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'17-Jun-1998'} \\
\hline \multicolumn{2}{|l|}{'18-Jun-1998'} \\
\hline \multicolumn{2}{|l|}{'19-Jun-1998'} \\
\hline \multicolumn{2}{|l|}{'22-Jun-1998'} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{24-Jun-1998} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(86.6872]\) & [ & \(86.5637]\) \\
\hline 54.1091 ] & [ & \(70.3364]\) \\
\hline \(2.6383]\) & [ & 36.4873 ] \\
\hline \(6.5677]\) & [ & \(21.5275]\) \\
\hline \(21.0609]\) & [ & 21.2942] \\
\hline \(0.6544]\) & [ & \(10.9743]\) \\
\hline \(4.8280]\) & [ & \(7.9012]\) \\
\hline \(4.3802]\) & [ & \(6.1407]\) \\
\hline \(0.3537]\) & [ & \(3.2472]\) \\
\hline \(3.3440]\) & [ & \(3.2956]\) \\
\hline 10.7131 ] & [ & 7.0043 ] \\
\hline 45.6313 ] & [ & \(26.3178]\) \\
\hline \(56.4115]\) & [ & \(41.3647]\) \\
\hline 59.4881 ] & [ & \(50.4264]\) \\
\hline NaN] & [ & \(\mathrm{NaN}]\) \\
\hline 25.4473 ] & [ & 37.9368 ] \\
\hline \(63.1541]\) & [ & \(50.5455]\) \\
\hline 56.1061 ] & [ & \(53.3258]\) \\
\hline 54.4674 ] & [ & \(53.8966]\) \\
\hline 10.4120] & [ & \(32.1543]\) \\
\hline \(7.8047]\) & [ & \(19.9795]\) \\
\hline \(6.5158]\) & [ & 13.2476] \\
\hline 17.2652] & [ & \(15.2564]\) \\
\hline \(76.2431]\) & [ & \(45.7498]\) \\
\hline 89.9171 ] & [ & \(67.8334]\) \\
\hline 100] & [ & 83.9167] \\
\hline \(88.1806]\) & [ & \(86.0487]\) \\
\hline \(69.8839]\) & [ & \(77.9663]\) \\
\hline \(60.2065]\) & [ & \(69.0864]\) \\
\hline \(35.4839]\) & [ & \(52.2851]\) \\
\hline \(41.3935]\) & [ & 46.8393 ] \\
\hline 53.7548 ] & [ & 50.2971 ] \\
\hline 0.7743 ] & [ & \(25.5357]\) \\
\hline \(5.3617]\) & [ & 15.4487] \\
\hline 27.9874 ] & [ & 21.7180] \\
\hline \(34.5645]\) & [ & \(28.1413]\) \\
\hline \(57.4737]\) & [ & 42.8075] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline '25-Jun-1998' & [ & \(66.6750]\) & [ & 54.7412] \\
\hline '26-Jun-1998' & [ & 51.0595] & [ & \(52.9004]\) \\
\hline '29-Jun-1998' & [ & 73.9341] & [ & 63.4172] \\
\hline '30-Jun-1998' & , & \(4.7996]\) & [ & \(34.1084]\) \\
\hline '01-Jul-1998' & [ & \(17.6275]\) & [ & \(25.8680]\) \\
\hline '02-Jul-1998' & , & \(20.5340]\) & [ & \(23.2010]\) \\
\hline '03-Jul-1998' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) \\
\hline '06-Jul-1998' & [ & 10.9503] & [ & 17.0757] \\
\hline '07-Jul-1998' & [ & 19.1713] & [ & 18.1235] \\
\hline '08-Jul-1998' & [ & \(38.3427]\) & [ & 28.2331] \\
\hline '09-Jul-1998' & [ & \(69.2179]\) & [ & 48.7255] \\
\hline '10-Jul-1998' & [ & 89.4722] & [ & 69.0988] \\
\hline '13-Jul-1998' & [ & \(95.9351]\) & & 82.5170] \\
\hline '14-Jul-1998' & [ & 92.9405] & [ & 87.7287] \\
\hline '15-Jul-1998' & [ & 82.5488] & [ & 85.1388] \\
\hline '16-Jul-1998' & [ & 81.3953] & [ & 83.2671] \\
\hline '17-Jul-1998' & [ & 82.5488] & - & 82.9080] \\
\hline '20-Jul-1998' & [ & \(64.8594]\) & [ & 73.8837] \\
\hline '21-Jul-1998' & [ & \(46.5150]\) & [ & \(60.1994]\) \\
\hline '22-Jul-1998' & [ & \(24.6261]\) & [ & 42.4128] \\
\hline '23-Jul-1998' & [ & \(5.7964]\) & [ & 24.1046] \\
\hline '24-Jul-1998' & [ & \(18.8500]\) & [ & \(21.4773]\) \\
\hline '27-Jul-1998' & [ & 14.4911] & [ & 17.9842] \\
\hline '28-Jul-1998' & [ & 5.9429] & [ & \(11.9635]\) \\
\hline '29-Jul-1998' & [ & \(6.6567]\) & [ & \(9.3101]\) \\
\hline '30-Jul-1998' & [ & \(22.8348]\) & [ & \(16.0724]\) \\
\hline '31-Jul-1998' & [ & \(7.6174]\) & [ & \(11.8449]\) \\
\hline '03-Aug-1998' & [ & \(15.0778]\) & [ & \(13.4614]\) \\
\hline '04-Aug-1998' & [ & \(1.2000]\) & [ & \(7.3307]\) \\
\hline '05-Aug-1998' & [ & \(23.3422]\) & [ & \(15.3365]\) \\
\hline '06-Aug-1998' & [ & \(22.3789]\) & [ & 18.8577] \\
\hline '07-Aug-1998' & [ & \(25.3493]\) & [ & \(22.1035]\) \\
\hline '10-Aug-1998' & [ & 14.4911] & [ & 18.2973] \\
\hline '11-Aug-1998' & [ & 15.9323] & [ & 17.1148] \\
\hline '12-Aug-1998' & [ & \(24.6184]\) & [ & \(20.8666]\) \\
\hline '13-Aug-1998' & [ & \(9.2319]\) & [ & 15.0493] \\
\hline '14-Aug-1998' & [ & 12.6968] & [ & \(13.8730]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline '17-Aug-1998' & [ & \(26.1629]\) & [ & 20.0180] \\
\hline '18-Aug-1998' & [ & 80.8373] & [ & \(50.4276]\) \\
\hline '19-Aug-1998' & [ & \(69.5652]\) & [ & 59.9964] \\
\hline '20-Aug-1998' & [ & \(90.9091]\) & & 75.4528] \\
\hline '21-Aug-1998' & [ & \(77.2727]\) & & 76.3627] \\
\hline '24-Aug-1998' & [ & 79.9858] & & \(78.1743]\) \\
\hline '25-Aug-1998' & [ & 82.4586] & & 80.3164] \\
\hline '26-Aug-1998' & [ & \(52.6242]\) & [ & \(66.4703]\) \\
\hline '27-Aug-1998' & [ & 21.6533] & & 44.0618] \\
\hline '28-Aug-1998' & [ & \(12.1514]\) & [ & \(28.1066]\) \\
\hline '31-Aug-1998' & [ & 16.5516] & & \(22.3291]\) \\
\hline '01-Sep-1998' & [ & 50.3568] & [ & \(36.3429]\) \\
\hline '02-Sep-1998' & [ & 44.6017] & & \(40.4723]\) \\
\hline '03-Sep-1998' & [ & \(26.6229]\) & [ & \(33.5476]\) \\
\hline '04-Sep-1998' & [ & \(25.8978]\) & & \(29.7227]\) \\
\hline '07-Sep-1998' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) \\
\hline '08-Sep-1998' & [ & \(40.9836]\) & & \(35.3532]\) \\
\hline '09-Sep-1998' & [ & 27.8923] & [ & 31.6227 ] \\
\hline '10-Sep-1998' & [ & 18.0936] & & 24.8582] \\
\hline '11-Sep-1998' & [ & \(1.0286]\) & [ & \(12.9434]\) \\
\hline '14-Sep-1998' & [ & 7.0375] & & \(9.9904]\) \\
\hline '15-Sep-1998' & [ & 20.3125] & [ & \(15.1515]\) \\
\hline '16-Sep-1998' & [ & \(29.7006]\) & [ & \(22.4260]\) \\
\hline '17-Sep-1998' & [ & 28.7185] & [ & \(25.5723]\) \\
\hline '18-Sep-1998' & [ & \(26.7385]\) & [ & \(26.1554]\) \\
\hline '21-Sep-1998' & [ & \(19.8004]\) & [ & \(22.9779]\) \\
\hline '22-Sep-1998' & [ & \(25.3084]\) & [ & \(24.1431]\) \\
\hline '23-Sep-1998' & [ & 72.3111] & [ & 48.2271 ] \\
\hline '24-Sep-1998' & [ & \(49.2247]\) & [ & \(48.7259]\) \\
\hline '25-Sep-1998' & [ & \(53.8462]\) & [ & \(51.2860]\) \\
\hline '28-Sep-1998' & [ & \(62.1540]\) & [ & \(56.7200]\) \\
\hline '29-Sep-1998' & [ & 50] & [ & \(53.3600]\) \\
\hline '30-Sep-1998' & [ & \(22.2222]\) & [ & \(37.7911]\) \\
\hline '01-Oct-1998' & [ & 16.6857] & [ & \(27.2384]\) \\
\hline '02-0ct-1998' & [ & \(28.5714]\) & [ & \(27.9049]\) \\
\hline '05-0ct-1998' & [ & 21.4476] & [ & 24.6763] \\
\hline '06-0ct-1998' & [ & \(33.3333]\) & [ & 29.0048] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline '07-Oct-1998' & [ & \(16.6857]\) & [ & \(22.8453]\) \\
\hline '08-0ct-1998' & [ & \(22.2194]\) & [ & 22.5323] \\
\hline '09-0ct-1998' & [ & \(29.2395]\) & [ & \(25.8859]\) \\
\hline '12-0ct-1998' & [ & 52.3013] & [ & \(39.0936]\) \\
\hline '13-0ct-1998' & [ & 81.3449] & [ & 60.2192] \\
\hline '14-0ct-1998' & [ & \(53.5714]\) & [ & \(56.8953]\) \\
\hline '15-0ct-1998' & [ & \(96.4286]\) & [ & 76.6620] \\
\hline '16-0ct-1998' & [ & 85.7143] & [ & 81.1881] \\
\hline '19-0ct-1998' & [ & 100] & [ & \(90.5941]\) \\
\hline '20-0ct-1998' & [ & \(91.2600]\) & [ & \(90.9270]\) \\
\hline '21-Oct-1998' & [ & \(96.4381]\) & [ & \(93.6826]\) \\
\hline '22-0ct-1998' & [ & 100] & [ & 96.8413] \\
\hline '23-0ct-1998' & [ & 93.4418] & & \(95.1415]\) \\
\hline '26-0ct-1998' & [ & 98.3736] & [ & \(96.7575]\) \\
\hline '27-0ct-1998' & [ & 68.8615] & & 82.8095] \\
\hline '28-0ct-1998' & [ & \(59.0241]\) & [ & 70.9168] \\
\hline '29-0ct-1998' & [ & \(52.1739]\) & [ & \(61.5454]\) \\
\hline '30-0ct-1998' & [ & \(63.0609]\) & [ & \(62.3031]\) \\
\hline '02-Nov-1998' & [ & \(90.7556]\) & [ & 76.5293] \\
\hline '03-Nov-1998' & [ & \(95.3250]\) & [ & 85.9272] \\
\hline '04-Nov-1998' & [ & \(63.8889]\) & [ & 74.9080] \\
\hline '05-Nov-1998' & [ & \(98.6222]\) & [ & \(86.7651]\) \\
\hline '06-Nov-1998' & [ & \(92.3077]\) & [ & 89.5364] \\
\hline '09-Nov-1998' & [ & 78.2154] & [ & 83.8759] \\
\hline '10-Nov-1998' & [ & \(64.1026]\) & [ & 73.9892] \\
\hline '11-Nov-1998' & [ & \(61.1111]\) & [ & \(67.5502]\) \\
\hline '12-Nov-1998' & [ & 49.2368] & [ & 58.3935] \\
\hline '13-Nov-1998' & [ & \(52.9338]\) & [ & 55.6636] \\
\hline '16-Nov-1998' & [ & \(41.8683]\) & [ & 48.7660 ] \\
\hline '17-Nov-1998' & [ & \(41.8683]\) & [ & \(45.3171]\) \\
\hline '18-Nov-1998' & [ & \(39.5236]\) & [ & \(42.4204]\) \\
\hline '19-Nov-1998' & [ & \(7.5200]\) & [ & 24.9702] \\
\hline '20-Nov-1998' & [ & 15] & [ & 19.9851] \\
\hline '23-Nov-1998' & [ & 81.4573] & [ & 50.7212] \\
\hline '24-Nov-1998' & [ & 61.3818] & [ & \(56.0515]\) \\
\hline '25-Nov-1998' & [ & 100] & [ & 78.0258] \\
\hline '26-Nov-1998' & [ & \(\mathrm{NaN}]\) & [ & NaN ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline '27-Nov-1998' & [ & \(93.7500]\) & [ & \(85.8879]\) \\
\hline '30-Nov-1998' & [ & \(81.2600]\) & [ & 83.5739] \\
\hline '01-Dec-1998' & [ & \(67.5000]\) & [ & \(75.5370]\) \\
\hline '02-Dec-1998' & [ & \(61.2600]\) & & 68.3985] \\
\hline '03-Dec-1998' & [ & \(55.0000]\) & & 61.6992] \\
\hline '04-Dec-1998' & [ & \(61.1111]\) & & \(61.4052]\) \\
\hline '07-Dec-1998' & [ & \(44.8276]\) & & \(53.1164]\) \\
\hline '08-Dec-1998' & [ & \(67.8571]\) & [ & 60.4868] \\
\hline '09-Dec-1998' & [ & 93.8929] & I & 77.1898] \\
\hline '10-Dec-1998' & [ & \(57.1522]\) & [ & \(67.1710]\) \\
\hline '11-Dec-1998' & [ & 42.8478] & & \(55.0094]\) \\
\hline '14-Dec-1998' & [ & \(13.7931]\) & [ & 34.4013] \\
\hline '15-Dec-1998' & [ & \(17.2414]\) & & \(25.8213]\) \\
\hline '16-Dec-1998' & [ & \(17.2414]\) & [ & 21.5313] \\
\hline '17-Dec-1998' & [ & \(20.6897]\) & & 21.1105] \\
\hline '18-Dec-1998' & [ & \(20.3417]\) & [ & \(20.7261]\) \\
\hline '21-Dec-1998' & [ & \(25.4136]\) & & \(23.0699]\) \\
\hline '22-Dec-1998' & [ & \(0]\) & [ & 11.5349] \\
\hline '23-Dec-1998' & [ & 26.6667] & & 19.1008] \\
\hline '24-Dec-1998' & [ & \(22.7273]\) & [ & \(20.9140]\) \\
\hline '25-Dec-1998' & [ & \(\mathrm{NaN}]\) & & \(\mathrm{NaN}]\) \\
\hline '28-Dec-1998' & [ & 18.1818] & [ & 19.5479] \\
\hline '29-Dec-1998' & [ & 18.1818] & [ & \(18.8649]\) \\
\hline '30-Dec-1998' & [ & \(4.2546]\) & [ & \(11.5597]\) \\
\hline '31-Dec-1998' & [ & \(13.9840]\) & [ & 12.7719] \\
\hline '01-Jan-1999' & [ & NaN ] & [ & \(\mathrm{NaN}]\) \\
\hline '04-Jan-1999' & [ & \(9.1041]\) & [ & \(10.9380]\) \\
\hline '05-Jan-1999' & [ & 75.0286] & [ & 42.9833] \\
\hline '06-Jan-1999' & [ & \(96.4571]\) & [ & \(69.7202]\) \\
\hline '07-Jan-1999' & [ & 100] & [ & 84.8601] \\
\hline '08-Jan-1999' & [ & \(92.9834]\) & [ & 88.9218] \\
\hline '11-Jan-1999' & [ & 96] & [ & \(92.4609]\) \\
\hline '12-Jan-1999' & [ & \(92.7103]\) & [ & 92.5856] \\
\hline '13-Jan-1999' & [ & 72.8438] & [ & 82.7147] \\
\hline '14-Jan-1999' & [ & \(72.1869]\) & [ & 77.4508] \\
\hline '15-Jan-1999' & [ & \(71.5194]\) & [ & 74.4851] \\
\hline '18-Jan-1999' & [ & \(\mathrm{NaN}]\) & [ & NaN ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline '19-Jan-1999' & [ & 75.5203] & [ & \(75.0027]\) \\
\hline '20-Jan-1999' & [ & \(69.0608]\) & & 72.0317] \\
\hline '21-Jan-1999' & [ & \(40.0000]\) & [ & \(56.0159]\) \\
\hline '22-Jan-1999' & [ & \(18.8800]\) & & \(37.4479]\) \\
\hline '25-Jan-1999' & [ & 20.0085] & & 28.7282] \\
\hline '26-Jan-1999' & [ & 16.6815] & & 22.7049] \\
\hline '27-Jan-1999' & [ & \(5.4801]\) & & 14.0925] \\
\hline '28-Jan-1999' & [ & 19.1059] & & \(16.5992]\) \\
\hline '29-Jan-1999' & [ & 7.3412] & & \(11.9702]\) \\
\hline '01-Feb-1999' & [ & \(23.5294]\) & & 17.7498] \\
\hline '02-Feb-1999' & [ & \(16.1647]\) & & \(16.9572]\) \\
\hline '03-Feb-1999' & [ & 28.2911] & & \(22.6242]\) \\
\hline '04-Feb-1999' & [ & 16.2635] & [ & 19.4438] \\
\hline '05-Feb-1999' & [ & \(58.1317]\) & & 38.7878] \\
\hline '08-Feb-1999' & [ & \(48.8277]\) & [ & \(43.8077]\) \\
\hline '09-Feb-1999' & [ & \(40.6000]\) & [ & 42.2039] \\
\hline '10-Feb-1999' & [ & \(66.6667]\) & & 54.4353] \\
\hline '11-Feb-1999' & [ & 88.3885] & [ & 71.4119] \\
\hline '12-Feb-1999' & [ & 95.4545] & & \(83.4332]\) \\
\hline '15-Feb-1999' & [ & NaN] & [ & \(\mathrm{NaN}]\) \\
\hline '16-Feb-1999' & [ & \(68.7667]\) & & 76.0999] \\
\hline '17-Feb-1999' & [ & \(62.5000]\) & [ & \(69.3000]\) \\
\hline '18-Feb-1999' & [ & \(44.1757]\) & & 56.7378] \\
\hline '19-Feb-1999' & [ & \(30.2196]\) & [ & \(43.4787]\) \\
\hline '22-Feb-1999' & [ & \(58.1317]\) & [ & 50.8052] \\
\hline '23-Feb-1999' & [ & \(58.1317]\) & [ & 54.4685] \\
\hline '24-Feb-1999' & [ & 57.1559] & [ & \(55.8122]\) \\
\hline '25-Feb-1999' & [ & 25] & [ & \(40.4061]\) \\
\hline ' 26-Feb-1999' & [ & \(59.4000]\) & [ & 49.9031] \\
\hline '01-Mar-1999' & [ & \(40.6500]\) & [ & 45.2765] \\
\hline '02-Mar-1999' & [ & \(9.4000]\) & [ & \(27.3383]\) \\
\hline '03-Mar-1999' & [ & 25] & [ & \(26.1691]\) \\
\hline '04-Mar-1999' & [ & \(59.4000]\) & [ & 42.7846] \\
\hline '05-Mar-1999' & [ & \(90.3459]\) & [ & \(66.5652]\) \\
\hline '08-Mar-1999' & [ & \(90.4762]\) & [ & 78.5207] \\
\hline '09-Mar-1999' & [ & \(23.8095]\) & [ & \(51.1651]\) \\
\hline '10-Mar-1999' & [ & 16.6476] & [ & \(33.9064]\) \\
\hline
\end{tabular}
\begin{tabular}{llrll} 
'11-Mar-1999' & {\([\)} & \(23.8095]\) & {\([\)} & \(28.8579]\) \\
'12-Mar-1999' & {\([\)} & \(76.1905]\) & {\([\)} & \(52.5242]\) \\
'15-Mar-1999' & {\([\)} & \(69.0286]\) & {\([\)} & \(60.7764]\) \\
'16-Mar-1999' & {\([\)} & \(36.5977]\) & {\([\)} & \(48.6871]\) \\
'17-Mar-1999' & {\([\)} & \(14.6313]\) & {\([\)} & \(31.6592]\) \\
'18-Mar-1999' & {\([\)} & \(51.2290]\) & {\([\)} & \(41.4441]\) \\
'19-Mar-1999' & {\([\)} & \(36.5977]\) & {\([\)} & \(39.0209]\) \\
'22-Mar-1999' & {\([\)} & \(10.2543]\) & {\([\)} & \(24.6376]\) \\
'23-Mar-1999' & {\([\)} & \(10]\) & {\([\)} & \(17.3188]\) \\
'24-Mar-1999' & {\([\)} & \(14.2966]\) & {\([\)} & \(15.8077]\) \\
'25-Mar-1999' & {\([\)} & \(19.0452]\) & {\([\)} & \(17.4265]\) \\
'26-Mar-1999' & {\([\)} & \(7.9482]\) & {\([\)} & \(12.6873]\) \\
'29-Mar-1999' & {\([\)} & \(11.4870]\) & {\([\)} & \(12.0872]\)
\end{tabular}


\author{
References Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 268-271.
}

See Also fpctkd \| spctkd

\section*{Purpose Content assignment}

\section*{Syntax subasgn}

Description
subasgn assigns content to a component within a financial time series object. subasgn supports integer indexing or date string indexing into the time series object with values assigned to the designated components. Serial date numbers cannot be used as indices. To use date string indexing, enclose the date string(s) in a pair of single quotation marks ' '.

You can use integer indexing on the object as in any other MATLAB matrix. It will return the appropriate entry(ies) from the object.

You must specify the component to which you want to assign values. An assigned value must be either a scalar or a column vector.

\section*{Examples}

Given a time series myfts with a default data series name of series1, myfts.series1('07/01/98::07/03/98') = [1 2 3]';
assigns the values 1, 2, and 3 corresponding to the first three days of July, 1998.
```

myfts('07/01/98::07/05/98')
ans =
desc: Data Assignment
freq: Daily (1)
'dates: (5)' 'series1: (5)
'01-Jul-1998' [1]
'02-Jul-1998' [2]
'03-Jul-1998' [3]
'04-Jul-1998' [4561.2]
'05-Jul-1998' [5612.3]

```

When the financial time series object contains a time-of-day specification, you can assign data to a specific time on a specific day. For example, create a financial time series object called timeday containing both dates and times:
```

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...
times]);
timeday = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')
timeday =
desc: My first FINTS
freq: Daily (1)

dates: (6)'	'times:	(6) ${ }^{\prime}$	'Data1: (6)'
'01-Jan-2001'	'11:00'		$1]$
" '	'12:00'		2]
'02-Jan-2001'	'11:00'		$3]$
" '	'12:00'		4]
'03-Jan-2001'	'11:00'		5]
" '	'12:00'		$6]$

```

Use integer indexing to assign the value 999 to the first item in the object.
```

timeday(1) = 999
timeday =
desc: My first FINTS
freq: Daily (1)

'dates: (6)'	'times:	(6)'	'Data1:	(6)'
'01-Jan-2001'	'11:00'		$[$	$999]$
${ }^{\prime}{ }^{\prime}{ }^{\prime}$	$' 12: 00 '$	$[$	$2]$	

```
\begin{tabular}{|c|c|c|}
\hline '02-Jan-2001' & '11:00' & \(3]\) \\
\hline " , & '12:00' & 4] \\
\hline '03-Jan-2001' & '11:00' & 5] \\
\hline ' " ' & '12:00' & \(6]\) \\
\hline
\end{tabular}

For value assignment using date strings, enclose the string in single quotation marks. If a date has multiple times, designating only the date and assigning a value results in every element of that date taking on the assigned value. For example, to assign the value 0.5 to all times-of-day on January 1, 2001, enter
```

timedata('01-Jan-2001') = 0.5

```

The result is
```

timedata =
desc: My first FINTS
freq: Daily (1)

dates: (6)'	'times:	(6) ${ }^{\prime}$	Data1: (6)'
'01-Jan-2001'	'11:00'		$0.5000]$
, "	'12:00'		$0.5000]$
'02-Jan-2001'	'11:00'		$3]$
' " '	'12:00'		4]
'03-Jan-2001'	'11:00'		5]
' ${ }^{\text {b }}$	'12:00'		$6]$

```

To access the individual components of the financial time series object, use the structure syntax. For example, to assign a range of data to all the data items in the series Data1, you can use
```

timedata.Data1 = (0: .1 : .5)'
timedata =
desc: My first FINTS
freq: Daily (1)

```
\begin{tabular}{|c|c|c|c|}
\hline 'dates: (6)' & 'times: & (6) \({ }^{\prime}\) & 'Data1: (6)' \\
\hline '01-Jan-2001' & '11:00' & & \(0]\) \\
\hline , & '12:00' & & [ 0.1000] \\
\hline '02-Jan-2001' & '11:00' & & [ 0.2000] \\
\hline ' " ' & '12:00' & & [ 0.3000] \\
\hline '03-Jan-2001' & '11:00' & & [ 0.4000] \\
\hline ' " ' & '12:00' & & \(0.5000]\) \\
\hline
\end{tabular}

\section*{See Also \\ datestr | subsref}

\section*{Purpose Subscripted reference}

\section*{Syntax subref}

Description
subsref implements indexing for a financial time series object. Integer indexing or date (and time) string indexing is allowed. Serial date numbers cannot be used as indices.

To use date string indexing, enclose the date string(s) in a pair of single quotation marks ' '.

You can use integer indexing on the object as in any other MATLAB matrix. It returns the appropriate entry(ies) from the object.

Additionally, subsref lets you access the individual components of the object using the structure syntax.

\section*{Examples Create a time series named myfts:}
```

myfts = fints((datenum('07/01/98'):datenum('07/01/98')+4)', ...
[1234.56; 2345.61; 3456.12; 4561.23; 5612.34], [], 'Daily',...
'Data Reference');

```

Extract the data for the single day July 1, 1998:
```

myfts('07/01/98')
ans =
desc: Data Reference
freq: Daily (1)
'dates: (1)' 'series1: (1)
'01-Jul-1998' [1234.6]

```

Now, extract the data for the range of dates July 1, 1998, through July 5, 1998:
myfts('07/01/98::07/03/98')
```

ans =
desc: Data Reference
freq: Daily (1)
'dates: (3)' 'series1: (3)
'01-Jul-1998' [1234.6]
'02-Jul-1998' [2345.6]
'03-Jul-1998' [3456.1]

```

You can use the MATLAB structure syntax to access the individual components of a financial time series object. To get the description field of myfts, enter
myfts.desc
at the command line, which returns
ans =
Data Reference
Similarly
myfts.series1
returns
ans =
desc: Data Reference
freq: Daily (1)
'dates: (5)' 'series1: (5)
'01-Jul-1998' [ 1234.6]
'02-Jul-1998' [ 2345.6]
'03-Jul-1998' [ 3456.1]
'04-Jul-1998' [ 4561.2]
'05-Jul-1998' [ 5612.3]

The syntax for integer indexing is the same as for any other MATLAB matrix. Create a new financial time series object containing both dates and times:
```

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),···.
times]);
anewfts = fints(dates_times,(1:6)',{'Data1'},1,'Another FinTs');

```

Use integer indexing to extract the second and third data items from the object.
```

anewfts(2:3)
ans =
desc: Another FinTs
freq: Daily (1)
'dates: (2)' 'times: (2)' 'Data1: (2)'
'01-Jan-2001' '12:00' [2]
'02-Jan-2001' '11:00' [3]

```

For date or string enclose the indexing string in a pair of single quotation marks.

If there is one date with multiple times, indexing with only the date returns all the times for that specific date:
```

anewfts('01-Jan-2001')
ans =
desc: Another FinTs
freq: Daily (1)

```
```

'dates: (2)' 'times: (2)'

```

To specify one specific date and time, index with that date and time:
```

anewfts('01-Jan-2001 12:00')
ans =
desc: Another FinTs
freq: Daily (1)
'dates: (1)' 'times: (1)' 'Data1: (1)
'01-Jan-2001' '12:00' [2]

```

To specify a range of dates and times, use the double colon (: :) operator:
```

anewfts('01-Jan-2001 12:00::03-Jan-2001 11:00')

```
ans =
    desc: Another FinTs
    freq: Daily (1)
\begin{tabular}{|c|c|c|}
\hline ates: (4)' & times: & 'Data1: (4)' \\
\hline '01-Jan-2001' & '12:00' & 2] \\
\hline '02-Jan-2001' & '11:00' & \(3]\) \\
\hline " & '12:00' & \(4]\) \\
\hline '03-Jan-2001' & '11:00' & 5] \\
\hline
\end{tabular}

To request all the dates, times, and data, use the :: operator without specifying any specific date or time:
```

anewfts('::')

```
```

datestr | fts2mat | subsasgn

```

\section*{Purpose Portfolio weight accuracy}
```

Syntax return = targetreturn(Universe, Window, Offset, Weights)

```

\section*{Arguments}
\begin{tabular}{ll} 
Universe & \begin{tabular}{l} 
Number of observations (NUMOBS) by number of assets \\
plus one (NASSETS +1 ) array containing total return \\
data for a group of securities. Each row represents \\
an observation. Column 1 contains MATLAB serial \\
date numbers. The remaining columns contain the \\
total return data for each security.
\end{tabular} \\
Window & \begin{tabular}{l} 
Number of data periods used to calculate frontier. \\
Offset
\end{tabular} \\
Weights & \begin{tabular}{l} 
Increment in number of periods at which each \\
frontier is generated.
\end{tabular} \\
& \begin{tabular}{l} 
Number of assets (NASSETS) by number of curves \\
(NCURVES) matrix of asset allocation weights needed \\
to obtain the target rate of return.
\end{tabular}
\end{tabular}

\footnotetext{
Description return = targetreturn(Universe, Window, Offset, Weights) computes target return values for each window of data and given portfolio weights. These values should match the input target return used with selectreturn.
}

See Also frontier | portopt | selectreturn

\section*{Purpose After-tax rate of return}
```

Syntax Return = taxedrr (PreTaxReturn, TaxRate)

```

\section*{Arguments}
\begin{tabular}{ll} 
PreTaxReturn & \begin{tabular}{l} 
Nominal rate of return. Enter as a decimal \\
fraction.
\end{tabular} \\
TaxRate & Tax rate. Enter as a decimal fraction.
\end{tabular}
Description Return = taxedrr(PreTaxReturn, TaxRate) calculates the after-tax rate of return.
Examples Calculate the After-Tax Rate of ReturnThis example shows how to calculate the after-tax rate of return, givenan investment that has a \(12 \%\) nominal rate of return and is taxed ata \(30 \%\) rate.
Return \(=\) taxedrr (0.12, 0.30)
Return =
    0.0840
See Also effrr | irr | mirr | nomrr | xirr
\(\begin{array}{ll}\text { Purpose } & \text { Convert Treasury bill discount to equivalent yield } \\ \text { Syntax } & {[B E Y i e l d \text { MMYield] = tbilldisc2yield(Discount, Settle, Maturity) }}\end{array}\)
Arguments

\section*{Description}
[BEYield MMYield] = tbilldisc2yield(Yield, Settle, Maturity) converts the discount rate on Treasury bills into their respective money-market or bond-equivalent yields.

BEYield is an NTBILLS-by- 1 vector of bond-equivalent yields. The bond-equivalent yield basis is actual/365.

MmYield is an NTBILLS-by-1 vector of money-market yields. The money-market yield basis is actual/360.

\section*{Examples}
\begin{tabular}{ll} 
Discount & \begin{tabular}{l} 
Discount rate of Treasury bills in decimal. The \\
discount rate basis is actual/360.
\end{tabular} \\
Settle & \begin{tabular}{l} 
Settlement date. Settle must be earlier than \\
Maturity.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
Maturity date.
\end{tabular}
\end{tabular}

Inputs must either be a scalar or a vector of size equal to the number of Treasury bills (NTBILLS) by 1 or 1 -by-NTBILLS.

\section*{Convert the Discount Rate on Treasury Bills}

This example shows how to to convert the discount rate on Treasury bills into their respective money-market or bond-equivalent yields, given a Treasury bill with the following characteristics.
```

Discount = 0.0497;
Settle = '01-Oct-02';
Maturity = '31-Mar-03';
[BEYield MMYield] = tbilldisc2yield(Discount, Settle, Maturity)

```

\section*{tbilldisc2yield}

\section*{BEYield = \\ 0.0517}

MMYield =
0.0510
\begin{tabular}{ll} 
References & \begin{tabular}{l} 
This function adheres to SIA Fixed Income Securities Formulas for \\
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44-45 (on \\
Treasury bills), and Money Market and Bond Calculation by Stigum \\
and Robinson.
\end{tabular} \\
See Also & tbillyield2disc I zeroyield \\
Related & -"Computing Treasury Bill Price and Yield" on page 2-37 \\
Examples & \\
Concepts & -"Treasury Bills Defined" on page 2-36
\end{tabular}

\author{
Purpose Price Treasury bill \\ Syntax Price = tbillprice(Rate, Settle, Maturity, Type)
}

Arguments

\section*{Description}

\section*{Examples}
\begin{tabular}{ll} 
Rate & \begin{tabular}{l} 
Bond-equivalent yield, money-market yield, or \\
discount rate in decimal.
\end{tabular} \\
Settle & \begin{tabular}{l} 
Settlement date. Settle must be earlier than \\
Maturity.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
Maturity date.
\end{tabular} \\
Type & \begin{tabular}{l} 
(Optional) Rate type. Determines how to interpret \\
values entered in Rate. \(1=\) money market (default). \\
\(2=\) bond-equivalent. \(3=\) discount rate.
\end{tabular}
\end{tabular}

All arguments must be a scalar or some Treasury bills (NTBILLS) by 1 or 1-by-NTBILLS vector.

Note The bond-equivalent yield basis is actual/365. The money-market yield basis is actual \(/ 360\). The discount rate basis is actual/360.

Price = tbillprice(Rate, Settle, Maturity, Type) computes the price of a Treasury bill given a yield or discount rate.

Price is an NTBILLS-by- 1 vector of T-bill prices for every \(\$ 100\) face.
Example 1. Given a Treasury bill with these characteristics, compute the price of the Treasury bill using the bond-equivalent yield as input.
```

Rate = 0.045;
Settle = '01-Oct-02';
Maturity = '31-Mar-03';

```
```

Type = 2;
Price = tbillprice(Rate, Settle, Maturity, Type)
Price =
97.8172

```

Example 2. Use tbillprice to price a portfolio of Treasury bills.
```

Rate = [0.045; 0.046];

```
Settle = \{'02-Jan-02'; '01-Mar-02'\};
Maturity = \{'30-June-02'; '30-June-02'\};
Type = [2 3];
Price = tbillprice(Rate, Settle, Maturity, Type)
Price =
    97.8408
    98.4539

\section*{References This function adheres to SIA Fixed Income Securities Formulas for Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44-45 (on Treasury bills), and Money Market and Bond Calculation by Stigum and Robinson.}

\section*{See Also tbillyield I zeroprice}

\section*{Related Examples \\ - "Computing Treasury Bill Price and Yield" on page 2-37}

\section*{Concepts}
- "Treasury Bills Defined" on page 2-36

Purpose Break-even discount of repurchase agreement
```

Syntax
TBEDiscount = tbillrepo(RepoRate, InitialDiscount, PurchaseDate,
SaleDate, Maturity)

```

\section*{Arguments}

\section*{Description}

\section*{Examples}

RepoRate The annualized, 360-day based repurchase rate, in decimal.

InitialDiscount Discount on the Treasury bill on the day of purchase, in decimal.

PurchaseDate Date the Treasury bill is purchased.
SaleDate Date the Treasury bill repurchase term is due.
Maturity Treasury bill maturity date.

All arguments must be a scalar or some Treasury bills (NTBILLS) by 1 or a 1-by-NTBILLS vector.

All dates must be in serial date number format.

TBEDiscount = tbillrepo(RepoRate, InitialDiscount, PurchaseDate, SaleDate, Maturity) computes the true break-even discount of a repurchase agreement. TBEDiscount can be a scalar or vector of size NTBills-by-1.

\section*{Compute the True Break-Even Discount}

This example shows how to compute the true break-even discount of a Treasury bill repurchase agreement.
```

RepoRate = [0.045; 0.0475];
InitialDiscount = 0.0475;
PurchaseDate = '3-Jan-2002';
SaleDate = '3-Feb-2002';
Maturity = '3-Apr-2002';

```
```

TBEDiscount = tbillrepo(RepoRate, InitialDiscount,...
PurchaseDate, SaleDate, Maturity)

```

\section*{TBEDiscount =}

> 0.0491
> 0.0478

\section*{References This function adheres to SIA Fixed Income Securities Formulas for Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44-45 (on Treasury bills), and Money Market and Bond Calculation by Stigum and Robinson.}

\section*{See Also}
tbillyield | tbillprice | tbillval01
Related
Examples
- "Computing Treasury Bill Price and Yield" on page 2-37

Concepts • "Treasury Bills Defined" on page 2-36
Purpose Value of one basis point
Syntax [Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)
Arguments
Settle Settlement date of Treasury bills. Settle must be earlier than Maturity.
Maturity Maturity date of Treasury bills.
Description [Val01Disc, Val01MmY, Val01BEY] = tbillval01(Settle,Maturity) calculates the value of one basis point of \(\$ 100\) Treasury billface value on the discount rate, money-market yield, or bond-equivalentyield.
Val01Disc is the value of one basis point of discount rate.
Val01MMY is the value of one basis point of money-market yield.
Val01BEY is the value of one basis point of bond-equivalent yield.
All outputs are of size equal to the number of Treasury bills (NTBILLS) by 1 .

\section*{Examples Compute the Value of One Basis Point}
This example shows how to compute the value of one basis point, given a Treasury bill with the following settle and maturity dates.
```

Settle = '01-Mar-03';
Maturity = '30-June-03';
[ValO1Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)

```
Val01Disc =
0.0034
```

Val01MMY =
0.0034
Val01BEY =
0.0033

```

References This function adheres to SIA Fixed Income Securities Formulas for Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp 108-115, on zero coupon instrument pricing.

\author{
See Also
}
tbillyield | tbillprice | tbilldisc2yield | tbillyield2disc

\section*{Related \\ Examples}

\section*{Purpose Yield on Treasury bill}

Syntax [MMYield, BEYield, Discount] = tbillyield(Price, Settle, Maturity)
Arguments

\section*{Description}
\begin{tabular}{ll} 
Price & Price of Treasury bills for every \(\$ 100\) face value. \\
Settle & \begin{tabular}{l} 
Settlement date. Settle must be earlier than \\
Maturity.
\end{tabular} \\
Maturity & Maturity date.
\end{tabular}

All arguments must be a scalar or some Treasury bills (NTBILLS) by 1 or 1-by-NTBILLS vector.
[MMYield, BEYield, Discount] = tbillyield(Price, Settle, Maturity) computes the yield of U.S. Treasury bills given Price, Settle, and Maturity. MmYield is the money-market yields of the Treasury bills. BEYield is the bond equivalent yields of the Treasury bills. Discount is the discount rates of the Treasury bills.

All outputs are NTBILLS-by-1 vectors.

Note The money-market yield basis is actual/360. The bond-equivalent yield basis is actual/365. The discount rate basis is actual \(/ 360\).

\section*{Examples Compute the Yield of U.S. Treasury Bills}

This example shows how to compute the yield of U.S. Treasury bills, given a Treasury bill with the following characteristics.

Price = 98.75;
Settle = '01-Oct-02';
Maturity = '31-Mar-03';
```

[MMYield, BEYield, Discount] = tbillyield(Price, Settle,...
Maturity)

```
MMYield =
    0.0252
BEYield =
    0.0255
Discount =
    0.0249
References This function adheres to SIA Fixed Income Securities Formulas for Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44-45 (on Treasury bills), and Money Market and Bond Calculation by Stigum and Robinson.
See Alsozeroyield | tbillprice | tbilldisc2yield | tbillyield2disc
Related - "Computing Treasury Bill Price and Yield" on page 2-37Examples
Concepts - "Treasury Bills Defined" on page 2-36

Purpose Convert Treasury bill yield to equivalent discount
Syntax Discount = tbillyield2disc(Yield, Settle, Maturity, Type)

Arguments

\section*{Description}

Examples
\begin{tabular}{ll} 
Yield & Yield of Treasury bills in decimal. \\
Settle & \begin{tabular}{l} 
Settlement date. Settle must be earlier than \\
Maturity.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
Maturity date.
\end{tabular} \\
Type & \begin{tabular}{l} 
(Optional) Yield type. Determines how to interpret \\
values entered in Yield. \(1=\) money market (default). \\
\(2=\) bond-equivalent.
\end{tabular}
\end{tabular}

Inputs must either be a scalar or a vector of size equal to the number of Treasury bills (NTBILLS) by 1 or 1 -by-NTBILLS.

Note The money-market yield basis is actual/360. The bond-equivalent yield basis is actual/365. The discount rate basis is actual/360.

Discount = tbillyield2disc(Yield, Settle, Maturity, Type) converts the yield on some Treasury bills into their respective discount rates.

Discount is a NTBILLS-by-1 vector of T-bill discount rates.
Given a Treasury bill with these characteristics, compute the discount rate on a money-market basis.
```

```
Yield = 0.0497;
```

```
Yield = 0.0497;
Settle = '01-Oct-02';
Settle = '01-Oct-02';
Maturity = '31-Mar-03';
Maturity = '31-Mar-03';
Discount = tbillyield2disc(Yield, Settle, Maturity)
```

```
Discount = tbillyield2disc(Yield, Settle, Maturity)
```

```

\section*{Discount = \\ 0.0485}

Now recompute the discount on a bond-equivalent basis.
```

Discount = tbillyield2disc(Yield, Settle, Maturity, 2)
Discount =
0.0478

```
\begin{tabular}{ll} 
References \(\quad\) & This function adheres to SIA Fixed Income Securities Formulas for \\
& Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44-45 (on \\
Treasury bills), and Money Market and Bond Calculation by Stigum \\
and Robinson.
\end{tabular}
See Also tbilldisc2yield
Related Examples
Concepts - "Treasury Bills Defined" on page 2-36

Purpose
Syntax
Arguments
\(\left.\left.\begin{array}{ll}\text { TBillMatrix } & \begin{array}{l}\text { Treasury bill parameters. An n-by-5 matrix } \\ \text { where each row describes a Treasury bill. } \mathrm{n}\end{array} \\ \text { is the number of Treasury bills. Columns are } \\ \text { [Maturity DaysMaturity Bid Asked AskYield] } \\ \text { where: }\end{array}\right\} \begin{array}{l}\text { Maturity date, as a serial date number. Use datenum } \\ \text { to convert date strings to serial date numbers. }\end{array}\right\}\)

\section*{Description}
[TBondMatrix, Settle] = tbl2bond(TBillMatrix) restates U.S. Treasury bill market parameters in U.S. Treasury bond form as zero-coupon bonds. This function makes Treasury bills directly comparable to Treasury bonds and notes.
\begin{tabular}{ll} 
TBondMatrix & \begin{tabular}{l} 
Treasury bond parameters. An N-by-5 matrix \\
where each row describes an equivalent \\
Treasury (zero-coupon) bond. Columns are \\
[CouponRate Maturity Bid Asked AskYield] \\
where
\end{tabular} \\
CouponRate & \begin{tabular}{l} 
Coupon rate, which is always 0.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
Maturity date, as a serial date number. This date is \\
the same as the Treasury bill Maturity date.
\end{tabular} \\
Bid & \begin{tabular}{l} 
Bid price based on \(\$ 100\) face value.
\end{tabular} \\
Asked & \begin{tabular}{l} 
Asked price based on \(\$ 100\) face value.
\end{tabular} \\
AskYield & \begin{tabular}{l} 
Asked yield to maturity: the effective return from \\
holding the bond to maturity, annualized on a \\
compound-interest basis.
\end{tabular}
\end{tabular}

\section*{Examples Restate U.S. Treasury Bill in U.S. Treasury Bond Form}

This example shows how to restate U.S. Treasury bill market parameters in U.S. Treasury bond form, given published Treasury bill market parameters for December 22, 1997.
```

TBill = [datenum('jan 02 1998') 10 0.0526 0.0522 0.0530
datenum('feb 05 1998') 44 0.0537}00.0533 0.054
datenum('mar 05 1998') 72 0.0529 0.0527 0.0540];
TBond = tbl2bond(TBill)

```

TBond =
\(1.0 \mathrm{e}+05\) *
\begin{tabular}{lllll}
0 & 7.2976 & 0.0010 & 0.0010 & 0.0000 \\
0 & 7.2979 & 0.0010 & 0.0010 & 0.0000 \\
0 & 7.2982 & 0.0010 & 0.0010 & 0.0000
\end{tabular}

\section*{tbl2bond}

\section*{See Also \\ tr2bonds}

How To . "Term Structure of Interest Rates" on page 2-41

\section*{Purpose Find third Wednesday of month}
```

Syntax
[BeginDates, EndDates] = thirdwednesday(Month, Year)

```

\section*{Arguments}

\section*{Description}
\begin{tabular}{ll} 
Month & Month of delivery for Eurodollar futures. \\
Year & \begin{tabular}{l} 
Four-digit year of delivery for Eurodollar futures, \\
in sequence corresponding to a month in the Month \\
input argument.
\end{tabular}
\end{tabular}

Inputs can be scalars or \(n\)-by- 1 vectors.
[BeginDates, EndDates] = thirdwednesday(Month, Year) computes the beginning and end period date for a LIBOR contract (third Wednesdays of delivery months).

BeginDates is the beginning of three-month period contract as specified by Month and Year.

EndDates is the end of three-month period contract as specified by Month and Year.

\section*{Notes}
- All dates are returned as serial date numbers. Convert to strings using datestr.
- The function returns duplicates if you supply identical months and years.
- The function supports dates from January 2000 to December 2099.

Examples Find the third Wednesday dates for swaps commencing in the month of October in the years 2002, 2003, and 2004.

Months = [10; 10; 10];
Year = [2002; 2003; 2004];
[BeginDates, EndDates] = thirdwednesday(Months, Year);
datestr(BeginDates)
ans =
16-Oct-2002
15-0ct-2003
20-0ct-2004
datestr(EndDates)
ans \(=\)
16-Jan-2003
15-Jan-2004
20-Jan-2005
Purpose Thirty-second quotation to decimal
Syntax OutNumber = thirtytwo2dec(InNumber, InFraction)
Arguments
Description OutNumber \(=\) thirtytwo2dec(InNumber, InFraction) changesthe price quotation for a bond or bond future from a fraction with adenominator of 32 to a decimal.
OutNumber represents the sum of InNumber and InFraction expressed as a decimal.
Examples Change the Price Quotation for a Bond or Bond Future From
a Fraction
This example shows how to change the price quotation for a bond or bond future from a fraction with a denominator of 32 to a decimal, given two bonds that are quoted as 101-25 and 102-31.
```

InNumber = [101; 102];
InFraction = [25; 31];
OutNumber = thirtytwo2dec(InNumber, InFraction)

```
OutNumber =
    101.7813
    102.9688

\section*{thirtytwo2dec}

\author{
See Also dec2thirtytwo
}
\begin{tabular}{ll} 
Purpose & Convert price series to return series \\
Syntax & \begin{tabular}{l} 
[RetSeries, RetIntervals] = tick2ret(TickSeries, \\
TickTimes, Method)
\end{tabular}
\end{tabular}

\section*{Arguments}
\begin{tabular}{cl} 
TickSeries & \begin{tabular}{l} 
Number of observations (NUMOBS) by number of \\
assets (NASSETS) matrix of prices of equity assets. \\
Each column is a price series of an individual asset.
\end{tabular} \\
& \begin{tabular}{l} 
First row is oldest observation. Last row is most \\
recent. Observations across a given row occur at the \\
same time for all columns.
\end{tabular} \\
TickTimes & \begin{tabular}{l} 
(Optional) NUMOBS-by-1 increasing vector of \\
observation times associated with the prices in
\end{tabular} \\
& TickSeries. Times are serial date numbers (day \\
units) or decimal numbers in arbitrary units (for \\
example, yearly). If TickTimes is empty or missing, \\
Method & \begin{tabular}{l} 
sequential observation times from 1, 2, ... NUMOBS \\
are assumed.
\end{tabular} \\
& \begin{tabular}{l} 
(Optional) Character string indicating the method to \\
convert prices to asset returns. Must be 'Simple' \\
(default) or 'Continuous'. If Method is 'Simple',
\end{tabular} \\
tick2ret computes simple periodic returns. If \\
Method is 'Continuous ', returns are continuously \\
compounded. Case is ignored for Method.
\end{tabular}

\section*{Description}
[RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes, Method) computes the asset returns realized between NUMOBS observations of prices of NASSETS assets.

RetSeries is a (NUMOBS-1)-by-NASSETS time series array of asset returns associated with the prices in TickSeries. The \(i\) th return is quoted for the period TickTimes(i) to TickTimes(i+1) and is not normalized by
the time increment between successive price observations. If Method is unspecified or 'Simple', the returns are:

RetSeries(i) = TickSeries(i+1)/TickSeries(i) - 1
If Method is 'Continuous ', the returns are:
RetSeries(i) = log[TickSeries(i+1)/TickSeries(i)]
RetIntervals is a (NUMOBS-1)-by-1 column vector of interval times between observations. If TickTimes is empty or unspecified, all intervals are assumed to have length 1.

\section*{Examples Convert Price Series to Return Series}

This example shows how to convert price series to return series, given periodic returns of two stocks observed in the first, second, third, and fourth quarters.

TickSeries = [100 80
11090
11588
110 91];
TickTimes = [0
6
9
12];
[RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes)

RetSeries =
\begin{tabular}{rr}
0.1000 & 0.1250 \\
0.0455 & -0.0222 \\
-0.0435 & 0.0341
\end{tabular}
```

RetIntervals =
6
3
3

```

See Also ewstats | ret2tick

Purpose Convert price series to return series for time series object
```

Syntax returnFts = tick2ret(priceFts)
returnFts = tick2ret(priceFts, 'PARAM1', VALUE1,
'PARAM2', VALUE2', ...)

```

\section*{Arguments}

\section*{Description}
returnFts = tick2ret(priceFts, 'PARAM1', VALUE1, 'PARAM2', VALUE2', ...) generates a financial time series object of returns.

> Note The \(i\) 'th return is quoted for the period PriceSeries \((i)\) to PriceSeries \((i+1)\) and is not normalized by the time increment between successive price observations.

If Method is unspecified or 'Simple', the prices are
```

ReturnSeries(i) = PriceSeries(i+1)/PriceSeries(i)-1

```

If Method is 'Continuous', the prices are
ReturnSeries(i) = log[PriceSeries(i+1)/PriceSeries(i)]

\section*{Examples Convert Price Series to Return Series for a fints Object}

Compute the return series from the following price series:
PriceSeries \(=\left[\begin{array}{ll}100.0000 & 100.0000\end{array}\right.\)
110.0000112 .0000
\(115.5000 \quad 116.4800\)
\(109.7250 \quad 122.3040\) ]

PriceSeries =
\(100.0000 \quad 100.0000\)
\(110.0000 \quad 112.0000\)
\(115.5000 \quad 116.4800\)
\(109.7250 \quad 122.3040\)

Use the following dates:
```

Dates = {'18-Dec-2000'
'18-Jun-2001'
'17-Sep-2001'
'18-Dec-2001'}
Dates =
'18-Dec-2000'
'18-Jun-2001'
'17-Sep-2001'
'18-Dec-2001'

```

The fints object is:
```

p = fints(Dates, PriceSeries)
p =
desc: (none)
freq: Unknown (0)

'dates: (4)'	'series1:	$(4){ }^{\prime}$	'series2: (4)'	
'18-Dec-2000'	[$100]$	$[$	$100]$
'18-Jun-2001'	$[$	$110]$	$[$	$112]$
'17-Sep-2001'	$[$	$115.5000]$	$[$	$116.4800]$
'18-Dec-2001'	$[$	$109.7250]$	$[$	$122.3040]$

returnFts is computed as:

```
```

 tick2ret(p)
    ```
    tick2ret(p)
ans =
    desc: (none)
    freq: Unknown (0)
    'dates: (3)' 'series1: (3)' 'series2: (3)'
    '18-Jun-2001' [ 0.1000] [ 0.1200]
    '17-Sep-2001' [ 0.0500] [ 0.0400]
    '18-Dec-2001' [ -0.0500] [ 0.0500]
```

Note that for n dates in the original time series, there are ($n-1$) dates returned for returnFts from tick2ret. The formula for the date output dates is described as: RetDate(i) = PriceDate (i+1).

See Also
portsim | ret2tick

Purpose Dates from time and frequency

Syntax Dates = time2date(Settle, TFactors, Compounding, Basis, EndMonthRule)

Arguments

| Settle | Settlement date. A vector of serial date numbers or date strings. |
| :---: | :---: |
| TFactors | A vector of time factors corresponding to the compounding value. TFactors must be equal to or greater than zero. |
| Compounding | (Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. Default $=2$. This argument determines the formula for the discount factors: |
| | Compounding $=1,2,3,4,6,12$ |
| | Disc $=(1+Z / F)^{\wedge}(-T)$, where F is the compounding frequency, Z is the zero rate, and T is the time in periodic units; for example, $\mathrm{T}=$ F is one year. |
| | Compounding $=365$ |
| | Disc $=(1+Z / F)^{\wedge}(-T)$, where F is the number of days in the basis year and T is a number of days elapsed computed by basis. |
| | Compounding $=-1$ |
| | Disc $=\exp (-T * Z)$, where T is time in years. |

Basis | (Optional) Day-count basis of the instrument. |
| :--- |
| A vector of integers. |
| - $0=$ actual/actual (default) |
| - $1=30 / 360$ (SIA) |
| - $2=$ actual/360 |
| - $3=$ actual/365 |
| - $4=30 / 360$ (BMA) |
| - $5=30 / 360$ (ISDA) |
| - $6=30 / 360$ (European) |
| - $7=$ actual/365 (Japanese) |
| - $8=$ actual/actual (ICMA) |
| - $9=$ actual/360 (ICMA) |
| - $10=$ actual/365 (ICMA) |
| - $11=30 / 360 E$ (ICMA) |
| - $12=$ actual/actual (ISDA) |
| - $13=$ BUS/252 |
| For more information, see basis on page |
| Glossary-2. |
| (Optional) End-of-month rule. A vector. |
| This rule applies only when Maturity is an |
| end-of-month date for a month having 30 or |
| fewer days. $0=$ ignore rule, meaning that a |
| bond's coupon payment date is always the |
| same numerical day of the month. $1=$ set rule |
| on (default), meaning that a bond's coupon |
| payment date is always the last actual day of |
| the month. |

Description

Examples

Dates = time2date(Settle, TFactors, Compounding, Basis, EndMonthRule) computes dates corresponding to the times occurring beyond the settlement date.

The time2date function is the inverse of date2time.

Show that date2time and time2date are the inverse of each other. First compute the time factors using date2time.

```
Settle = '1-Sep-2002';
Dates = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006';
    '31-Dec-2006']) ;
Compounding = 2;
Basis = 0;
EndMonthRule = 1;
TFactors = date2time(Settle, Dates, Compounding, Basis,...
                                    EndMonthRule)
TFactors =
    5.9945
    6.9945
    7.5738
    8.6576
```

Now use the calculated TFactors in time2date and compare the calculated dates with the original set.

```
Dates_calc = time2date(Settle, TFactors, Compounding, Basis,...
            EndMonthRule)
Dates_calc =
```

 732555
 732736
 732843
 733042

time2date

```
datestr(Dates_calc)
ans =
31-Aug-2005
28-Feb-2006
15-Jun-2006
31-Dec-2006
```

See Also cftimes | date2time

Purpose Financial time series multiplication

```
Syntax
newfts = tsobj_1 .* tsobj_2
newfts = tsobj .* array
newfts = array .* tsobj
```


Arguments

tsobj_1, tsobj_2 Pair of financial time series objects.
array A scalar value or array with the number of rows equal to the number of dates in tsobj and the number of columns equal to the number of data series in tsobj.

Description
The times method multiplies element by element the components of one financial time series object by the components of the other. You can also multiply the entire object by an array.

If an object is to be multiplied by another object, both objects must have the same dates and data series names, although the order need not be the same. The order of the data series, when an object is multiplied by another object, follows the order of the first object.
newfts = tsobj_1 .* tsobj_2 multiplies financial time series objects element by element.
newfts = tsobj .* array multiplies a financial time series object element by element by an array.
newfts = array .* tsobj and newfts = array / tsobj multiplies an array element by element by a financial time series object.

For financial time series objects, the times operation is identical to the mtimes operation.

See Also minus | mtimes | plus | rdivide

Purpose Convert to annual

```
Syntax newfts = toannual(oldfts)
newfts = toannual(oldfts, 'ParameterName', ParameterValue, ...)
```


Arguments

oldfts Financial time series object.

Description newfts = toannual(oldfts) converts a financial time series of any frequency to one of an annual frequency. The default end-of-year is the last business day of the December. toannual uses holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as '00:00' for those days that did not previously exist in oldfts.

Empty ([]) passed as inputs for parameter pair values for toannual will trigger the use of the defaults.
newfts = toannual(oldfts, 'ParameterName', ParameterValue, ...) accepts parameter name/parameter value pairs as input, as specified in the following table.

| Parameter
 Name | Parameter
 Value | Description |
| :--- | :--- | :--- |
| CalcMethod | CumSum | Returns the cumulative sum of the values
 within each year. Data for missing dates
 are given the value 0. |
| | Exact | Returns the exact value at the end-of-year
 date. No data manipulation occurs. |

| Parameter
 Name | Parameter
 Value | Dearest
 Desciption |
| :--- | :--- | :--- |
| SimpAvg | (Default) Returns the values located at
 the end-of-year dates. If there is missing
 data, Nearest returns the nearest data
 point preceding the end-of-year date.
 Returns an averaged annual value that
 only takes into account dates with data
 (nonNaN) within each year. | |
| v21x | This mode is compatible with previous
 versions of this function (Version 2.1.x
 and earlier). It returns an averaged
 end-of-year value using a previous
 toannual algorithm. This algorithm
 takes into account all dates and data. For
 dates that do not contain any data, the
 data is assumed to be 0. | |

Note If you set CalcMethod to v21x, settings for all of the following parameter name/parameter value pairs are not supported.

| BusDays 0 | Returns a financial time series that
 ranges from (or between) the first date to
 the last date in oldfts (includes NYSE
 nonbusiness days and holidays). |
| :---: | :--- |

$\left.\begin{array}{lll}\hline \begin{array}{l}\text { Parameter } \\ \text { Name }\end{array} & \begin{array}{l}\text { Parameter } \\ \text { Value }\end{array} & \begin{array}{l}\text { Description }\end{array} \\ \text { (Default) Generates a monthly financial } \\ \text { time series that ranges from the first } \\ \text { date to the last date in oldfts (excludes } \\ \text { NYSE nonbusiness days and holidays } \\ \text { and weekends based on Altholidays and } \\ \text { Weekend). If an end-of-month date falls } \\ \text { on a nonbusiness day or NYSE holiday, } \\ \text { returns the last business day of the } \\ \text { month. }\end{array}\right\}$

| Parameter Name | Parameter
 Value | Description |
| :---: | :---: | :---: |
| ED | 0 | Annual period ends on the last day or last business day of the month. |
| | 1-31 | Specifies a particular annual day. Months that do not contain the specified day return the last day (or last business day) of the month (for example, ED $=31$ does not exist for February.) |
| EM | 1-12 | (Default) The annual period ends on the last day (or last business day) of the specified month All subsequent annual dates are calculated from this month. Default annual month is December (12). |
| EndPtTol | [Begin, End] | Denotes the minimum number of days that constitute an odd annual period at the endpoints of the time series (before the first time series date and after the last end-of-year date).
 Begin and End must be -1 or any positive integer greater than or equal to 0 .
 A single value input for 'EndPtTol' is the same as specifying that single value for Begin and End.
 - 1 Exclude odd annual period dates and data from calculations.
 0 (Default) Include odd annual period dates and data in calculations.
 n Number of days (any positive integer) that constitute an odd annual period. If there are insufficient days for a complete year, the endpoint data is ignored. |

Parameter Parameter Name Value Description

The following diagram is a general depiction of the factors involved in the determination of endpoints for this function.

| TimeSpec First | Returns only the observation that occurs
 at the first (earliest) time for a specific
 date. |
| :--- | :---: |
| AltHolidays | (Default) Returns only the observation
 that occurs at the last (latest) time for a
 specific date. |
| Weekend | Vector of dates specifying an alternate set
 of market closure dates. |
| | Excludes all holidays. |
| Vector of length 7 containing 0's and 1's.
 The value 1 indicates a weekend day. The | |
| first element of this vector corresponds | |
| to Sunday. For example, when Saturday | |
| and Sunday are weekend days (default) | |
| then Weekend = $\left.\begin{array}{ll}10000001\end{array}\right]$. | |

Examples

Transform Time Series Object from Weekly to Annual Values

This example shows how to transform a time series object from weekly to annual values.

Load the data from the file predict_ret_data.mat and use the fints function to create a time series object with a weekly frequency.

```
load predict_ret_data.mat
x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')
```

x0 =
desc: Index
freq: Weekly (2)

| es: (53)' | Metric: (53)' |
| :---: | :---: |
| 01-Jan-1999' | $97.8872]$ |
| 08-Jan-1999' | $97.0847]$ |
| 15-Jan-1999' | $109.6312]$ |
| 22-Jan-1999' | 105.5743] |
| 29-Jan-1999' | 108.4028] |
| 05-Feb-1999' | $134.4882]$ |
| 12-Feb-1999' | 117.5581] |
| 19-Feb-1999 ' | $106.6683]$ |
| 26-Feb-1999' | $118.2912]$ |
| 05-Mar-1999' | $105.6835]$ |
| 12-Mar-1999' | $128.5836]$ |
| 19-Mar-1999' | $115.1746]$ |
| '26-Mar-1999' | $131.2854]$ |
| 02-Apr-1999' | $130.7116]$ |
| '09-Apr-1999' | 123.1684] |
| '16-Apr-1999' | $107.2975]$ |
| '23-Apr-1999' | $91.5625]$ |
| 30-Apr-1999' | 78.5738] |
| '07-May-1999' | $65.2904]$ |
| '14-May-1999' | $70.8581]$ |

| ' 21 -May-1999' | [| 72.4807] |
| :---: | :---: | :---: |
| '28-May-1999' | [| $72.9190]$ |
| '04-Jun-1999' | | $64.3460]$ |
| '11-Jun-1999' | | 59.8743] |
| '18-Jun-1999' | | $55.0026]$ |
| '25-Jun-1999' | | $49.4032]$ |
| '02-Jul-1999' | | $49.9485]$ |
| '09-Jul-1999' | | $47.8061]$ |
| '16-Jul-1999' | | $61.0517]$ |
| '23-Jul-1999' | | $58.9313]$ |
| '30-Jul-1999' | | $53.9584]$ |
| ' 06-Aug-1999' | [| 44.8472] |
| '13-Aug-1999' | [| 45.0463] |
| ' 20-Aug-1999' | [| 45.1088] |
| ' 27-Aug-1999' | [| $56.4897]$ |
| '03-Sep-1999' | | $61.2449]$ |
| '10-Sep-1999' | | $58.1012]$ |
| '17-Sep-1999' | | $50.8974]$ |
| '24-Sep-1999' | | $46.5143]$ |
| '01-0ct-1999' | | $38.0806]$ |
| '08-0ct-1999' | | $33.6664]$ |
| '15-0ct-1999' | | $34.2992]$ |
| '22-0ct-1999' | | $33.4202]$ |
| '29-0ct-1999' | | 36.9287] |
| ' $05-$ Nov-1999' | [| 35.1278] |
| '12-Nov-1999' | | $41.8128]$ |
| '19-Nov-1999' | | $35.8199]$ |
| '26-Nov-1999' | | $36.9495]$ |
| '03-Dec-1999' | [| $36.2880]$ |
| '10-Dec-1999' | | $33.8457]$ |
| '17-Dec-1999' | [| 33.3868] |
| '24-Dec-1999' | [| $32.7737]$ |
| '31-Dec-1999' | [| $28.5665]$ |

Use toannual to obtain the annual aggregate for the x0 times series.

```
x1 = toannual(x0)
x1 =
    desc: TOANNUAL: Index
    freq: Annual (6)
    'dates: (1)' 'Metric: (1)
    '31-Dec-1999' [ 28.5665]
See Also convertto | todaily | fints | tomonthly | toquarterly | tosemi | toweekly
```

Purpose Convert to daily

```
Syntax newfts = todaily(oldfts)
newfts = todaily(oldfts, 'ParameterName', ParameterValue, ...)
```

Arguments
oldfts Financial time series object

Description newfts = todaily (oldfts) converts a financial time series of any frequency to a daily frequency. todaily uses holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as '00:00' for those days that did not previously exist in oldfts.

Empty ([]) passed as inputs for parameter pair values for todaily will trigger the use of the defaults.
newfts = todaily(oldfts, 'ParameterName', ParameterValue, ...) accepts parameter name/parameter value pairs as input, as specified in the following table.

| Parameter
 Name | Parameter
 Value | Description |
| :--- | :--- | :--- |
| CalcMethod Exact | Returns the value located at specific
 dates/times. No data manipulation
 occurs. | |
| v21x | This mode is compatible with previous
 versions of this function (Version 2.1.x
 and earlier). It returns a five-day
 business week that starts on Monday and
 ends on Friday. | |
| Note If you set CalcMethod to v21x, settings for all of the following
 parameter name/parameter value pairs are not supported. | | |
| BusDays | Generates a financial time series that
 ranges from (or between) the first date to
 the last date in oldfts (includes NYSE
 nonbusiness days and holidays). | |
| (Default) Generates a daily financial | | |
| time series that ranges from the first | | |
| date to the last date in oldfts (excludes | | |
| NYSE nonbusiness days and holidays | | |
| and weekends based on Altholidays and | | |
| Weekend). | | |

18-1713

| Parameter
 Name | Parameter Value | Description |
| :---: | :---: | :---: |
| DateFilter | Absolute | (Default) Displays all daily dates between the start and end dates of oldfts. Some dates may be disregarded if BusDays $=1$. |
| | | Note The default is to create a time series with every date at the specified periodicity, which is with DateFilter = Absolute. If you use DateFilter $=$ Relative, the endpoint effects do not apply since only your data defines which dates will appear in the output time series object. |
| | Relative | Displays only dates that exist in oldfts. Some dates may be disregarded if BusDays $=1$. |
| TimeSpec | First | Returns only the observation that occurs at the first (earliest) time for a specific date. |
| | Last | (Default) Returns only the observation that occurs at the last (latest) time for a specific date. |
| AltHolidays | | Vector of dates specifying an alternate set of market closure dates. |
| | -1 | Excludes all holidays. |
| Weekend | | Vector of length 7 containing 0's and 1's. The value 1 indicates a weekend day. The first element of this vector corresponds to Sunday. For example, when Saturday and Sunday are weekend days (default) then Weekend $=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$. |

Examples

Transform Time Series Object from Weekly to Daily Values

Load the data from the file predict_ret_data.mat and use the fints function to create a time series object with a weekly frequency.

```
load predict_ret_data.mat
x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')
```

x0 =
desc: Index
freq: Weekly (2)

| ates: (53)' | Metric: (53) |
| :---: | :---: |
| 01-Jan-1999' | $97.8872]$ |
| 08-Jan-1999' | $97.0847]$ |
| 15-Jan-1999 ' | $109.6312]$ |
| 22-Jan-1999' | 105.5743] |
| 29-Jan-1999 ' | 108.4028] |
| 05-Feb-1999' | $134.4882]$ |
| 12-Feb-1999 | 117.5581] |
| 19-Feb-1999 | $106.6683]$ |
| 26-Feb-1999 ' | 118.2912] |
| 05-Mar-1999' | $105.6835]$ |
| 12-Mar-1999' | 128.5836] |
| '19-Mar-1999 | $115.1746]$ |
| 26-Mar-1999' | $131.2854]$ |
| 02-Apr-1999' | $130.7116]$ |
| 09-Apr-1999 | 123.1684] |
| '16-Apr-1999' | $107.2975]$ |
| '23-Apr-1999' | $91.5625]$ |
| '30-Apr-1999' | 78.5738] |
| '07-May-1999' | $65.2904]$ |
| '14-May-1999' | $70.8581]$ |

| ' 21 -May-1999 ' | [| $72.4807]$ |
| :---: | :---: | :---: |
| ' 28 -May-1999' | [| $72.9190]$ |
| '04-Jun-1999' | [| $64.3460]$ |
| '11-Jun-1999' | | 59.8743] |
| '18-Jun-1999' | [| $55.0026]$ |
| '25-Jun-1999' | [| $49.4032]$ |
| '02-Jul-1999' | [| $49.9485]$ |
| '09-Jul-1999' | [| $47.8061]$ |
| '16-Jul-1999' | | $61.0517]$ |
| '23-Jul-1999' | [| 58.9313] |
| '30-Jul-1999' | [| $53.9584]$ |
| ' 06-Aug-1999' | [| 44.8472] |
| '13-Aug-1999' | [| 45.0463] |
| ' 20-Aug-1999' | [| 45.1088] |
| ' 27-Aug-1999' | [| $56.4897]$ |
| '03-Sep-1999' | [| $61.2449]$ |
| '10-Sep-1999' | | $58.1012]$ |
| '17-Sep-1999' | [| $50.8974]$ |
| '24-Sep-1999' | [| $46.5143]$ |
| '01-0ct-1999' | | $38.0806]$ |
| '08-0ct-1999' | | $33.6664]$ |
| '15-0ct-1999' | | $34.2992]$ |
| '22-0ct-1999' | | $33.4202]$ |
| '29-0ct-1999' | | 36.9287] |
| ' $05-$ Nov-1999' | | 35.1278] |
| '12-Nov-1999' | | 41.8128] |
| ' 19-Nov-1999' | [| 35.8199] |
| '26-Nov-1999' | [| $36.9495]$ |
| '03-Dec-1999' | | $36.2880]$ |
| '10-Dec-1999' | [| $33.8457]$ |
| '17-Dec-1999' | [| 33.3868] |
| '24-Dec-1999' | [| $32.7737]$ |
| '31-Dec-1999' | [| $28.5665]$ |

Use todaily to obtain the daily aggregate for the x0 times series.

```
x1 = todaily(x0)
```

$\mathrm{x} 1=$
desc: TODAILY: Index
freq: Daily (1)
'dates: (252)' 'Metric: (252)
'04-Jan-1999' [NaN]
'05-Jan-1999' [NaN]
'06-Jan-1999' [NaN]
'07-Jan-1999' [NaN]
'08-Jan-1999' [97.0847]
'11-Jan-1999' [NaN]
'12-Jan-1999' [NaN]
'13-Jan-1999' [NaN]
'14-Jan-1999' [NaN]
'15-Jan-1999' [109.6312]
'19-Jan-1999' [NaN]
'20-Jan-1999' [NaN]
'21-Jan-1999' [NaN]
'22-Jan-1999' [105.5743]
'25-Jan-1999' [NaN]
'26-Jan-1999' [NaN]
'27-Jan-1999' [NaN]
'28-Jan-1999' [NaN]
'29-Jan-1999' [108.4028]
'01-Feb-1999' [NaN]
'02-Feb-1999' [NaN]
'03-Feb-1999' [NaN]
'04-Feb-1999' [NaN]
'05-Feb-1999' [134.4882]
'08-Feb-1999' [NaN]
'09-Feb-1999' [NaN]
'10-Feb-1999' [NaN]
'11-Feb-1999' [NaN]

| | |
| :---: | :---: |
| | |
| 7-Feb-1999 ' | |
| '18-Fab-1999' | |
| 19-Feb-1999' | |
| ' 22-Feb-1999' | |
| | |
| 24-Feb-1999 ' | |
| | |
| e | |
| '01-Mar-1999' | |
| '02-Mar-1999' | |
| 03-Mar-1999' | |
| | |
| - | |
| 08-Mar-1999' | |
| Mar-199 | |
| | |
| 11-Mar-1999' | |
| 12-Mar-1999' | |
| | |
| 9 | |
| 7-Mar-1999' | |
| 9 | |
| 19-Mar-1999' | |
| | |
| 23-Mar-1999' | |
| 24-Mar-1999' | |
| | |
| ' 26-Mar-1999' | |
| 29-Mar-1999' | |
| '30-Mar-1999' | |
| '31-Mar-1999' | |
| 01-Apr-1999 | |
| 05-Apr-1999 | |
| 6-Apr-1999 | |
| , Apr -1990 | |

117.5581]
$\mathrm{NaN}]$
$\mathrm{NaN}]$
$\mathrm{NaN}]$
106.6683]

NaN]
$\mathrm{NaN}]$
NaN]
$\mathrm{NaN}]$
118.2912]
$\mathrm{NaN}]$
NaN]
NaN]
$\mathrm{NaN}]$
105.6835]
$\mathrm{NaN}]$
$\mathrm{NaN}]$
NaN]
$\mathrm{NaN}]$
128.5836]
$\mathrm{NaN}]$
NaN]
NaN]
$\mathrm{NaN}]$
115.1746]
$\mathrm{NaN}]$
$\mathrm{NaN}]$
$\mathrm{NaN}]$
$\mathrm{NaN}]$
131.2854]
$\mathrm{NaN}]$
$\mathrm{NaN}]$
$\mathrm{NaN}]$
$\mathrm{NaN}]$
$\mathrm{NaN}]$
NaN]
NaN]

| '08-Apr-1999' | | NaN] |
| :---: | :---: | :---: |
| '09-Apr-1999' | [| 123.1684] |
| '12-Apr-1999' | [| NaN] |
| '13-Apr-1999' | [| NaN] |
| '14-Apr-1999' | [| NaN] |
| '15-Apr-1999' | [| NaN] |
| '16-Apr-1999' | [| 107.2975] |
| '19-Apr-1999' | | $\mathrm{NaN}]$ |
| '20-Apr-1999' | [| NaN] |
| '21-Apr-1999' | [| $\mathrm{NaN}]$ |
| '22-Apr-1999' | | $\mathrm{NaN}]$ |
| '23-Apr-1999' | [| 91.5625] |
| '26-Apr-1999' | [| NaN] |
| '27-Apr-1999' | [| NaN] |
| '28-Apr-1999' | [| NaN] |
| '29-Apr-1999' | | NaN] |
| '30-Apr-1999' | [| 78.5738] |
| '03-May-1999' | [| $\mathrm{NaN}]$ |
| '04-May-1999' | [| NaN] |
| ' 05-May-1999' | [| $\mathrm{NaN}]$ |
| ' 06-May-1999' | [| NaN] |
| '07-May-1999' | [| $65.2904]$ |
| '10-May-1999' | [| NaN] |
| '11-May-1999' | [| NaN] |
| '12-May-1999' | [| NaN] |
| '13-May-1999' | [| $\mathrm{NaN}]$ |
| '14-May-1999' | [| 70.8581] |
| '17-May-1999' | [| NaN] |
| '18-May-1999' | [| NaN] |
| '19-May-1999' | | NaN] |
| '20-May-1999' | [| NaN] |
| '21-May-1999' | [| 72.4807] |
| '24-May-1999' | [| NaN] |
| ' 25-May-1999' | [| $\mathrm{NaN}]$ |
| '26-May-1999' | | NaN] |
| '27-May-1999' | | NaN] |
| '28-May-1999' | [| 72.9190] |

| '01-Jun-1999' | [| NaN] |
| :---: | :---: | :---: |
| '02-Jun-1999' | [| NaN] |
| '03-Jun-1999' | [| $\mathrm{NaN}]$ |
| '04-Jun-1999' | [| $64.3460]$ |
| '07-Jun-1999' | [| NaN] |
| '08-Jun-1999' | [| NaN] |
| '09-Jun-1999' | [| NaN] |
| '10-Jun-1999' | [| NaN] |
| '11-Jun-1999' | [| 59.8743] |
| '14-Jun-1999' | [| NaN] |
| '15-Jun-1999' | [| NaN] |
| '16-Jun-1999' | [| NaN] |
| '17-Jun-1999' | [| NaN] |
| '18-Jun-1999' | [| 55.0026] |
| '21-Jun-1999' | [| NaN] |
| '22-Jun-1999' | [| NaN] |
| '23-Jun-1999' | [| NaN] |
| '24-Jun-1999' | [| NaN] |
| '25-Jun-1999' | [| $49.4032]$ |
| '28-Jun-1999' | [| NaN] |
| '29-Jun-1999' | [| NaN] |
| '30-Jun-1999' | [| NaN] |
| '01-Jul-1999' | [| NaN] |
| '02-Jul-1999' | [| 49.9485] |
| '06-Jul-1999' | [| NaN] |
| '07-Jul-1999' | [| NaN] |
| '08-Jul-1999' | [| NaN] |
| '09-Jul-1999' | [| 47.8061] |
| '12-Jul-1999' | [| NaN] |
| '13-Jul-1999' | [| NaN] |
| '14-Jul-1999' | [| NaN] |
| '15-Jul-1999' | [| NaN] |
| '16-Jul-1999' | [| $61.0517]$ |
| '19-Jul-1999' | [| NaN] |
| '20-Jul-1999' | [| NaN] |
| '21-Jul-1999' | [| NaN] |
| '22-Jul-1999' | [| NaN] |

| | |
| :---: | :---: |
| | |
| | |
| | |
| 29-Jul-1999 | |
| '30-Jul-1999 | |
| | |
| '03-Aug-19 | |
| -4-Aug-19 | |
| | |
| - | |
| '09-Aug-1999' | |
| | |
| g- | |
| - Aug 1 | |
| | |
| '16-Aug-1999 | |
| - Aug - | |
| | |
| g | |
| 20-Aug | |
| 23-Aug-199 | |
| | |
| , | |
| | |
| ' 27-Aug-1999' | |
| 30-Aug-1999 | |
| | |
| | |
| -sep- | |
| '03-Sep-1999 | |
| -sep-1 | |
| 08-sep-1999 | |
| -sep-1999 | |
| 10-sep-199 | |
| 13 | |
| | |

58.9313] $\mathrm{NaN}]$ $\mathrm{NaN}]$ NaN] $\mathrm{NaN}]$
53.9584] $\mathrm{NaN}]$ $\mathrm{NaN}]$ $\mathrm{NaN}]$ $\mathrm{NaN}]$
44.8472] $\mathrm{NaN}]$ $\mathrm{NaN}]$ $\mathrm{NaN}]$ NaN]
45.0463]
$\mathrm{NaN}]$
$\mathrm{NaN}]$
$\mathrm{NaN}]$
$\mathrm{NaN}]$
45.1088]
$\mathrm{NaN}]$
$\mathrm{NaN}]$
$\mathrm{NaN}]$
$\mathrm{NaN}]$
56.4897]
$\mathrm{NaN}]$
NaN]
$\mathrm{NaN}]$
$\mathrm{NaN}]$
61.2449]
$\mathrm{NaN}]$
$\mathrm{NaN}]$
NaN]
58.1012]
$\mathrm{NaN}]$
$\mathrm{NaN}]$

| '15-Sep-1999' | [| NaN] |
| :---: | :---: | :---: |
| '16-Sep-1999' | [| NaN] |
| '17-Sep-1999' | [| $50.8974]$ |
| ' 20-Sep-1999' | [| NaN] |
| '21-Sep-1999' | [| NaN] |
| '22-Sep-1999' | [| NaN] |
| ' 23 -Sep-1999 ' | [| NaN] |
| '24-Sep-1999' | [| 46.5143] |
| '27-Sep-1999' | [| NaN] |
| ' 28-Sep-1999 ' | [| NaN] |
| ' 29-Sep-1999' | [| NaN] |
| '30-Sep-1999' | [| NaN] |
| '01-0ct-1999' | [| $38.0806]$ |
| '04-0ct-1999' | [| NaN] |
| '05-0ct-1999' | [| NaN] |
| '06-0ct-1999' | [| NaN] |
| '07-0ct-1999' | [| NaN] |
| '08-0ct-1999' | [| $33.6664]$ |
| '11-0ct-1999' | [| NaN] |
| '12-0ct-1999' | [| NaN] |
| '13-0ct-1999' | [| NaN] |
| '14-Oct-1999' | [| $\mathrm{NaN}]$ |
| '15-0ct-1999' | [| $34.2992]$ |
| '18-0ct-1999' | [| NaN] |
| '19-0ct-1999' | [| NaN] |
| '20-0ct-1999' | [| NaN] |
| '21-0ct-1999' | [| NaN] |
| '22-0ct-1999' | [| $33.4202]$ |
| '25-0ct-1999' | [| NaN] |
| '26-0ct-1999' | [| NaN] |
| '27-0ct-1999' | [| NaN] |
| ' 28-0ct-1999' | [| NaN] |
| '29-0ct-1999' | [| 36.9287] |
| ' 01 -Nov-1999' | [| NaN] |
| ' 02 -Nov-1999' | [| NaN] |
| ' $03-$ Nov-1999' | [| NaN] |
| '04-Nov-1999' | [| NaN] |

| ' 05 -Nov-1999 ' | | $35.1278]$ |
| :---: | :---: | :---: |
| '08-Nov-1999' | [| NaN] |
| '09-Nov-1999' | | NaN] |
| '10-Nov-1999' | [| NaN] |
| '11-Nov-1999' | | NaN] |
| '12-Nov-1999' | | 41.8128] |
| '15-Nov-1999' | | NaN] |
| '16-Nov-1999' | | NaN] |
| '17-Nov-1999' | [| NaN] |
| '18-Nov-1999' | | NaN] |
| '19-Nov-1999' | | 35.8199] |
| '22-Nov-1999' | [| NaN] |
| '23-Nov-1999' | | NaN] |
| '24-Nov-1999' | [| NaN] |
| '26-Nov-1999' | | $36.9495]$ |
| '29-Nov-1999' | | NaN] |
| '30-Nov-1999' | [| NaN] |
| '01-Dec-1999' | | NaN] |
| '02-Dec-1999' | [| NaN] |
| '03-Dec-1999' | | 36.2880] |
| '06-Dec-1999' | | NaN] |
| '07-Dec-1999' | | NaN] |
| '08-Dec-1999' | | NaN] |
| '09-Dec-1999' | | $\mathrm{NaN}]$ |
| '10-Dec-1999' | [| $33.8457]$ |
| '13-Dec-1999' | | NaN] |
| '14-Dec-1999' | | NaN] |
| '15-Dec-1999' | [| NaN] |
| '16-Dec-1999' | | $\mathrm{NaN}]$ |
| '17-Dec-1999' | [| 33.3868] |
| '20-Dec-1999' | | NaN] |
| '21-Dec-1999' | | NaN] |
| '22-Dec-1999' | [| NaN] |
| '23-Dec-1999' | | NaN] |
| '27-Dec-1999' | [| NaN] |
| '28-Dec-1999' | [| NaN] |
| '29-Dec-1999' | [| NaN] |

```
'30-Dec-1999'
'31-Dec-1999'
NaN ]
'31-Dec-1999'
28.5665]
```

See Also convertto | toannual | fints | tomonthly | toquarterly | tosemi | toweekly
Purpose Current date
Syntax Datenum = todayDescription Datenum = today returns the current date as a serial date number.
Examples Datenum = todayreturns
Datenum =730695
See Also datenum | datestr | now

todecimal

Purpose Fractional to decimal conversion

```
Syntax usddec = todecimal(quote, fracpart)
```

Description usddec = todecimal(quote, fracpart) returns the decimal equivalent, usddec, of a security whose price is normally quoted as a whole number and a fraction (quote). fracpart indicates the fractional base (denominator) with which the security is normally quoted (default $=32$).

Examples In the Wall Street Journal, bond prices are quoted in fractional form based on a denominator of 32 . For example, if you see the quoted price is 100:05 it means $1005 / 32$. To find the equivalent decimal value, enter

```
usddec = todecimal(100.05)
```

usddec =
100.1563
usddec $=$ todecimal(97.04, 16)
usddec =
97.2500

Note The convention of using . (period) as a substitute for : (colon) in the input is adopted from Excel software.
See Also toquoted

Purpose Convert to monthly

```
Syntax newfts = tomonthly(oldfts)
newfts = tomonthly(oldfts, 'ParameterName', ParameterValue, ...)
```


Arguments

oldfts Financial time series object.

Description
newfts = tomonthly(oldfts) converts a financial time series of any frequency to a monthly frequency. The default end-of-month day is the last business day of the month. tomonthly uses holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as 00:00 for those days that did not previously exist in oldfts.

Empty ([]) passed as inputs for parameter pair values for tomonthly will trigger the use of the defaults.
newfts = tomonthly(oldfts, 'ParameterName', ParameterValue, ...) accepts parameter name/parameter value pairs as input, as specified in the following table.
$\left.\begin{array}{lll}\hline \begin{array}{l}\text { Parameter } \\ \text { Name }\end{array} & \begin{array}{l}\text { Parameter } \\ \text { Value }\end{array} & \begin{array}{l}\text { Description }\end{array} \\ \text { CalcMethod } & \text { CumSum } & \begin{array}{l}\text { Returns the cumulative sum of the values } \\ \text { within each month. Data for missing } \\ \text { dates are given the value 0. }\end{array} \\ \text { Exact } & \begin{array}{l}\text { Returns the exact value at the } \\ \text { end-of-month date. No data manipulation } \\ \text { occurs. } \\ \text { (Default) Returns the values located at }\end{array} \\ \text { the end-of-month date. If there is missing } \\ \text { data, 'Nearest' returns the nearest data } \\ \text { point preceding the end-of-month date. }\end{array}\right\}$

Note If you set CalcMethod to v21x, settings for all of the following parameter name/parameter value pairs are not supported.

BusDays $0 \quad$| Generates a monthly financial time |
| :--- |
| series that ranges from the first date to |
| the last date in oldfts (includes NYSE |
| nonbusiness days and holidays). |

| Parameter
 Name | Parameter
 Value | Description |
| :---: | :---: | :---: |
| DateFilter | 1 | (Default) Generates a monthly financial time series that ranges from the first date to the last date in oldfts (excludes NYSE nonbusiness days and holidays and weekends based on AltHolidays and Weekend). If an end-of-month date falls on a nonbusiness day or NYSE holiday, returns the last business day of the month. |
| | | NYSE market closures, holidays, and weekends are observed if AltHolidays and Weekend are not supplied or empty ([). |
| | Absolute | (Default) Returns all monthly dates between the start and end dates of oldfts. Some dates may be disregarded if BusDays $=1$. |
| | | Note The default is to create a time series with every date at the specified periodicity, which is with DateFilter = Absolute. If you use DateFilter = Relative, the endpoint effects do not apply since only your data defines which dates will appear in the output time series object. |
| | Relative | Returns only monthly dates that exist in oldfts. Some dates may be disregarded if BusDays $=1$. |

| Parameter Name | Parameter Value | Description |
| :---: | :---: | :---: |
| ED | 0 | (Default) The end-of-month date is the last day (or last business day) of the month. |
| | 1-31 | Returns values on the specified end-of-month day. Months that do not contain the specified end-of-month day return the last day of the month instead (for example, ED = 31 does not exist for February).
 If end-of-month falls on a NYSE non-business day or holiday, the previous business day is returned if BusDays $=1$. |
| EndPtTol | [Begin, End] | Denotes the minimum number of days that constitute an odd month at the end points of the time series (before the first whole period and after the last whole period).
 Begin and End must be -1 or any positive integer greater than or equal to 0 .
 A single value input for EndPtTol is the same as specifying that single value for Begin and End.
 -1 Do not include odd month dates and data in calculations.
 0 (Default) Include all odd month dates and data in calculations.
 n Number of days that constitute an odd month. If the minimum number of days is not met, the odd month dates and data are ignored. |

Parameter Parameter
 Name Value Description

The following diagram is a general depiction of the factors involved in the determination of end points for this function.

| TimeSpec | First | Returns only the observation that occurs
 at the first (earliest) time for a specific
 date. |
| :--- | :---: | :--- |
| AltHolidays | (Default) Returns only the observation
 that occurs at the last (latest) time for a
 specific date. | |
| Weekend | Vector of dates specifying an alternate set
 of market closure dates. | |
| | Excludes all holidays.
 Vector of length 7 containing 0's and 1's.
 The value 1 indicates a weekend day. The
 first element of this vector corresponds
 to Sunday. For example, when Saturday
 and Sunday are weekend days (default)
 then Weekend $=[1000001]$. | |

Examples Transform Time Series Object from Weekly to Monthly Values

This example shows how to transform a time series object from weekly to monthly values.

Load the data from the file predict_ret_data.mat and use the fints function to create a time series object with a weekly frequency.

```
load predict_ret_data.mat
x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')
x0 =
    desc: Index
    freq: Weekly (2)
    'dates: (53)' 'Metric: (53)
    '01-Jan-1999' [ 97.8872]
    '08-Jan-1999' [ 97.0847]
    '15-Jan-1999' [ 109.6312]
    '22-Jan-1999' [ 105.5743]
    '29-Jan-1999' [ 108.4028]
    '05-Feb-1999' [ 134.4882]
    '12-Feb-1999' [ 117.5581]
    '19-Feb-1999' [ 106.6683]
    '26-Feb-1999' [ 118.2912]
    '05-Mar-1999' [ 105.6835]
    '12-Mar-1999' [ 128.5836]
    '19-Mar-1999' [ 115.1746]
    '26-Mar-1999' [ 131.2854]
    '02-Apr-1999' [ 130.7116]
    '09-Apr-1999' [ 123.1684]
    '16-Apr-1999' [ 107.2975]
    '23-Apr-1999' [ 91.5625]
    '30-Apr-1999' [ 78.5738]
    '07-May-1999' [ 65.2904]
    '14-May-1999' [ 70.8581]
```

| '21-May-1999' | | $72.4807]$ |
| :---: | :---: | :---: |
| '28-May-1999' | [| $72.9190]$ |
| '04-Jun-1999' | [| $64.3460]$ |
| '11-Jun-1999' | | $59.8743]$ |
| '18-Jun-1999' | | $55.0026]$ |
| '25-Jun-1999' | | $49.4032]$ |
| '02-Jul-1999' | | $49.9485]$ |
| '09-Jul-1999' | | 47.8061] |
| '16-Jul-1999' | | $61.0517]$ |
| '23-Jul-1999' | [| 58.9313] |
| '30-Jul-1999' | | $53.9584]$ |
| '06-Aug-1999' | [| $44.8472]$ |
| '13-Aug-1999' | | 45.0463] |
| '20-Aug-1999' | [| 45.1088] |
| '27-Aug-1999' | | $56.4897]$ |
| '03-Sep-1999' | [| 61.2449] |
| '10-Sep-1999' | | $58.1012]$ |
| '17-Sep-1999' | [| $50.8974]$ |
| '24-Sep-1999' | | 46.5143] |
| '01-0ct-1999' | [| $38.0806]$ |
| '08-Oct-1999' | | $33.6664]$ |
| '15-0ct-1999' | | $34.2992]$ |
| '22-Oct-1999' | [| $33.4202]$ |
| '29-0ct-1999' | [| 36.9287] |
| '05-Nov-1999' | [| 35.1278] |
| '12-Nov-1999' | | $41.8128]$ |
| '19-Nov-1999' | [| 35.8199] |
| '26-Nov-1999' | | $36.9495]$ |
| '03-Dec-1999' | | 36.2880] |
| '10-Dec-1999' | | $33.8457]$ |
| '17-Dec-1999' | [| 33.3868] |
| '24-Dec-1999' | | $32.7737]$ |
| '31-Dec-1999' | [| $28.5665]$ |

Use tomonthly to obtain the monthly aggregate for the x0 times series.

tomonthly

```
x1 = tomonthly(x0)
x1 =
    desc: TOMONTHLY: Index
    freq: Monthly (3)
    'dates: (12)' 'Metric: (12)
    '29-Jan-1999' [ 108.4028]
    '26-Feb-1999 ' [ 118.2912]
    '31-Mar-1999' [ 131.2854]
    '30-Apr-1999' [ 78.5738]
    '28-May-1999' [ 72.9190]
    '30-Jun-1999' [ 49.4032]
    '30-Jul-1999' [ 53.9584]
    '31-Aug-1999 ' [ 56.4897]
    '30-Sep-1999' [ 46.5143]
    '29-0ct-1999' [ 36.9287]
    '30-Nov-1999 ' [ 36.9495]
    '31-Dec-1999' [ 28.5665]
```

See Also
convertto | toannual | fints | todaily | toquarterly | tosemi | toweekly

Purpose Convert to quarterly

```
Syntax newfts = toquarterly(oldfts)
newfts = toquarterly(oldfts, 'ParameterName', ParameterValue, ...)
```


Arguments

oldfts Financial time series object

Description
newfts = toquarterly(oldfts) converts a financial time series of any frequency to a quarterly frequency. The default quarterly days are the last business day of March, June, September, and December. toquarterly uses holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as 00:00 for those days that did not previously exist in oldfts.

Empty ([]) passed as inputs for parameter pair values for toquarterly will trigger the use of the defaults.

```
newfts = toquarterly(oldfts, 'ParameterName',
ParameterValue, ...) accepts parameter name/parameter value
pairs as input, as specified in the following table.
```


toquarterly

| Parameter
 Name | Parameter
 Value | Description |
| :--- | :--- | :--- |
| CalcMethodCumSum
 Exact
 Neturns the cumulative sum of the values
 between each quarter. Data for missing
 dates are given the value 0. | | |
| Returns the exact value at the
 end-of-quarter date. No data
 manipulation occurs.
 (Default) Returns the values located
 at the end-of-quarter date. If there
 is missing data, Nearest returns
 the nearest data point preceding the
 end-of-quarter date. | | |
| SimpAvg | Returns an averaged quarterly value that
 only takes into account dates with data
 (nonNaN) within each quarter. | |
| v21x | This mode is compatible with previous
 versions of this function (Version 2.1.x
 and earlier). It returns an averaged
 end-of-quarter value using a previous
 toquarterly algorithm. This algorithm
 takes into account all dates and data. For
 dates that do not contain any data, the
 data is assumed to be 0. | |

Note If you set CalcMethod to v21x, settings for all of the following parameter name/parameter value pairs are not supported.
$\left.\begin{array}{lll}\hline \begin{array}{ll}\text { Parameter } \\ \text { Name }\end{array} & \begin{array}{l}\text { Parameter } \\ \text { Value }\end{array} & \begin{array}{l}\text { Description }\end{array} \\ \hline \text { BusDays } & 0 & \begin{array}{l}\text { Generates a financial time series that } \\ \text { ranges from (or between) the first date to } \\ \text { the last date in oldfts (includes NYSE } \\ \text { nonbusiness days and holidays). }\end{array} \\ & 1 & \begin{array}{l}\text { (Default) Generates a financial time } \\ \text { series that ranges from the first date } \\ \text { to the last date in oldfts (excludes }\end{array} \\ \text { NYSE nonbusiness days and holidays } \\ \text { and weekends based on AltHolidays } \\ \text { and Weekend). If an end-of-quarter date } \\ \text { falls on a nonbusiness day or NYSE } \\ \text { holiday, returns the last business day of } \\ \text { the quarter. }\end{array}\right\}$

toquarterly

| Parameter Name | Parameter Value | Description |
| :---: | :---: | :---: |
| | Relative | Returns only quarterly dates that exist in oldfts. Some dates may be disregarded if BusDays $=1$. |
| ED | 0 | (Default) The end-of-quarter date is the last day (or last business day) of the quarter. |
| | 1-31 | Specifies a particular end-of-quarter day. Months that do not contain the specified end-of-quarter day return the last day of the quarter instead (for example, ED $=31$ does not exist for February). |
| Em | 1-12 | Last month of the first quarter. All subsequent quarterly dates are based on this month. The default end-of-first-quarter month is March (3). |
| EndPtTol | [Begin, End] | Denotes the minimum number of days that constitute a odd quarter at the endpoints of the time series (before the first whole period and after the last whole period).
 Begin and End must be - 1 or any positive integer greater than or equal to 0 .
 A single value input for EndPtTol is the same as specifying that single value for Begin and End.
 - 1 Do not include odd quarter dates and data in calculations.
 0 (Default) Include all odd quarter dates and data in calculations.
 n Number of days (any positive integer) that constitute an odd quarter. If there are insufficient days for a complete |

Parameter Parameter Name Value Description

quarter, the odd quarter dates and data are ignored.
The following diagram is a general depiction of the factors involved in the determination of endpoints for this function.

| TimeSpec First | Returns only the observation that occurs
 at the first (earliest) time for a specific
 date. |
| :--- | :---: |
| AltHolidays | (Default) Returns only the observation
 that occurs at the last (latest) time for a
 specific date. |
| Weekend | Vector of dates specifying an alternate set
 of market closure dates. |
| | Excludes all holidays. |
| Vector of length 7 containing 0's and 1's.
 The value 1 indicates a weekend day. The
 first element of this vector corresponds
 to Sunday. For example, when Saturday
 and Sunday are weekend days (default)
 then Weekend $=[10000001]$. | |

toquarterly

Examples Transform Time Series Object from Weekly to Quarterly Values

This example shows how to transform a time series object from weekly to quarterly values.

Load the data from the file predict_ret_data.mat and use the fints function to create a time series object with a weekly frequency.

```
load predict_ret_data.mat
x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')
```

$x 0=$
desc: Index
freq: Weekly (2)
'dates: (53)' 'Metric: (53)
'01-Jan-1999' [97.8872]
'08-Jan-1999' [97.0847]
'15-Jan-1999' [109.6312]
'22-Jan-1999' [105.5743]
'29-Jan-1999' [108.4028]
'05-Feb-1999' [134.4882]
'12-Feb-1999' [117.5581]
'19-Feb-1999' [106.6683]
'26-Feb-1999' [118.2912]
'05-Mar-1999' [105.6835]
'12-Mar-1999' [128.5836]
'19-Mar-1999' [115.1746]
'26-Mar-1999' [131.2854]
'02-Apr-1999' [130.7116]
'09-Apr-1999' [123.1684]
'16-Apr-1999' [107.2975]
'23-Apr-1999' [91.5625]
'30-Apr-1999' [78.5738]
'07-May-1999' [65.2904]

| 14-May-1999 | |
| :---: | :---: |
| | |
| 9 | |
| '04-Jun-1999' | |
| '11-Jun-1999' | |
| '18-Jun-1999' | |
| -Jun-1999 | |
| Ju1 | |
| | |
| '16-Jul-1999 | |
| '23-Jul-199 | |
| | |
| ' 06-Aug-1999 | |
| 13-Aug-1999 | |
| - Aug-1 | |
| - Aug -1 | |
| 3-Sep- | |
| - Sep | |
| 17-Sep-1999 | |
| | |
| '01-0ct-1 | |
| '08-0ct-1 | |
| 15-0ct-1999' | |
| '22-0 | |
| | |
| | |
| '12-Nov-1999' | |
| | |
| ' | |
| '03 | |
| '10-Dec-1999 | |
| - | |
| ' 24 -Dec-1999' | |
| | |

$70.8581]$
$72.4807]$
$72.9190]$
$64.3460]$
59.8743]
55.0026]
49.4032]
$49.9485]$
47.8061]
61.0517]
58.9313]
$53.9584]$
44.8472]
$45.0463]$
45.1088]
56.4897]
$61.2449]$
$58.1012]$
$50.8974]$
46.5143]
$38.0806]$
$33.6664]$
34.2992]
33.4202]
36.9287]
35.1278]
41.8128]
$35.8199]$
$36.9495]$
$36.2880]$
33.8457]
$33.3868]$
32.7737
$28.5665]$

toquarterly

Use toquarterly to obtain the quarterly aggregate for the x0 times series.

```
x1 = toquarterly(x0)
```

$x 1=$
desc: TOQUARTERLY: Index
freq: Quarterly (4)

| 'dates: (4)' | 'Metric: (4)' | |
| :--- | :--- | ---: |
| '31-Mar-1999' | [| $131.2854]$ |
| '30-Jun-1999' | [| $49.4032]$ |
| '30-Sep-1999' | [| $46.5143]$ |
| '31-Dec-1999' | [| $28.5665]$ |

See Also
convertto | toannual | fints | todaily | tomonthly | tosemi | toweekly

```
Purpose Decimal to fractional conversion
Syntax quote = toquoted(usddec, fracpart)
Description quote = toquoted(usddec, fracpart) returns the fractional
equivalent,quote, of the decimal figure, usddec, based on the fractional
base (denominator), fracpart. The fractional bases are the ones used
for quoting equity prices in the United States (denominator 2, 4, 8, 16,
or 32). If fracpart is not entered, the denominator 32 is assumed.
Examples A United States equity price in decimal form is 101.625. To convert this to fractional form in eighths of a dollar:
```

```
quote = toquoted(101.625, 8)
```

quote = toquoted(101.625, 8)
quote =
quote =
101.05

```
    101.05
```

The answer is interpreted as $1015 / 8$.

Note The convention of using . (period) as a substitute for : (colon) in the output is adopted from Excel software.

See Also todecimal

Purpose Convert to semiannual

```
Syntax newfts = tosemi(oldfts)
newfts = tosemi(oldfts, 'ParameterName', ParameterValue, ...)
```

Arguments
oldfts Financial time series object.

Description newfts = tosemi(oldfts) converts a financial time series of any frequency to a semiannual frequency. The default semiannual days are the last business day of June and December. tosemi uses holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as 00:00 for those days that did not previously exist in oldfts.

Empty ([]) passed as inputs for parameter pair values for tosemi will trigger the use of the defaults.
newfts = tosemi(oldfts, 'ParameterName', ParameterValue, ...) accepts parameter name/parameter value pairs as input, as specified in the following table.
\(\left.$$
\begin{array}{lll}\hline \begin{array}{l}\text { Parameter } \\
\text { Name }\end{array} & \begin{array}{l}\text { Parameter } \\
\text { Value }\end{array} & \begin{array}{l}\text { Description }\end{array} \\
\text { CalcMethod } & \text { CumSum } & \begin{array}{l}\text { Returns the cumulative sum of the values } \\
\text { within each semiannual period. Data for } \\
\text { missing dates are given the value 0. }\end{array} \\
\text { Exact } & \begin{array}{l}\text { Returns the exact value at the } \\
\text { end-of-period date. No data manipulation } \\
\text { occurs. }\end{array}
$$

(Default) Returns the values located at

the end-of-period date. If there is missing

data, Nearest returns the nearest data

point preceding the end-of-period date.

Returns an averaged semiannual value

that only takes into account dates with

data (nonNaN) within each semiannual

period.\end{array}\right]\)| This mode is compatible with previous |
| :--- |
| versions of this function (Version 2.1.x |
| and earlier). It returns an averaged |
| end-of-period value using a previous |
| tosemi algorithm. This algorithm takes |
| into account all dates and data. For dates |
| that do not contain any data, the data is |
| assumed to be 0. |

Note If you set CalcMethod to v21x, settings for all of the following parameter name/parameter value pairs are not supported.
$\left.\left.\begin{array}{lll}\hline \begin{array}{l}\text { Parameter } \\ \text { Name }\end{array} & \begin{array}{l}\text { Parameter } \\ \text { Value }\end{array} & \begin{array}{l}\text { Description }\end{array} \\ \text { BusDays } & 0 & \begin{array}{l}\text { Generates a financial time series that } \\ \text { ranges from (or between) the first date to } \\ \text { the last date in oldfts (includes NYSE } \\ \text { nonbusiness days and holidays). }\end{array} \\ \text { (Default) Generates a financial time } \\ \text { series that ranges from the first date } \\ \text { to the last date in oldfts (excludes } \\ \text { NYSE nonbusiness days and holidays } \\ \text { and weekends based on AltHolidays and } \\ \text { Weekend). If an end-of-quarter date falls } \\ \text { on a nonbusiness day or NYSE holiday, } \\ \text { returns the last business day of the } \\ \text { quarter. }\end{array}\right] \begin{array}{l}\text { NYSE market closures, holidays, and } \\ \text { weekends are observed if AltHolidays } \\ \text { and Weekend are not supplied or empty }\end{array}\right\}$

| Parameter
 Name | Parameter Value | Description |
| :---: | :---: | :---: |
| ED | Relative | Returns only semiannual dates that exist in oldfts. Some dates may be disregarded if BusDays $=1$. |
| | 0 | (Default) The end-of-period date is the last day (or last business day) of the semiannual period. |
| | 1-31 | Specifies a particular end-of-period day. Months that do not contain the specified end-of-period day return the last day of the semiannual period instead (for example, ED $=31$ does not exist for February). |
| EM | 1-12 | End month of the first semiannual period. All subsequent period dates are based on this month. The default end of period months are June (6) and December (12). |
| EndPtTol | [Begin, End] | Denotes the minimum number of days that constitute an odd semiannual period at the endpoints of the time series (before the first whole period and after the last whole period).
 Begin and End must be -1 or any positive integer greater than or equal to 0 .
 A single value input for EndPtTol is the same as specifying that single value for Begin and End.
 -1 Do not include odd period dates and data in calculations.
 0 (Default) Include all odd period dates and data in calculations.
 n Number of days (any positive integer) that constitute an odd period. If there |

Parameter Parameter Name Value Description

are insufficient days for a complete semiannual period, the odd period dates and data are ignored.

The following diagram is a general depiction of the factors involved in the determination of endpoints for this function.

| TimeSpec First | Returns only the observation that occurs
 at the first (earliest) time for a specific
 date. |
| :--- | :---: |
| AltHolidays | (Default) Returns only the observation
 that occurs at the last (latest) time for a
 specific date. |
| Weekend | Vector of dates specifying an alternate set
 of market closure dates. |
| | Excludes all holidays.
 Vector of length 7 containing 0's and 1's.
 The value 1 indicates a weekend day. The
 first element of this vector corresponds
 to Sunday. For example, when Saturday
 and Sunday are weekend days (default)
 then Weekend $=\left[\begin{array}{lll}100000 & 0\end{array}\right]$. |

Examples Transform Time Series Object from Weekly to Semiannual Values

This example shows how to transform a time series object from weekly to semiannual values.

Load the data from the file predict_ret_data.mat and use the fints function to create a time series object with a weekly frequency.

```
load predict_ret_data.mat
x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')
```

x0 $=$
desc: Index
freq: Weekly (2)

| es: (53) | Metric: (53)' |
| :---: | :---: |
| '01-Jan-1999' | $97.8872]$ |
| '08-Jan-1999' | $97.0847]$ |
| '15-Jan-1999' | $109.6312]$ |
| '22-Jan-1999' | 105.5743] |
| '29-Jan-1999' | 108.4028] |
| 05-Feb-1999 ' | $134.4882]$ |
| '12-Feb-1999' | $117.5581]$ |
| '19-Feb-1999' | $106.6683]$ |
| '26-Feb-1999' | 118.2912] |
| '05-Mar-1999' | $105.6835]$ |
| '12-Mar-1999' | $128.5836]$ |
| '19-Mar-1999' | 115.1746] |
| '26-Mar-1999' | $131.2854]$ |
| '02-Apr-1999' | $130.7116]$ |
| '09-Apr-1999' | $123.1684]$ |
| '16-Apr-1999' | $107.2975]$ |
| 23-Apr-1999' | 91.5625 |

| '30-Apr-1999' | | $78.5738]$ |
| :---: | :---: | :---: |
| ' $07-$ May -1999 ' | [| $65.2904]$ |
| ' 14-May-1999' | | $70.8581]$ |
| ' 21 -May-1999' | [| $72.4807]$ |
| ' 28-May-1999' | | $72.9190]$ |
| '04-Jun-1999' | | $64.3460]$ |
| '11-Jun-1999' | | $59.8743]$ |
| '18-Jun-1999' | | $55.0026]$ |
| '25-Jun-1999' | | $49.4032]$ |
| '02-Jul-1999' | | $49.9485]$ |
| '09-Jul-1999' | | $47.8061]$ |
| '16-Jul-1999' | [| $61.0517]$ |
| '23-Jul-1999' | | 58.9313] |
| '30-Jul-1999' | | $53.9584]$ |
| ' 06-Aug-1999' | | $44.8472]$ |
| '13-Aug-1999' | [| 45.0463] |
| '20-Aug-1999' | | 45.1088] |
| '27-Aug-1999' | | $56.4897]$ |
| '03-Sep-1999' | | $61.2449]$ |
| '10-Sep-1999 ' | | $58.1012]$ |
| '17-Sep-1999' | | $50.8974]$ |
| '24-Sep-1999' | | $46.5143]$ |
| '01-Oct-1999' | | $38.0806]$ |
| '08-0ct-1999' | | $33.6664]$ |
| '15-0ct-1999' | | $34.2992]$ |
| '22-0ct-1999' | | $33.4202]$ |
| ' 29-0ct-1999' | | $36.9287]$ |
| ' $05-$ Nov-1999' | | $35.1278]$ |
| '12-Nov-1999' | | 41.8128] |
| '19-Nov-1999' | | $35.8199]$ |
| ' 26 -Nov-1999' | | $36.9495]$ |
| '03-Dec-1999' | | $36.2880]$ |
| '10-Dec-1999' | | $33.8457]$ |
| '17-Dec-1999' | | 33.3868] |
| '24-Dec-1999' | | $32.7737]$ |
| '31-Dec-1999' | [| $28.5665]$ |

Use tosemi to obtain the semiannual aggregate for the x 0 times series. $\mathrm{x} 1=$ tosemi $(\mathrm{x} 0)$
$\mathrm{x} 1=$
desc: TOSEMI: Index
freq: Semiannual (5)
'dates: (2)' 'Metric: (2)
'30-Jun-1999' [49.4032]
'31-Dec-1999' [28.5665]

See Also convertto | toannual | fints | todaily | tomonthly | toquarterly

totalreturnprice

Purpose Total return price time series
Syntax Return = totalreturnprice(Price, Action, Dividend)
Arguments

| Price | Number of observations (NUMOBS)-by-2 matrix of
 price data. Column 1 contains MATLAB serial date
 numbers. Column 2 contains price values. |
| :--- | :--- |
| Action | NUMOBS-by-2 matrix of price data. Column 1 contains |
| | MATLAB serial date numbers. Column 2 contains
 split ratios. |
| Dividend | NUMOBS-by-2 matrix of price data. Column 1 contains
 MATLAB serial date numbers. Column 2 contains
 dividend payouts. |

The number of observations (NUMOBS) for the three input arguments will differ from each other.

Description Return = totalreturnprice(Price, Action, Dividend) generates a total return price time series given price data, action or split data, and dividend data.

Return is NUMOBS-by-2 array of price data, where NUMOBS reflects the number of observations of price data. Column 1 contains MATLAB serial date numbers. Column 2 contains total return price values.

[^10]
Purpose
 Arguments

Convert to weekly
Syntax newfts = toweekly(oldfts)
newfts = toweekly (oldfts, 'ParameterName', ParameterValue, ...)
oldfts Financial time series object.

Description

newfts = toweekly(oldfts) converts a financial time series of any frequency to a weekly frequency. The default weekly days are Fridays or the last business day of the week. toweekly uses holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as 00:00 for those days that did not previously exist in oldfts.

Empty ([]) passed as inputs for parameter pair values for toweekly will trigger the use of the defaults.
newfts = toweekly(oldfts, 'ParameterName', ParameterValue, ...) accepts parameter name/parameter value pairs as input, as specified in the following table.
$\left.\begin{array}{lll}\hline \begin{array}{l}\text { Parameter } \\ \text { Name }\end{array} & \begin{array}{l}\text { Parameter } \\ \text { Value }\end{array} & \begin{array}{l}\text { Description }\end{array} \\ \text { CalcMethod } \begin{array}{l}\text { CumSum } \\ \text { Returns the cumulative sum of the values } \\ \text { within each week. Data for missing dates } \\ \text { are given the value 0. }\end{array} \\ \text { Returns the exact value at the } \\ \text { end-of-week dates. No data manipulation } \\ \text { occurs. } \\ \text { (Default) Returns the values located at } \\ \text { the end-of-week dates. If there is missing } \\ \text { data, Nearest returns the nearest data } \\ \text { point preceding the end-of-week date. } \\ \text { Returns an averaged weekly value that } \\ \text { only takes into account dates with data } \\ \text { (nonNaN) within each week. }\end{array}\right\}$

| Parameter Name | Parameter Value | Description |
| :---: | :---: | :---: |
| DateFilter | 1 | (Default) Generates a financial time series that ranges from the first date to the last date in oldfts (excludes NYSE nonbusiness days and holidays and weekends based on AltHolidays and Weekend). If an end-of-quarter date falls on a nonbusiness day or NYSE holiday, returns the last business day of the quarter. |
| | | NYSE market closures, holidays, and weekends are observed if AltHolidays and Weekend are not supplied or empty ([]). |
| | Absolute | (Default) Returns all weekly dates between the start and end dates of oldfts. Some dates may be disregarded if BusDays $=1$. |
| | | Note The default is to create a time series with every date at the specified periodicity, which is with DateFilter = Absolute. If you use DateFilter $=$ Relative, the endpoint effects do not apply since only your data defines which dates will appear in the output time series object. |
| | Relative | Returns only end-of-week dates that exist in oldfts. Some dates may be disregarded if BusDays $=1$. |

| Parameter
 Name | Parameter
 Value | Description
 EndPtTol
 [Begin,
 End] |
| :--- | :--- | :--- |
| | Denotes the minimum number of days
 that constitute a odd week at the
 endpoints of the time series (before the
 first whole period and after the last whole
 period).
 Begin and End must be - 1 or any positive
 integer greater than or equal to 0. | |
| A single value input for EndPtTol is the | | |
| same as specifying that single value for | | |
| Begin and End. | | |

The following diagram is a general depiction of the factors involved in the determination of endpoints for this function.

| Parameter Name | Parameter Value | Description |
| :---: | :---: | :---: |
| EOW | 0-6 | Specifies the end-of-week day:
 - 0 Friday (default)
 - 1 Saturday
 - 2 Sunday
 - 3 Monday
 - 4 Tuesday
 - 5 Wednesday
 - 6 Thursday |
| TimeSpec | First | Returns only the observation that occurs at the first (earliest) time for a specific date. |
| | Last | (Default) Returns only the observation that occurs at the last (latest) time for a specific date. |
| AltHolidays | | Vector of dates specifying an alternate set of market closure dates. |
| | -1 | Excludes all holidays. |
| Weekend | | Vector of length 7 containing 0's and 1's. The value 1 indicates a weekend day. The first element of this vector corresponds to Sunday. For example, when Saturday and Sunday are weekend days (default) then Weekend $=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$. |

Examples Transform Time Series Object from Quarterly to Weekly Values

This example shows how to transform a time series object from quarterly to weekly values.

Load the data from the file predict_ret_data.mat and use the fints function to create a time series object with a quarterly frequency.

```
load predict_ret_data.mat
x0 = fints(expdates, expdata, {'Metric'}, 'q', 'Index')
```

$x 0=$
desc: Index
freq: Quarterly (4)
dates: (53)' 'Metric: (53)
'01-Jan-1999' [97.8872]
08-Jan-1999' [97.0847]
'15-Jan-1999' [109.6312]
'22-Jan-1999' [105.5743]
'29-Jan-1999' [108.4028]
'05-Feb-1999' [134.4882]
'12-Feb-1999' [117.5581]
'19-Feb-1999' [106.6683]
'26-Feb-1999' [118.2912]
'05-Mar-1999' [105.6835]
'12-Mar-1999' [128.5836]
'19-Mar-1999' [115.1746]
'26-Mar-1999' [131.2854]
'02-Apr-1999' [130.7116]
'09-Apr-1999' [123.1684]
'16-Apr-1999' [107.2975]
'23-Apr-1999' [91.5625]
'30-Apr-1999' [78.5738]
'07-May-1999' [65.2904]

| ' 14-May-1999 ' | $70.8581]$ |
| :---: | :---: |
| '21-May-1999' | $72.4807]$ |
| '28-May-1999' | $72.9190]$ |
| '04-Jun-1999' | $64.3460]$ |
| '11-Jun-1999' | 59.8743] |
| '18-Jun-1999' | $55.0026]$ |
| '25-Jun-1999' | $49.4032]$ |
| '02-Jul-1999' | $49.9485]$ |
| '09-Jul-1999' | $47.8061]$ |
| '16-Jul-1999' | $61.0517]$ |
| '23-Jul-1999' | 58.9313] |
| '30-Jul-1999' | [53.9584] |
| '06-Aug-1999' | 44.8472] |
| '13-Aug-1999' | 45.0463] |
| '20-Aug-1999' | 45.1088] |
| '27-Aug-1999' | $56.4897]$ |
| '03-Sep-1999' | $61.2449]$ |
| '10-Sep-1999' | $58.1012]$ |
| '17-Sep-1999' | $50.8974]$ |
| '24-Sep-1999' | [46.5143] |
| '01-0ct-1999' | [38.0806] |
| '08-0ct-1999' | $33.6664]$ |
| '15-0ct-1999' | [34.2992] |
| '22-0ct-1999' | [33.4202] |
| '29-0ct-1999' | [36.9287] |
| '05-Nov-1999' | [35.1278] |
| '12-Nov-1999' | $41.8128]$ |
| '19-Nov-1999' | [35.8199] |
| '26-Nov-1999' | $36.9495]$ |
| '03-Dec-1999' | [36.2880] |
| '10-Dec-1999' | 33.8457] |
| '17-Dec-1999' | [33.3868] |
| '24-Dec-1999' | $32.7737]$ |
| '31-Dec-1999' | $28.5665]$ |

Use toweekly to obtain the weekly aggregate for the x0 times series.

```
x1 = toweekly(x0)
x1 =
    desc: TOWEEKLY: Index
    freq: Weekly (2)
```

 'dates: (53)' 'Metric: (53)
 '31-Dec-1998' [NaN]
 '08-Jan-1999' [97.0847]
 '15-Jan-1999' [109.6312]
 '22-Jan-1999' [105.5743]
 '29-Jan-1999' [108.4028]
 '05-Feb-1999' [134.4882]
 '12-Feb-1999' [117.5581]
 '19-Feb-1999' [106.6683]
 '26-Feb-1999' [118.2912]
 '05-Mar-1999' [105.6835]
 '12-Mar-1999' [128.5836]
 '19-Mar-1999' [115.1746]
 26-Mar-1999 ' [131.2854]
 01-Apr-1999' [NaN]
 09-Apr-1999' [123.1684]
 '16-Apr-1999' [107.2975]
 '23-Apr-1999' [91.5625]
 '30-Apr-1999' [78.5738]
 '07-May-1999 ' [65.2904]
 '14-May-1999' [70.8581]
 '21-May-1999' [72.4807]
 28-May-1999 ' [72.9190]
 04-Jun-1999' [64.3460]
 '11-Jun-1999' [59.8743]
 '18-Jun-1999' [55.0026]
 '25-Jun-1999' [49.4032]
 '02-Jul-1999' [49.9485]
 '09-Jul-1999' [47.8061]
 | '16-Jul-1999' | [| $61.0517]$ |
| :---: | :---: | :---: |
| '23-Jul-1999' | [| $58.9313]$ |
| '30-Jul-1999' | [| $53.9584]$ |
| '06-Aug-1999' | [| 44.8472] |
| '13-Aug-1999' | [| 45.0463] |
| '20-Aug-1999' | [| 45.1088] |
| '27-Aug-1999' | | $56.4897]$ |
| '03-Sep-1999' | [| $61.2449]$ |
| '10-Sep-1999' | | $58.1012]$ |
| '17-Sep-1999' | [| $50.8974]$ |
| '24-Sep-1999' | | 46.5143] |
| '01-0ct-1999' | [| $38.0806]$ |
| '08-0ct-1999' | | $33.6664]$ |
| '15-0ct-1999' | [| $34.2992]$ |
| '22-0ct-1999' | | 33.4202] |
| '29-0ct-1999' | [| 36.9287] |
| '05-Nov-1999' | | 35.1278] |
| '12-Nov-1999' | | 41.8128] |
| '19-Nov-1999' | | $35.8199]$ |
| '26-Nov-1999' | [| $36.9495]$ |
| '03-Dec-1999' | | 36.2880] |
| '10-Dec-1999' | [| $33.8457]$ |
| '17-Dec-1999' | | $33.3868]$ |
| '23-Dec-1999' | [| $\mathrm{NaN}]$ |
| '31-Dec-1999' | [| 28.5665] |

See Also

convertto | toannual | fints | todaily | tomonthly | toquarterly tosemi

Purpose
Term-structure parameters given Treasury bond parameters
Syntax [Bonds, Prices, Yields] = tr2bonds(TreasuryMatrix, Settle)
Arguments

| TreasuryMatrix | Treasury bond parameters. An n-by-5
 matrix, where each row describes
 a Treasury bond. Columns are
 [CouponRate Maturity Bid Asked AskYield]
 where: |
| :--- | :--- |
| CouponRate | Coupon rate, as a decimal fraction.
 Maturity date, as a serial date number. Use
 datenum to convert date strings to serial date
 numbers. |
| Maturity | Bid price based on $\$ 100$ face value. |
| Bid | Asked price based on $\$ 100$ face value. |
| Asked | Asked yield to maturity, as a decimal fraction.
 (Optional) Date string or serial date number of
 AskYield
 the settlement date for the analysis. |

Description [Bonds, Prices, Yields] = tr2bonds(TreasuryMatrix, Settle) returns term-structure parameters (bond information, prices, and yields) sorted by ascending maturity date, given Treasury bond parameters. The formats of the output matrix and vectors meet requirements for input to the zbtprice and zbtyield zero-curve bootstrapping functions.

| Bonds | Coupon bond information. An n-by-6 matrix where each row describes a bond. Columns are [Maturity CouponRate Face Period Basis EndMonthRule] where: |
| :---: | :---: |
| Maturity | Maturity date of the bond, as a serial date number. Use datestr to convert serial date numbers to date strings. |
| CouponRate | Coupon rate of the bond, as a decimal fraction. |
| Face | Redemption or face value of the bond, always 100. |
| Period | Coupons per year of the bond, always 2 . |
| Basis | Day-count basis of the bond, possible values include:
 - $0=$ actual/actual (default)
 - $1=30 / 360$ (SIA)
 - 2 = actual/360
 - $3=$ actual/365
 For more information, see basis on page Glossary-2. |
| EndMonthRule | End-of-month flag, always 1, meaning that a bond's coupon payment date is always the last day of the month. |

tr2bonds

Prices | Prices. Column vector containing the price of |
| :--- |
| each bond in bonds, respectively. The number |
| of rows (n) matches the number of rows in |
| bonds. |

Examples Return Term-Structure Parameters Given Treasury Bond Parameters

This example shows how to return term-structure parameters (bond information, prices, and yields) sorted by ascending maturity date, given Treasury bond market parameters for December 22, 1997.

```
Matrix =[0.0650 datenum('15-apr-1999') 101.03125 101.09375 0.0564
    0.05125 datenum('17-dec-1998') 99.4375 99.5 0.0563
    0.0625 datenum('30-jul-1998') 100.3125 100.375 0.0560
    0.06125 datenum('26-mar-1998') 100.09375 100.15625 0.0546];
[Bonds, Prices, Yields] = tr2bonds(Matrix)
```

Bonds =
$1.0 \mathrm{e}+05$ *

| 7.2984 | 0.0000 | 0.0010 | 0.0000 | 0 | 0.0000 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7.2997 | 0.0000 | 0.0010 | 0.0000 | 0 | 0.0000 |
| 7.3011 | 0.0000 | 0.0010 | 0.0000 | 0 | 0.0000 |
| 7.3022 | 0.0000 | 0.0010 | 0.0000 | 0 | 0.0000 |

Prices =
100.1563100.3750
99.5000
101.0938
Yields =
0.0546
0.0560
0.0563
0.0564
See Also tbl2bond | zbtprice | zbtyield
How To - "Term Structure of Interest Rates" on page 2-41

Purpose Estimate transition probabilities from credit ratings data

```
Syntax [transMat, sampleTotals, idTotals] = transprob(data)
[transMat, sampleTotals, idTotals] = transprob(data,
Name, Value)
```


Description

Input
Arguments
[transMat, sampleTotals, idTotals] = transprob(data) constructs a transition matrix from historical data of credit ratings.
[transMat, sampleTotals, idTotals] = transprob(data, Name, Value) constructs a transition matrix from historical data of credit ratings with additional options specified by one or more Name, Value pair arguments.

data

Using transprob to estimate transition probabilities given credit ratings historical data (i.e. credit migration data), the data input can be either of the following:

- A preprocessed data structure obtained using transprobprep. This data structure contains the fields'idStart', 'numericDates', 'numericRatings', and 'ratingsLabels'.
or
- An nRecords-by-3 cell array containing the historical credit ratings data of the form:

| '00010283' | '10-Nov-1984' | ' CCC |
| :---: | :---: | :---: |
| '00010283' | '12-May-1986' | 'B' |
| '00010283' | '29-Jun-1988' | ' CCC |
| '00010283' | '12-Dec-1991' | 'D' |
| '00013326' | '09-Feb-1985' | 'A' |
| '00013326' | ' 24 -Feb-1994' | 'AA' |
| '00013326' | '10-Nov-2000' | ' ${ }^{\text {b }}{ }^{\prime}$ |
| 00014413' | '23-Dec-1982' | 'B' |

where each row contains an ID (column 1), a date (column 2), and a credit rating (column 3). Column 3 is the rating assigned to the corresponding ID on the corresponding date. All information corresponding to the same ID must be stored in contiguous rows. Sorting this information by date is not required, but recommended for efficiency. IDs, dates and ratings are usually stored in string format, but they can also be entered in numeric format.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'algorithm'

Estimation algorithm, in string format. Valid values are duration or cohort.

Default: duration

'endDate'

End date of the estimation time window, in string or numeric format. The endDate cannot be a date before the startDate.

Default: Latest date in data

'labels'

Cell array of size nRatings-by-1, or 1-by-nRatings, containing the credit-rating scale. It must be consistent with the ratings labels used in the third column of data.

[^11]
transprob

Integer indicating the number of credit-rating snapshots per year to be considered for the estimation. Valid values are $1,2,3,4,6,12$. This parameter is only used with the cohort algorithm.

Default: 1 - One snapshot per year

'startDate'

Start date of the estimation time window, in string or numeric format.
Default: Earliest date in data

'transInterval'

Length of the transition interval, in years.
Default: 1 - One year transition probabilities

Output Arguments

transMat

Matrix of transition probabilities in percent. The size of the transition matrix is nRatings-by-nRatings.

sampleTotals

Structure with fields:

- totalsVec - A vector of size 1-by-nRatings.
- totalsMat - A matrix of size nRatings-by-nRatings.
- algorithm - A string with values 'duration' or 'cohort'.

For the 'duration' algorithm, totalsMat (i, j) contains the total transitions observed out of rating i into rating (all the diagonal elements are zero). The total time spent on rating i is stored in totalsVec (i). For example, if there are three rating categories, Investment Grade (IG), Speculative Grade (SG) and Default (D), and the following information:

```
Total time spent IG SG D
```

```
in rating: 4859.09 1503.36 1162.05
\begin{tabular}{lrrrr} 
Transitions & & IG & SG & D \\
out of (row) & IG & 0 & 89 & 7 \\
into (column): & SG & 202 & 0 & 32 \\
& D & 0 & 0 & 0
\end{tabular}
```

Then

```
totals.totalsVec = [l4859.09 1503.36 1162.05}
```

totals.totalsMat $=\left[\begin{array}{lll}0 & 89 & 7\end{array}\right.$
202032
$0 \quad 0 \quad 0]$
totals.algorithm = 'duration'

For the 'cohort' algorithm, totalsMat (i, j) contains the total transitions observed from rating i to rating j, and totalsVec (i) is the initial count in rating i. For example, given the following information:

| Initial count | IG | SG | D |
| :--- | ---: | ---: | :---: |
| in rating: | 4808 | 1572 | 1145 |

| Transitions | | IG | SG | D |
| :--- | ---: | ---: | ---: | ---: |
| from (row) | IG | 4721 | 80 | 7 |
| to (column): | SG | 193 | 1347 | 32 |
| | D | 0 | 0 | 1145 |

Then

```
totals.totalsVec = [4808 1572 1145]
totals.totalsMat = [4721 80 7
    193 1347 32
        0 0 1145
totals.algorithm = 'cohort'
```


idTotals

Struct array of size nIDs-by-1, where n IDs is the number of distinct IDs in column 1 of data when this is a cell array or, equivalently, equal to
the length of the idStart field minus 1 when data is a preprocessed data structure. For each ID in the sample, idTotals contains one structure with the following fields:

- totalsVec - A sparse vector of size 1-by-nRatings.
- totalsMat - A sparse matrix of size nRatings-by-nRatings.
- algorithm - A string with values 'duration' or 'cohort'.

These fields contain the same information described for the output sampleTotals, but at an ID level. For example, for 'duration', idTotals (k).totalsVec contains the total time that the k-th company spent on each rating.

Definitions

Examples Construct a Transition Matrix From Historical Data of Credit Ratings

Using the historical credit rating input data from Data_TransProb.mat display the first ten rows and compute the transition matrix:

```
load Data_TransProb
data(1:10,:)
```


\% Estimate transition probabilities with default settings transMat = transprob(data)

ans =

| '00010283' | '10-Nov-1984' | CCC ${ }^{\prime}$ |
| :---: | :---: | :---: |
| '00010283' | '12-May-1986' | ' ${ }^{\prime}$ |
| '00010283' | '29-Jun-1988' | ' CCC' |
| '00010283' | '12-Dec-1991' | 'D' |
| '00013326' | ' 09-Feb-1985' | ' A^{\prime} |
| '00013326' | ' 24 -Feb-1994 ' | 'AA' |
| '00013326' | '10-Nov-2000' | ' BBB^{\prime} |
| '00014413' | '23-Dec-1982' | 'B' |
| '00014413' | '20-Apr-1988' | ' BB' |
| '00014413' | 16-Jan-1998 ${ }^{\prime}$ | B^{\prime} |

transMat =

Columns 1 through 7

| 93.1170 | 5.8428 | 0.8232 | 0.1763 | 0.0376 | 0.0012 | 0.000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.6166 | 93.1518 | 4.3632 | 0.6602 | 0.1626 | 0.0055 | 0.000 |
| 0.1237 | 2.9003 | 92.2197 | 4.0756 | 0.5365 | 0.0661 | 0.002 |
| 0.0236 | 0.2312 | 5.0059 | 90.1846 | 3.7979 | 0.4733 | 0.064 |
| 0.0216 | 0.1134 | 0.6357 | 5.7960 | 88.9866 | 3.4497 | 0.291 |
| 0.0010 | 0.0062 | 0.1081 | 0.8697 | 7.3366 | 86.7215 | $2.516\}$ |
| 0.0002 | 0.0011 | 0.0120 | 0.2582 | 1.4294 | 4.2898 | 81.292 |
| 0 | 0 | 0 | 0 | 0 | 0 | |

Column 8
0.0017
0.0396
0.0753

18-1771

$$
\begin{array}{r}
0.2193 \\
0.7050 \\
2.4399 \\
12.7167 \\
100.0000
\end{array}
$$

Using the historical credit rating input data from Data_TransProb.mat, compute the transition matrix using the cohort algorithm:

```
%Estimate transition probabilities with 'cohort' algorithm
transMatCoh = transprob(data,'algorithm','cohort')
```

transMatCoh =

Columns 1 through 7

| 93.1345 | 5.9335 | 0.7456 | 0.1553 | 0.0311 | 0 | 0 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.7359 | 92.9198 | 4.5446 | 0.6046 | 0.1560 | 0 | 0 |
| 0.1268 | 2.9716 | 91.9913 | 4.3124 | 0.4711 | 0.0544 | 0 |
| 0.0210 | 0.3785 | 5.0683 | 89.7792 | 4.0379 | 0.4627 | 0.0421 |
| 0.0221 | 0.1105 | 0.6851 | 6.2320 | 88.3757 | 3.6464 | 0.2873 |
| 0 | 0 | 0.0761 | 0.7230 | 7.9909 | 86.1872 | 2.7397 |
| 0 | 0 | 0 | 0.3094 | 1.8561 | 4.5630 | 80.8971 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Column 8

$$
\begin{array}{r}
0.0390 \\
0.0725 \\
0.2103 \\
0.6409 \\
2.2831 \\
12.3743 \\
100.0000
\end{array}
$$

Using the historical credit rating data with ratings investment grade ('IG'), speculative grade ('SG'), and default ('D'), from Data_TransProb.mat display the first ten rows and compute the transition matrix:

```
dataIGSG(1:10,:)
transMatIGSG = transprob(dataIGSG,'labels',{'IG','SG','D'})
```

ans =

| 00011253 ${ }^{\prime}$ | '04-Apr-1983' | IG ' |
| :---: | :---: | :---: |
| '00012751' | '17-Feb-1985' | SG' |
| '00012751' | '19-May-1986' | ' ${ }^{\prime}$ |
| '00014690' | '17-Jan-1983' | IG' |
| '00012144' | '21-Nov-1984' | 'IG' |
| '00012144' | '25-Mar-1992' | 'SG' |
| '00012144' | '07-May-1994' | 'IG' |
| '00012144' | '23-Jan-2000' | 'SG' |
| '00012144' | '20-Aug-2001' | IG' |
| '00012937' | '07-Feb-1984' | IG |

transMatIGSG =

| 98.6719 | 1.2020 | 0.1261 |
| ---: | ---: | ---: |
| 3.5781 | 93.3318 | 3.0901 |
| 0 | 0 | 100.0000 |

Using the historical credit rating data with numeric ratings for investment grade (1), speculative grade (2), and default (3), from Data_TransProb.mat display the first ten rows and compute the transition matrix:

transprob

```
dataIGSGnum(1:10,:)
transMatIGSGnum = transprob(dataIGSGnum,'labels',{1,2,3})
ans =
    '00011253' '04-Apr-1983' [1]
    '00012751' '17-Feb-1985' [2]
    '00012751' '19-May-1986' [3]
    '00014690' '17-Jan-1983' [1]
    '00012144' '21-Nov-1984' [1]
    '00012144' '25-Mar-1992' [2]
    '00012144' '07-May-1994' [1]
    '00012144' '23-Jan-2000' [2]
    '00012144' '20-Aug-2001' [1]
    '00012937' '07-Feb-1984' [1]
transMatIGSGnum =
\begin{tabular}{rrr}
98.6719 & 1.2020 & 0.1261 \\
3.5781 & 93.3318 & 3.0901 \\
0 & 0 & 100.0000
\end{tabular}
```


Algorithms Cohort Estimation

The algorithm first determines a sequence t_{0}, \ldots, t_{K} of snapshot dates. The elapsed time, in years, between two consecutive snapshot dates t_{k-1} and t_{k} is equal to $1 / n s$, where $n s$ is the number of snapshots per year. These $K+1$ dates determine K transition periods.

The algorithm computes N_{i}^{n}, the number of transition periods in which obligor n starts at rating i. These are added up over all obligors to get N_{i}, the number of obligors in the sample that start a period at rating i. The number periods in which obligor n starts at rating i and ends at
rating j, or migrates from i to j, denoted by $N_{i j}^{n}$, is also computed. These are also added up to get $N_{i j}$, the total number of migrations from i to j in the sample.

The estimate of the transition probability from i to j in one period, denoted by $P_{i j}$, is given by:

$$
P_{i j}=\frac{N_{i j}}{N_{i}}
$$

These probabilities are arranged in a one-period transition matrix P_{0}, where the i, j entry in P_{0} is $P_{i j}$.
If the number of snapshots per year $n s$ is 4 (quarterly snapshots), the probabilities in P_{0} are 3 -month (or 0.25 -year) transition probabilities. You may, however, be interested in 1 -year or 2 -year transition probabilities. The latter time interval is called the transition interval, Δt, and it is used to convert P_{0} into the final transition matrix, P, according to the formula:

$$
P=P_{0}^{n s \square t}
$$

For example, if $n s=4$ and $\Delta t=2, P$ contains the 2 -year transition probabilities estimated from quarterly snapshots.

transprob

Note For the cohort algorithm, optional output arguments idTotals and sampleTotals from transprob contain the following information:

- idTotals(n).totalsVec $=\left(N_{i}^{n}\right) \forall i$
- idTotals(n).totalsMat $=\left(N_{i, j}^{n}\right) \forall i j$
- idTotals(n).algoritm = 'cohort'
- sampleTotals.totalsVec $=\left(N_{i}\right) \forall i$
- sampleTotals.totalsMat $=\left(N_{i, j}\right) \forall i j$
- sampleTotals.algoritm = 'cohort'

For efficiency, the vectors and matrices in idTotals are stored as sparse arrays.

Duration Estimation

The algorithm computes T_{i}^{n}, the total time that obligor n spends in rating i within the estimation time window. These quantities are
added up over all obligors to get T_{i}, the total time spent in rating i, collectively, by all obligors in the sample. The algorithm also computes
$T_{i j}^{n}$, the number times that obligor n migrates from rating i to rating j, with i not equal to j, within the estimation time window. And it also
adds them up to get $T_{i j}$, the total number of migrations, by all obligors in the sample, from the rating i to j, with i not equal to j.

To estimate the transition probabilities, the duration algorithm first needs to compute a generator matrix Λ. Each off-diagonal entry of this matrix is an estimate of the transition rate out of rating i into rating j, and is given by:

$$
\lambda_{i j}=\frac{T_{i j}}{T_{i}}, i \neq j
$$

The diagonal entries are computed as:

$$
\lambda_{i i}=-\sum_{j \neq i} \lambda_{i j}
$$

With the generator matrix and the transition interval Δt (e.g., $\Delta t=2$ corresponds to 2 -year transition probabilities), the transition matrix is obtained as $P=\exp (\Delta t \Lambda)$, where \exp denotes matrix exponentiation (expm in MATLAB).

Note For the duration algorithm, optional output arguments idTotals and sampleTotals from transprob contain the following information:

- idTotals(n).totalsVec $=\left(T_{i}^{n}\right) \forall i$
- idTotals(n).totalsMat $=\left(T_{i, j}^{n}\right) \forall i j$
- idTotals(n).algoritm = 'duration'
- sampleTotals.totalsVec $=\left(T_{i}\right) \forall i$
- sampleTotals.totalsMat $=\left(T_{i, j}\right) \forall i j$
- sampleTotals.algoritm = 'duration'

For efficiency, the vectors and matrices in idTotals are stored as sparse arrays.

References Hanson, S., T. Schuermann, "Confidence Intervals for Probabilities of Default," Journal of Banking \& Finance, Elsevier, vol. 30(8), pages 2281-2301, August 2006.

Löffler, G., P. N. Posch, Credit Risk Modeling Using Excel and VBA, West Sussex, England: Wiley Finance, 2007.

Schuermann, T., "Credit Migration Matrices," in E. Melnick, B. Everitt (eds.), Encyclopedia of Quantitative Risk Analysis and Assessment, Wiley, 2008.

See Also | transprobbytotals | transprobprep
How To

- "Estimation of Transition Probabilities" on page 8-18

Purpose

Estimate transition probabilities using totals structure input
Syntax
[transMat,sampleTotals] = transprobbytotals(totals) [transMat,sampleTotals] = transprobbytotals(totals, Name, Value)

Description

Input Arguments

[transMat, sampleTotals] = transprobbytotals(totals) estimates transition probabilities using a totals structure input.
[transMat,sampleTotals] = transprobbytotals(totals, Name, Value) estimates transition probabilities using a totals structure input with additional options specified by one or more Name, Value pair arguments.
transprobbytotals is useful for removing outlier information, obtaining bootstrapped confidence intervals, or computing transition probability estimates for different periodicity parameters (1-year transitions, 2 -year transitions, etc.) in an efficient manner.

totals

This can be:

- totalsVec - A sparse vector of size 1-by-nRatings1.
- totalsMat - A sparse matrix of size nRatings1-by-nRatings2 with nRatings1 \leq nRatings2.
- algorithm - A string with values 'duration' or 'cohort'.

For the 'duration' algorithm, totalsMat (i, j) contains the total transitions observed out of rating i into rating j (all the diagonal elements are 0). The total time spent on rating i is stored in totalsVec (i). For example, you have three rating categories, Investment Grade (IG), Speculative Grade (SG) and Default (D), and the following information:

| Total time spent | IG | SG | D |
| :--- | :---: | :---: | :---: |
| in rating: | 4859.09 | 1503.36 | 1162.05 |

transprobbytotals

| Transitions | | IG | SG | D |
| :--- | ---: | ---: | ---: | ---: |
| out of (row) | IG | 0 | 89 | 7 |
| into (column): | SG | 202 | 0 | 32 |
| | D | 0 | 0 | 0 |

Then:

```
totals.totalsVec = [4859.09 1503.36 1162.05]
totals.totalsMat = [ 0 89 7
    202 0 32
    0 0 0]
totals.algorithm = 'duration'
```

For the 'cohort' algorithm, totalsMat (i, j) contains the total transitions observed from rating i to rating j, and totalsVec (i) is the initial count in rating i. For example, given the following information:

| Initial count | IG | SG | D |
| :--- | ---: | ---: | ---: |
| in rating: | 4808 | 1572 | 1145 |
| | | | |
| Transitions | | IG | SG |
| from (row) | IG | 4721 | 80 |
| to (column): | SG | 193 | 1347 |
| | D | 0 | 0 |
| | | | 1142 |

Then:

```
totals.totalsVec = [4808 1572 1145]
totals.totalsMat = [4721 80 7
    193 1347 32
    0 0 1145
totals.algorithm = 'cohort'
```

Common totals structures are the optional output arguments from transprob:

- sampleTotals - A single structure summarizing the totals information for the whole dataset.
- idTotals - A struct array with the totals information at the ID level.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'snapsPerYear'

Integer indicating the number of credit-rating snapshots per year to be considered for the estimation. Values are $1,2,3,4,6$, or 12 . This argument is only used with the cohort algorithm.

Default: 1 - One snapshot per year

'transInterval'

Length of the transition interval, in years.
Default: 1 - One-year transition probabilities

Output Arguments

transMat

Matrix of transition probabilities in percent. The size of the transition matrix is nRatings1-by-nRatings2.

sampleTotals

Structure with fields:

- totalsVec - A vector of size 1-by-nRatings1.
- totalsMat - A matrix of size nRatings1-by-nRatings2 with nRatings1 \leq nRatings2.
- algorithm - A string with values 'duration' or 'cohort'.

If totals is a struct array, sampleTotals contains the aggregated information. That is, sampleTotals.totalsVec is the sum of

transprobbytotals

totals(k).totalsVec over all k, and similarly for totalsMat. When totals is itself a single structure, sampleTotals and totals are the same.

Definitions

Examples Estimate Transition Probabilities Using a totals Structure Input

Use historical credit rating input data from Data_TransProb.mat and transprob to generate input for transprobbytotals:
load Data_TransProb
\% Call TRANSPROB with three output arguments [transMat, sampleTotals, idTotals] = transprob(data); transMat

Columns 1 through 7

| 93.1170 | 5.8428 | 0.8232 | 0.1763 | 0.0376 | 0.0012 | 0.000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.6166 | 93.1518 | 4.3632 | 0.6602 | 0.1626 | 0.0055 | 0.000 |
| 0.1237 | 2.9003 | 92.2197 | 4.0756 | 0.5365 | 0.0661 | 0.002 |
| 0.0236 | 0.2312 | 5.0059 | 90.1846 | 3.7979 | 0.4733 | 0.064 |
| 0.0216 | 0.1134 | 0.6357 | 5.7960 | 88.9866 | 3.4497 | 0.291 |
| 0.0010 | 0.0062 | 0.1081 | 0.8697 | 7.3366 | 86.7215 | 2.5169 |
| 0.0002 | 0.0011 | 0.0120 | 0.2582 | 1.4294 | 4.2898 | 81.292 |
| 0 | 0 | 0 | 0 | 0 | 0 | |

Column 8
0.0017
0.0396
0.0753
0.2193
0.7050
2.4399
12.7167
100.0000

Suppose companies 4 and 27 are outliers and you want to remove them from the pre-processed idTotals struct array and estimate the new transition probabilities.

```
idTotals([4 27]) = [];
[transMat1, sampleTotals1] = transprobbytotals(idTotals);
transMat1
```

transMat1 =

Columns 1 through 7

| 93.1172 | 5.8427 | 0.8231 | 0.1763 | 0.0377 | 0.0012 | 0.000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

18-1783

transprobbytotals

| 1.6213 | 93.1501 | 4.3584 | 0.6614 | 0.1631 | 0.0055 | 0.0004 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.1239 | 2.9027 | 92.2297 | 4.0628 | 0.5367 | 0.0661 | 0.0028 |
| 0.0236 | 0.2313 | 5.0070 | 90.1825 | 3.7986 | 0.4734 | 0.0642 |
| 0.0216 | 0.1134 | 0.6357 | 5.7959 | 88.9866 | 3.4497 | 0.2920 |
| 0.0010 | 0.0062 | 0.1081 | 0.8697 | 7.3367 | 86.7217 | 2.5171 |
| 0.0002 | 0.0011 | 0.0120 | 0.2591 | 1.4340 | 4.3034 | 81.3027 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Column 8

$$
\begin{array}{r}
0.0017 \\
0.0397 \\
0.0753 \\
0.2193 \\
0.7050 \\
2.4395 \\
12.6875 \\
100.0000
\end{array}
$$

Obtain the 1 -year, 2 -year, 3 -year, 4 -year, and 5 -year default probabilities, without the outlier information (i.e., using sampleTotals1).

```
DefProb = zeros(7,5);
for t = 1:5
    transMatTemp = transprobbytotals(sampleTotals1,'transInterval',t);
    DefProb(:,t) = transMatTemp(1:7,8);
end
DefProb
```

DefProb =

| 0.0017 | 0.0070 | 0.0159 | 0.0285 | 0.0450 |
| :--- | :--- | :--- | :--- | :--- |
| 0.0397 | 0.0828 | 0.1299 | 0.1813 | 0.2377 |
| 0.0753 | 0.1606 | 0.2567 | 0.3640 | 0.4831 |

| 0.2193 | 0.4675 | 0.7430 | 1.0445 | 1.3700 |
| ---: | ---: | ---: | ---: | ---: |
| 0.7050 | 1.4668 | 2.2759 | 3.1232 | 4.0000 |
| 2.4395 | 4.9282 | 7.4071 | 9.8351 | 12.1847 |
| 12.6875 | 23.1184 | 31.7177 | 38.8282 | 44.7266 |

References Hanson, S., T. Schuermann, "Confidence Intervals for Probabilities of Default," Journal of Banking \& Finance, Elsevier, vol. 30(8), pages 2281-2301, August 2006.
Löffler, G., P. N. Posch, Credit Risk Modeling Using Excel and VBA, West Sussex, England: Wiley Finance, 2007.
Schuermann, T., "Credit Migration Matrices," in E. Melnick, B. Everitt (eds.), Encyclopedia of Quantitative Risk Analysis and Assessment, Wiley, 2008.

See Also
 transprob | transprobgrouptotals

How To . "Estimation of Transition Probabilities" on page 8-18

transprobfromthresholds

Purpose Convert from credit quality thresholds to transition probabilities

Syntax trans = transprobfromthresholds(thresh)
Description
trans = transprobfromthresholds(thresh) transforms credit quality thresholds into transition probabilities.

Input
 Arguments

thresh

M-by-N matrix of credit quality thresholds. In each row, the first element must be Inf and the entries must satisfy the following monotonicity condition:

```
thresh(i,j) >= thresh(i,j+1), for 1<= j<N
```

The M-by-N input thresh and the M-by-N output trans are related as follows. The thresholds thresh (i, j) are critical values of a standard normal distribution z, such that:

```
trans(i,N) = P[z < thresh(i,N)],
trans(i,j) = P[z< thresh(i,j)] - P[z< thresh(i,j+1)], for 1<=j<N
```

Any given row in the output matrix TRANS determines a probability distribution over a discrete set of N ratings 'R1', ..., 'RN', so that for any row $i \operatorname{TRANS}(i, j)$ is the probability of migrating into ' $\mathrm{Rj} \mathrm{I}^{\prime}$. TRANS can be a standard transition matrix, with $\mathrm{M} \leq \mathrm{N}$, in which case row i contains the transition probabilities for issuers with rating ' Ri '. But TRANS does not have to be a standard transition matrix. TRANS can contain individual transition probabilities for a set of M-specific issuers, with $\mathrm{M}>\mathrm{N}$.

For example, suppose there are only $\mathrm{N}=3$ ratings, 'High ', 'Low', and 'Default', with these credit quality thresholds:

| | High | Low | Default |
| :--- | :--- | :---: | :---: |
| High | Inf | -2.0814 | -3.1214 |
| Low | Inf | 2.4044 | -1.7530 |

The matrix of transition probabilities is then:

| | High | Low | Default |
| :--- | ---: | :---: | :---: |
| High | 98.13 | 1.78 | 0.09 |
| Low | 0.81 | 95.21 | 3.98 |

This means the probability of default for 'High' is equivalent to drawing a standard normal random number smaller than -3.1214 , or 0.09%. The probability that a 'High' will end up the period with a rating of 'Low' or lower is equivalent to drawing a standard normal random number smaller than -2.0814 , or 1.87%. From here, the probability of ending with a 'Low' rating is:

```
P[z<-2.0814] - P[z<-3.1214] = 1.87% - 0.09% = 1.78%
```

And the probability of ending with a 'High ' rating is:

```
100%-1.87% = 98.13%
```

where 100% is the same as:
$\mathrm{P}[z<\operatorname{Inf}]$

Output

Arguments

Examples Transform Credit Quality Thresholds Into Transition Probabilities

Use historical credit rating input data from Data_TransProb.mat, estimate transition probabilities with default settings.

```
load Data_TransProb
% Estimate transition probabilities with default settings
transMat = transprob(data)
```


transprobfromthresholds

| Columns 1 through 7 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 93.1170 | 5.8428 | 0.8232 | 0.1763 | 0.0376 | 0.0012 | 0.0001 |
| 1.6166 | 93.1518 | 4.3632 | 0.6602 | 0.1626 | 0.0055 | 0.0004 |
| 0.1237 | 2.9003 | 92.2197 | 4.0756 | 0.5365 | 0.0661 | 0.0028 |
| 0.0236 | 0.2312 | 5.0059 | 90.1846 | 3.7979 | 0.4733 | 0.0642 |
| 0.0216 | 0.1134 | 0.6357 | 5.7960 | 88.9866 | 3.4497 | 0.2919 |
| 0.0010 | 0.0062 | 0.1081 | 0.8697 | 7.3366 | 86.7215 | 2.5169 |
| 0.0002 | 0.0011 | 0.0120 | 0.2582 | 1.4294 | 4.2898 | 81.2927 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Column 8 | | | | | | |
| 0.0017 | | | | | | |
| 0.0396 | | | | | | |
| 0.0753 | | | | | | |
| 0.2193 | | | | | | |
| 0.7050 | | | | | | |
| 2.4399 | | | | | | |
| 12.7167 | | | | | | |
| 100.0000 | | | | | | |

Obtain the credit quality thresholds.
thresh $=$ transprobtothresholds(transMat)
thresh =

Columns 1 through 7

| Inf | -1.4846 | -2.3115 | -2.8523 | -3.3480 | -4.0083 | -4.1276 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Inf | 2.1403 | -1.6228 | -2.3788 | -2.8655 | -3.3166 | -3.3523 |
| Inf | 3.0264 | 1.8773 | -1.6690 | -2.4673 | -2.9800 | -3.1631 |

| Inf | 3.4963 | 2.8009 | 1.6201 | -1.6897 | -2.4291 | -2.7663 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Inf | 3.5195 | 2.9999 | 2.4225 | 1.5089 | -1.7010 | -2.3275 |
| Inf | 4.2696 | 3.8015 | 3.0477 | 2.3320 | 1.3838 | -1.649 |
| Inf | 4.6241 | 4.2097 | 3.6472 | 2.7803 | 2.1199 | 1.555 |
| Inf | Inf | Inf | Inf | Inf | Inf | In |

Column 8

$$
\begin{array}{r}
-4.1413 \\
-3.3554 \\
-3.1736 \\
-2.8490 \\
-2.4547 \\
-1.9703 \\
-1.1399 \\
\text { Inf }
\end{array}
$$

Recover the transition probabilities.

```
trans = transprobfromthresholds(thresh)
```

trans $=$

Columns 1 through 7

| 93.1170 | 5.8428 | 0.8232 | 0.1763 | 0.0376 | 0.0012 | 0.000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.6166 | 93.1518 | 4.3632 | 0.6602 | 0.1626 | 0.0055 | 0.000 |
| 0.1237 | 2.9003 | 92.2197 | 4.0756 | 0.5365 | 0.0661 | 0.0028 |
| 0.0236 | 0.2312 | 5.0059 | 90.1846 | 3.7979 | 0.4733 | 0.0642 |
| 0.0216 | 0.1134 | 0.6357 | 5.7960 | 88.9866 | 3.4497 | 0.2919 |
| 0.0010 | 0.0062 | 0.1081 | 0.8697 | 7.3366 | 86.7215 | $2.516\}$ |
| 0.0002 | 0.0011 | 0.0120 | 0.2582 | 1.4294 | 4.2898 | 81.292 |
| 0 | 0 | 0 | 0 | 0 | 0 | |

Column 8

transprobfromthresholds

0.00170.0396

$$
0.0753
$$

$$
0.2193
$$

$$
0.7050
$$

$$
2.4399
$$

$$
12.7167
$$

$$
100.0000
$$

References Gupton, G. M., C. C. Finger, and M. Bhatia, CreditMetrics, TechnicalDocument, RiskMetrics Group, Inc., 2007.
See Also | transprob | transprobbytotals | transprobtothresholds
How To - "Credit Quality Thresholds" on page 8-64
PurposeAggregate credit ratings information into fewer rating categories
Syntax

totalsGrouped = transprobgrouptotals(totals,groupingEdges)

totalsGrouped = transprobgrouptotals(totals,groupingEdges)
Description
Input
Arguments
Aggregate credit ratings information into fewer rating categories
totalsGrouped = transprobgrouptotals(totals,groupingEdges) aggregates the credit ratings information stored in the totals input into fewer ratings categories, which are defined by the groupingEdges argument.

totals

Structure, or a struct array of length nTotals, with fields:

- totalsVeC - A vector of size 1-by-nRatings1.
- totalsMat - A matrix of size nRatings1-by-nRatings2, with nRatings1 \leq nRatings2.
- algorithm - A string with values 'duration' or 'cohort'.
For the 'duration' algorithm, totalsMat (i, j) contains the total transitions observed out of rating i into rating j (all the diagonal elements are 0). The total time spent on rating i is stored in totalsVec (i). For example, if there are three rating categories, Investment Grade (IG), Speculative Grade (SG) and Default (D), and the following information:

| Total time spent | IG | | SG | D |
| :---: | :---: | :---: | :---: | :---: |
| in rating: | 4859.09 | | 1503.36 | 1162.05 |
| Transitions | | IG | SG | D |
| out of (row) | IG | 0 | 89 | 7 |
| into (column): | | 202 | 0 | 32 |
| | D | 0 | 0 | 0 |

Then:

```
totals.totalsVec = [4859.09 1503.36 1162.05]
totals.totalsMat = [ 0 89 7
    202 0 32
```


transprobgrouptotals

```
    0 0 0]
totals.algorithm = 'duration'
```

For the 'cohort' algorithm, totalsMat (i, j) contains the total transitions observed from rating i to rating j, and totalsVec (i) is the initial count in rating i. For example, given the following information:

| Initial count | IG | SG | D |
| :--- | ---: | ---: | ---: |
| in rating: | 4808 | 1572 | 1145 |
| Transitions | | IG | SG |

Then:

```
totals.totalsVec = [4808 1572 1145]
totals.totalsMat = [4721 80 7
    193 1347 32
    0 0 1145]
totals.algorithm = 'cohort'
```

Note Common totals structures are the optional output arguments from transprob:

- sampleTotals - A single structure summarizing the totals information for the whole dataset.
- idTotals - A struct array with the totals information at the ID level. For more information, see "Algorithms" on page 18-1774.

groupingEdges

Numeric array with increasing, positive integers to indicate how to group credit ratings into categories.

This table illustrates how to group a list of whole ratings into investment grade (IG) and speculative grade (SG) categories. Eight ratings are in the original list. Ratings 1 to 4 are IG, ratings 5 to 7 are SG, and rating 8 is a category of its own. In this example, the array of grouping edges is $\left[\begin{array}{lll}4 & 7 & 8\end{array}\right]$.

In general, if groupingEdges has K elements edge1 < edge2 < ... <edge K, ratings 1 to edge1 (inclusive) are grouped in the first category, ratings edge $1+1$ to edge 2 in the second category, and so forth.

Regarding the last element, edge K :

- If n Ratings 1 equals n Ratings2, then edge K must equal n Ratings1. This leads to K groups, and n RatingsGrouped1 $=n$ RatingsGrouped2 $=K$.
- If n Ratings $1<n$ Ratings2, then either:
- edge K equals n Ratings1, in which case ratings edge $K+1, \ldots$, nRatings2 will be treated as categories of their own. This results in $K+$ (nRatings2-edge K) groups, with nRatingsGrouped1 $=K$ and nRatingsGrouped2 $=K+($ nRatings2 - edge K); or
- edge K equals nRatings2, in which case there must be a j th edge element, edgej, such that edgej equals nRatings1. This leads to K groups, and nRatingsGrouped $1=j$ and nRatingsGrouped $2=K$.

Output Arguments

totalsGrouped

Structure, or a struct array of length nTotals, with fields:

- totalsVec - A vector of size 1-by-nRatingsGrouped1.

transprobgrouptotals

- totalsMat - A matrix of size nRatingsGrouped1-by-nRatingsGrouped2.
- algorithm - A string, 'duration' or 'cohort'.
nRatingsGrouped1 and nRatingsGrouped2 are defined in the description of groupingEdges. Each structure contains aggregated information by categories, based on the information provided in the corresponding structure in totals, according to the grouping of ratings defined by groupingEdges and consistent with the algorithm choice.

Following the examples in the description of the totals input, suppose IG and SG are grouped into a single ND (Not-Defaulted) category, using the edges [2 3]. For the 'cohort' algorithm, the output is:

```
totalsGrouped.totalsVec = [6380 1145]
totalsGrouped.totalsMat = [6341 39
    0 1145]
```

totalsGrouped.algorithm = 'cohort'
and for the 'duration' algorithm:

```
totalsGrouped.totalsVec = [6362.45 1162.05]
totalsGrouped.totalsMat = [0 39
    0 0]
totalsGrouped.algorithm = 'duration'
```


Definitions
 Cohort Estimation

The cohort algorithm estimates the transition probabilities based on a sequence of snapshots of credit ratings at regularly spaced points in time. If the credit rating of a company changes twice between two snapshot dates, the intermediate rating is overlooked and only the initial and final ratings influence the estimates. For more information, see "Algorithms" on page 18-1774.

Duration Estimation

Unlike the cohort algorithm, the duration algorithm estimates the transition probabilities based on the full credit ratings history, looking at the exact dates on which the credit rating migrations occur. There is
no concept of snapshots in this method, and all credit rating migrations influence the estimates, even when a company's rating changes twice within a short time. For more information, see "Algorithms" on page 18-1774.

Examples Aggregate the Credit Ratings Information Stored in the totals Input

Use historical credit rating input data from Data_TransProb.mat. Load input data from file Data_TransProb.mat.

```
load Data_TransProb
```

\% Call TRANSPROB with two output arguments [transMat, sampleTotals] = transprob(data); transMat

transMat =

Columns 1 through 7

| 93.1170 | 5.8428 | 0.8232 | 0.1763 | 0.0376 | 0.0012 | 0.000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.6166 | 93.1518 | 4.3632 | 0.6602 | 0.1626 | 0.0055 | 0.000 |
| 0.1237 | 2.9003 | 92.2197 | 4.0756 | 0.5365 | 0.0661 | 0.0028 |
| 0.0236 | 0.2312 | 5.0059 | 90.1846 | 3.7979 | 0.4733 | 0.0642 |
| 0.0216 | 0.1134 | 0.6357 | 5.7960 | 88.9866 | 3.4497 | 0.2919 |
| 0.0010 | 0.0062 | 0.1081 | 0.8697 | 7.3366 | 86.7215 | 2.5169 |
| 0.0002 | 0.0011 | 0.0120 | 0.2582 | 1.4294 | 4.2898 | 81.292 |
| 0 | 0 | 0 | 0 | 0 | 0 | |

Column 8
0.0017
0.0396
0.0753
0.2193

transprobgrouptotals

0.7050
2.4399
12.7167
100.0000

Group into investment grade (ratings 1-4) and speculative grade (ratings 5-7); note, the default is the last rating (number 8).

```
edges = [4 7 8];
sampleTotalsGrp = transprobgrouptotals(sampleTotals,edges);
% Transition matrix at investment grade / speculative grade level
transMatIGSG = transprobbytotals(sampleTotalsGrp)
```

transMatIGSG =

| 98.5336 | 1.3608 | 0.1056 |
| ---: | ---: | ---: |
| 3.9155 | 92.9692 | 3.1153 |
| 0 | 0 | 100.0000 |

Obtain the 1 -year, 2 -year, 3 -year, 4 -year, and 5 -year default probabilities at investment grade and speculative grade level.

```
DefProb = zeros(2,5);
for t = 1:5
transMatTemp = transprobbytotals(sampleTotalsGrp,'transInterval',t);
DefProb(:,t) = transMatTemp(1:2,3);
end
DefProb
```

DefProb =
0.1056
0.2521
0.4359
0.6537
0.9027
3.1153 6.0157

References \quad\begin{tabular}{l}
Hanson, S., T. Schuermann, "Confidence Intervals for Probabilities of

Default," Journal of Banking \& Finance, Elsevier, vol. 30(8), pages

2281-2301, August 2006.

Löffler, G., P. N. Posch, Credit Risk Modeling Using Excel and VBA,

West Sussex, England: Wiley Finance, 2007.

| Schuermann, T., "Credit Migration Matrices," in E. Melnick, B. Everitt |
| :--- |
| (eds.), Encyclopedia of Quantitative Risk Analysis and Assessment, |

Wiley, 2008.
\end{tabular}See Also| transprob | transprobbytotals

How To - "Estimation of Transition Probabilities" on page 8-18

Purpose
Preprocess credit ratings data to estimate transition probabilities
Syntax

Description

Input

Arguments
[prepData] = transprobprep(data)
[prepData] = transprobprep(data, Name, Value)
[prepData] = transprobprep(data) preprocesses credit ratings historical data (i.e., credit migration data) for the subsequent estimation of transition probabilities.
[prepData] = transprobprep(data, Name,Value) preprocesses credit ratings historical data (i.e., credit migration data) for the subsequent estimation of transition probabilities with additional options specified by one or more Name, Value pair arguments.

data

Historical input data for credit ratings. Cell array of size nRecords-by-3 containing the credit ratings. Each row contains an ID (column 1), a date (column 2), and a credit rating (column 3). The assigned credit rating corresponds to the associated ID on the associated date. All information corresponding to the same ID must be stored in contiguous rows. Sorting this information by date is not required but is recommended. IDs, dates, and ratings are usually stored in string format, but they can also be entered in numeric format. Here is an example with all of the information in string format:

| '00010283' | '10-Nov-1984' | 'CCC' |
| :--- | :--- | :--- |
| '00010283' | '12-May-1986' | 'B' |
| '00010283' | '29-Jun-1988' | 'CCC' |
| '00010283' | '12-Dec-1991' | 'D' |
| '00013326' $^{\prime}$ | '09-Feb-1985' | 'A' |
| '00013326' $^{\prime}$ | '24-Feb-1994' | 'AA' |

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'labels'

Cell array of size nRatings-by-1, or 1-by-nRatings, containing the credit-rating scale. It must be consistent with the ratings labels used in the third column of data.

Default: \{'AAA', 'AA', 'A','BBB', 'BB','B', 'CCC', 'D'\}

Output

Arguments

Examples

Aggregate the Credit Ratings Information Stored in the totals Input

Use historical credit rating input data from Data_TransProb.mat. Load input data from file Data_TransProb.mat.

```
load Data_TransProb
```

\% Call TRANSPROB with two output arguments

transprobprep

```
[transMat, sampleTotals] = transprob(data);
transMat
```

```
transMat =
```

transMat =
Columns 1 through 7

```
\begin{tabular}{rrrrrrr}
93.1170 & 5.8428 & 0.8232 & 0.1763 & 0.0376 & 0.0012 & 0.0001 \\
1.6166 & 93.1518 & 4.3632 & 0.6602 & 0.1626 & 0.0055 & 0.0004 \\
0.1237 & 2.9003 & 92.2197 & 4.0756 & 0.5365 & 0.0661 & 0.0028 \\
0.0236 & 0.2312 & 5.0059 & 90.1846 & 3.7979 & 0.4733 & 0.0642 \\
0.0216 & 0.1134 & 0.6357 & 5.7960 & 88.9866 & 3.4497 & 0.2919 \\
0.0010 & 0.0062 & 0.1081 & 0.8697 & 7.3366 & 86.7215 & 2.5169 \\
0.0002 & 0.0011 & 0.0120 & 0.2582 & 1.4294 & 4.2898 & 81.2927 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
Column 8
            0.0017
            0.0396
            0.0753
            0.2193
            0.7050
            2.4399
            12.7167
100.0000

Group into investment grade (ratings 1-4) and speculative grade (ratings 5-7); note, the default is the last rating (number 8).
```

edges = [4 7 8];
sampleTotalsGrp = transprobgrouptotals(sampleTotals,edges);
% Transition matrix at investment grade / speculative grade level
transMatIGSG = transprobbytotals(sampleTotalsGrp)

```

\section*{transMatIGSG =}
\begin{tabular}{rrr}
98.5336 & 1.3608 & 0.1056 \\
3.9155 & 92.9692 & 3.1153 \\
0 & 0 & 100.0000
\end{tabular}

Obtain the 1 -year, 2 -year, 3 -year, 4 -year, and 5 -year default probabilities at investment grade and speculative grade level.
```

DefProb = zeros(2,5);
for t = 1:5
transMatTemp = transprobbytotals(sampleTotalsGrp,'transInterval',t);
DefProb(:,t) = transMatTemp(1:2,3);
end
DefProb

```
DefProb =
\begin{tabular}{rrrrr}
0.1056 & 0.2521 & 0.4359 & 0.6537 & 0.9027 \\
3.1153 & 6.0157 & 8.7179 & 11.2373 & 13.5881
\end{tabular}

See Also
| transprobbytotals | transprob
How To . "Estimation of Transition Probabilities" on page 8-18

\section*{transprobtothresholds}

\section*{Purpose Convert from transition probabilities to credit quality thresholds}

Syntax thresh = transprobtothresholds(trans)
Description
thresh \(=\) transprobtothresholds(trans) transforms transition probabilities into credit quality thresholds.

\section*{Input \\ Arguments}

\section*{trans}

M-by-N matrix with transition probabilities, in percent. Entries cannot be negative and cannot exceed 100, and all rows must add up to 100 .

Any given row in the M-by-N input matrix trans determines a probability distribution over a discrete set of \(N\) ratings. If the ratings are 'R1' , ..., 'RN', then for any row \(i\) trans(i,j) is the probability of migrating into ' Rj '. If trans is a standard transition matrix, then \(\mathrm{M} \leqq \mathrm{N}\) and row \(i\) contains the transition probabilities for issuers with rating 'Ri'. But trans does not have to be a standard transition matrix. trans can contain individual transition probabilities for a set of \(M\)-specific issuers, with \(M>N\).

The credit quality thresholds thresh \((i, j)\) are critical values of a standard normal distribution \(z\), such that:
```

trans(i,N) = P[z < thresh(i,N)],
trans(i,j) = P[z < thresh(i,j)] - P[z < thresh(i,j+1)], for 1<=j<N

```

This implies that thresh(i,1) = Inf, for all \(i\). For example, suppose there are only N=3 ratings, 'High', 'Low', and 'Default', with the following transition probabilities:
\begin{tabular}{lccc} 
& High & Low & Default \\
High & 98.13 & 1.78 & 0.09 \\
Low & 0.81 & 95.21 & 3.98
\end{tabular}

The matrix of credit quality thresholds is:
High Low Default
\begin{tabular}{lrrr} 
High & Inf & -2.0814 & -3.1214 \\
Low & Inf & 2.4044 & -1.7530
\end{tabular}

This means the probability of default for 'High' is equivalent to drawing a standard normal random number smaller than -3.1214 , or \(0.09 \%\). The probability that a 'High' will end up the period with a rating of 'Low' or lower is equivalent to drawing a standard normal random number smaller than -2.0814 , or \(1.87 \%\). From here, the probability of ending with a 'Low' rating is:
```

P[z<-2.0814] - P[z<-3.1214] = 1.87% - 0.09% = 1.78%

```

And the probability of ending with a 'High ' rating is:
```

100%-1.87% = 98.13%

```
where \(100 \%\) is the same as:
```

P[z<Inf]

```

\section*{Output Arguments}

\section*{Examples}

\section*{thresh}

M-by-N matrix of credit quality thresholds.

\section*{Transform Transition Probabilities Into Credit Quality Thresholds}

Use historical credit rating input data from Data_TransProb.mat. Load input data from file Data_TransProb.mat.
```

load Data_TransProb
% Estimate transition probabilities with default settings
transMat = transprob(data)

```
transMat =
93.1170
1.6166
0.1237
0.0236
0.0216
0.0010
0.0002
0
Column 8
0.0017
0.0396
0.0753
0.2193
0.7050
2.4399
12.7167
100.0000

Obtain the credit quality thresholds.
```

thresh = transprobtothresholds(transMat)

```
thresh =
Columns 1 through 7
\begin{tabular}{lrrrrrr} 
Inf & -1.4846 & -2.3115 & -2.8523 & -3.3480 & -4.0083 & -4.1276 \\
Inf & 2.1403 & -1.6228 & -2.3788 & -2.8655 & -3.3166 & -3.3523 \\
Inf & 3.0264 & 1.8773 & -1.6690 & -2.4673 & -2.9800 & -3.1631 \\
Inf & 3.4963 & 2.8009 & 1.6201 & -1.6897 & -2.4291 & -2.7663 \\
Inf & 3.5195 & 2.9999 & 2.4225 & 1.5089 & -1.7010 & -2.3275 \\
Inf & 4.2696 & 3.8015 & 3.0477 & 2.3320 & 1.3838 & -1.6491
\end{tabular}
\begin{tabular}{lrrrrrr} 
Inf & 4.6241 & 4.2097 & 3.6472 & 2.7803 & 2.1199 & 1.555 \\
Inf & Inf & Inf & Inf & Inf & Inf & In
\end{tabular}
Column 8
\(-4.1413\)
-3.3554
-3.1736
-2.8490
-2.4547
-1.9703
-1.1399
Inf

\title{
References Gupton, G. M., C. C. Finger, and M. Bhatia, CreditMetrics, Technical Document, RiskMetrics Group, Inc., 2007.
}

\section*{See Also | transprob | transprobbytotals | transprobfromthresholds}

\footnotetext{
How To
- "Credit Quality Thresholds" on page 8-64
}

Purpose Convert time series arrays to functions of time and state
```

Syntax $\quad F=$ ts2func (Array)
F = ts2func(Array, 'Name1', Value1, 'Name2', Value2, ...)
F = ts2func(Array)
F = ts2func(Array, 'Name1', Value1, 'Name2', Value2, ...)

```

\section*{Description}

\section*{Input \\ Arguments}

\section*{Optional \\ Input Arguments}

The ts2func function encapsulates a time series array associated with a vector of real-valued observation times within a MATLAB function suitable for Monte Carlo simulation of an NVARS-by-1 state vector \(X_{t}\).

Array Time series array to encapsulate within a callable function of time and state. Array may be a vector, 2 -dimensional matrix, or three-dimensional array.

Specify optional input arguments as variable-length lists of matching parameter name/value pairs: 'Name1', Value1, 'Name2', Value2, ... and so on. The following rules apply when specifying parameter-name pairs:
- Specify the parameter name as a character string, followed by its corresponding parameter value.
- You can specify parameter name/value pairs in any order.
- Parameter names are case insensitive.
- You can specify unambiguous partial string matches.

Valid parameter names are:
\begin{tabular}{ll} 
Times & \begin{tabular}{l} 
Vector of monotonically increasing observation \\
times associated with the time series input array \\
Array. If you do not specify a value for this \\
argument, Times is a zero-based, unit-increment \\
vector of the same length as that of the dimension \\
of Array associated with time (see TimeDimension).
\end{tabular} \\
TimeDimension & \begin{tabular}{l} 
Positive scalar integer that specifies which \\
dimension of the input time series array Array is \\
associated with time. The value of this argument \\
cannot be greater than the number of dimensions \\
of Array. If you do not specify a value for this \\
argument, the default is 1, indicating that time is \\
associated with the rows of Array.
\end{tabular} \\
StateDimension & \begin{tabular}{l} 
Positive scalar integer that specifies which \\
dimension of the input time series array Array \\
is associated with the NVARS state variables.
\end{tabular} \\
\begin{tabular}{l} 
StateDimension cannot be greater than the \\
number of dimensions of Array. If you do not \\
specify a value for this argument, ts2func assigns
\end{tabular} \\
\begin{tabular}{l} 
StateDimension the first dimension of Array that \\
is not already associated with time (the state vector
\end{tabular} \\
\begin{tabular}{l}
\(X_{t}\) is associated with the first available dimension \\
of Array not already assigned to TimeDimension).
\end{tabular}
\end{tabular}
\begin{tabular}{ll} 
Output & F \\
Arguments & \begin{tabular}{l} 
Callable function \(F(t)\) of a real-valued scalar observation \\
time \(t\). You can invoke \(F\) with a second input (such as an \\
\\
\\
\\
\\
NVARS-by- 1 state vector \(X\) ), which is a placeholder that \\
ts2func ignores. For example, while \(F(t)\) and \(F(t, X)\) \\
produce identical results, the latter directly supports \\
\\
\\
\end{tabular}\(\quad\)\begin{tabular}{l} 
SDE simulation methods.
\end{tabular}
\end{tabular}

\section*{Algorithms}
- When you specify Array as a trivial scalar or a vector (row or column), ts2func assumes that it represents a univariate time series.
- F returns an array with one fewer dimension than the input time series array Array with which F is associated. Thus, when Array is a vector, a 2 -dimensional matrix, or a three-dimensional array, F returns a scalar, vector, or 2 -dimensional matrix, respectively.
- When the scalar time \(t\) at which ts2func evaluates the function F does not coincide with an observation time in Times, F performs a zero-order-hold interpolation. The only exception is if \(t\) precedes the first element of Times, in which case \(F(t)=F\) (Times(1)).
- To support Monte Carlo simulation methods, the output function \(F\) returns an NVARS-by-1 column vector or a 2 -dimensional matrix with NVARS rows.

\section*{References}

See Also

Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426.

Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.

Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.

Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.
simByEuler | simulate

\section*{Purpose Acceleration between times}

Syntax acc = tsaccel(data, nTimes, datatype) accts \(=\) tsaccel(tsobj, nTimes, datatype)

\section*{Arguments}
\begin{tabular}{ll} 
data & Data series. \\
nTimes & (Optional) Number of times. Default = 12. \\
datatype & \begin{tabular}{l} 
(Optional) Indicates whether data contains the data \\
itself or the momentum of the data:
\end{tabular} \\
& \(0=\) Data contains the data itself (default). \\
& \(1=\) Data contains the momentum of the data. \\
tsobj & Name of an existing financial time series object.
\end{tabular}

\section*{Description}

Acceleration is the difference of two momentums separated by some number of periods.
acc = tsaccel(data, nTimes, datatype) calculates the acceleration of a data series, essentially the difference of the current momentum with the momentum some number of periods ago. If nTimes is specified, tsaccel calculates the acceleration of a data series data with time distance of nTimes times.
accts \(=\) tsaccel(tsobj, nTimes, datatype) calculates the acceleration of the data series in the financial time series object tsobj, essentially the difference of the current momentum with the momentum some number of periods ago. Each data series in tsobj is treated individually. accts is a financial time series object with similar dates and data series names as tsobj.

Note, to compute a quantity over \(n\) periods, you must specify \(n+1\) for \(n\) Times. If you specify \(n T i m e s=0\), the function returns your original time series.

\section*{Examples \\ Calculate the Acceleration of a Data Series}

This example shows how to calculate the acceleration of a data series for Disney stock and plot the results.
```

load disney.mat
dis = rmfield(dis,'VOLUME') % remove VOLUME field
dis_Accel = tsaccel(dis);
plot(dis_Accel)
title('Acceleration for Disney')
dis =
desc: Walt Disney Company (DIS)
freq: Unknown (O)
Columns 1 through 4

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 'dates: (782)' & 'OPEN: & (782) ' & HIGH: & (782) ' & 'LOW: & (782) ' \\
\hline '29-Mar-1996' & [ & 21.1938] & [ & 21.6250] & & \(21.2920]\) \\
\hline '01-Apr-1996' & [ & 21.1120] & [ & 21.6250] & [ & 21.4170 ] \\
\hline '02-Apr-1996' & [ & \(21.3165]\) & [ & \(21.8750]\) & [ 21 & \(21.6670]\) \\
\hline '03-Apr-1996' & [ & 21.4802] & [ & \(21.8750]\) & [ & \(21.7500]\) \\
\hline '04-Apr-1996' & [ & 21.4393] & [ & \(21.8750]\) & [ 21 & \(21.5000]\) \\
\hline '05-Apr-1996' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) & [ & NaN ] \\
\hline '08-Apr-1996' & [ & 20.9483] & [ & 21.6670] & [ & \(21.2080]\) \\
\hline '09-Apr-1996' & [ & 21.1529] & [ & 21.5420] & [ 21 & \(21.2080]\) \\
\hline '10-Apr-1996' & [ & 20.7387] & [ & \(21.1670]\) & [ & \(20.2500]\) \\
\hline '11-Apr-1996' & [ & 20.0829] & [ & 20.5000] & [ & \(20.0420]\) \\
\hline '12-Apr-1996' & [ & 19.9189] & [ & 20.5830] & [ 20 & \(20.0830]\) \\
\hline '15-Apr-1996' & [ & 20.2878] & [ & 20.7920] & [ 20 & \(20.3750]\) \\
\hline '16-Apr-1996' & [ & 20.3698] & [ & 20.9170] & [ 20 & \(20.1670]\) \\
\hline '17-Apr-1996' & [ & 20.4927] & [ & 20.9170] & [ 20 & \(20.7080]\) \\
\hline '18-Apr-1996' & [ & 20.4927] & [ & \(21.0420]\) & [ 20 & \(20.7920]\) \\
\hline '19-Apr-1996' & [ & 20.6977] & [ & 21.1670] & [ 20 & \(20.9170]\) \\
\hline '22-Apr-1996' & [ & \(20.8206]\) & & 21.2080] & & \(20.7080]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '23-Apr-1996' & [ & \(20.5337]\) & [ & \(20.8750]\) & [ & 20.41 \\
\hline '24-Apr-1996' & [ & 20.2058] & [ & \(20.5420]\) & [ & 19.91 \\
\hline '25-Apr-1996' & [ & \(19.9599]\) & [ & \(20.5830]\) & [ & 20.20 \\
\hline '26-Apr-1996' & [ & 20.2468 ] & [ & \(20.9170]\) & [ & 20.50 \\
\hline '29-Apr-1996' & [ & 20.2468 ] & [ & \(20.7080]\) & [ & 20.54 \\
\hline '30-Apr-1996' & [ & \(20.3698]\) & [ & \(20.7080]\) & [ & 20.54 \\
\hline '01-May-1996' & [ & 20.2058] & [ & \(20.5830]\) & [ & 20.16 \\
\hline ' 02-May-1996' & [ & \(19.8780]\) & [ & \(20.2500]\) & [ & 19.87 \\
\hline '03-May-1996' & [ & 19.9189] & [ & \(20.2500]\) & [ & 19.50 \\
\hline '06-May-1996' & [ & 19.4681] & [ & \(20.0830]\) & [ & 19.54 \\
\hline '07-May-1996' & [ & \(19.6730]\) & [ & 20] & [ & 19.75 \\
\hline '08-May-1996' & [ & \(19.2632]\) & [ & 19.7080] & [ & 19.29 \\
\hline '09-May-1996' & [ & 19.4271 ] & [ & \(19.8330]\) & [ & 19.29 \\
\hline '10-May-1996' & [ & \(19.3452]\) & [ & \(19.8750]\) & [ & 19.45 \\
\hline '13-May-1996' & [ & 19.5911] & [ & 20.2920] & [ & 19.83 \\
\hline '14-May-1996' & [ & 20.0829] & [ & 20.4170] & [ & 20.20 \\
\hline '15-May-1996' & [ & 20.0419] & [ & \(20.4580]\) & [ & \\
\hline '16-May-1996' & [ & \(19.6730]\) & [ & \(20.3750]\) & [ & 19.95 \\
\hline '17-May-1996' & [ & 20.0009] & [ & \(20.5420]\) & [ & 20.33 \\
\hline '20-May-1996' & [ & 20.2058] & [ & \(20.6670]\) & [ & 20.37 \\
\hline '21-May-1996' & [ & 20.4518] & [ & \(20.8330]\) & [ & 20.37 \\
\hline '22-May-1996' & [ & 20.6157] & [ & \(20.9580]\) & [ & 20.79 \\
\hline '23-May-1996' & [ & 20.6157] & [ & \(21.0830]\) & [ & 20.62 \\
\hline '24-May-1996' & [ & \(20.5337]\) & [ & \(20.9580]\) & [ & 20.70 \\
\hline '27-May-1996' & [ & NaN ] & [ & \(\mathrm{NaN}]\) & [ & \\
\hline ' 28-May-1996' & [ & \(20.6157]\) & [ & 21] & [ & 20.54 \\
\hline '29-May-1996' & [ & 20.3698] & [ & 20.7080] & [ & 20.16 \\
\hline '30-May-1996' & [ & 19.9189] & [ & \(20.4580]\) & [ & 20.08 \\
\hline '31-May-1996' & [ & 20.1649 ] & [ & \(20.5830]\) & [ & 20.20 \\
\hline '03-Jun-1996' & [ & 19.8370 ] & [ & \(20.2500]\) & [ & 20.08 \\
\hline '04-Jun-1996' & [ & 19.8370 ] & [ & 20.1670 ] & [ & 19.87 \\
\hline '05-Jun-1996' & [ & \(19.6730]\) & [ & 20.2080] & [ & 19.83 \\
\hline '06-Jun-1996' & [ & 20.4518 ] & [ & \(21.2500]\) & [ & 20.58 \\
\hline '07-Jun-1996' & [ & 20.2878] & [ & \(21.0830]\) & [ & 20.41 \\
\hline '10-Jun-1996' & [ & \(20.7796]\) & [ & \(21.1250]\) & [ & 20.79 \\
\hline '11-Jun-1996' & [ & \(20.4927]\) & [ & \(20.9580]\) & [ & 20.70 \\
\hline '12-Jun-1996' & [ & 20.4518] & [ & \(20.9580]\) & [ & 20.70 \\
\hline
\end{tabular}

18-1811
\begin{tabular}{|c|}
\hline '13-Jun-1996' \\
\hline '14-Jun-1996' \\
\hline '17-Jun-1996' \\
\hline '18-Jun-1996' \\
\hline '19-Jun-1996' \\
\hline '20-Jun-1996' \\
\hline '21-Jun-1996' \\
\hline '24-Jun-1996' \\
\hline '25-Jun-1996' \\
\hline '26-Jun-1996' \\
\hline '27-Jun-1996' \\
\hline '28-Jun-1996' \\
\hline '01-Jul-1996' \\
\hline '02-Jul-1996' \\
\hline '03-Jul-1996' \\
\hline '04-Jul-1996' \\
\hline '05-Jul-1996' \\
\hline '08-Jul-1996' \\
\hline '09-Jul-1996' \\
\hline '10-Jul-1996' \\
\hline '11-Jul-1996' \\
\hline '12-Jul-1996' \\
\hline '15-Jul-1996' \\
\hline '16-Jul-1996' \\
\hline '17-Jul-1996' \\
\hline '18-Jul-1996' \\
\hline '19-Jul-1996' \\
\hline '22-Jul-1996' \\
\hline '23-Jul-1996' \\
\hline '24-Jul-1996' \\
\hline '25-Jul-1996' \\
\hline '26-Jul-1996' \\
\hline '29-Jul-1996' \\
\hline '30-Jul-1996' \\
\hline '31-Jul-1996' \\
\hline '01-Aug-1996' \\
\hline '02-Aug-1996' \\
\hline
\end{tabular}
\begin{tabular}{rlrl}
\(20.4518]\) & {\([\)} & \(20.8330]\) & {\([\)} \\
\(20.2058]\) & {\([\)} & \(20.5830]\) & {\([\)} \\
\(20.2468]\) & {\([\)} & \(20.7080]\) & {\([\)} \\
\(20.2468]\) & {\([\)} & \(20.7080]\) & {\([\)} \\
\(20.0419]\) & {\([\)} & \(20.4580]\) & {\([\)} \\
\(20.1649]\) & {\([\)} & \(20.6250]\) & {\([\)} \\
\(20.3288]\) & {\([\)} & \(21.0420]\) & {\([\)} \\
\(20.6157]\) & {\([\)} & \(20.9580]\) & {\([\)} \\
\(20.4927]\) & {\([\)} & \(21.1250]\) & {\([\)} \\
\(20.5747]\) & {\([\)} & \(20.9580]\) & {\([\)} \\
\(20.4927]\) & {\([\)} & \(21.0830]\) & {\([\)} \\
\(20.8206]\) & {\([\)} & \(21.2500]\) & {\([\)} \\
\(20.5337]\) & {\([\)} & \(20.9170]\) & {\([\)} \\
\(20.4518]\) & {\([\)} & \(20.7920]\) & {\([\)} \\
\(20.1239]\) & {\([\)} & \(20.4580]\) & {\([\)} \\
\(19.7550]\) & {\([\)} & & {\([\)} \\
\(19.420]\) & {\([\)} \\
\(19.4271]\) & {\([\)} & \(20.0420]\) & {\([\)} \\
\(19.3452]\) & {\([\)} & \(19.7500]\) & {\([\)} \\
\(19.0537]\) & {\([\)} & \(19.4170]\) & {\([\)} \\
\(19.0127]\) & {\([\)} & \(19.3330]\) & {\([\)} \\
\(18.4378]\) & {\([\)} & \(19.1670]\) & {\([\)} \\
\(19.0537]\) & {\([\)} & \(19.3750]\) & {\([\)} \\
\(18.0682]\) & {\([\)} & \(18.7920]\) & {\([\)} \\
\(18.8073]\) & {\([\)} & \(19.1250]\) & {\([\)} \\
\(18.6020]\) & {\([\)} & \(19.1250]\) & {\([\)} \\
\(18.8484]\) & {\([\)} & \(19.2500]\) & {\([\)} \\
\(18.7252]\) & {\([\)} & \(19.0420]\) & {\([\)} \\
\(18.4788]\) & {\([\)} & \(18.7920]\) & {\([\)} \\
\(17.9039]\) & {\([\)} & \(18.4580]\) & {\([\)} \\
\(17.9450]\) & {\([\)} & \(18.3750]\) & {\([\)} \\
\(17.8629]\) & {\([\)} & \(18.2500]\) & {\([\)} \\
\(17.6986]\) & {\([\)} & \(18.2500]\) & {\([\)} \\
\(17.5754]\) & {\([\)} & \(18.4580]\) & {\([\)} \\
\(18.0682]\) & {\([\)} & \(18.6250]\) & {\([\)} \\
\(18.3967]\) & {\([\)} & \(19.2080]\) & {\([\)} \\
\(19.3001]\) & {\([\)} & \(19.5830]\) & {\([\)} \\
{\([\)}
\end{tabular}
\(20.5830]\) 20 . 2920] 20.4580] 20 . 2920] 20 . 2920] 20 . 2920] \(20.5000]\) 20.7080] \(20.8330]\) 20.6250] \(20.7920]\) 20.8750 ] 20.6250 ] 20.3750] 20] \(\mathrm{NaN}]\) 19.7920] 19.5830] 19.1670] \(19.0830]\) 18.6670] \(18.7080]\) 18.2080] \(17.9580]\) 18.6250] \(18.7500]\) \(18.8750]\) \(18.6670]\) \(18.4580]\) \(18.0420]\) 18.0420] \(17.8330]\) 17.7500] 17.7920] \(18.2500]\) 18.6670] \(19.2920]\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '05-Aug-1996' & [ & \(19.1769]\) & [ & \(19.5830]\) & [ & 19.37 \\
\hline '06-Aug-1996' & [ & \(19.2590]\) & [ & \(19.7080]\) & [ & 19.45 \\
\hline '07-Aug-1996' & [ & \(19.3822]\) & [ & 19.6670] & [ & 19.33 \\
\hline '08-Aug-1996' & [ & \(19.1358]\) & [ & \(19.4580]\) & [ & 19.12 \\
\hline '09-Aug-1996' & [ & \(18.8895]\) & [ & 19.1670] & [ & 18.95 \\
\hline '12-Aug-1996' & [ & \(18.8484]\) & [ & \(19.5000]\) & [ & 18.83 \\
\hline '13-Aug-1996' & [ & \(19.2180]\) & [ & \(19.5000]\) & [ & 19.20 \\
\hline '14-Aug-1996' & [ & \(19.0537]\) & [ & \(19.3750]\) & [ & 19.25 \\
\hline '15-Aug-1996' & [ & \(19.0537]\) & [ & \(19.6250]\) & [ & 19.16 \\
\hline '16-Aug-1996' & [ & \(19.0537]\) & [ & \(19.3750]\) & [ & 19.25 \\
\hline '19-Aug-1996' & [ & \(19.2590]\) & [ & \(19.5420]\) & [ & 19.25 \\
\hline '20-Aug-1996' & [ & \(19.0537]\) & [ & \(19.3330]\) & [ & 19.08 \\
\hline '21-Aug-1996' & [ & 18.8073] & [ & \(19.3330]\) & & 18.95 \\
\hline '22-Aug-1996' & [ & 19.0127] & [ & \(19.5830]\) & [ & 19.25 \\
\hline '23-Aug-1996' & [ & 19.0127] & [ & \(19.5000]\) & & 19.12 \\
\hline '26-Aug-1996' & [ & \(19.2180]\) & [ & 19.7920] & [ & 19.41 \\
\hline '27-Aug-1996' & [ & 19.5465] & [ & 19.9170] & & 19.58 \\
\hline '28-Aug-1996' & [ & \(19.3822]\) & [ & 19.6670] & [ & 19.33 \\
\hline '29-Aug-1996' & [ & 19.0948] & [ & \(19.4580]\) & [ & 18.91 \\
\hline '30-Aug-1996' & [ & 18.9305] & [ & \(19.2080]\) & [ & 18.79 \\
\hline '02-Sep-1996' & [ & NaN] & [ & NaN] & [ & \\
\hline '03-Sep-1996' & [ & 18.6020] & [ & 19] & [ & 18.79 \\
\hline '04-Sep-1996' & [ & \(18.6841]\) & [ & 19] & [ & 18.79 \\
\hline '05-Sep-1996' & [ & \(18.6020]\) & [ & 18.9580] & [ & 18.54 \\
\hline '06-Sep-1996' & [ & \(18.3967]\) & [ & \(19.0830]\) & [ & 18.54 \\
\hline '09-Sep-1996' & [ & \(18.8484]\) & [ & 19.4170] & [ & 19.04 \\
\hline '10-Sep-1996' & [ & 19.1358] & [ & 19.4170] & [ & 19.12 \\
\hline '11-Sep-1996' & [ & 18.9716] & [ & \(19.5420]\) & [ & 19.20 \\
\hline '12-Sep-1996' & [ & \(19.3822]\) & [ & \(20.2080]\) & [ & 19.62 \\
\hline '13-Sep-1996' & [ & \(19.9982]\) & [ & \(20.3750]\) & [ & 20.12 \\
\hline '16-Sep-1996' & [ & 20.0803] & [ & \(20.5830]\) & [ & 20.08 \\
\hline '17-Sep-1996' & [ & \(19.8339]\) & [ & \(20.5000]\) & [ & 19.95 \\
\hline '18-Sep-1996' & [ & 20.0803] & [ & 20.5000] & [ & 20.25 \\
\hline '19-Sep-1996' & [ & \(20.1214]\) & [ & \(21.1670]\) & [ & 20.29 \\
\hline '20-Sep-1996' & [ & 20.7373] & [ & \(21.1250]\) & [ & 20.79 \\
\hline '23-Sep-1996' & [ & 20.7373] & [ & \(21.2080]\) & [ & 20.95 \\
\hline '24-Sep-1996' & [ & \(20.7784]\) & [ & \(21.2500]\) & [ & 20.8 \\
\hline
\end{tabular}

18-1813
\begin{tabular}{|c|}
\hline '25-Sep-1996' \\
\hline '26-Sep-1996' \\
\hline '27-Sep-1996' \\
\hline '30-Sep-1996' \\
\hline '01-0ct-1996' \\
\hline '02-0ct-1996' \\
\hline '03-0ct-1996' \\
\hline '04-0ct-1996' \\
\hline '07-0ct-1996' \\
\hline '08-0ct-1996' \\
\hline '09-0ct-1996' \\
\hline '10-0ct-1996' \\
\hline '11-0ct-1996' \\
\hline '14-Oct-1996' \\
\hline '15-Oct-1996' \\
\hline '16-Oct-1996' \\
\hline '17-0ct-1996' \\
\hline '18-0ct-1996' \\
\hline '21-0ct-1996' \\
\hline '22-0ct-1996' \\
\hline '23-0ct-1996' \\
\hline '24-0ct-1996' \\
\hline '25-0ct-1996' \\
\hline '28-0ct-1996' \\
\hline '29-0ct-1996' \\
\hline '30-0ct-1996' \\
\hline '31-0ct-1996' \\
\hline '01-Nov-1996' \\
\hline '04-Nov-1996' \\
\hline ' 05-Nov-1996' \\
\hline ' 06-Nov-1996' \\
\hline ' 07-Nov-1996' \\
\hline '08-Nov-1996' \\
\hline '11-Nov-1996' \\
\hline '12-Nov-1996' \\
\hline '13-Nov-1996' \\
\hline '14-Nov-1996' \\
\hline
\end{tabular}
\begin{tabular}{llrl}
\(20.6552]\) & {\([\)} & \(21.0420]\) & {\([\)} \\
\(20.6142]\) & {\([\)} & \(21.2080]\) & {\([\)} \\
\(20.4088]\) & {\([\)} & \(21]\) & {\([\)} \\
\(20.6142]\) & {\([\)} & \(21.2920]\) & {\([\)} \\
\(20.8605]\) & {\([\)} & \(21.2080]\) & {\([\)} \\
\(20.5320]\) & {\([\)} & \(21.1670]\) & {\([\)} \\
\(20.8195]\) & {\([\)} & \(21.1250]\) & {\([\)} \\
\(20.9016]\) & {\([\)} & \(21.5830]\) & {\([\)} \\
\(21.0248]\) & {\([\)} & \(21.4580]\) & {\([\)} \\
\(20.9427]\) & {\([\)} & \(21.4580]\) & {\([\)} \\
\(20.8144]\) & {\([\)} & \(21.2500]\) & {\([\)} \\
\(20.8967]\) & {\([\)} & \(21.2500]\) & {\([\)} \\
\(21.0612]\) & {\([\)} & \(21.4580]\) & {\([\)} \\
\(21.1023]\) & {\([\)} & \(21.5420]\) & {\([\)} \\
\(21.1435]\) & {\([\)} & \(21.5420]\) & {\([\)} \\
\(21.1023]\) & {\([\)} & \(21.8750]\) & {\([\)} \\
\(21.6371]\) & {\([\)} & \(21.9580]\) & {\([\)} \\
\(21.3080]\) & {\([\)} & \(21.6670]\) & {\([\)} \\
\(21.3903]\) & {\([\)} & \(21.9580]\) & {\([\)} \\
\(21.5960]\) & {\([\)} & \(22.2500]\) & {\([\)} \\
\(21.8839]\) & {\([\)} & \(22.1670]\) & {\([\)} \\
\(21.7194]\) & {\([\)} & \(22.1250]\) & {\([\)} \\
\(21.4314]\) & {\([\)} & \(22.0830]\) & {\([\)} \\
\(21.8016]\) & {\([\)} & \(22.3130]\) & {\([\)} \\
\(21.9250]\) & {\([\)} & \(22.2080]\) & {\([\)} \\
\(21.6782]\) & {\([\)} & \(22.0420]\) & {\([\)} \\
\(21.6371]\) & {\([\)} & \(22]\) & {\([\)} \\
\(21.8016]\) & {\([\)} & \(22.1250]\) & {\([\)} \\
\(21.5137]\) & {\([\)} & \(22.3330]\) & {\([\)} \\
\(22.0073]\) & {\([\)} & \(22.5420]\) & {\([\)} \\
\(22.1307]\) & {\([\)} & \(22.6670]\) & {\([\)} \\
\(22.3364]\) & {\([\)} & \(23]\) & {\([\)} \\
\(22.5832]\) & {\([\)} & \(22.9170]\) & {\([\)} \\
\(22.5421]\) & {\([\)} & \(23.4580]\) & {\([\)} \\
\(23.1180]\) & {\([\)} & \(23.8330]\) & {\([\)} \\
\(23.2414]\) & {\([\)} & \(23.7500]\) & {\([\)} \\
\(22.9534]\) & {\([\)} & \(23.6250]\) & {\([\)}
\end{tabular}
\(20.8750]\) 20.6250 ] 20.5420 ] \(20.9170]\) 20 . 8330] 20.8330] 20.9170] 21.1250] 21.2920] \(21.1670]\) 20.9170] 21 ] 21.2080] 21.3750] 21.1670] 21.3330] \(21.5830]\) \(21.5000]\) 21 .6250] 21.8750 ] 21.9170] \(21.6670]\) 21.7080] 22.0420] \(21.9170]\) \(21.8750]\) \(21.7080]\) 21.7080] 21.7920] \(22.2500]\) \(22.2080]\) \(22.5420]\) \(22.6250]\) \(22.8330]\) 23 .2920] 23.3750 ] \(23.2080]\)

\begin{tabular}{rr}
\(23.3236]\) & {\([\)} \\
\(23.6939]\) & {\([\)} \\
\(23.4882]\) & {\([\)} \\
\(23.2414]\) & {\([\)} \\
\(23.6939]\) & {\([\)} \\
\(23.8584]\) & {\([\)} \\
\(23.7350]\) & {\([\)} \\
\(24.4754]\) & {\([\)} \\
\(24.7634]\) & {\([\)} \\
NaN ] & {\([\)} \\
\(24.1875]\) & {\([\)} \\
\(24.3520]\) & {\([\)} \\
\(24.3109]\) & {\([\)} \\
\(23.6527]\) & {\([\)} \\
\(23.6527]\) & {\([\)} \\
\(23.1180]\) & {\([\)} \\
\(23.5293]\) & {\([\)} \\
\(23.9818]\) & {\([\)} \\
\(23.7761]\) & {\([\)} \\
\(23.7761]\) & {\([\)} \\
\(22.8712]\) & {\([\)} \\
\(23.1591]\) & {\([\)} \\
\(22.8300]\) & {\([\)} \\
\(23.3236]\) & {\([\)} \\
\(23.5705]\) & {\([\)} \\
\(24.2697]\) & {\([\)} \\
\(23.7350]\) & {\([\)} \\
\(23.6939]\) & {\([\)} \\
NaN] & {\([\)} \\
\(23.4882]\) & {\([\)} \\
\(23.6116]\) & {\([\)} \\
\(23.5293]\) & {\([\)} \\
\(23.0357]\) & {\([\)} \\
NaN] & {\([\)} \\
\(22.9534]\) & {\([\)} \\
\(22.6243]\) & {\([\)} \\
\(22.8712]\) & {\([\)}
\end{tabular}
\begin{tabular}{rr}
\(24.3330]\) & {\([\)} \\
\(24]\) & {\([\)} \\
\(24]\) & {\([\)} \\
\(23.9170]\) & {\([\)} \\
\(24.1250]\) & {\([\)} \\
\(24.4580]\) & {\([\)} \\
\(24.5420]\) & {\([\)} \\
\(25.7500]\) & {\([\)} \\
\(25.1250]\) & {\([\)} \\
NaN] & {\([\)} \\
\(24.6670]\) & {\([\)} \\
\(24.8330]\) & {\([\)} \\
\(24.6670]\) & {\([\)} \\
\(24]\) & {\([\)} \\
\(23.9580]\) & {\([\)} \\
\(23.8750]\) & {\([\)} \\
\(24.4580]\) & {\([\)} \\
\(24.5830]\) & {\([\)} \\
\(24.3330]\) & {\([\)} \\
\(24.0830]\) & {\([\)} \\
\(23.5830]\) & {\([\)} \\
\(23.6670]\) & {\([\)} \\
\(23.7500]\) & {\([\)} \\
\(24]\) & {\([\)} \\
\(24.1250]\) & {\([\)} \\
\(24.5830]\) & {\([\)} \\
\(24.1250]\) & {\([\)} \\
\(24.0830]\) & {\([\)} \\
NaN \(]\) & {\([\)} \\
\(23.9580]\) & {\([\)} \\
\(24.0420]\) & {\([\)} \\
\(23.8750]\) & {\([\)} \\
\(23.5000]\) & {\([\)} \\
NaN] & {\([\)} \\
\(23.2920]\) & {\([\)} \\
\(23.1250]\) & {\([\)} \\
\(23.2500]\) & {\([\)}
\end{tabular}
23.58
23.66
23.54
23.54
23.79
23.83
24.79
24.54
24.33
24.33
23.91
23.45
23.66
23.16
23.66
24.25
23.79
23.37
23.12
22.95
23.08
23.62
23.75
23.87
23.66
23.62
23.66
23.29
23.12
22.25
22.70
22.87

18-1815
\begin{tabular}{|c|c|}
\hline & \\
\hline & \\
\hline & 09-Jan-1997 \\
\hline & \\
\hline & \\
\hline & 14-Jan-1997 \\
\hline & 15-Jan-1997 \\
\hline & 16-Jan-1997 \\
\hline & '17 \\
\hline & 20-Jan-1997 \\
\hline & J \\
\hline & \\
\hline & J \\
\hline & \\
\hline & 27 \\
\hline & 28-Jan-1 \\
\hline & 29-Ja \\
\hline & 30-J \\
\hline & 31-Jan-1997 \\
\hline & 03-Fe \\
\hline & - \\
\hline & 05-Feb-1997 \\
\hline & - \\
\hline & 07-Feb-1997 \\
\hline & F \\
\hline & F \\
\hline & Feb \\
\hline & Feb \\
\hline & -Feb \\
\hline & 17-Feb-1997 \\
\hline & Feb \\
\hline & 9-Feb \\
\hline & \(20-\mathrm{Feb}\) \\
\hline & 21 -Feb-1997 \\
\hline & -Feb-1997 \\
\hline & Feb-1997 \\
\hline & 26-Feb-1997 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 22.7066] & [ & 23] \\
\hline \(22.7429]\) & [ & 23.1250] \\
\hline \(22.3721]\) & [ & \(22.9170]\) \\
\hline \(21.9189]\) & [ & \(22.6250]\) \\
\hline \(22.5781]\) & [ & \(22.8330]\) \\
\hline \(22.5781]\) & [ & \(23.1670]\) \\
\hline \(22.7429]\) & [ & 23.2500] \\
\hline \(22.8665]\) & [ & 23.1250] \\
\hline \(22.7429]\) & [ & \(23.3750]\) \\
\hline \(23.3609]\) & [ & \(23.6250]\) \\
\hline \(22.8665]\) & [ & \(23.2920]\) \\
\hline \(23.0313]\) & [ & \(23.6250]\) \\
\hline \(23.2991]\) & [ & \(23.8750]\) \\
\hline 23.2373 ] & [ & \(23.8330]\) \\
\hline \(23.5258]\) & [ & \(23.9580]\) \\
\hline \(24.3910]\) & [ & \(24.9170]\) \\
\hline \(24.1026]\) & [ & \(24.5830]\) \\
\hline \(24.3910]\) & [ & \(24.7080]\) \\
\hline \(23.9790]\) & [ & \(24.4580]\) \\
\hline 23.9378 ] & [ & \(24.2920]\) \\
\hline 24.0202] & [ & \(24.3330]\) \\
\hline \(24.1850]\) & [ & \(24.7500]\) \\
\hline \(24.1026]\) & [ & \(24.7080]\) \\
\hline \(24.5146]\) & [ & 25.1250] \\
\hline \(25.0090]\) & [ & \(25.6670]\) \\
\hline \(25.0090]\) & [ & \(25.3330]\) \\
\hline \(24.7618]\) & [ & \(25.6250]\) \\
\hline \(25.3798]\) & [ & \(26.2920]\) \\
\hline \(25.7094]\) & [ & \(26.4170]\) \\
\hline \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) \\
\hline \(25.3798]\) & [ & 26] \\
\hline \(25.0502]\) & [ & \(25.7500]\) \\
\hline \(25.0914]\) & [ & \(25.5000]\) \\
\hline 24.7618] & [ & \(25.3750]\) \\
\hline \(24.6382]\) & [ & \(25.3750]\) \\
\hline \(25.2974]\) & [ & \(25.6250]\) \\
\hline 25.1738 ] & [ & \(25.4580]\) \\
\hline
\end{tabular}
\(22.7500]\)
\(22.5000]\)
\(22.4170]\)
\(22.1250]\)
22.6250]
22.6670]
22.7920]
\(22.8330]\)
\(22.9580]\)
\(23.4170]\)
\(23.0830]\)
\(23.0830]\)
\(23.4580]\)
\(23.1670]\)
\(23.5420]\)
\(24.1250]\)
24 .2500]
\(24.0420]\)
\(24.2080]\)
\(24]\)
\(24.1670]\)
\(24.0420]\)
\(24.3330]\)
\(24.7500]\)
25 .2080]
\(24.8750]\)
25.0420]
\(25.5000]\)
\(25.8750]\)
NaN ]
25.5830 ]
\(25.3330]\)
\(24.8330]\) 25] 24.8330] 25]
\(24.5000]\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '27-Feb-1997' & [ & \(24.9266]\) & [ & \(25.3750]\) & [ & 25.16 \\
\hline '28-Feb-1997' & [ & \(24.5970]\) & [ & \(25.0830]\) & [ & 24.75 \\
\hline '03-Mar-1997' & [ & \(23.9790]\) & [ & \(24.9580]\) & [ & 24.25 \\
\hline '04-Mar-1997' & [ & \(24.2262]\) & [ & \(24.5000]\) & [ & 24.16 \\
\hline '05-Mar-1997' & [ & \(23.9378]\) & [ & \(24.7080]\) & [ & 23.91 \\
\hline '06-Mar-1997' & [ & 24.3498] & [ & 25.1670 ] & [ & 24.45 \\
\hline '07-Mar-1997' & [ & \(24.9266]\) & [ & \(25.4580]\) & [ & 25.12 \\
\hline '10-Mar-1997' & [ & \(25.0090]\) & [ & 25.6670 ] & [ & 25.08 \\
\hline '11-Mar-1997' & [ & \(25.5446]\) & [ & \(25.8750]\) & [ & 25.58 \\
\hline '12-Mar-1997' & [ & \(25.3386]\) & [ & 25.6670 ] & [ & 25.04 \\
\hline '13-Mar-1997' & [ & \(24.6794]\) & [ & \(25.0830]\) & [ & 24.41 \\
\hline '14-Mar-1997' & [ & \(24.3086]\) & [ & 25.0830 ] & [ & 24.54 \\
\hline '17-Mar-1997' & [ & \(24.5970]\) & [ & \(25.4170]\) & , & 24.70 \\
\hline '18-Mar-1997' & [ & \(25.0090]\) & [ & \(25.5000]\) & [ & 24.95 \\
\hline '19-Mar-1997' & [ & \(24.6382]\) & [ & \(25.0830]\) & & 24.66 \\
\hline '20-Mar-1997' & [ & 24.7206] & [ & \(25.0420]\) & [ & 24.70 \\
\hline '21-Mar-1997' & [ & \(24.5970]\) & [ & \(24.8750]\) & , & 24.58 \\
\hline '24-Mar-1997' & [ & \(24.3910]\) & [ & \(25.0420]\) & [ & 24.62 \\
\hline '25-Mar-1997' & [ & 24.7618] & [ & 25.1670 ] & [ & 24.83 \\
\hline '26-Mar-1997' & [ & \(24.8030]\) & [ & \(25.2080]\) & [ & 24.87 \\
\hline '27-Mar-1997' & [ & \(24.8442]\) & [ & 25.2080 ] & [ & 24.41 \\
\hline '28-Mar-1997' & [ & \(\mathrm{NaN}]\) & [ & NaN ] & [ & \\
\hline '31-Mar-1997' & [ & \(24.3910]\) & [ & 24.6670 ] & [ & 24.08 \\
\hline '01-Apr-1997' & [ & \(23.5670]\) & [ & \(24.5000]\) & [ & 23.66 \\
\hline '02-Apr-1997' & [ & 23.7318] & [ & \(24.6250]\) & [ & 23.70 \\
\hline '03-Apr-1997' & [ & \(23.6906]\) & [ & \(24.2500]\) & [ & 23.75 \\
\hline '04-Apr-1997' & [ & \(23.8142]\) & [ & \(24.5830]\) & [ & 23.95 \\
\hline '07-Apr-1997' & [ & \(24.3910]\) & [ & 24.7080 ] & [ & 24.45 \\
\hline '08-Apr-1997' & [ & \(24.3086]\) & [ & \(24.6250]\) & [ & 24.33 \\
\hline '09-Apr-1997' & [ & \(24.3934]\) & [ & \(24.7080]\) & [ & 24.45 \\
\hline '10-Apr-1997' & [ & \(24.4759]\) & [ & \(25.0420]\) & [ & 24.62 \\
\hline '11-Apr-1997' & [ & \(23.9806]\) & [ & \(24.8750]\) & , & 24.12 \\
\hline '14-Apr-1997' & [ & \(23.7742]\) & [ & \(24.0420]\) & [ & 23.45 \\
\hline '15-Apr-1997' & [ & \(23.7742]\) & [ & \(24.7080]\) & [ & 23.75 \\
\hline '16-Apr-1997' & [ & 24.3108] & [ & \(25.2080]\) & [ & 24.45 \\
\hline '17-Apr-1997' & [ & \(24.9712]\) & [ & \(25.4580]\) & [ & 25.08 \\
\hline '18-Apr-1997' & [ & 25.0125] & [ & 25.6670 ] & [ & 25.16 \\
\hline
\end{tabular}

18-1817
\[
\begin{aligned}
& \text { '21-Apr-1997' } \\
& \text { '22-Apr-1997' } \\
& \text { '23-Apr-1997' } \\
& \text { '24-Apr-1997' } \\
& \text { '25-Apr-1997' } \\
& \text { '28-Apr-1997' } \\
& \text { '29-Apr-1997' } \\
& \text { '30-Apr-1997' } \\
& \text { ' 01-May-1997' } \\
& \text { ' 02-May-1997' } \\
& \text { ' } 05 \text {-May-1997' } \\
& \text { ' 06-May-1997' } \\
& \text { ' } 07 \text {-May-1997' } \\
& \text { '08-May-1997' } \\
& \text { ' 09-May-1997' } \\
& \text { '12-May-1997' } \\
& \text { '13-May-1997' } \\
& \text { '14-May-1997' } \\
& \text { '15-May-1997' } \\
& \text { ' } 16 \text {-May-1997' } \\
& \text { '19-May-1997' } \\
& \text { '20-May-1997' } \\
& \text { '21-May-1997' } \\
& \text { '22-May-1997' } \\
& \text { '23-May-1997' } \\
& \text { '26-May-1997' } \\
& \text { '27-May-1997' } \\
& \text { '28-May-1997' } \\
& \text { '29-May-1997' } \\
& \text { ' } 30 \text {-May-1997' } \\
& \text { ' 02-Jun-1997' } \\
& \text { '03-Jun-1997' } \\
& \text { '04-Jun-1997' } \\
& \text { '05-Jun-1997' } \\
& \text { '06-Jun-1997' } \\
& \text { '09-Jun-1997' } \\
& \text { '10-Jun-1997' }
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline \(25.3427]\) & [ & \(25.9580]\) \\
\hline \(25.3840]\) & [ & \(26.2920]\) \\
\hline \(25.9205]\) & [ & \(26.5420]\) \\
\hline \(26.2920]\) & [ & \(26.6250]\) \\
\hline \(25.6729]\) & [ & \(26.0830]\) \\
\hline \(25.5078]\) & [ & \(26.0830]\) \\
\hline \(25.9205]\) & [ & \(26.9580]\) \\
\hline 26.4158] & [ & \(27.5000]\) \\
\hline 26.9111] & [ & \(27.3330]\) \\
\hline 26.7873] & [ & 27.1670 ] \\
\hline \(26.3745]\) & [ & \(27.4170]\) \\
\hline \(26.9937]\) & [ & \(27.4580]\) \\
\hline \(27.1588]\) & [ & \(27.4170]\) \\
\hline 26.4158] & [ & \(27.2920]\) \\
\hline 26.8698] & [ & \(27.4170]\) \\
\hline \(27.2000]\) & [ & \(28.3750]\) \\
\hline \(27.8192]\) & [ & \(28.1250]\) \\
\hline \(27.8192]\) & [ & 28.2080] \\
\hline \(27.4890]\) & [ & \(27.7920]\) \\
\hline \(27.2000]\) & [ & \(27.5420]\) \\
\hline \(26.7460]\) & [ & \(27.7920]\) \\
\hline \(27.3239]\) & [ & \(27.8750]\) \\
\hline \(27.5302]\) & [ & \(27.9170]\) \\
\hline 27.2413] & [ & \(27.5830]\) \\
\hline \(27.3239]\) & [ & \(27.8750]\) \\
\hline \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) \\
\hline \(27.2826]\) & [ & \(27.9580]\) \\
\hline \(27.5715]\) & [ & \(28.0420]\) \\
\hline \(27.7366]\) & [ & 28] \\
\hline 26.7873] & [ & \(27.4170]\) \\
\hline \(27.2000]\) & [ & \(27.4580]\) \\
\hline \(26.6635]\) & [ & 27] \\
\hline \(26.5396]\) & [ & \(26.8750]\) \\
\hline \(26.4984]\) & [ & \(27.2080]\) \\
\hline 26.7873] & [ & 27.1670 ] \\
\hline \(26.8698]\) & [ & \(27.3330]\) \\
\hline \(26.8286]\) & [ & \(27.3330]\) \\
\hline
\end{tabular}
\(25.4170]\) \(25.4580]\) \(26.0830]\) \(25.9170]\) 25.7080] 25.7500]
\(26.0830]\)
26.6670]
26.7500]
\(26.7920]\)
\(26.5830]\)
\(27.1250]\)
26.7500]
\(26.5830]\) 27 ]
\(27.4580]\)
\(27.6250]\)
27.7920]
\(27.5420]\)
\(26.9580]\)
26.9170]
27.2080]

27 .2920]
27 .2500]
27.4580]

NaN]
27.3750]
\(27.5830]\) \(27.4580]\) \(26.7080]\) \(26.9170]\) \(26.7920]\) 26.6250] 26.6250] 26.7080] 26 .9580] 27 ]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '11-Jun-1997' & [ & \(27.0349]\) & [ & \(27.2920]\) & [ & 26.958 \\
\hline '12-Jun-1997' & [ & \(26.9937]\) & [ & \(27.2920]\) & [ & 27.08 \\
\hline '13-Jun-1997' & [ & 27.0762 ] & [ & 28] & [ & 27.29 \\
\hline '16-Jun-1997' & [ & \(27.5715]\) & [ & \(27.9580]\) & [ & 27.66 \\
\hline '17-Jun-1997' & [ & \(27.7366]\) & [ & \(28.1250]\) & [ & 27.58 \\
\hline '18-Jun-1997' & [ & \(27.4064]\) & [ & \(27.7920]\) & [ & 27.500 \\
\hline '19-Jun-1997' & [ & \(27.2413]\) & [ & \(27.8750]\) & [ & 27.12 \\
\hline '20-Jun-1997' & [ & 27.4477 ] & [ & \(27.7920]\) & [ & 27.33 \\
\hline '23-Jun-1997' & [ & \(27.1588]\) & [ & \(27.4580]\) & [ & 26.83 \\
\hline '24-Jun-1997' & [ & 26.7460 ] & [ & \(27.5000]\) & [ & 26.83 \\
\hline '25-Jun-1997' & [ & 27.1588] & [ & \(27.7190]\) & [ & 26.95 \\
\hline '26-Jun-1997' & [ & \(27.0762]\) & [ & \(27.4170]\) & [ & \\
\hline '27-Jun-1997' & [ & \(27.0556]\) & [ & \(27.3130]\) & [ & 26.62 \\
\hline '30-Jun-1997' & [ & 26.4158] & [ & \(26.8130]\) & [ & 26.25 \\
\hline '01-Jul-1997' & [ & 26.3333] & [ & \(26.5830]\) & [ & 25.958 \\
\hline '02-Jul-1997' & [ & \(25.6110]\) & [ & \(25.9170]\) & [ & 25.47 ¢ \\
\hline '03-Jul-1997' & [ & \(25.7141]\) & [ & 26.1670 ] & [ & 25.708 \\
\hline '04-Jul-1997' & [ & NaN ] & [ & NaN ] & [ & \\
\hline '07-Jul-1997' & [ & 25.7348] & [ & \(26.0830]\) & [ & 25.02 \\
\hline '08-Jul-1997' & [ & \(25.4252]\) & [ & \(26.1250]\) & [ & 25.62 \\
\hline '09-Jul-1997' & [ & 25.9438] & [ & 26.1670 ] & [ & 25.60 \\
\hline '10-Jul-1997' & [ & 25.4683] & [ & 25.9790 ] & [ & 25.54 \\
\hline '11-Jul-1997' & [ & \(25.3236]\) & [ & 25.6670 ] & [ & 25.250 \\
\hline '14-Jul-1997' & [ & \(25.2616]\) & [ & 25.8750 ] & [ & 25.41 \\
\hline '15-Jul-1997' & [ & \(25.6337]\) & [ & 25.9790 ] & [ & 25.52 \\
\hline '16-Jul-1997' & [ & \(25.8404]\) & [ & \(26.5000]\) & [ & 26.02 \\
\hline '17-Jul-1997' & [ & \(26.0678]\) & [ & \(26.2920]\) & [ & 25.45 \\
\hline '18-Jul-1997' & [ & \(25.4683]\) & [ & 25.6670 ] & [ & 25.08 \\
\hline '21-Jul-1997' & [ & 25.0962] & [ & 25.3130 ] & [ & 24.60 \\
\hline '22-Jul-1997' & [ & \(25.2616]\) & [ & \(26]\) & [ & 25.08 \\
\hline '23-Jul-1997' & [ & 26.1918] & [ & \(26.5420]\) & [ & 25.917 \\
\hline '24-Jul-1997' & [ & \(25.7784]\) & [ & \(26.5420]\) & [ & 25.500 \\
\hline '25-Jul-1997' & [ & 26.2125] & [ & \(26.4170]\) & [ & 26.08 \\
\hline '28-Jul-1997' & [ & 26.1298] & [ & 26.6040 ] & [ & 26.33 \\
\hline '29-Jul-1997' & [ & \(26.3365]\) & [ & \(26.8130]\) & [ & 26.500 \\
\hline '30-Jul-1997' & [ & 26.6880 ] & [ & 27.0830 ] & [ & 26.813 \\
\hline '31-Jul-1997' & [ & \(26.9154]\) & [ & 27.2290 ] & [ & 26.938 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{4-Aua-1997} \\
\hline \multicolumn{2}{|l|}{05-Aug-1997} \\
\hline \multicolumn{2}{|l|}{u-1997} \\
\hline \multicolumn{2}{|l|}{' 07-Aug-1997'} \\
\hline \multicolumn{2}{|l|}{08-Aug-1997'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{3-Aug-1997'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{15-Aug-1997} \\
\hline \multicolumn{2}{|l|}{Aug} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'20-Aug-1997'} \\
\hline \multicolumn{2}{|l|}{21-Aug - 1997} \\
\hline \multicolumn{2}{|l|}{22-Aug-1997} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{7 - Aug-1997} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'29-Aug-1997'} \\
\hline \multicolumn{2}{|l|}{-Sep-1997} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'03-Sep-1997'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'05-Sep-1997'} \\
\hline \multicolumn{2}{|l|}{'08-Sep-1997'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'10-Sep-1997'} \\
\hline \multicolumn{2}{|l|}{-sep} \\
\hline \multicolumn{2}{|l|}{12-sep-1997} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{6-sep-} \\
\hline \multicolumn{2}{|l|}{'17-Sep-1997'} \\
\hline \multicolumn{2}{|l|}{p} \\
\hline \multicolumn{2}{|l|}{19-sep-1997} \\
\hline \multicolumn{2}{|l|}{22-Sep-1997} \\
\hline
\end{tabular}
'01-Aug-1997'
'04-Aug-1997'
' 05-Aug-1997'
' 06-Aug-1997'
' 07-Aug-1997'
'08-Aug-1997'
'11-Aug-1997'
'12-Aug-1997'
'13-Aug-1997'
'14-Aug-1997'
'15-Aug-1997'
'18-Aug-1997'
'19-Aug-1997'
'20-Aug-1997'
'21-Aug-1997'
'22-Aug-1997'
' 25 -Aug-1997'
'26-Aug-1997'
'27-Aug-1997'
'28-Aug-1997'
'29-Aug-1997'
'01-Sep-1997'
02-Sep-1997'
'03-Sep-1997'
'04-Sep-1997'
' 05-Sep-1997'
'08-Sep-1997'
'09-Sep-1997'
'10-Sep-1997'
'11-Sep-1997'
'12-Sep-1997'
15-Sep-1997'
'16-Sep-1997'
'17-Sep-1997'
'18-Sep-1997'
'22-Sep-1997'

\(26.7500]\)
\(26.6040]\) 26.6040 ] \(26.5420]\) \(26.3130]\) 26.0420] \(25.8750]\) \(26.0830]\) \(25.7920]\) \(25.8750]\) \(25.5000]\) \(25.3330]\) 26] \(26.4170]\) 26.1460] 25.7290]
25.9580 ] \(25.8330]\) 25.6250] \(25.7080]\) 25.6040] \(\mathrm{NaN}]\) 25.6670] 26.3330] 25.7710] \(25.8330]\) \(25.9580]\) \(25.8130]\) \(25.8960]\) 24.8130] \(25.2920]\) \(25.5830]\) \(25.7920]\) 26.1670] \(25.9170]\) 26.4170] \(26.5000]\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '23-Sep-1997' & [ & \(26.3572]\) & [ & \(26.5630]\) & [ & 26.20 \\
\hline '24-Sep-1997' & [ & \(26.1505]\) & [ & \(26.6460]\) & [ & 26.22 \\
\hline '25-Sep-1997' & [ & 26.0471 ] & [ & \(26.5420]\) & [ & 26.08 \\
\hline '26-Sep-1997' & [ & \(26.2538]\) & [ & \(26.7290]\) & [ & 26.39 \\
\hline '29-Sep-1997' & [ & \(26.2125]\) & [ & \(27]\) & [ & 26.37 \\
\hline '30-Sep-1997' & [ & \(26.3779]\) & [ & \(27.1460]\) & [ & 26.58 \\
\hline '01-Oct-1997' & [ & 26.7913] & [ & \(27.4580]\) & [ & 26.93 \\
\hline '02-Oct-1997' & [ & 27.2668 ] & [ & \(27.9790]\) & [ & 27.41 \\
\hline '03-0ct-1997' & [ & \(28.3831]\) & [ & \(28.6040]\) & [ & \\
\hline '06-0ct-1997' & [ & 27.9076 ] & [ & 28.1670 ] & [ & 27.58 \\
\hline '07-0ct-1997' & [ & 27.6389 ] & [ & \(28.4790]\) & [ & 27.75 \\
\hline '08-0ct-1997' & [ & \(28.0730]\) & [ & \(28.3130]\) & [ & 27.70 \\
\hline '09-0ct-1997' & [ & \(27.7009]\) & [ & \(28.1460]\) & [ & 27.77 \\
\hline '10-Oct-1997' & [ & \(27.7009]\) & [ & \(28.0210]\) & [ & 27.75 \\
\hline '13-0ct-1997' & [ & \(27.8456]\) & [ & \(28.2920]\) & [ & 28.04 \\
\hline '14-Oct-1997' & [ & \(28.1970]\) & [ & \(28.9580]\) & [ & 28.29 \\
\hline '15-Oct-1997' & [ & \(28.5714]\) & [ & 29.2710] & [ & 28.58 \\
\hline '16-0ct-1997' & [ & \(28.6957]\) & [ & 28.9170] & [ & 27.85 \\
\hline '17-Oct-1997' & [ & \(27.9503]\) & [ & \(28.1670]\) & [ & 27.10 \\
\hline '20-0ct-1997' & [ & 27.5569 ] & [ & \(27.8750]\) & [ & 27.50 \\
\hline '21-0ct-1997' & [ & 27.7640 ] & [ & \(28.0420]\) & [ & 27.68 \\
\hline '22-Oct-1997' & [ & \(27.7226]\) & [ & \(28.1250]\) & [ & 27.66 \\
\hline '23-0ct-1997' & [ & 27.2878 ] & [ & \(27.6460]\) & [ & 27.20 \\
\hline '24-Oct-1997' & [ & \(27.8882]\) & [ & \(28.2920]\) & [ & 27.37 \\
\hline '27-0ct-1997' & [ & 27.1222] & [ & \(27.6040]\) & [ & 25.91 \\
\hline '28-0ct-1997' & [ & \(24.8447]\) & [ & \(27.5830]\) & [ & \\
\hline '29-0ct-1997' & [ & 27.2671 ] & [ & \(27.9170]\) & [ & 27.08 \\
\hline '30-0ct-1997' & [ & \(27.0807]\) & [ & \(27.7080]\) & [ & 26.83 \\
\hline '31-Oct-1997' & [ & \(27.1014]\) & [ & \(27.7500]\) & [ & 27.22 \\
\hline '03-Nov-1997' & [ & \(27.6190]\) & [ & \(28.5000]\) & [ & 27.72 \\
\hline '04-Nov-1997' & [ & \(28.3851]\) & [ & 28.7710] & [ & 28.37 \\
\hline '05-Nov-1997' & [ & \(28.3023]\) & [ & \(28.7710]\) & [ & 28.31 \\
\hline '06-Nov-1997' & [ & \(28.1573]\) & [ & \(28.9170]\) & [ & 28.16 \\
\hline '07-Nov-1997' & [ & \(28.1573]\) & [ & \(29.1670]\) & [ & 28.16 \\
\hline '10-Nov-1997' & [ & \(28.8820]\) & [ & \(29.0830]\) & [ & 28.45 \\
\hline '11-Nov-1997' & [ & \(28.4679]\) & [ & \(28.8960]\) & [ & 28.50 \\
\hline '12-Nov-1997' & [ & \(28.3230]\) & [ & \(28.7710]\) & [ & 27.68 \\
\hline
\end{tabular}

18-1821
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{19 -Nov-1997} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{' 21 -Nov-1997'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{27 -Nov-1997} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'01-Dec-1997'} \\
\hline \multicolumn{2}{|l|}{2-Dec-1} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'04-Dec-1997'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'08-Dec-1997} \\
\hline \multicolumn{2}{|l|}{' 09-Dec-1997} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'11-Dec-1997'} \\
\hline \multicolumn{2}{|l|}{12-Dec-1997} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{16-Dec-1997} \\
\hline \multicolumn{2}{|l|}{Dec-1997} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'19-Dec-1997'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'23-Dec-1997'} \\
\hline \multicolumn{2}{|l|}{'24-Dec-1997'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'26-Dec-1997'} \\
\hline \multicolumn{2}{|l|}{'29-Dec-1997'} \\
\hline \multicolumn{2}{|l|}{'30-Dec-1997'} \\
\hline \multicolumn{2}{|l|}{'31-Dec-1997'} \\
\hline \multicolumn{2}{|l|}{'01-Jan-1998} \\
\hline \multicolumn{2}{|l|}{02-Jan-1998} \\
\hline
\end{tabular}
'13-Nov-1997'
' 14-Nov-1997'
'17-Nov-1997'
' 18 -Nov-1997'
'19-Nov-1997'
'20-Nov-1997'
'21-Nov-1997'
'24-Nov-1997'
'25-Nov-1997'
'26-Nov-1997'
' 27 -Nov-1997'
'28-Nov-1997'
'01-Dec-1997'
'02-Dec-1997'
'03-Dec-1997'
04-Dec-1997'
05-Dec-1997'
' 08-Dec-1997'
'09-Dec-1997'
'10-Dec-1997'
'11-Dec-1997'
'12-Dec-1997'
'15-Dec-1997'
'16-Dec-1997'
'17-Dec-1997'
'18-Dec-1997'
'19-Dec-1997'
' 22-Dec-1997'
'23-Dec-1997'
'24-Dec-1997'
'25-Dec-1997'
'26-Dec-1997'
'29-Dec-1997'
30-Dec-1997'
31-Dec-1997'
'02-Jan-1998'
01-Jan-1998'
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 05-Jan-1998' & [ & \(33.2919]\) & [ & \(33.5830]\) & [ & 32.56 \\
\hline '06-Jan-1998' & [ & \(32.6294]\) & [ & \(32.8960]\) & [ & 32.66 \\
\hline '07-Jan-1998' & [ & \(32.5281]\) & [ & \(32.8330]\) & [ & 32.45 \\
\hline '08-Jan-1998' & [ & \(32.6110]\) & [ & \(32.8130]\) & [ & 32.31 \\
\hline '09-Jan-1998' & [ & \(32.4037]\) & [ & \(32.5830]\) & [ & \\
\hline '12-Jan-1998' & [ & \(31.2013]\) & [ & \(32.0420]\) & [ & 31.18 \\
\hline '13-Jan-1998' & [ & \(31.3049]\) & [ & \(31.8330]\) & [ & 31.25 \\
\hline '14-Jan-1998' & [ & \(31.5330]\) & [ & \(32.3750]\) & [ & 31.39 \\
\hline '15-Jan-1998' & [ & \(31.7610]\) & [ & \(32.0210]\) & [ & 31.56 \\
\hline '16-Jan-1998' & [ & \(31.9269]\) & [ & 32.1880 ] & [ & 31.75 \\
\hline '19-Jan-1998' & [ & \(\mathrm{NaN}]\) & [ & NaN ] & [ & \\
\hline '20-Jan-1998' & [ & \(32.1756]\) & [ & \(33.2500]\) & [ & 32.25 \\
\hline '21-Jan-1998' & [ & \(32.8391]\) & [ & 33.1670 ] & [ & 32.68 \\
\hline '22-Jan-1998' & [ & \(32.7147]\) & [ & \(32.8750]\) & [ & 32.10 \\
\hline '23-Jan-1998' & [ & \(32.3415]\) & [ & \(33.0630]\) & & 32.27 \\
\hline '26-Jan-1998' & [ & \(32.7976]\) & [ & 33.1040 ] & [ & 32.33 \\
\hline '27-Jan-1998' & [ & \(32.8183]\) & [ & \(34.7080]\) & & 32.95 \\
\hline '28-Jan-1998' & [ & 34.4769 ] & [ & 35.5830 ] & [ & 34.50 \\
\hline '29-Jan-1998' & [ & \(34.7464]\) & [ & \(36.1250]\) & [ & 34.87 \\
\hline '30-Jan-1998' & [ & \(35.1818]\) & [ & 35.9580 ] & [ & 35.10 \\
\hline '02-Feb-1998' & [ & \(35.4513]\) & [ & 36.4170 ] & [ & 35.60 \\
\hline '03-Feb-1998' & [ & 35.7415] & [ & \(36.0830]\) & [ & 35.58 \\
\hline '04-Feb-1998' & [ & 35.6378 ] & [ & \(36.2500]\) & [ & 35.77 \\
\hline '05-Feb-1998' & [ & \(36.0732]\) & [ & \(36.4580]\) & [ & 35.81 \\
\hline ' 06-Feb-1998' & [ & 35.9281 ] & [ & \(36.3750]\) & [ & 36.02 \\
\hline '09-Feb-1998' & [ & \(36.2183]\) & [ & \(36.5420]\) & [ & 35.85 \\
\hline '10-Feb-1998' & [ & \(35.8866]\) & [ & \(36.3750]\) & [ & 35.50 \\
\hline '11-Feb-1998' & [ & \(35.9903]\) & [ & 36.9380 ] & [ & 36.10 \\
\hline '12-Feb-1998' & [ & 36.4878 ] & [ & \(36.8130]\) & [ & 36.29 \\
\hline '13-Feb-1998' & [ & \(36.2598]\) & [ & \(37.2080]\) & [ & 36.43 \\
\hline '16-Feb-1998' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) & [ & \\
\hline '17-Feb-1998' & [ & \(37.2135]\) & [ & 37.6670 ] & , & 37.25 \\
\hline '18-Feb-1998' & [ & \(37.4622]\) & [ & \(38.4170]\) & [ & 37.37 \\
\hline '19-Feb-1998' & [ & \(38.0427]\) & [ & \(38.5000]\) & [ & 37.83 \\
\hline ' 20-Feb-1998' & [ & \(37.8769]\) & [ & \(38.2920]\) & [ & 37.75 \\
\hline '23-Feb-1998' & [ & \(38.0013]\) & [ & \(38.5830]\) & [ & 37.83 \\
\hline '24-Feb-1998' & [ & \(37.7110]\) & [ & 37.9790 ] & [ & 37.18 \\
\hline
\end{tabular}

18-1823

\(36.9647]\)
\(36.4878]\)
36.1561 ]
\(36.9025]\)
36.2598]
35.4513]
\(34.8293]\)
35.2025]
34.9537 ]
\(35.2232]\)
34.9952 ]
\(34.8915]\)
35.7830 ]
35.3061 ]
35.9903]
35.5757 ]
35.6378]
35.3269 ]
34.6635]
\(34.8293]\)
\(35.4927]\)
\(35.2025]\)
35.8037 ]
35.4927 ]
35.1403 ]
35.4927 ]
35.1610 ]
36.4671 ]
36.8818]
\(35.9598]\)
35.87671
\(35.6484]\)
\(\mathrm{NaN}]\)
\(36.2297]\)
\(37.2886]\)
37.7038]
37.6830]
\begin{tabular}{rl}
\(37.3750]\) & {\([\)} \\
\(37.0420]\) & {\([\)} \\
\(3.5420]\) & {\([\)} \\
\(37.3130]\) & {\([\)} \\
\(36.8960]\) & {\([\)} \\
\(35.6460]\) & {\([\)} \\
\(35.2920]\) & {\([\)} \\
\(35.4790]\) & {\([\)} \\
\(35.4790]\) & {\([\)} \\
\(35.3960]\) & {\([\)} \\
\(35.1880]\) & {\([\)} \\
\(35.4380]\) & {\([\)} \\
\(35.9580]\) & {\([\)} \\
\(36.6670]\) & {\([\)} \\
\(36.2500]\) & {\([\)} \\
\(35.8330]\) & {\([\)} \\
\(35.8960]\) & {\([\)} \\
\(35.6670]\) & {\([\)} \\
\(35.2500]\) & {\([\)} \\
\(35.7710]\) & {\([\)} \\
\(35.7920]\) & {\([\)} \\
\(36.0420]\) & {\([\)} \\
\(36.0630]\) & {\([\)} \\
\(35.8330]\) & {\([\)} \\
\(35.8330]\) & {\([\)} \\
\(35.6670]\) & {\([\)} \\
\(36.3130]\) & {\([\)} \\
\(36.9790]\) & {\([\)} \\
\(37.0630]\) & {\([\)} \\
\(36.1460]\) & {\([\)} \\
\(366]\) & {\([\)} \\
\(36.4790]\) & {\([\)} \\
NaN \(]\) & {\([\)} \\
\(36.7920]\) & {\([\)} \\
\(37.7500]\) & {\([\)} \\
\(38.2710]\) & {\([\)} \\
\(37.8130]\) & {\([\)}
\end{tabular}

36 . 3330]
36 . 3330]
\(36.3330]\)
\(36.3330]\)
\(34.8960]\)
\(34.9170]\)
\(35.0420]\)
\(35.0830]\)
\(35.1670]\)
\(34.7920]\)
\(34.8540]\)
\(35.0210]\) \(35.3960]\) \(35.5630]\) \(35.3330]\) 35.2500 ] \(35.1250]\) \(34.2500]\) 34 . 8750] 35 . 2920] \(35.3750]\) 35.6670 ] \(35.1670]\) 35.1670 ] \(34.9790]\) \(35.1460]\) \(36.0420]\) \(36.0830]\) \(35.6880]\) \(35.2290]\) \(35.5000]\) NaN ] 36.3130 ] \(37.1670]\) 37.5000 ] \(37.3130]\)
\begin{tabular}{|c|}
\hline '17-Apr-1998' \\
\hline '20-Apr-1998' \\
\hline '21-Apr-1998' \\
\hline '22-Apr-1998' \\
\hline '23-Apr-1998' \\
\hline '24-Apr-1998' \\
\hline '27-Apr-1998' \\
\hline '28-Apr-1998' \\
\hline '29-Apr-1998' \\
\hline '30-Apr-1998' \\
\hline '01-May-1998' \\
\hline '04-May-1998' \\
\hline '05-May-1998' \\
\hline '06-May-1998' \\
\hline '07-May-1998' \\
\hline '08-May-1998' \\
\hline '11-May-1998' \\
\hline '12-May-1998' \\
\hline '13-May-1998' \\
\hline '14-May-1998' \\
\hline '15-May-1998' \\
\hline '18-May-1998' \\
\hline '19-May-1998' \\
\hline '20-May-1998' \\
\hline '21-May-1998' \\
\hline '22-May-1998' \\
\hline '25-May-1998' \\
\hline '26-May-1998' \\
\hline '27-May-1998' \\
\hline '28-May-1998' \\
\hline '29-May-1998' \\
\hline '01-Jun-1998' \\
\hline '02-Jun-1998' \\
\hline '03-Jun-1998' \\
\hline '04-Jun-1998' \\
\hline '05-Jun-1998' \\
\hline '08-Jun-1998' \\
\hline
\end{tabular}
\begin{tabular}{llll}
\(37.2886]\) & {\([\)} & \(37.8130]\) & {\([\)} \\
\(37.7038]\) & {\([\)} & \(38.6250]\) & {\([\)} \\
\(38.3682]\) & {\([\)} & \(38.9790]\) & {\([\)} \\
\(38.7211]\) & {\([\)} & \(40.6670]\) & {\([\)} \\
\(41.5240]\) & {\([\)} & \(42.5420]\) & {\([\)} \\
\(41.0880]\) & {\([\)} & \(41.2290]\) & {\([\)} \\
\(40.0499]\) & {\([\)} & \(40.4790]\) & {\([\)} \\
\(41.1088]\) & {\([\)} & \(41.3330]\) & {\([\)} \\
\(41.1710]\) & {\([\)} & \(41.5000]\) & {\([\)} \\
\(41.4617]\) & {\([\)} & \(41.8750]\) & {\([\)} \\
\(41.5032]\) & {\([\)} & \(41.8960]\) & {\([\)} \\
\(42.0846]\) & {\([\)} & \(42.7920]\) & {\([\)} \\
\(42.4583]\) & {\([\)} & \(42.6040]\) & {\([\)} \\
\(42.0223]\) & {\([\)} & \(42.1880]\) & {\([\)} \\
\(40.0291]\) & {\([\)} & \(40.1880]\) & {\([\)} \\
\(39.6139]\) & {\([\)} & \(39.9790]\) & {\([\)} \\
\(39.8215]\) & {\([\)} & \(40.4170]\) & {\([\)} \\
\(40.0707]\) & {\([\)} & \(40.2080]\) & {\([\)} \\
\(39.4686]\) & {\([\)} & \(39.8750]\) & {\([\)} \\
\(38.6796]\) & {\([\)} & \(39.1250]\) & {\([\)} \\
\(38.0360]\) & {\([\)} & \(38.1880]\) & {\([\)} \\
\(36.8733]\) & {\([\)} & \(37.5000]\) & {\([\)} \\
\(36.9564]\) & {\([\)} & \(37.2710]\) & {\([\)} \\
\(37.0394]\) & {\([\)} & \(38.3960]\) & {\([\)} \\
\(38.1606]\) & {\([\)} & \(38.9170]\) & {\([\)} \\
\(38.6588]\) & {\([\)} & \(38.9170]\) & {\([\)} \\
NaN] & {\([\)} & \(3.0 N]\) & {\([\)} \\
\(38.7627]\) & {\([\)} & \(38.9170]\) & {\([\)} \\
\(36.8526]\) & {\([\)} & \(38.2920]\) & {\([\)} \\
\(37.9737]\) & {\([\)} & \(38.1250]\) & {\([\)} \\
\(37.8699]\) & {\([\)} & \(38.0830]\) & {\([\)} \\
\(37.8284]\) & {\([\)} & \(37.9580]\) & {\([\)} \\
\(37.1432]\) & {\([\)} & \(37.3330]\) & {\([\)} \\
\(36.8110]\) & {\([\)} & \(37.1250]\) & {\([\)} \\
\(36.3127]\) & {\([\)} & \(36.6250]\) & {\([\)} \\
\(37.5169]\) & {\([\)} & \(38.3130]\) & {\([\)} \\
\(38.0983]\) & {\([\)} & \(38.6460]\) & {\([\)}
\end{tabular}
37.20
37.81
38.16
38.56
41.14
39.93
39.75
40.83
41.35
41.45
42.10
41.58
41.33
39.64
39.62
39.87
39.58
39.33
38.50
36.85
36.35
36.708
37.12
38.208
38.50
37.02
36.89
37.33
37.70
36.79
36.52
36.35
36.02
37.33
37.87

18-1825
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{09-Jun-1998}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{11-Jun-1998'} \\
\hline \multicolumn{2}{|l|}{'12-Jun-1998'} \\
\hline & 5-Jun-1998 \\
\hline \multicolumn{2}{|l|}{'16-Jun-1998} \\
\hline \multicolumn{2}{|l|}{'17-Jun-1998'} \\
\hline & 18-Jun-1998 \\
\hline \multicolumn{2}{|l|}{'19-Jun-1998'} \\
\hline & '22-Jun-1998 \\
\hline \multicolumn{2}{|l|}{'23-Jun-1998'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'25-Jun-1998'} \\
\hline & Jun \\
\hline \multicolumn{2}{|l|}{'29-Jun-1998'} \\
\hline \multicolumn{2}{|l|}{'30-Jun-1998'} \\
\hline & 01 -Jul \\
\hline \multicolumn{2}{|l|}{'02-Jul-1998'} \\
\hline & -Jul \\
\hline \multicolumn{2}{|l|}{'06-Jul-1998'} \\
\hline & 07-Jul-199 \\
\hline \multicolumn{2}{|l|}{'08-Jul-1998'} \\
\hline & -Jul-199 \\
\hline \multicolumn{2}{|l|}{'10-Jul-1998'} \\
\hline & 13-Jul-199 \\
\hline \multicolumn{2}{|l|}{'14-Jul-1998'} \\
\hline & 15-Jul-199 \\
\hline \multicolumn{2}{|l|}{'16-Jul-1998'} \\
\hline \multicolumn{2}{|l|}{'17-Jul-1998'} \\
\hline \multicolumn{2}{|l|}{'20-Jul-1998'} \\
\hline \multicolumn{2}{|l|}{'21-Jul-1998} \\
\hline \multicolumn{2}{|l|}{'22-Jul-1998'} \\
\hline \multicolumn{2}{|l|}{'23-Jul-1998'} \\
\hline \multicolumn{2}{|l|}{'24-Jul-1998'} \\
\hline \multicolumn{2}{|l|}{'27-Jul-1998} \\
\hline & 1998 \\
\hline & 29-Jul-1998 \\
\hline
\end{tabular}
'09-Jun-1998'
-10-Jun-1908
'12-Jun-1998'
'15-Jun-1998'
16-Jun-1998'
17-Jun-1998'
'18-Jun-1998'
19-Jun-1998'
'22-Jun-1998'
23-Jun-1998'
24-Jun-1998'
'25-Jun-1998'
-Jun-1998
29-Jun-1998
30-Jun-1998
01-Jul-1998
'02-Jul-1998'
'03-Jul-1998'
'06-Jul-1998'
07-Jul-1998'
08-Jul-1998'
9-Jul-1998
-Jul-1998
'13-Jul-1998'
14-Jul-1998'
15-Jul-1998'
16-Jul-1998'
'17-Jul-1998'
20-Jul-1998'
21-Jul-1998'
22-Jul-1998'
-Jul-1998
'24-Jul-1998
27-Jul-1998'
29-Jul-1998'
38.5135]
\(39.0326]\)
39.3232]
38.6173]
37.7661 ]
\(37.5377]\)
37.8699 ]
37.9737 ]
36.3958 ]
35.0878]
\(36.4996]\)
\(36.5204]\)
\(37.5169]\)
37.2886 ]
37.2886 ]
\(36.2505]\)
\(35.3785]\)
35.2331 ]

NaN ]
\(35.2954]\)
\(35.3785]\)
35.3992]
36.1466 ]
\(37.1225]\)
\(38.8665]\)
39.6762 ]
39.92531
38.3059 ]
\(39.1779]\)
39.2402]
38.4305 ]
\(37.0489]\)
37.1113]
36.5499 ]
36.5499 ]
36.1133]
35.4273]
\begin{tabular}{rl}
\(38.8330]\) & {\([\)} \\
\(39.8960]\) & {\([\)} \\
\(39.5830]\) & {\([\)} \\
\(38.8330]\) & {\([\)} \\
\(38.330]\) & {\([\)} \\
\(38.0420]\) & {\([\)} \\
\(38.7500]\) & {\([\)} \\
\(38.1460]\) & {\([\)} \\
\(36.6250]\) & {\([\)} \\
\(36.3130]\) & {\([\)} \\
\(36.7920]\) & {\([\)} \\
\(37.7710]\) & {\([\)} \\
\(37.9790]\) & {\([\)} \\
\(37.4580]\) & {\([\)} \\
\(37.9170]\) & {\([\)} \\
\(36.5830]\) & {\([\)} \\
\(35.8330]\) & {\([\)} \\
\(35.4790]\) & {\([\)} \\
\(35.4380]\) & {\([\)} \\
\(35.6670]\) & {\([\)} \\
\(36.3130]\) & {\([\)} \\
\(37.1460]\) & {\([\)} \\
\(38.5000]\) & {\([\)} \\
\(39.5630]\) & {\([\)} \\
\(40.2500]\) & {\([\)} \\
\(40.3130]\) & {\([\)} \\
\(39.4380]\) & {\([\)} \\
\(39.5630]\) & {\([\)} \\
\(39.7500]\) & {\([\)} \\
\(38.5630]\) & {\([\)} \\
\(378]\) & {\([\)} \\
\(37.8750]\) & {\([\)} \\
37
\end{tabular}
\(38.2500]\) 39] 38.6880 ] \(37.7500]\) \(37.3960]\)
\(37.4170]\)
\(37.6670]\)
\(37.3130]\)
35.6250 ]
\(34.8330]\)
36 . 2080]
\(36.5630]\)
37 . 1880] \(36.7920]\) 37 . 2920]
\(35.0210]\)
\(35.3540]\)
\(35.0830]\)
NaN ]
\(34.9380]\)
\(35.3330]\)
\(35.5210]\)
\(36.1670]\) \(36.5000]\) \(38.3750]\) \(39.6250]\) \(39.1880]\) \(38.0630]\) \(38.8130]\) \(38.5000]\) 37 . 4380] \(36.8130]\) 36]
\(36.0630]\) 36] \(35.0630]\) \(35.0630]\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '30-Jul-1998' & [ & 35.3649 ] & [ & \(35.5000]\) & [ & \\
\hline '31-Jul-1998' & [ & \(35.2401]\) & [ & \(35.5000]\) & [ & 34.25 \\
\hline '03-Aug-1998' & [ & \(34.4917]\) & [ & 35] & [ & 34.500 \\
\hline '04-Aug-1998' & [ & \(34.8659]\) & [ & \(35.1880]\) & [ & 32.75 \\
\hline '05-Aug-1998' & [ & \(33.3066]\) & [ & \(34.0630]\) & [ & 32.25 \\
\hline '06-Aug-1998' & [ & \(33.6185]\) & [ & \(34]\) & [ & 33.06 \\
\hline '07-Aug-1998' & [ & \(33.3690]\) & [ & \(33.5630]\) & [ & 32.87 \\
\hline '10-Aug-1998' & [ & \(33.3690]\) & [ & \(33.6250]\) & [ & 32.56 \\
\hline '11-Aug-1998' & [ & \(32.2463]\) & [ & \(32.5000]\) & [ & 31.438 \\
\hline '12-Aug-1998' & [ & \(32.0592]\) & [ & \(32.9380]\) & [ & \\
\hline '13-Aug-1998' & [ & \(32.4334]\) & [ & \(33.4380]\) & [ & 31.56 \\
\hline '14-Aug-1998' & [ & \(32.3087]\) & [ & \(32.4380]\) & [ & 31.250 \\
\hline '17-Aug-1998' & [ & 31.4978 ] & [ & \(32.2500]\) & [ & 31.12 \\
\hline '18-Aug-1998' & [ & \(32.6205]\) & [ & \(33.6250]\) & [ & 32.12 \\
\hline '19-Aug-1998' & [ & \(33.6808]\) & [ & \(33.8130]\) & & 32.62 \\
\hline '20-Aug-1998' & [ & \(33.0571]\) & [ & \(33.8750]\) & [ & 32.938 \\
\hline '21-Aug-1998' & [ & \(33.1819]\) & [ & \(33.4380]\) & & 32.313 \\
\hline '24-Aug-1998' & [ & \(33.8680]\) & [ & \(33.9380]\) & [ & 32.813 \\
\hline '25-Aug-1998' & [ & \(33.7432]\) & [ & \(34.6880]\) & [ & 33.62 \\
\hline '26-Aug-1998' & [ & \(33.1195]\) & [ & \(33.6250]\) & [ & 32.500 \\
\hline '27-Aug-1998' & [ & \(31.9344]\) & [ & \(32.5000]\) & [ & 30.938 \\
\hline '28-Aug-1998' & [ & \(30.9988]\) & [ & \(31.6880]\) & [ & 30.06 \\
\hline '31-Aug-1998' & [ & \(30.8117]\) & [ & \(31.2500]\) & [ & \\
\hline '01-Sep-1998' & [ & \(28.4416]\) & [ & \(30.5000]\) & [ & 27.75 \\
\hline '02-Sep-1998' & [ & \(30.9365]\) & [ & \(31.8750]\) & [ & 29.56 \\
\hline '03-Sep-1998' & [ & \(29.4395]\) & [ & \(29.7500]\) & [ & \\
\hline '04-Sep-1998' & [ & 28.5663] & [ & \(28.7500]\) & [ & 27.50 \\
\hline '07-Sep-1998' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) & [ & \\
\hline '08-Sep-1998' & [ & \(29.6890]\) & [ & \(30.1880]\) & [ & 28.12 \\
\hline '09-Sep-1998' & [ & \(29.0029]\) & [ & \(29.0630]\) & [ & 27.56 \\
\hline '10-Sep-1998' & [ & \(27.2565]\) & [ & \(27.7500]\) & [ & 26.62 \\
\hline '11-Sep-1998' & [ & \(27.0694]\) & [ & \(27.9380]\) & [ & 25.75 \\
\hline '14-Sep-1998' & [ & \(25.1983]\) & [ & \(25.2500]\) & [ & 23.87 \\
\hline '15-Sep-1998' & [ & 24.9488] & [ & \(25.5000]\) & [ & 24.813 \\
\hline '16-Sep-1998' & [ & \(25.3230]\) & [ & 26] & [ & 25.18 \\
\hline '17-Sep-1998' & [ & \(24.9488]\) & [ & \(25.7500]\) & [ & \\
\hline '18-Sep-1998' & [ & 25.5725] & [ & \(25.8750]\) & [ & 25.12 \\
\hline
\end{tabular}

'21-Sep-1998'
'22-Sep-1998'
'23-Sep-1998'
'24-Sep-1998'
'25-Sep-1998'
28-Sep-1998'
'29-Sep-1998'
'30-Sep-1998'
'01-Oct-1998'
'02-0ct-1998'
'05-0ct-1998'
'06-0ct-1998'
'07-0ct-1998'
08-0ct-1998'
09-0ct-1998
12-Oct-1998'
13-0ct-1998'
'14-0ct-1998'
'15-0ct-1998'
16-0ct-1998'
'19-0ct-1998'
'20-0ct-1998'
21-Oct-1998
22-Oct-1998
23-0ct-1998'
26-0ct-1998'
27-Oct-1998'
28-Oct-1998'
'29-0ct-1998'
30-0ct-1998'
02-Nov-1998'
03-Nov-1998'
04-Nov-1998'
05-Nov-1998'
06-Nov-1998'
09-Nov-1998'
10-Nov-1998'


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '11-Nov-1998' & [ & \(29.0625]\) & [ & \(29.3130]\) & [ & 28.81 \\
\hline '12-Nov-1998' & [ & \(28.6875]\) & [ & \(28.8130]\) & [ & 28.12 \\
\hline '13-Nov-1998' & [ & \(28.7500]\) & [ & \(29.3750]\) & [ & 28.25 \\
\hline '16-Nov-1998' & [ & \(29.3125]\) & [ & \(29.8130]\) & [ & 28.87 \\
\hline '17-Nov-1998' & [ & \(29.0625]\) & [ & \(29.2500]\) & [ & 28.56 \\
\hline '18-Nov-1998' & [ & \(28.5625]\) & [ & \(29.1250]\) & [ & 28.25 \\
\hline '19-Nov-1998' & [ & \(28.4375]\) & [ & \(28.8750]\) & [ & 28.12 \\
\hline '20-Nov-1998' & [ & 28.4375] & [ & \(28.6880]\) & [ & 28.12 \\
\hline '23-Nov-1998' & [ & \(28.6875]\) & [ & \(29.5000]\) & [ & 28.62 \\
\hline '24-Nov-1998' & [ & \(29.6875]\) & [ & \(30.8750]\) & [ & 29.50 \\
\hline '25-Nov-1998' & [ & \(29.8125]\) & [ & \(30.9380]\) & [ & 29.62 \\
\hline '26-Nov-1998' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) & [ & \\
\hline '27-Nov-1998' & [ & \(31]\) & [ & \(32.1250]\) & [ & 30.81 \\
\hline '30-Nov-1998' & [ & \(32.4375]\) & [ & \(33.1250]\) & [ & 31.56 \\
\hline '01-Dec-1998' & [ & \(31.8750]\) & [ & 32] & [ & 31.12 \\
\hline '02-Dec-1998' & [ & \(31.3125]\) & [ & \(31.4380]\) & [ & 30.68 \\
\hline '03-Dec-1998' & [ & \(31.3750]\) & [ & \(31.9380]\) & [ & 30.81 \\
\hline '04-Dec-1998' & [ & 31.4375] & [ & \(31.7500]\) & [ & 31.25 \\
\hline '07-Dec-1998' & [ & \(31.3750]\) & [ & \(31.9380]\) & [ & 30.87 \\
\hline '08-Dec-1998' & [ & \(31.3750]\) & [ & \(32.3750]\) & [ & 31.31 \\
\hline '09-Dec-1998' & [ & \(32.1875]\) & [ & \(33.7500]\) & [ & 32.06 \\
\hline '10-Dec-1998' & [ & \(33.5625]\) & [ & \(33.6880]\) & [ & 32.25 \\
\hline '11-Dec-1998' & [ & \(32.0625]\) & [ & \(32.0630]\) & [ & 31.43 \\
\hline '14-Dec-1998' & [ & \(31.3125]\) & [ & \(31.5000]\) & [ & 30.12 \\
\hline '15-Dec-1998' & [ & 31] & [ & \(31.3750]\) & [ & 30.68 \\
\hline '16-Dec-1998' & [ & \(31.1875]\) & [ & \(31.4380]\) & [ & 30.56 \\
\hline '17-Dec-1998' & [ & \(30.7500]\) & [ & \(31.1880]\) & [ & 30.75 \\
\hline '18-Dec-1998' & [ & \(30.8750]\) & [ & \(30.9380]\) & [ & 30.06 \\
\hline '21-Dec-1998' & [ & \(30.7500]\) & [ & \(31.3750]\) & [ & 30.31 \\
\hline '22-Dec-1998' & [ & \(30.6250]\) & [ & \(32.6880]\) & [ & 29.93 \\
\hline '23-Dec-1998' & [ & \(30.4375]\) & [ & \(31]\) & [ & 30.18 \\
\hline '24-Dec-1998' & [ & \(30.8750]\) & [ & 31] & [ & 30.50 \\
\hline '25-Dec-1998' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) & [ & \\
\hline '28-Dec-1998' & [ & \(30.8750]\) & [ & 31] & [ & 30.25 \\
\hline '29-Dec-1998' & [ & \(30.6250]\) & [ & \(30.6880]\) & [ & 30.25 \\
\hline '30-Dec-1998' & [ & \(30.5000]\) & [ & \(30.5000]\) & [ & 29.75 \\
\hline '31-Dec-1998' & [ & \(29.8750]\) & [ & \(30.1250]\) & [ & 29.56 \\
\hline
\end{tabular}

18-1829
\begin{tabular}{|c|}
\hline '01-Jan-1999' \\
\hline '04-Jan-1999' \\
\hline '05-Jan-1999' \\
\hline '06-Jan-1999' \\
\hline '07-Jan-1999' \\
\hline '08-Jan-1999' \\
\hline '11-Jan-1999' \\
\hline '12-Jan-1999' \\
\hline '13-Jan-1999' \\
\hline '14-Jan-1999' \\
\hline '15-Jan-1999' \\
\hline '18-Jan-1999' \\
\hline '19-Jan-1999' \\
\hline '20-Jan-1999' \\
\hline '21-Jan-1999' \\
\hline '22-Jan-1999' \\
\hline '25-Jan-1999' \\
\hline '26-Jan-1999' \\
\hline '27-Jan-1999' \\
\hline '28-Jan-1999' \\
\hline '29-Jan-1999' \\
\hline '01-Feb-1999' \\
\hline ' 02-Feb-1999' \\
\hline '03-Feb-1999' \\
\hline '04-Feb-1999' \\
\hline ' 05-Feb-1999' \\
\hline '08-Feb-1999' \\
\hline '09-Feb-1999' \\
\hline '10-Feb-1999' \\
\hline '11-Feb-1999' \\
\hline '12-Feb-1999' \\
\hline '15-Feb-1999' \\
\hline '16-Feb-1999' \\
\hline '17-Feb-1999' \\
\hline '18-Feb-1999' \\
\hline '19-Feb-1999' \\
\hline '22-Feb-1999' \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline NaN] & [ & NaN] \\
\hline \(30.1875]\) & [ & \(30.6880]\) \\
\hline \(29.7500]\) & [ & \(30.6250]\) \\
\hline \(30.5625]\) & [ & 31] \\
\hline \(30.0625]\) & [ & 31.7500] \\
\hline \(32.3125]\) & [ & \(32.8130]\) \\
\hline \(33.1250]\) & [ & \(35.5000]\) \\
\hline \(38.3750]\) & [ & \(38.6880]\) \\
\hline \(34.5000]\) & [ & \(37.3750]\) \\
\hline \(36.7500]\) & [ & \(37.2500]\) \\
\hline \(36.5625]\) & [ & \(36.6880]\) \\
\hline NaN] & [ & \(\mathrm{NaN}]\) \\
\hline 36] & [ & \(36.6250]\) \\
\hline \(36.8125]\) & [ & \(36.9380]\) \\
\hline \(35.9375]\) & [ & 36] \\
\hline \(34.1250]\) & [ & \(34.5630]\) \\
\hline \(34.1875]\) & [ & 35] \\
\hline \(34.9375]\) & [ & \(35.3750]\) \\
\hline \(34.2500]\) & [ & \(34.3750]\) \\
\hline \(33.9375]\) & [ & \(34.3750]\) \\
\hline \(33.6875]\) & [ & \(34]\) \\
\hline \(33.8125]\) & [ & \(33.9380]\) \\
\hline \(33.5000]\) & [ & \(33.6880]\) \\
\hline \(33.3750]\) & [ & \(33.8750]\) \\
\hline \(33.6250]\) & [ & \(34.0630]\) \\
\hline \(33.8750]\) & [ & \(34.6880]\) \\
\hline \(34.2500]\) & [ & \(34.2500]\) \\
\hline \(34.1875]\) & [ & \(34.6250]\) \\
\hline \(33.6250]\) & [ & \(34.1880]\) \\
\hline \(34]\) & [ & \(35.5000]\) \\
\hline \(35.4375]\) & [ & \(35.5630]\) \\
\hline NaN] & [ & \(\mathrm{NaN}]\) \\
\hline 35.9375 ] & [ & 36] \\
\hline \(34.7500]\) & [ & \(35.2500]\) \\
\hline \(34.6875]\) & [ & \(34.8750]\) \\
\hline \(34.2500]\) & [ & \(34.5000]\) \\
\hline \(34.1250]\) & [ & \(35.1250]\) \\
\hline
\end{tabular}
\(\mathrm{NaN}]\) 29.2500] \(29.6880]\) 29.7500] 30 ] 31 . 8130] 33 .0630] 37 .1880] 34 .3750] 35 . 8130] 35.6250 ]

NaN ] \(35.8130]\) \(35.8750]\) 34 . 1250] 34 ] \(34.0630]\) 34 .1880] 32 .6880] 33.3130 ] 33 ] 33 . 2500] 32 . 8130] 33 . 2500] 33 ] 33.5630 ] 33 . 8130] 33.4380 ] 33 . 3130] 33.8130 ] \(34.5630]\) \(\mathrm{NaN}]\) 34 .6250] 34 .5630] 34 . 2500] \(34]\)
\(34.1250]\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'25-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{26} \\
\hline \multicolumn{2}{|l|}{'01-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'03-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{Ma} \\
\hline \multicolumn{2}{|l|}{'05-Mar} \\
\hline \multicolumn{2}{|l|}{8-Ma} \\
\hline \multicolumn{2}{|l|}{09-Mar} \\
\hline & \\
\hline \multicolumn{2}{|l|}{1-Mar-1} \\
\hline \multicolumn{2}{|l|}{12-Mar-1} \\
\hline \multicolumn{2}{|l|}{5-Mar-1999} \\
\hline \multicolumn{2}{|l|}{6-Mar-1} \\
\hline \multicolumn{2}{|l|}{'17-Mar-1999} \\
\hline \multicolumn{2}{|l|}{18-Mar-1999} \\
\hline \multicolumn{2}{|l|}{'19-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{22-Mar-1999} \\
\hline \multicolumn{2}{|l|}{-Mar -} \\
\hline \multicolumn{2}{|l|}{24-Mar-19} \\
\hline \multicolumn{2}{|l|}{-1} \\
\hline & \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{rrrr}
\(35.1875]\) & {\([\)} & \(35.5000]\) & {\([\)} \\
\(35]\) & {\([\)} & \(36]\) & {\([\)} \\
\(34.6250]\) & {\([\)} & \(35.2500]\) & {\([\)} \\
\(35.2500]\) & {\([\)} & \(35.6880]\) & {\([\)} \\
\(35.1875]\) & {\([\)} & \(35.1880]\) & {\([\)} \\
\(34.5625]\) & {\([\)} & \(35.1250]\) & {\([\)} \\
\(34.6250]\) & {\([\)} & \(35.3130]\) & {\([\)} \\
\(35.8125]\) & {\([\)} & \(36]\) & {\([\)} \\
\(35.9375]\) & {\([\)} & \(36.6880]\) & {\([\)} \\
\(35.7500]\) & {\([\)} & \(35.8130]\) & {\([\)} \\
\(34.6875]\) & {\([\)} & \(35.0630]\) & {\([\)} \\
\(34.1250]\) & {\([\)} & \(34.9380]\) & {\([\)} \\
\(35.6250]\) & {\([\)} & \(36.4380]\) & {\([\)} \\
\(36.1250]\) & {\([\)} & \(36.5630]\) & {\([\)} \\
\(35.7500]\) & {\([\)} & \(36.4380]\) & {\([\)} \\
\(35.2500]\) & {\([\)} & \(35.5630]\) & {\([\)} \\
\(34.8125]\) & {\([\)} & \(35.6880]\) & {\([\)} \\
\(35.7500]\) & {\([\)} & \(35.8130]\) & {\([\)} \\
\(34.9375]\) & {\([\)} & \(34]\) \\
\(34.1250]\) & {\([\)} & \(34.1880]\) & {\([\)} \\
\(33.0625]\) & {\([\)} & \(33.2500]\) & {\([\)} \\
\(33.5000]\) & {\([\)} & \(33.6250]\) & {\([\)} \\
\(33.3125]\) & {\([\)} & \(33.3750]\) & {\([\)} \\
\(33.0625]\) & {\([\)} & \(33.1880]\) & {\([\)}
\end{tabular}
34.87

34 . 93
34 . 06
34.06
34.56

34 . 06
34.37
34.56
35.56
35.93
34.31
34.37
34.12
35.62
35.12
34.50
34.68
34.87
34.25
32.81
32.62
32.87
32.75

Column
\begin{tabular}{|c|c|}
\hline CLOSE: & (782) \({ }^{\prime}\) \\
\hline 2 & \(21.2920]\) \\
\hline 2 & \(21.6250]\) \\
\hline 2 & \(21.8330]\) \\
\hline 2 & \(21.8750]\) \\
\hline 2 & 21.6670 ] \\
\hline [ & NaN ] \\
\hline 2 & \(21.4580]\) \\
\hline \[
2
\] & \(21.2080]\) \\
\hline
\end{tabular}

18-1831
\begin{tabular}{|c|c|}
\hline [ & \(20.2920]\) \\
\hline [ & \(20.1250]\) \\
\hline [ & \(20.4580]\) \\
\hline [ & \(20.6250]\) \\
\hline [ & \(20.7500]\) \\
\hline [ & \(20.7920]\) \\
\hline [ & \(20.9580]\) \\
\hline [ & \(21.0420]\) \\
\hline [ & \(20.8750]\) \\
\hline [ & \(20.5830]\) \\
\hline [ & \(20.2080]\) \\
\hline [ & \(20.4170]\) \\
\hline [ & \(20.6250]\) \\
\hline [ & \(20.6250]\) \\
\hline [ & \(20.6670]\) \\
\hline [ & \(20.1670]\) \\
\hline [ & 20] \\
\hline [ & \(19.6670]\) \\
\hline [ & \(20.0420]\) \\
\hline [ & 19.7920] \\
\hline [ & \(19.6670]\) \\
\hline [ & \(19.4170]\) \\
\hline [ & \(19.7500]\) \\
\hline [ & \(20.2500]\) \\
\hline [ & \(20.2920]\) \\
\hline [ & \(20.1250]\) \\
\hline [ & \(20.2500]\) \\
\hline [ & \(20.4170]\) \\
\hline [ & \(20.6250]\) \\
\hline [ & \(20.7920]\) \\
\hline [ & \(20.9170]\) \\
\hline [ & \(20.6670]\) \\
\hline [ & \(20.8330]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(20.7080]\) \\
\hline [ & \(20.1670]\) \\
\hline & \(20.4170]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(20.2500]\) \\
\hline [ & \(20.1250]\) \\
\hline [ & \(20.0420]\) \\
\hline [ & \(20.1670]\) \\
\hline [ & \(20.8330]\) \\
\hline [ & \(21.0830]\) \\
\hline [ & 20.7920] \\
\hline [ & 20.7920] \\
\hline [ & \(20.7920]\) \\
\hline [ & \(20.5830]\) \\
\hline [ & \(20.5000]\) \\
\hline [ & 20.6670 ] \\
\hline [ & \(20.3330]\) \\
\hline [ & \(20.3750]\) \\
\hline [ & \(20.5830]\) \\
\hline [ & 21] \\
\hline [ & \(20.7500]\) \\
\hline [ & \(21.0830]\) \\
\hline [ & 20.7920] \\
\hline [ & \(21.0420]\) \\
\hline [ & \(20.9580]\) \\
\hline [ & 20.7500 ] \\
\hline [ & \(20.4170]\) \\
\hline [ & \(20.3330]\) \\
\hline [ & NaN ] \\
\hline [ & 19.7920] \\
\hline [ & 19.6670] \\
\hline [ & 19.1670] \\
\hline [ & \(19.3750]\) \\
\hline [ & 18.7080] \\
\hline [ & \(18.9580]\) \\
\hline [ & 18.2920] \\
\hline [ & 18.6670 ] \\
\hline [ & \(18.6670]\) \\
\hline [ & \(19.0830]\) \\
\hline [ & 19.1250] \\
\hline [ & 18.6670] \\
\hline
\end{tabular}
\begin{tabular}{rr}
{\([\)} & \(18.5000]\) \\
{\([\)} & \(18.1250]\) \\
{\([\)} & \(18.1250]\) \\
{\([\)} & \(18.0420]\) \\
{\([\)} & \(17.7920]\) \\
{\([\)} & \(18.4170]\) \\
{\([\)} & \(18.5420]\) \\
{\([\)} & \(19.1250]\) \\
{\([\)} & \(19.3330]\) \\
{\([\)} & \(19.4580]\) \\
{\([\)} & \(19.4580]\) \\
{\([\)} & \(19.1670]\) \\
{\([\)} & \(19.0420]\) \\
{\([\)} & \(19.5000]\) \\
{\([\)} & \(19.3330]\) \\
{\([\)} & \(19.3750]\) \\
{\([\)} & \(19.2920]\) \\
{\([\)} & \(19.3750]\) \\
{\([\)} & \(19.3330]\) \\
{\([\)} & \(19.0830]\) \\
{\([\)} & \(19.2920]\) \\
{\([\)} & \(19.3750]\) \\
{\([\)} & \(19.4580]\) \\
{\([\)} & \(19.7920]\) \\
{\([\)} & \(19.6670]\) \\
{\([\)} & \(19.4170]\) \\
{\([\)} & \(19.2500]\) \\
{\([\)} & \(19]\) \\
{\([\)} & NaN] \\
{\([\)} & \(18.9170]\) \\
{\([\)} & \(18.5420]\) \\
{\([\)} & \(19.4170]\) \\
{\([\)} & \(19.2920]\) \\
{\([\)} & \(19.5420]\) \\
{\([\)} & \\
\hline
\end{tabular}
\begin{tabular}{lr}
{\([\)} & \(20.1670]\) \\
{\([\)} & \(20.2500]\) \\
{\([\)} & \(20.0830]\) \\
{\([\)} & \(20.3750]\) \\
{\([\)} & \(20.4170]\) \\
{\([\)} & \(21.1670]\) \\
{\([\)} & \(21.0420]\) \\
{\([\)} & \(21.2080]\) \\
{\([\)} & \(20.9170]\) \\
{\([\)} & \(20.8750]\) \\
{\([\)} & \(20.6670]\) \\
{\([\)} & \(21]\) \\
{\([\)} & \(21.0830]\) \\
{\([\)} & \(20.8330]\) \\
{\([\)} & \(20.9580]\) \\
{\([\)} & \(21.0420]\) \\
{\([\)} & \(21.3750]\) \\
{\([\)} & \(21.3750]\) \\
{\([\)} & \(21.2080]\) \\
{\([\)} & \(21.1670]\) \\
{\([\)} & \(21.2080]\) \\
{\([\)} & \(21.3330]\) \\
{\([\)} & \(21.3750]\) \\
{\([\)} & \(21.4580]\) \\
{\([\)} & \(21.8330]\) \\
{\([\)} & \(21.6250]\) \\
{\([\)} & \(21.6670]\) \\
{\([\)} & \(21.8750]\) \\
{\([\)} & \(22.2080]\) \\
{\([\)} & \(22.0420]\) \\
{\([\)} & \(21.7920]\) \\
{\([\)} & \(22.0830]\) \\
{\([\)} & \(22.1250]\) \\
{\([\)} & \(21.9170]\) \\
{\([\)} & \(21.8750]\) \\
{\([\)} & \(21.9580]\) \\
{\([\)} & \(21.8330]\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(22.2920]\) \\
\hline [ & \(22.5420]\) \\
\hline [ & \(22.5830]\) \\
\hline [ & 23] \\
\hline [ & \(22.8330]\) \\
\hline [ & \(23.4580]\) \\
\hline [ & \(23.6250]\) \\
\hline [ & \(23.5420]\) \\
\hline [ & \(23.5420]\) \\
\hline [ & \(24.0830]\) \\
\hline [ & \(23.7920]\) \\
\hline [ & \(23.6670]\) \\
\hline [ & \(23.9170]\) \\
\hline [ & \(24.0830]\) \\
\hline [ & \(24.0420]\) \\
\hline [ & \(24.5000]\) \\
\hline [ & \(25.3330]\) \\
\hline [ & \(24.6250]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(24.6250]\) \\
\hline [ & \(24.6250]\) \\
\hline [ & \(23.9580]\) \\
\hline [ & \(24]\) \\
\hline [ & \(23.9580]\) \\
\hline [ & \(23.8330]\) \\
\hline [ & \(24.3750]\) \\
\hline [ & \(24.4170]\) \\
\hline [ & \(24.0420]\) \\
\hline [ & \(23.4170]\) \\
\hline [ & \(23.4170]\) \\
\hline [ & \(23.1250]\) \\
\hline [ & \(23.6250]\) \\
\hline [ & \(23.8330]\) \\
\hline [ & \(24.1250]\) \\
\hline [ & \(24.1250]\) \\
\hline [ & \(24.0420]\) \\
\hline & \(23.8330]\) \\
\hline
\end{tabular}
\begin{tabular}{rr}
{\([\)} & \(\mathrm{NaN}]\) \\
{\([\)} & \(23.7920]\) \\
{\([\)} & \(23.7500]\) \\
{\([\)} & \(23.3330]\) \\
{\([\)} & \(23.2500]\) \\
{\([\)} & \(\mathrm{NaN}]\) \\
{\([\)} & \(22.4580]\) \\
{\([\)} & \(23.0830]\) \\
{\([\)} & \(22.9580]\) \\
{\([\)} & \(22.6250]\) \\
{\([\)} & \(22.5000]\) \\
{\([\)} & \(22.6250]\) \\
{\([\)} & \(22.6670]\) \\
{\([\)} & \(23.0830]\) \\
{\([\)} & \(23.0420]\) \\
{\([\)} & \(22.9580]\) \\
{\([\)} & \(23.3330]\) \\
{\([\)} & \(23.5000]\) \\
{\([\)} & \(23.2500]\) \\
{\([\)} & \(23.5830]\) \\
{\([\)} & \(23.4580]\) \\
{\([\)} & \(23.7500]\) \\
{\([\)} & \(23.8750]\) \\
{\([\)} & \(24.2080]\) \\
{\([\)} & \(24.5830]\) \\
{\([\)} & \(24.1250]\) \\
{\([\)} & \(24.2920]\) \\
{\([\)} & \(24.2920]\) \\
{\([\)} & \(24.2080]\) \\
{\([\)} & \(24.2500]\) \\
{\([\)} & \(24.6670]\) \\
{\([\)} & \(25]\) \\
{\([\)} & \(25.2080]\) \\
{\([\)} & \(25]\) \\
{\([\)} & \(25.5420]\) \\
{\([\)} & \(25.7920]\)
\end{tabular}
\begin{tabular}{rr}
{\([\)} & \(26.0420]\) \\
{\([\)} & \(\mathrm{NaN}]\) \\
{\([\)} & \(25.8330]\) \\
{\([\)} & \(25.3750]\) \\
{\([\)} & \(24.9170]\) \\
{\([\)} & \(25.1250]\) \\
{\([\)} & \(25.2080]\) \\
{\([\)} & \(25.3750]\) \\
{\([\)} & \(25.1670]\) \\
{\([\)} & \(25.2920]\) \\
{\([\)} & \(24.7500]\) \\
{\([\)} & \(24.4580]\) \\
{\([\)} & \(24.2500]\) \\
{\([\)} & \(24.5000]\) \\
{\([\)} & \(25.0420]\) \\
{\([\)} & \(25.3330]\) \\
{\([\)} & \(25.5830]\) \\
{\([\)} & \(25.7080]\) \\
{\([\)} & \(25.1250]\) \\
{\([\)} & \(24.4170]\) \\
{\([\)} & \(24.9170]\) \\
{\([\)} & \(25.3330]\) \\
{\([\)} & \(25.1670]\) \\
{\([\)} & 24.
\end{tabular}
\begin{tabular}{lr}
{\([\)} & \(24.6250]\) \\
{\([\)} & \(24.5830]\) \\
{\([\)} & \(24.6670]\) \\
{\([\)} & \(24.1250]\) \\
{\([\)} & \(23.7080]\) \\
{\([\)} & \(24.6250]\) \\
{\([\)} & \(25.2080]\) \\
{\([\)} & \(25.2500]\) \\
{\([\)} & \(25.5830]\) \\
{\([\)} & \(25.6250]\) \\
{\([\)} & \(26.0830]\) \\
{\([\)} & \(26.3750]\) \\
{\([\)} & \(26.0830]\) \\
{\([\)} & \(25.7920]\) \\
{\([\)} & \(25.8750]\) \\
{\([\)} & \(26.9170]\) \\
{\([\)} & \(27.2500]\) \\
{\([\)} & \(27]\) \\
{\([\)} & \(26.7920]\) \\
{\([\)} & \(27.3750]\) \\
{\([\)} & \(27.4170]\) \\
{\([\)} & \(26.8330]\) \\
{\([\)} & \(27.0830]\) \\
{\([\)} & \(27.4170]\) \\
{\([\)} & \(28.1670]\) \\
{\([\)} & \(27.8750]\) \\
{\([\)} & \(27.8750]\) \\
{\([\)} & \(27.6250]\) \\
{\([\)} & \(26.9580]\) \\
{\([\)} & \(27.7500]\) \\
{\([\)} & \(27.8330]\) \\
{\([\)} & \(27.3750]\) \\
{\([\)} & \(27.3750]\) \\
{\([\)} & \(27.7500]\) \\
{\([\)} & \(27.9170]\) \\
{\([\)} & \(27.950]\) \\
{\([\)} & \(27.9580]\)
\end{tabular}
\(27.6250]\)
\(27.2920]\)
\(26.9580]\)
\(26.8750]\)
26.6250]
26.9170]
27.1250]

27]
27.2920]
\(27.1250]\)
\(27.2080]\)
\(27.8330]\)
\(27.9580]\)
28]
\(27.5000]\)
27.7920]
27.4170]
\(26.8750]\)
\(27.5000]\)
\(27.3330]\)
\(27.1880]\)
\(26.6460]\)
26.7500 ]
26.1880]
\(25.6250]\)
25.7500]

NaN]
\(25.3330]\)
\(26.0210]\)
25.6880 ]
\(25.6250]\)
25.4790]
25.7920]
25.9790 ]
26.2920]
25.9170]
25.2920]
\begin{tabular}{|c|c|}
\hline [ & \(25.0630]\) \\
\hline [ & \(25.8750]\) \\
\hline [ & 25.9790 ] \\
\hline [ & \(26.4380]\) \\
\hline [ & \(26.3330]\) \\
\hline [ & \(26.5420]\) \\
\hline [ & \(26.7080]\) \\
\hline [ & \(26.9790]\) \\
\hline [ & \(26.9380]\) \\
\hline [ & \(26.8540]\) \\
\hline [ & \(26.9790]\) \\
\hline [ & \(26.6460]\) \\
\hline [ & \(26.9380]\) \\
\hline [ & \(26.3750]\) \\
\hline [ & \(26.3960]\) \\
\hline [ & \(26.5420]\) \\
\hline [ & \(26.1250]\) \\
\hline [ & \(26.3330]\) \\
\hline [ & 26.2920] \\
\hline [ & \(25.5420]\) \\
\hline [ & \(26.2080]\) \\
\hline [ & 26.5630 ] \\
\hline [ & \(26.7920]\) \\
\hline [ & \(26.2920]\) \\
\hline [ & \(26.0420]\) \\
\hline [ & \(26.1040]\) \\
\hline [ & \(25.8330]\) \\
\hline [ & \(26.1670]\) \\
\hline [ & \(25.9170]\) \\
\hline [ & 25.6040 ] \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(26.3330]\) \\
\hline [ & \(26.5210]\) \\
\hline [ & \(25.8960]\) \\
\hline [ & \(26.0630]\) \\
\hline [ & \(25.9580]\) \\
\hline [ & 26.1670] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(25.9170]\) \\
\hline [ & \(25.2500]\) \\
\hline [ & \(25.7080]\) \\
\hline [ & \(25.7290]\) \\
\hline [ & \(26.3540]\) \\
\hline [ & \(26.2920]\) \\
\hline [ & \(26.4380]\) \\
\hline [ & \(26.6460]\) \\
\hline [ & \(26.5210]\) \\
\hline [ & \(26.3330]\) \\
\hline [ & \(26.2290]\) \\
\hline [ & \(26.5420]\) \\
\hline [ & \(26.5000]\) \\
\hline [ & \(26.6670]\) \\
\hline [ & \(26.8750]\) \\
\hline [ & \(27.3330]\) \\
\hline [ & \(27.9380]\) \\
\hline [ & \(28.1250]\) \\
\hline [ & \(27.6670]\) \\
\hline [ & \(28.3960]\) \\
\hline [ & 28] \\
\hline [ & \(28.0630]\) \\
\hline [ & \(27.8960]\) \\
\hline [ & \(28.2080]\) \\
\hline [ & \(28.8130]\) \\
\hline [ & \(28.9580]\) \\
\hline [ & \(28.3130]\) \\
\hline [ & \(27.5420]\) \\
\hline [ & \(27.8540]\) \\
\hline [ & \(27.8960]\) \\
\hline [ & \(27.6880]\) \\
\hline [ & \(27.4380]\) \\
\hline [ & \(27.4580]\) \\
\hline [ & \(25.9170]\) \\
\hline [ & \(27.4380]\) \\
\hline [ & \(27.6460]\) \\
\hline [ & \(26.8750]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(27.4580]\) \\
\hline [ & \(28.5000]\) \\
\hline [ & \(28.7500]\) \\
\hline [ & \(28.3750]\) \\
\hline [ & \(28.7920]\) \\
\hline [ & \(28.7710]\) \\
\hline [ & \(28.4790]\) \\
\hline [ & \(28.6670]\) \\
\hline [ & \(27.6880]\) \\
\hline [ & \(28.2290]\) \\
\hline [ & \(28.8960]\) \\
\hline [ & \(29.6670]\) \\
\hline [ & \(29.7500]\) \\
\hline [ & \(30.4580]\) \\
\hline [ & \(30.2290]\) \\
\hline [ & \(31.5830]\) \\
\hline [ & \(31.2080]\) \\
\hline [ & \(31.2080]\) \\
\hline [ & \(31.5000]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(31.6460]\) \\
\hline [ & \(32.5420]\) \\
\hline [ & \(32.1880]\) \\
\hline [ & \(31.7290]\) \\
\hline [ & \(31.1880]\) \\
\hline [ & \(31.3330]\) \\
\hline [ & \(31.4580]\) \\
\hline [ & \(31.4380]\) \\
\hline [ & \(31.2710]\) \\
\hline [ & \(30.9380]\) \\
\hline [ & \(31.2080]\) \\
\hline [ & \(32.3750]\) \\
\hline [ & 32] \\
\hline [ & \(32.2710]\) \\
\hline [ & \(32.4380]\) \\
\hline [ & \(31.9380]\) \\
\hline [ & \(32.4580]\) \\
\hline
\end{tabular}
\begin{tabular}{rr}
{\([\)} & \(32.5000]\) \\
{\([\)} & \(31.6670]\) \\
{\([\)} & \(\mathrm{NaN}]\) \\
{\([\)} & \(31.6880]\) \\
{\([\)} & \(32.3330]\) \\
{\([\)} & \(33]\) \\
{\([\)} & \(33]\) \\
{\([\)} & \(\mathrm{NaN}]\) \\
{\([\)} & \(33.2080]\) \\
{\([\)} & \(32.9380]\) \\
{\([\)} & \(32.8130]\) \\
{\([\)} & \(32.8330]\) \\
{\([\)} & \(32.5630]\) \\
{\([\)} & \(32]\) \\
{\([\)} & \(31.4790]\) \\
{\([\)} & \(31.6670]\) \\
{\([\)} & \(32.1670]\) \\
{\([\)} & \(31.8960]\) \\
{\([\)} & \(32.0420]\) \\
{\([\)} & \(\mathrm{NaN}]\) \\
{\([\)} & \(33.1250]\) \\
{\([\)} & \(32.9580]\) \\
{\([\)} & \(32.1670]\) \\
{\([\)} & \(32.8750]\) \\
{\([\)} & \(32.4580]\) \\
{\([\)} & \(34.2500]\) \\
{\([\)} & \(35]\) \\
{\([\)} & \(35.4170]\) \\
{\([\)} & \(35.6250]\) \\
{\([\)} & \(36.2710]\) \\
{\([\)} & \(36]\) \\
{\([\)} & \(36.1040]\) \\
{\([\)} & \(36.1040]\) \\
{\([\)} & \(36.1880]\) \\
{\([\)} & \(35.8960]\) \\
{\([\)} & \(36.1670]\) \\
{\([\)} & \(36.9380]\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & 36.7080 ] \\
\hline [ & \(37.1460]\) \\
\hline [ & NaN ] \\
\hline [ & 37.6670 ] \\
\hline [ & \(38.2920]\) \\
\hline [ & \(38.0630]\) \\
\hline [ & \(38.1250]\) \\
\hline [ & \(38.0210]\) \\
\hline [ & \(37.3130]\) \\
\hline [ & \(37.0830]\) \\
\hline [ & 36.6670 ] \\
\hline [ & \(37.3130]\) \\
\hline [ & 36.4580 ] \\
\hline [ & 36.6670 ] \\
\hline [ & \(35.6250]\) \\
\hline [ & \(35.0630]\) \\
\hline [ & \(35.2080]\) \\
\hline [ & \(35.2710]\) \\
\hline [ & \(35.2920]\) \\
\hline [ & 34.9380 ] \\
\hline [ & \(35.3130]\) \\
\hline [ & 35.3330 ] \\
\hline [ & \(36.5420]\) \\
\hline [ & 35.8960 ] \\
\hline [ & \(35.7710]\) \\
\hline [ & 35.4380 ] \\
\hline [ & 35.6670 ] \\
\hline [ & \(34.3330]\) \\
\hline [ & 35.6460 ] \\
\hline [ & \(35.6250]\) \\
\hline [ & 35.8960 ] \\
\hline [ & 35.7500 ] \\
\hline [ & 35.1880 ] \\
\hline [ & 35.5830 ] \\
\hline [ & \(35.3330]\) \\
\hline [ & \(36.2920]\) \\
\hline [ & 36.9790 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(36.1250]\) \\
\hline [ & \(35.9580]\) \\
\hline [ & \(35.6670]\) \\
\hline [ & \(36.3540]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(36.7500]\) \\
\hline [ & \(37.7290]\) \\
\hline [ & \(37.8540]\) \\
\hline [ & \(37.3330]\) \\
\hline [ & \(37.7920]\) \\
\hline [ & \(38.4580]\) \\
\hline [ & \(38.9170]\) \\
\hline [ & \(40.6670]\) \\
\hline [ & \(41.2290]\) \\
\hline [ & \(40.7080]\) \\
\hline [ & 40.3130] \\
\hline [ & 41.1670 ] \\
\hline [ & 41.2920] \\
\hline [ & \(41.5210]\) \\
\hline [ & \(41.8960]\) \\
\hline [ & \(42.3750]\) \\
\hline [ & \(42.2290]\) \\
\hline [ & \(41.3960]\) \\
\hline [ & \(39.7290]\) \\
\hline [ & \(39.8330]\) \\
\hline [ & \(40.2920]\) \\
\hline [ & \(39.6040]\) \\
\hline [ & \(39.5000]\) \\
\hline [ & \(38.6880]\) \\
\hline [ & \(36.8750]\) \\
\hline [ & \(36.5630]\) \\
\hline [ & \(36.9790]\) \\
\hline [ & \(38.2080]\) \\
\hline [ & \(38.6460]\) \\
\hline [ & \(38.7710]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(37.2500]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(38.1040]\) \\
\hline [ & \(37.7920]\) \\
\hline [ & \(37.7500]\) \\
\hline [ & 36.9380 ] \\
\hline [ & \(36.7080]\) \\
\hline [ & \(36.5210]\) \\
\hline [ & \(36.5210]\) \\
\hline [ & \(38.2290]\) \\
\hline [ & \(38.6250]\) \\
\hline [ & \(38.8330]\) \\
\hline [ & \(39.4380]\) \\
\hline [ & \(38.7290]\) \\
\hline [ & \(38.3540]\) \\
\hline [ & 37.3960 ] \\
\hline [ & \(37.6250]\) \\
\hline [ & 38.1040 ] \\
\hline [ & \(37.3330]\) \\
\hline [ & 35.8540 ] \\
\hline [ & \(36.2500]\) \\
\hline [ & \(36.5830]\) \\
\hline [ & \(37.5630]\) \\
\hline [ & \(37.5000]\) \\
\hline [ & \(36.8330]\) \\
\hline [ & \(37.7290]\) \\
\hline [ & \(35.0210]\) \\
\hline [ & 35.4170 ] \\
\hline [ & 35.4790 ] \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(35.2710]\) \\
\hline [ & \(35.5210]\) \\
\hline [ & 36.1040 ] \\
\hline [ & 37] \\
\hline [ & \(38.1250]\) \\
\hline [ & \(39.3750]\) \\
\hline [ & \(39.8750]\) \\
\hline [ & \(39.3750]\) \\
\hline [ & \(39.3130]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(39.3750]\) \\
\hline [ & 38.5630 ] \\
\hline [ & \(37.7500]\) \\
\hline [ & 37.1880 ] \\
\hline [ & \(36.2500]\) \\
\hline [ & \(36.8130]\) \\
\hline [ & \(36.6250]\) \\
\hline [ & 35.3750 ] \\
\hline [ & \(35.3750]\) \\
\hline [ & \(35.3130]\) \\
\hline [ & 34.4380] \\
\hline [ & 34.6880 ] \\
\hline [ & \(32.8130]\) \\
\hline [ & 33.5630 ] \\
\hline [ & \(33.3130]\) \\
\hline [ & 33.3750 ] \\
\hline [ & \(32.8750]\) \\
\hline [ & \(32.1250]\) \\
\hline [ & \(32.4380]\) \\
\hline [ & \(31.8130]\) \\
\hline [ & \(31.7500]\) \\
\hline [ & \(32.1880]\) \\
\hline [ & \(33.5000]\) \\
\hline [ & \(33.1250]\) \\
\hline [ & \(33.6250]\) \\
\hline [ & \(33.2500]\) \\
\hline [ & \(33.3750]\) \\
\hline [ & \(34.0630]\) \\
\hline [ & 33] \\
\hline [ & \(31.7500]\) \\
\hline [ & \(30.6250]\) \\
\hline [ & \(27.4380]\) \\
\hline [ & \(30.3750]\) \\
\hline [ & \(29.8750]\) \\
\hline [ & \(28.3130]\) \\
\hline [ & \(28.2500]\) \\
\hline & \(\mathrm{NaN}]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & 29.1250] \\
\hline [ & 27.8130] \\
\hline [ & \(27.0630]\) \\
\hline [ & 25.8130] \\
\hline [ & 24.4380] \\
\hline [ & 25.5000] \\
\hline [ & \(25.7500]\) \\
\hline [ & 25.6880] \\
\hline [ & \(25.5630]\) \\
\hline [ & \(25.1250]\) \\
\hline [ & \(25.1880]\) \\
\hline [ & 26.8130] \\
\hline [ & \(25.8750]\) \\
\hline [ & \(25.6250]\) \\
\hline [ & \(26.2500]\) \\
\hline [ & \(26]\) \\
\hline [ & \(25.3750]\) \\
\hline [ & \(24.9380]\) \\
\hline [ & \(25.2500]\) \\
\hline [ & \(25.0630]\) \\
\hline [ & \(25.3750]\) \\
\hline [ & \(24.9380]\) \\
\hline [ & \(23.5000]\) \\
\hline [ & \(23.6880]\) \\
\hline [ & \(24.6250]\) \\
\hline [ & \(25.5000]\) \\
\hline [ & \(24.3750]\) \\
\hline [ & \(25.8750]\) \\
\hline [ & \(25.5000]\) \\
\hline [ & \(26.0630]\) \\
\hline [ & \(27.0630]\) \\
\hline [ & \(27.5630]\) \\
\hline [ & 28] \\
\hline [ & \(27.7500]\) \\
\hline [ & \(27.9380]\) \\
\hline [ & \(26.8130]\) \\
\hline [ & \(26.4380]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(26.6250]\) \\
\hline [ & \(26.9380]\) \\
\hline [ & \(28.8130]\) \\
\hline [ & \(29.5630]\) \\
\hline [ & \(28.6250]\) \\
\hline [ & \(30.1880]\) \\
\hline [ & \(30.2500]\) \\
\hline [ & \(29.5630]\) \\
\hline [ & \(28.8750]\) \\
\hline [ & \(28.8750]\) \\
\hline [ & \(28.5630]\) \\
\hline [ & \(29.1250]\) \\
\hline [ & \(29.0630]\) \\
\hline [ & \(29.0630]\) \\
\hline [ & 29] \\
\hline [ & \(28.3130]\) \\
\hline [ & \(28.5000]\) \\
\hline [ & \(29.5000]\) \\
\hline [ & \(29.8130]\) \\
\hline [ & 30.9380 ] \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(31.8750]\) \\
\hline [ & \(32.1880]\) \\
\hline [ & \(31.5000]\) \\
\hline [ & \(31.1880]\) \\
\hline [ & \(30.8750]\) \\
\hline [ & \(31.3750]\) \\
\hline [ & \(31.1250]\) \\
\hline [ & \(32]\) \\
\hline [ & \(33.5630]\) \\
\hline [ & \(32.4380]\) \\
\hline [ & 32] \\
\hline [ & \(30.6250]\) \\
\hline [ & \(30.7500]\) \\
\hline [ & \(30.7500]\) \\
\hline [ & \(30.8750]\) \\
\hline [ & \(30.8130]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(31]\) \\
\hline [ & \(29.9380]\) \\
\hline [ & \(30.9380]\) \\
\hline [ & \(30.5630]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & 30.4380 ] \\
\hline [ & \(30.4380]\) \\
\hline [ & \(29.8750]\) \\
\hline [ & \(30]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(29.5630]\) \\
\hline [ & \(30.5630]\) \\
\hline [ & \(30.9380]\) \\
\hline [ & \(31.7500]\) \\
\hline [ & \(32.5630]\) \\
\hline [ & \(35.2500]\) \\
\hline [ & \(38]\) \\
\hline [ & \(36.1250]\) \\
\hline [ & \(36.0630]\) \\
\hline [ & 36] \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(36.5000]\) \\
\hline [ & 36] \\
\hline [ & \(34.5630]\) \\
\hline [ & \(34.1250]\) \\
\hline [ & \(34.9380]\) \\
\hline [ & \(34.5630]\) \\
\hline [ & \(32.9380]\) \\
\hline [ & \(33.5000]\) \\
\hline [ & 33] \\
\hline [ & \(33.6880]\) \\
\hline [ & \(33.3750]\) \\
\hline [ & \(33.6250]\) \\
\hline [ & \(33.1250]\) \\
\hline [ & \(34.2500]\) \\
\hline [ & \(34]\) \\
\hline [ & \(33.5000]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(34.0630]\) \\
\hline [ & \(35.1880]\) \\
\hline [ & 35.4380 ] \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(35.0630]\) \\
\hline [ & \(34.8750]\) \\
\hline [ & \(34.5000]\) \\
\hline [ & \(34.1250]\) \\
\hline [ & \(34.8750]\) \\
\hline [ & \(34.8750]\) \\
\hline [ & \(35.0630]\) \\
\hline [ & \(34.5000]\) \\
\hline [ & \(35.1880]\) \\
\hline [ & \(34.8130]\) \\
\hline [ & \(34.1880]\) \\
\hline [ & \(34.5000]\) \\
\hline [ & \(35.1880]\) \\
\hline [ & \(35.8130]\) \\
\hline [ & \(36.4380]\) \\
\hline [ & \(34.6880]\) \\
\hline [ & 34.5000] \\
\hline [ & \(34.6880]\) \\
\hline [ & \(36.0630]\) \\
\hline [ & \(35.8750]\) \\
\hline [ & \(35.0630]\) \\
\hline [ & \(34.5000]\) \\
\hline [ & \(35.4380]\) \\
\hline [ & \(35.0630]\) \\
\hline [ & \(34.3750]\) \\
\hline [ & \(33.1880]\) \\
\hline [ & 33.1880 ] \\
\hline [ & \(33.3750]\) \\
\hline [ & \(32.9380]\) \\
\hline [ & \(33.0630]\) \\
\hline
\end{tabular}


\footnotetext{
References Kaufman, P. J., The New Commodity Trading Systems and Methods, New York: John Wiley \& Sons, 1987.
}

\section*{See Also tsmom}

\section*{Purpose Momentum between times}
```

Syntax mom = tsmom(data, nTimes)
momts = tsmom(tsobj, nTimes)

```

\section*{Arguments}
\begin{tabular}{ll} 
data & \begin{tabular}{l} 
Data series. Column-oriented vector or matrix. \\
nTimes
\end{tabular} \\
(Optional) Number of times. Default \(=12\).
\end{tabular}

\section*{Description \\ Momentum is the difference between two prices (data points) separated} by a number of times.
mom \(=\) tsmom(data, nTimes) calculates the momentum of a data series data. If nTimes is specified, tsmom uses that value instead of the default 12 .
momts \(=\) tsmom(tsobj, nTimes) calculates the momentum of all data series in the financial time series object tsobj. Each data series in tsobj is treated individually. momts is a financial time series object with similar dates and data series names as tsobj. If nTimes is specified, tsmom uses that value instead of the default 12 .

Note, to compute a quantity over \(n\) periods, you must specify \(n+1\) for nTimes. If you specify \(n\) Times \(=0\), the function returns your original time series.

\section*{Examples Calculate the Momentum of a Data Series}

This example shows how to calculate the momentum of a data series for Disney stock and plot the results.
```

load disney.mat
dis = rmfield(dis,'VOLUME') % remove VOLUME field
dis_Mom = tsmom(dis);

```
```

plot(dis_Mom)
title('Momentum for Disney')

```
```

dis =

```
    desc: Walt Disney Company (DIS)
    freq: Unknown (0)

Columns 1 through 4
\begin{tabular}{|c|c|c|c|}
\hline 'dates: (782)' & 'OPEN: (782) \({ }^{\prime}\) & 'HIGH: (782)' & 'LOW: (78 \\
\hline '29-Mar-1996' & \(21.1938]\) & \(21.6250]\) & [ 21.29 \\
\hline '01-Apr-1996' & [ 21.1120] & \(21.6250]\) & 21.41 \\
\hline '02-Apr-1996' & [ 21.3165] & \(21.8750]\) & 21.66 \\
\hline '03-Apr-1996' & \(21.4802]\) & \(21.8750]\) & 21.75 \\
\hline '04-Apr-1996' & [ 21.4393] & \(21.8750]\) & 21.50 \\
\hline '05-Apr-1996' & [ NaN ] & [ NaN] & [ N \\
\hline '08-Apr-1996' & [ 20.9483] & [ 21.6670] & [ 21.20 \\
\hline '09-Apr-1996' & [ 21.1529] & [ 21.5420] & 21.20 \\
\hline '10-Apr-1996' & [ 20.7387] & [ 21.1670] & [ 20.25 \\
\hline '11-Apr-1996' & [ 20.0829] & [ 20.5000] & 20.04 \\
\hline '12-Apr-1996' & [ 19.9189] & [ 20.5830] & 20.08 \\
\hline '15-Apr-1996' & [ 20.2878] & [ 20.7920] & [ 20.37 \\
\hline '16-Apr-1996' & [ 20.3698] & [ 20.9170] & 20.16 \\
\hline '17-Apr-1996' & [ 20.4927] & \(20.9170]\) & [ 20.70 \\
\hline '18-Apr-1996' & [ 20.4927] & [ 21.0420] & [ 20.79 \\
\hline '19-Apr-1996' & [ 20.6977] & [ 21.1670] & 20.91 \\
\hline '22-Apr-1996' & [ 20.8206] & [ 21.2080] & [ 20.70 \\
\hline '23-Apr-1996' & [ 20.5337] & [ 20.8750] & [ 20.41 \\
\hline '24-Apr-1996' & [ 20.2058] & [ 20.5420] & [ 19.91 \\
\hline '25-Apr-1996' & [ 19.9599] & \(20.5830]\) & [ 20.20 \\
\hline '26-Apr-1996' & [ 20.2468] & [ 20.9170] & 20.50 \\
\hline '29-Apr-1996' & 20.2468 ] & 20.7080] & [ 20.54 \\
\hline '30-Apr-1996' & [ 20.3698] & [ 20.7080] & [ 20.54 \\
\hline '01-May-1996' & \(20.2058]\) & [ 20.5830] & 20.16 \\
\hline '02-May-1996 ' & 19.8780] & [ 20.2500] & 19.87 \\
\hline
\end{tabular}

\begin{tabular}{rrrr}
\(19.9189]\) & {\([\)} & \(20.2500]\) & {\([\)} \\
\(19.4681]\) & {\([\)} & \(20.0830]\) & {\([\)} \\
\(19.6730]\) & {\([\)} & \(20]\) & {\([\)} \\
\(19.2632]\) & {\([\)} & \(19.7080]\) & {\([\)} \\
\(19.4271]\) & {\([\)} & \(19.8330]\) & {\([\)} \\
\(19.3452]\) & {\([\)} & \(19.8750]\) & {\([\)} \\
\(19.5911]\) & {\([\)} & \(20.2920]\) & {\([\)} \\
\(20.0829]\) & {\([\)} & \(20.4170]\) & {\([\)} \\
\(20.0419]\) & {\([\)} & \(20.4580]\) & {\([\)} \\
\(19.6730]\) & {\([\)} & \(20.3750]\) & {\([\)} \\
\(20.0009]\) & {\([\)} & \(20.5420]\) & {\([\)} \\
\(20.2058]\) & {\([\)} & \(20.6670]\) & {\([\)} \\
\(20.4518]\) & {\([\)} & \(20.8330]\) & {\([\)} \\
\(20.6157]\) & {\([\)} & \(20.9580]\) & {\([\)} \\
\(20.6157]\) & {\([\)} & \(21.0830]\) & {\([\)} \\
\(20.5337]\) & {\([\)} & \(20.9580]\) & {\([\)} \\
NaN] & {\([\)} & & {\([\)} \\
\(20.6157]\) & {\([\)} & \(20 N]\) & {\([\)} \\
\(20.3698]\) & {\([\)} & \(20.7080]\) & {\([\)} \\
\(19.9189]\) & {\([\)} & \(20.4580]\) & {\([\)} \\
\(20.1649]\) & {\([\)} & \(20.5830]\) & {\([\)} \\
\(19.8370]\) & {\([\)} & \(20.2500]\) & {\([\)} \\
\(19.8370]\) & {\([\)} & \(20.1670]\) & {\([\)} \\
\(19.6730]\) & {\([\)} & \(20.2080]\) & {\([\)} \\
\(20.4518]\) & {\([\)} & \(21.2500]\) & {\([\)} \\
\(20.2878]\) & {\([\)} & \(21.0830]\) & {\([\)} \\
\(20.7796]\) & {\([\)} & \(21.1250]\) & {\([\)} \\
\(20.4927]\) & {\([\)} & \(20.9580]\) & {\([\)} \\
\(20.4518]\) & {\([\)} & \(20.9580]\) & {\([\)} \\
\(20.4518]\) & {\([\)} & \(20.8330]\) & {\([\)} \\
\(20.2058]\) & {\([\)} & \(20.5830]\) & {\([\)} \\
\(20.2468]\) & {\([\)} & \(20.7080]\) & {\([\)} \\
\(20.2468]\) & {\([\)} & \(20.7080]\) & {\([\)} \\
\(20.0419]\) & {\([\)} & \(20.4580]\) & {\([\)} \\
\(20.1649]\) & {\([\)} & \(20.6250]\) & {\([\)} \\
\(20.3288]\) & {\([\)} & \(21.0420]\) & {\([\)} \\
\(20.6157]\) & {\([\)} & \(20.9580]\) & {\([\)} \\
{\([\)}
\end{tabular}
\(19.5000]\) \(19.5420]\) \(19.7500]\) \(19.2920]\) 19.2920] 19.4580] 19.8330] 20.2080] 20] 19.9580] \(20.3330]\) 20.3750 ] 20.3750 ] 20.7920 ] 20.6250] 20.7080] \(\mathrm{NaN}]\) 20.5420 ] 20.1670 ] \(20.0830]\) 20 . 2080] 20.0830 ] \(19.8750]\) \(19.8330]\) \(20.5830]\) 20.4170 ] 20.7920 ] 20.7080] \(20.7080]\) \(20.5830]\) \(20.2920]\) 20.4580] 20 . 2920] 20.2920] 20 . 2920] \(20.5000]\) \(20.7080]\)

'25-Jun-1996' '26-Jun-1996' '27-Jun-1996'
'28-Jun-1996'
'01-Jul-1996'
'02-Jul-1996'
'03-Jul-1996'
'04-Jul-1996'
'05-Jul-1996'
'08-Jul-1996'
'09-Jul-1996'
'10-Jul-1996'
'11-Jul-1996'
'12-Jul-1996'
'15-Jul-1996'
'16-Jul-1996'
'17-Jul-1996'
'18-Jul-1996'
'19-Jul-1996'
'22-Jul-1996'
'23-Jul-1996'
'24-Jul-1996'
'25-Jul-1996'
'26-Jul-1996'
'29-Jul-1996'
'30-Jul-1996'
'31-Jul-1996'
' 01-Aug-1996'
' 02-Aug-1996'
' 05-Aug-1996'
' 06-Aug-1996'
'07-Aug-1996'
'08-Aug-1996'
'09-Aug-1996'
'12-Aug-1996'
'14-Aug-1996'
\begin{tabular}{rr}
\(20.4927]\) & {\([\)} \\
\(20.5747]\) & {\([\)} \\
\(20.4927]\) & {\([\)} \\
\(20.8206]\) & {\([\)} \\
\(20.5337]\) & {\([\)} \\
\(20.4518]\) & {\([\)} \\
\(20.1239]\) & {\([\)} \\
\(N a N]\) & {\([\)} \\
\(19.7550]\) & {\([\)} \\
\(19.4271]\) & {\([\)} \\
\(19.3452]\) & {\([\)} \\
\(19.0537]\) & {\([\)} \\
\(19.0127]\) & {\([\)} \\
\(18.4378]\) & {\([\)} \\
\(19.0537]\) & {\([\)} \\
\(18.0682]\) & {\([\)} \\
\(18.8073]\) & {\([\)} \\
\(18.6020]\) & {\([\)} \\
\(18.8484]\) & {\([\)} \\
\(18.7252]\) & {\([\)} \\
\(18.4788]\) & {\([\)} \\
\(17.9039]\) & {\([\)} \\
\(17.9450]\) & {\([\)} \\
\(17.8629]\) & {\([\)} \\
\(17.6986]\) & {\([\)} \\
\(17.5754]\) & {\([\)} \\
\(18.0682]\) & {\([\)} \\
\(18.3967]\) & {\([\)} \\
\(19.3001]\) & {\([\)} \\
\(19.1769]\) & {\([\)} \\
\(19.2590]\) & {\([\)} \\
\(19.3822]\) & {\([\)} \\
\(19.1358]\) & {\([\)} \\
\(18.8895]\) & {\([\)} \\
\(18.8484]\) & {\([\)} \\
\(19.2180]\) & {\([\)} \\
\(19.0537]\) & {\([\)} \\
{\([\)}
\end{tabular}
\begin{tabular}{rr}
\(21.1250]\) & {\([\)} \\
\(20.9580]\) & {\([\)} \\
\(21.0830]\) & {\([\)} \\
\(21.2500]\) & {\([\)} \\
\(20.9170]\) & {\([\)} \\
\(20.7920]\) & {\([\)} \\
\(20.4580]\) & {\([\)} \\
NaN] & {\([\)} \\
\(20.1250]\) & {\([\)} \\
\(20.0420]\) & {\([\)} \\
\(19.7500]\) & {\([\)} \\
\(19.4170]\) & {\([\)} \\
\(19.3330]\) & {\([\)} \\
\(19.1670]\) & {\([\)} \\
\(19.3750]\) & {\([\)} \\
\(18.7920]\) & {\([\)} \\
\(19.1250]\) & {\([\)} \\
\(19.1250]\) & {\([\)} \\
\(19.2500]\) & {\([\)} \\
\(19.0420]\) & {\([\)} \\
\(18.7920]\) & {\([\)} \\
\(18.4580]\) & {\([\)} \\
\(18.3750]\) & {\([\)} \\
\(18.2500]\) & {\([\)} \\
\(18.2500]\) & {\([\)} \\
\(18.4580]\) & {\([\)} \\
\(18.6250]\) & {\([\)} \\
\(19.2080]\) & {\([\)} \\
\(19.5830]\) & {\([\)} \\
\(19.5830]\) & {\([\)} \\
\(19.7080]\) & {\([\)} \\
\(19.6670]\) & {\([\)} \\
\(19.4580]\) & {\([\)} \\
\(19.1670]\) & {\([\)} \\
\(19.5000]\) & {\([\)} \\
\(19.5000]\) & {\([\)} \\
\(19.3750]\) & {\([\)}
\end{tabular}
20.83
20.62
20.79
20.87
20.62
20.37
19.79
19.58
19.16
19.08
18.66
18.70
18.208
17.95
18.75
18.87
18.66
18.45
18.04
18.04
17.83
17.79
18.25
18.66
19.29
19.37
19.45
19.33
19.12
18.95
18.83
19.20
19.25

18-1857
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{ug-} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'21-Aug-19} \\
\hline \multicolumn{2}{|l|}{'22-Aug-1996'} \\
\hline & 23-Aug-1996 \\
\hline \multicolumn{2}{|l|}{26-Aug-1996'} \\
\hline & - Aug-1 \\
\hline \multicolumn{2}{|l|}{28-Aug-1996'} \\
\hline & - Aug-19 \\
\hline \multicolumn{2}{|l|}{30-Aug-1996'} \\
\hline & 2-Sep-199 \\
\hline \multicolumn{2}{|l|}{-Sep-1996'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'05-Sep-1996'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'09-Sep-1996'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'11-Sep-1996'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'13-Sep-1996'} \\
\hline & -Sep-1996 \\
\hline \multicolumn{2}{|l|}{17-Sep-1996'} \\
\hline & 18-Sep-1996 \\
\hline \multicolumn{2}{|l|}{'19-Sep-1996'} \\
\hline & 20-Sep-1996 \\
\hline \multicolumn{2}{|l|}{'23-Sep-1996'} \\
\hline & -Sep-19 \\
\hline \multicolumn{2}{|l|}{'25-Sep-1996'} \\
\hline \multicolumn{2}{|l|}{26-Sep-1996'} \\
\hline & Sep-1996 \\
\hline \multicolumn{2}{|l|}{'30-Sep-1996'} \\
\hline \multicolumn{2}{|l|}{'01-Oct-1996'} \\
\hline \multicolumn{2}{|l|}{'02-Oct-1996'} \\
\hline \multicolumn{2}{|l|}{'03-0ct-1996'} \\
\hline & 04-Oct-199 \\
\hline
\end{tabular}
'15-Aug-1996'
'16-Aug-1996'
'19-Aug-1996'
'20-Aug-1996'
'21-Aug-1996'
'22-Aug-1996'
'23-Aug-1996'
'26-Aug-1996'
'27-Aug-1996'
'28-Aug-1996'
'29-Aug-1996'
'30-Aug-1996'
'02-Sep-1996'
'03-Sep-1996'
'04-Sep-1996'
'05-Sep-1996'
'06-Sep-1996'
'09-Sep-1996'
'10-Sep-1996'
'11-Sep-1996'
'12-Sep-1996'
'13-Sep-1996'
'16-Sep-1996'
'17-Sep-1996'
'18-Sep-1996'
'19-Sep-1996'
'20-Sep-1996'
'23-Sep-1996'
'24-Sep-1996'
'25-Sep-1996'
'26-Sep-1996'
'27-Sep-1996'
'30-Sep-1996'
'01-0ct-1996'
'02-0ct-1996'
'04-0ct-1996'
\begin{tabular}{rlrl}
\(19.0537]\) & {\([\)} & \(19.6250]\) & {\([\)} \\
\(19.0537]\) & {\([\)} & \(19.3750]\) & {\([\)} \\
\(19.2590]\) & {\([\)} & \(19.5420]\) & {\([\)} \\
\(19.0537]\) & {\([\)} & \(19.3330]\) & {\([\)} \\
\(18.8073]\) & {\([\)} & \(19.3330]\) & {\([\)} \\
\(19.0127]\) & {\([\)} & \(19.5830]\) & {\([\)} \\
\(19.0127]\) & {\([\)} & \(19.5000]\) & {\([\)} \\
\(19.2180]\) & {\([\)} & \(19.7920]\) & {\([\)} \\
\(19.5465]\) & {\([\)} & \(19.9170]\) & {\([\)} \\
\(19.3822]\) & {\([\)} & \(19.6670]\) & {\([\)} \\
\(19.0948]\) & {\([\)} & \(19.4580]\) & {\([\)} \\
\(18.9305]\) & {\([\)} & \(19.2080]\) & {\([\)} \\
NaN] & {\([\)} & \(N a N]\) & {\([\)} \\
\(18.6020]\) & {\([\)} & \(19]\) & {\([\)} \\
\(18.6841]\) & {\([\)} & \(19]\) & {\([\)} \\
\(18.6020]\) & {\([\)} & \(18.9580]\) & {\([\)} \\
\(18.3967]\) & {\([\)} & \(19.0830]\) & {\([\)} \\
\(18.8484]\) & {\([\)} & \(19.4170]\) & {\([\)} \\
\(19.1358]\) & {\([\)} & \(19.4170]\) & {\([\)} \\
\(18.9716]\) & {\([\)} & \(19.5420]\) & {\([\)} \\
\(19.3822]\) & {\([\)} & \(20.2080]\) & {\([\)} \\
\(19.9982]\) & {\([\)} & \(20.3750]\) & {\([\)} \\
\(20.0803]\) & {\([\)} & \(20.5830]\) & {\([\)} \\
\(19.8339]\) & {\([\)} & \(20.5000]\) & {\([\)} \\
\(20.0803]\) & {\([\)} & \(20.5000]\) & {\([\)} \\
\(20.1214]\) & {\([\)} & \(21.1670]\) & {\([\)} \\
\(20.7373]\) & {\([\)} & \(21.1250]\) & {\([\)} \\
\(20.7373]\) & {\([\)} & \(21.2080]\) & {\([\)} \\
\(20.7784]\) & {\([\)} & \(21.2500]\) & {\([\)} \\
\(20.6552]\) & {\([\)} & \(21.0420]\) & {\([\)} \\
\(20.6142]\) & {\([\)} & \(21.2080]\) & {\([\)} \\
\(20.4088]\) & {\([\)} & \(21]\) & {\([\)} \\
\(20.6142]\) & {\([\)} & \(21.2920]\) & {\([\)} \\
\(20.8605]\) & {\([\)} & \(21.2080]\) & {\([\)} \\
\(20.5320]\) & {\([\)} & \(21.1670]\) & {\([\)} \\
\(20.8195]\) & {\([\)} & \(21.1250]\) & {\([\)} \\
\(20.9016]\) & {\([\)} & \(21.5830]\) & {\([\)}
\end{tabular}
\(19.1670]\) 19.2500] \(19.2500]\) 19.0830] 18.9580] \(19.2500]\) 19.1250] 19.4170] \(19.5830]\) \(19.3330]\) 18.9170 ] \(18.7920]\) \(\mathrm{NaN}]\) 18.7920] \(18.7920]\) \(18.5420]\) \(18.5420]\) 19.0420] 19.1250] 19.2080] 19.6250] \(20.1250]\) \(20.0830]\) 19.9580] 20.2500] 20.2920] 20.7920] 20.9580 ] \(20.8750]\) \(20.8750]\) \(20.6250]\) 20.5420 ] \(20.9170]\) 20.8330] 20 . 8330] 20.9170 ] \(21.1250]\)
\begin{tabular}{|c|c|c|c|c|}
\hline 07-Oct-1996' & [ & \(21.0248]\) & [ & \(21.4580]\) \\
\hline '08-0ct-1996' & [ & \(20.9427]\) & [ & \(21.4580]\) \\
\hline '09-0ct-1996' & [ & \(20.8144]\) & [ & \(21.2500]\) \\
\hline '10-0ct-1996' & [ & \(20.8967]\) & [ & \(21.2500]\) \\
\hline '11-0ct-1996' & [ & \(21.0612]\) & [ & \(21.4580]\) \\
\hline '14-0ct-1996' & [ & 21.1023] & [ & \(21.5420]\) \\
\hline '15-0ct-1996' & [ & \(21.1435]\) & [ & \(21.5420]\) \\
\hline '16-0ct-1996' & [ & 21.1023] & [ & \(21.8750]\) \\
\hline '17-0ct-1996' & [ & 21.6371 ] & [ & \(21.9580]\) \\
\hline '18-0ct-1996' & [ & \(21.3080]\) & [ & \(21.6670]\) \\
\hline '21-Oct-1996' & [ & \(21.3903]\) & [ & \(21.9580]\) \\
\hline '22-0ct-1996' & [ & \(21.5960]\) & [ & \(22.2500]\) \\
\hline '23-0ct-1996' & [ & \(21.8839]\) & [ & \(22.1670]\) \\
\hline '24-0ct-1996' & [ & \(21.7194]\) & [ & \(22.1250]\) \\
\hline '25-0ct-1996' & [ & \(21.4314]\) & [ & \(22.0830]\) \\
\hline '28-0ct-1996' & [ & 21.8016] & [ & \(22.3130]\) \\
\hline '29-0ct-1996' & [ & \(21.9250]\) & [ & \(22.2080]\) \\
\hline '30-0ct-1996' & [ & \(21.6782]\) & [ & \(22.0420]\) \\
\hline '31-0ct-1996' & [ & 21.6371] & [ & 22] \\
\hline '01-Nov-1996' & [ & \(21.8016]\) & [ & \(22.1250]\) \\
\hline '04-Nov-1996' & [ & \(21.5137]\) & [ & \(22.3330]\) \\
\hline '05-Nov-1996' & [ & 22.0073] & [ & \(22.5420]\) \\
\hline '06-Nov-1996' & [ & \(22.1307]\) & [ & \(22.6670]\) \\
\hline '07-Nov-1996' & [ & \(22.3364]\) & [ & 23] \\
\hline '08-Nov-1996' & [ & \(22.5832]\) & [ & \(22.9170]\) \\
\hline '11-Nov-1996' & [ & \(22.5421]\) & [ & \(23.4580]\) \\
\hline '12-Nov-1996' & [ & \(23.1180]\) & [ & \(23.8330]\) \\
\hline '13-Nov-1996' & [ & \(23.2414]\) & [ & \(23.7500]\) \\
\hline '14-Nov-1996' & [ & \(22.9534]\) & [ & \(23.6250]\) \\
\hline '15-Nov-1996' & [ & \(23.3236]\) & [ & \(24.3330]\) \\
\hline '18-Nov-1996' & [ & \(23.6939]\) & [ & \(24]\) \\
\hline '19-Nov-1996' & [ & \(23.4882]\) & [ & \(24]\) \\
\hline '20-Nov-1996' & [ & \(23.2414]\) & [ & \(23.9170]\) \\
\hline '21-Nov-1996' & [ & \(23.6939]\) & [ & \(24.1250]\) \\
\hline '22-Nov-1996' & [ & \(23.8584]\) & [ & \(24.4580]\) \\
\hline '25-Nov-1996' & [ & \(23.7350]\) & [ & \(24.5420]\) \\
\hline '26-Nov-1996' & [ & \(24.4754]\) & [ & \(25.7500]\) \\
\hline
\end{tabular}
21.29
21.16 20.91
21.20
21.37
21.16
21.33
21.58
21.50
21.62
21.87
21.91
21.66
21.70
22.04
21.91
21.87
21.70
21.70
21.79
22.25
22.20
22.54
22.62

22 . 83
23 . 29
23.37
23.20
23.58
23.66
23.54
23.54
23.79
23.83
24.79
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\text { ' } 27 \text { - Nov - } 1996
\]}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\({ }^{\prime}\)} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'03-Dec-1996'} \\
\hline \multicolumn{2}{|l|}{'04-Dec-1996'} \\
\hline & 5-Dec-1996 \\
\hline \multicolumn{2}{|l|}{06-Dec-1996'} \\
\hline & 9-Dec-19 \\
\hline \multicolumn{2}{|l|}{10-Dec-1996'} \\
\hline \multicolumn{2}{|l|}{'11-Dec-19} \\
\hline & \\
\hline \multicolumn{2}{|l|}{13-Dec-19} \\
\hline & \\
\hline \multicolumn{2}{|l|}{17-Dec-19} \\
\hline \multicolumn{2}{|l|}{18-Dec-1996'} \\
\hline & 19- \\
\hline \multicolumn{2}{|l|}{20-Dec-1996'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'24-Dec-1996'} \\
\hline & '25-Dec \\
\hline \multicolumn{2}{|l|}{'26-Dec-1996'} \\
\hline & -Dec-1996 \\
\hline \multicolumn{2}{|l|}{'30-Dec-1996'} \\
\hline & -D \\
\hline \multicolumn{2}{|l|}{'01-J} \\
\hline & -Jan-1997 \\
\hline \multicolumn{2}{|l|}{'03-Jan-1997'} \\
\hline \multicolumn{2}{|l|}{'06-Jan-1997'} \\
\hline \multicolumn{2}{|l|}{'07-Jan-1997'} \\
\hline \multicolumn{2}{|l|}{08-Jan-1997'} \\
\hline \multicolumn{2}{|l|}{'09-Jan-1997'} \\
\hline \multicolumn{2}{|l|}{10-Jan-1997'} \\
\hline \multicolumn{2}{|l|}{'13-Jan-1997} \\
\hline \multicolumn{2}{|l|}{14-Jan-1997'} \\
\hline & 997 \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{rlrl}
\(24.7634]\) \\
\(\mathrm{NaN}]\) & {\([\)} & \(25.1250]\) & {\([\)} \\
\(24.1875]\) & {\([\)} & \(\mathrm{NaN}]\) & {\([\)} \\
\(24.3520]\) & {\([\)} & \(24.6670]\) & {\([\)} \\
\(24.3109]\) & {\([\)} & \(24.8330]\) & {\([\)} \\
\(23.6527]\) & {\([\)} & \(24]\) & {\([\)} \\
\(23.6527]\) & {\([\)} & \(23.9580]\) & {\([\)} \\
\(23.1180]\) & {\([\)} & \(23.8750]\) & {\([\)} \\
\(23.5293]\) & {\([\)} & \(24.4580]\) & {\([\)} \\
\(23.9818]\) & {\([\)} & \(24.5830]\) & {\([\)} \\
\(23.7761]\) & {\([\)} & \(24.3330]\) & {\([\)} \\
\(23.7761]\) & {\([\)} & \(24.0830]\) & {\([\)} \\
\(22.8712]\) & {\([\)} & \(23.5830]\) & {\([\)} \\
\(23.1591]\) & {\([\)} & \(23.6670]\) & {\([\)} \\
\(22.8300]\) & {\([\)} & \(23.7500]\) & {\([\)} \\
\(23.3236]\) & {\([\)} & \(24]\) & {\([\)} \\
\(23.5705]\) & {\([\)} & \(24.1250]\) & {\([\)} \\
\(24.2697]\) & {\([\)} & \(24.5830]\) & {\([\)} \\
\(23.7350]\) & {\([\)} & \(24.1250]\) & {\([\)} \\
\(23.6939]\) & {\([\)} & \(24.0830]\) & {\([\)} \\
\(N a N]\) & {\([\)} & NaN] & {\([\)} \\
\(23.4882]\) & {\([\)} & \(23.9580]\) & {\([\)} \\
\(23.6116]\) & {\([\)} & \(24.0420]\) & {\([\)} \\
\(23.5293]\) & {\([\)} & \(23.8750]\) & {\([\)} \\
\(23.0357]\) & {\([\)} & \(23.5000]\) & {\([\)} \\
NaN] & {\([\)} & NaN] & {\([\)} \\
\(22.9534]\) & {\([\)} & \(23.2920]\) & {\([\)} \\
\(22.6243]\) & {\([\)} & \(23.1250]\) & {\([\)} \\
\(22.8712]\) & {\([\)} & \(23.2500]\) & {\([\)} \\
\(22.7066]\) & {\([\)} & \(23]\) & {\([\)} \\
\(22.7429]\) & {\([\)} & \(23.1250]\) & {\([\)} \\
\(22.3721]\) & {\([\)} & \(22.9170]\) & {\([\)} \\
\(21.9189]\) & {\([\)} & \(22.6250]\) & {\([\)} \\
\(22.5781]\) & {\([\)} & \(22.8330]\) & {\([\)} \\
\(22.5781]\) & {\([\)} & \(23.1670]\) & {\([\)} \\
\(22.7429]\) & {\([\)} & \(23.2500]\) & {\([\)} \\
\(22.8665]\) & {\([\)} & \(23.1250]\) & {\([\)}
\end{tabular}
\(24.5420]\)
NaN]
\(24.3330]\)
24 .3330]
23.9170]
23.4580]
23.6670]
23.1670]
23.6670]

24 . 2500]
\(23.7920]\)
23.3750]
\(23.1250]\)
22.9580]
23.0830]
\(23.6250]\)
23.7500]

24 ]
\(23.8750]\)
23.6670 ]
\(\mathrm{NaN}]\)
\(23.6250]\)
23.6670]
23.2920]
23.1250]
\(\mathrm{NaN}]\)
\(22.2500]\)
22.7080]
\(22.8750]\)
\(22.7500]\)
\(22.5000]\)
22.4170]
22.1250]
22.6250]
22.6670]
22.7920]
\(22.8330]\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '17-Jan-1997' & [ & 22.7429] & [ & \(23.3750]\) & [ & 22.958 \\
\hline '20-Jan-1997' & [ & \(23.3609]\) & [ & \(23.6250]\) & [ & 23.417 \\
\hline '21-Jan-1997' & [ & \(22.8665]\) & [ & \(23.2920]\) & [ & 23.083 \\
\hline '22-Jan-1997' & [ & 23.0313] & [ & \(23.6250]\) & [ & 23.083 \\
\hline '23-Jan-1997' & [ & \(23.2991]\) & [ & \(23.8750]\) & [ & 23.458 \\
\hline '24-Jan-1997' & [ & 23.23731 & [ & \(23.8330]\) & [ & 23.16 \\
\hline '27-Jan-1997' & [ & 23.5258] & [ & \(23.9580]\) & [ & 23.54 \\
\hline '28-Jan-1997' & [ & \(24.3910]\) & [ & \(24.9170]\) & [ & 24.12 \\
\hline '29-Jan-1997' & [ & 24.1026] & [ & \(24.5830]\) & [ & 24.25 \\
\hline '30-Jan-1997' & [ & \(24.3910]\) & [ & \(24.7080]\) & [ & 24.04 \\
\hline '31-Jan-1997' & [ & \(23.9790]\) & [ & \(24.4580]\) & [ & 24.208 \\
\hline '03-Feb-1997' & [ & \(23.9378]\) & [ & \(24.2920]\) & [ & \\
\hline '04-Feb-1997' & [ & 24.0202] & [ & \(24.3330]\) & [ & 24.16 \\
\hline '05-Feb-1997' & [ & \(24.1850]\) & [ & \(24.7500]\) & [ & 24.04 \\
\hline '06-Feb-1997' & [ & 24.1026] & [ & \(24.7080]\) & & 24.33 \\
\hline '07-Feb-1997' & [ & 24.5146] & [ & \(25.1250]\) & [ & 24.75 \\
\hline '10-Feb-1997' & [ & \(25.0090]\) & [ & 25.6670 ] & & 25.208 \\
\hline '11-Feb-1997' & [ & \(25.0090]\) & [ & \(25.3330]\) & [ & 24.87 \\
\hline '12-Feb-1997' & [ & 24.7618] & [ & \(25.6250]\) & [ & 25.04 ? \\
\hline '13-Feb-1997' & [ & \(25.3798]\) & [ & 26.2920] & [ & 25.500 \\
\hline '14-Feb-1997' & [ & \(25.7094]\) & [ & \(26.4170]\) & [ & 25.87 \\
\hline '17-Feb-1997' & [ & \(\mathrm{NaN}]\) & [ & NaN ] & [ & \\
\hline '18-Feb-1997' & [ & \(25.3798]\) & [ & \(26]\) & [ & 25.583 \\
\hline '19-Feb-1997' & [ & \(25.0502]\) & [ & \(25.7500]\) & [ & 25.33 \\
\hline '20-Feb-1997' & [ & \(25.0914]\) & [ & 25.5000 ] & [ & 24.83 \\
\hline '21-Feb-1997' & , & 24.7618] & [ & \(25.3750]\) & [ & \\
\hline '24-Feb-1997' & [ & \(24.6382]\) & [ & \(25.3750]\) & [ & 24.83 \\
\hline '25-Feb-1997' & [ & \(25.2974]\) & [ & \(25.6250]\) & [ & \\
\hline ' 26-Feb-1997' & [ & \(25.1738]\) & [ & 25.4580 ] & [ & 24.500 \\
\hline '27-Feb-1997' & [ & \(24.9266]\) & [ & \(25.3750]\) & [ & 25.16 \\
\hline ' 28-Feb-1997' & [ & \(24.5970]\) & [ & 25.0830 ] & [ & 24.75 \\
\hline '03-Mar-1997' & [ & \(23.9790]\) & [ & \(24.9580]\) & [ & 24.250 \\
\hline '04-Mar-1997' & [ & \(24.2262]\) & [ & \(24.5000]\) & [ & 24.16 \\
\hline '05-Mar-1997' & [ & 23.9378] & [ & \(24.7080]\) & [ & 23.91 \\
\hline '06-Mar-1997' & [ & \(24.3498]\) & [ & 25.1670 ] & [ & 24.458 \\
\hline '07-Mar-1997' & [ & \(24.9266]\) & [ & \(25.4580]\) & [ & 25.12 \\
\hline '10-Mar-1997' & [ & \(25.0090]\) & [ & 25.6670 ] & [ & 25.083 \\
\hline
\end{tabular}

18-1861
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'17-Mar-1997'} \\
\hline \multicolumn{2}{|l|}{18-Mar-1997} \\
\hline \multicolumn{2}{|l|}{'19-Mar-1997'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'21-Mar-1997'} \\
\hline \multicolumn{2}{|l|}{24-Mar-1997'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'27-Mar-1997'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'31-Mar-1997'} \\
\hline \multicolumn{2}{|l|}{01-Apr-1997'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{04-Apr-1997} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'08-Apr-1997'} \\
\hline \multicolumn{2}{|l|}{9-Apr-1997} \\
\hline \multicolumn{2}{|l|}{'10-Apr-1997'} \\
\hline \multicolumn{2}{|l|}{'11-Apr-1997'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'15-Apr-1997'} \\
\hline \multicolumn{2}{|l|}{-Apr} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'18-Apr-1997'} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{'22-Apr-1997} \\
\hline \multicolumn{2}{|l|}{- Apr -} \\
\hline \multicolumn{2}{|l|}{24-Apr-1997} \\
\hline \multicolumn{2}{|l|}{'} \\
\hline \multicolumn{2}{|l|}{-Apr-1997} \\
\hline \multicolumn{2}{|l|}{29-Apr-} \\
\hline \multicolumn{2}{|l|}{30-Apr-1997} \\
\hline
\end{tabular}
\begin{tabular}{rlll}
\(25.5446]\) & {\([\)} & \(25.8750]\) & {\([\)} \\
\(25.3386]\) & {\([\)} & \(25.6670]\) & {\([\)} \\
\(24.6794]\) & {\([\)} & \(25.0830]\) & {\([\)} \\
\(24.3086]\) & {\([\)} & \(25.0830]\) & {\([\)} \\
\(24.5970]\) & {\([\)} & \(25.4170]\) & {\([\)} \\
\(25.0090]\) & {\([\)} & \(25.5000]\) & {\([\)} \\
\(24.6382]\) & {\([\)} & \(25.0830]\) & {\([\)} \\
\(24.7206]\) & {\([\)} & \(25.0420]\) & {\([\)} \\
\(24.5970]\) & {\([\)} & \(24.8750]\) & {\([\)} \\
\(24.3910]\) & {\([\)} & \(25.0420]\) & {\([\)} \\
\(24.7618]\) & {\([\)} & \(25.1670]\) & {\([\)} \\
\(24.8030]\) & {\([\)} & \(25.2080]\) & {\([\)} \\
\(24.8442]\) & {\([\)} & \(25.2080]\) & {\([\)} \\
\(N a N]\) & {\([\)} & \(N a N]\) & {\([\)} \\
\(24.3910]\) & {\([\)} & \(24.6670]\) & {\([\)} \\
\(23.5670]\) & {\([\)} & \(24.5000]\) & {\([\)} \\
\(23.7318]\) & {\([\)} & \(24.6250]\) & {\([\)} \\
\(23.6906]\) & {\([\)} & \(24.2500]\) & {\([\)} \\
\(23.8142]\) & {\([\)} & \(24.5830]\) & {\([\)} \\
\(24.3910]\) & {\([\)} & \(24.7080]\) & {\([\)} \\
\(24.3086]\) & {\([\)} & \(24.6250]\) & {\([\)} \\
\(24.3934]\) & {\([\)} & \(24.7080]\) & {\([\)} \\
\(24.4759]\) & {\([\)} & \(25.0420]\) & {\([\)} \\
\(23.9806]\) & {\([\)} & \(24.8750]\) & {\([\)} \\
\(23.7742]\) & {\([\)} & \(24.0420]\) & {\([\)} \\
\(23.7742]\) & {\([\)} & \(24.7080]\) & {\([\)} \\
\(24.3108]\) & {\([\)} & \(25.2080]\) & {\([\)} \\
\(24.9712]\) & {\([\)} & \(25.4580]\) & {\([\)} \\
\(25.0125]\) & {\([\)} & \(25.6670]\) & {\([\)} \\
\(25.3427]\) & {\([\)} & \(25.9580]\) & {\([\)} \\
\(25.3840]\) & {\([\)} & \(26.2920]\) & {\([\)} \\
\(25.9205]\) & {\([\)} & \(26.5420]\) & {\([\)} \\
\(26.2920]\) & {\([\)} & \(26.6250]\) & {\([\)} \\
\(25.6729]\) & {\([\)} & \(26.0830]\) & {\([\)} \\
\(25.5078]\) & {\([\)} & \(26.0830]\) & {\([\)} \\
\(25.9205]\) & {\([\)} & \(26.9580]\) & {\([\)} \\
\(26.4158]\) & {\([\)} & \(27.5000]\) & {\([\)}
\end{tabular}
\(25.5830]\) \(25.0420]\) \(24.4170]\) 24.5420] 24.7080] \(24.9580]\) 24.6670] 24.7080] 24.5830] \(24.6250]\) \(24.8330]\) 24.8750] \(24.4170]\)

NaN ] 24.0830] 23.6670] 23.7080] 23.7500] 23.9580] 24 . 4580] \(24.3330]\) 24.4580] 24.6250] 24.1250] 23.4580] 23.7500] 24.4580] 25.0830] \(25.1670]\) \(25.4170]\) \(25.4580]\) \(26.0830]\) \(25.9170]\) 25.7080] \(25.7500]\) \(26.0830]\) \(26.6670]\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '01-May-1997' & [ & \(26.9111]\) & [ & \(27.3330]\) & [ & 26.75 \\
\hline '02-May-1997' & [ & 26.7873 ] & [ & 27.1670 ] & [ & 26.79 \\
\hline '05-May-1997' & [ & \(26.3745]\) & & \(27.4170]\) & & 26.58 \\
\hline '06-May-1997' & [ & \(26.9937]\) & [ & \(27.4580]\) & [ & 27.12 \\
\hline '07-May-1997' & [ & 27.1588 ] & & \(27.4170]\) & & 26.75 \\
\hline '08-May-1997' & [ & \(26.4158]\) & & \(27.2920]\) & & 26.58 \\
\hline '09-May-1997' & [ & \(26.8698]\) & [ & \(27.4170]\) & & \\
\hline '12-May-1997' & [ & \(27.2000]\) & & \(28.3750]\) & & 27.45 \\
\hline '13-May-1997' & [ & \(27.8192]\) & [ & \(28.1250]\) & & 27.62 \\
\hline '14-May-1997' & [ & \(27.8192]\) & [ & \(28.2080]\) & [ & 27.79 \\
\hline '15-May-1997' & [ & \(27.4890]\) & & \(27.7920]\) & & 27.54 \\
\hline '16-May-1997' & [ & \(27.2000]\) & [ & \(27.5420]\) & [ & 26.95 \\
\hline '19-May-1997' & [ & 26.7460] & & \(27.7920]\) & & 26.91 \\
\hline '20-May-1997' & [ & \(27.3239]\) & [ & \(27.8750]\) & [ & 27.20 \\
\hline '21-May-1997' & [ & \(27.5302]\) & & \(27.9170]\) & [ & 27.29 \\
\hline '22-May-1997' & [ & 27.2413 ] & & \(27.5830]\) & & 27.25 \\
\hline '23-May-1997' & [ & \(27.3239]\) & [ & \(27.8750]\) & & 27.45 \\
\hline '26-May-1997' & [ & \(\mathrm{NaN}]\) & & NaN] & & \\
\hline '27-May-1997' & [ & \(27.2826]\) & [ & \(27.9580]\) & [ & 27.37 \\
\hline '28-May-1997' & [ & \(27.5715]\) & & \(28.0420]\) & & 27.58 \\
\hline '29-May-1997' & [ & \(27.7366]\) & [ & 28] & & 27.45 \\
\hline '30-May-1997' & [ & 26.7873] & [ & \(27.4170]\) & & 26.70 \\
\hline '02-Jun-1997' & [ & \(27.2000]\) & & \(27.4580]\) & & 26.91 \\
\hline '03-Jun-1997' & & \(26.6635]\) & & \(27]\) & & 26.79 \\
\hline '04-Jun-1997' & [ & \(26.5396]\) & [ & \(26.8750]\) & & 26.62 \\
\hline '05-Jun-1997' & [ & \(26.4984]\) & [ & \(27.2080]\) & & 26.62 \\
\hline '06-Jun-1997' & & 26.7873 ] & & 27.1670 ] & & 26.70 \\
\hline '09-Jun-1997' & [ & \(26.8698]\) & [ & \(27.3330]\) & & 26.95 \\
\hline '10-Jun-1997' & & \(26.8286]\) & & \(27.3330]\) & & \\
\hline '11-Jun-1997' & [ & \(27.0349]\) & [ & \(27.2920]\) & & 26.95 \\
\hline '12-Jun-1997' & [ & \(26.9937]\) & [ & \(27.2920]\) & [ & 27.08 \\
\hline '13-Jun-1997' & & \(27.0762]\) & [ & \(28]\) & & 27.29 \\
\hline '16-Jun-1997' & [ & \(27.5715]\) & [ & \(27.9580]\) & & 27.66 \\
\hline '17-Jun-1997' & [ & \(27.7366]\) & [ & \(28.1250]\) & & 27.58 \\
\hline '18-Jun-1997' & [ & 27.4064 ] & [ & \(27.7920]\) & & 27.50 \\
\hline '19-Jun-1997' & [ & 27.2413 ] & [ & \(27.8750]\) & & 27.12 \\
\hline '20-Jun-1997' & [ & 27.4477] & [ & \(27.7920]\) & [ & 27.33 \\
\hline
\end{tabular}

18-1863
> '23-Jun-1997' '24-Jun-1997' '25-Jun-1997' '26-Jun-1997' '27-Jun-1997' '30-Jun-1997' '01-Jul-1997' '02-Jul-1997' '03-Jul-1997' '04-Jul-1997' '07-Jul-1997' '08-Jul-1997' '09-Jul-1997' '10-Jul-1997' '11-Jul-1997' '14-Jul-1997' '15-Jul-1997' '16-Jul-1997' '17-Jul-1997' '18-Jul-1997' '21-Jul-1997' '22-Jul-1997' '23-Jul-1997' '24-Jul-1997' '25-Jul-1997' '28-Jul-1997' '29-Jul-1997' '30-Jul-1997' '31-Jul-1997' ' 01-Aug-1997' ' 04-Aug-1997' ' 05-Aug-1997' '06-Aug-1997' ' 07-Aug-1997' '08-Aug-1997' '11-Aug-1997'
> '12-Aug-1997'
\begin{tabular}{rr}
\(27.1588]\) & {\([\)} \\
\(26.7460]\) & {\([\)} \\
\(27.1588]\) & {\([\)} \\
\(27.0762]\) & {\([\)} \\
\(27.0556]\) & {\([\)} \\
\(26.4158]\) & {\([\)} \\
\(26.3333]\) & {\([\)} \\
\(25.6110]\) & {\([\)} \\
\(25.7141]\) & {\([\)} \\
\(N a N]\) & {\([\)} \\
\(25.7348]\) & {\([\)} \\
\(25.4252]\) & {\([\)} \\
\(25.9438]\) & {\([\)} \\
\(25.4683]\) & {\([\)} \\
\(25.3236]\) & {\([\)} \\
\(25.2616]\) & {\([\)} \\
\(25.6337]\) & {\([\)} \\
\(25.8404]\) & {\([\)} \\
\(26.0678]\) & {\([\)} \\
\(25.4683]\) & {\([\)} \\
\(25.0962]\) & {\([\)} \\
\(25.2616]\) & {\([\)} \\
\(26.1918]\) & {\([\)} \\
\(25.7784]\) & {\([\)} \\
\(26.2125]\) & {\([\)} \\
\(26.1298]\) & {\([\)} \\
\(26.3365]\) & {\([\)} \\
\(26.6880]\) & {\([\)} \\
\(26.9154]\) & {\([\)} \\
\(26.7293]\) & {\([\)} \\
\(26.5846]\) & {\([\)} \\
\(26.7913]\) & {\([\)} \\
\(26.3985]\) & {\([\)} \\
\(26.7913]\) & {\([\)} \\
\(25.9644]\) & {\([\)} \\
\(26.1918]\) & {\([\)} \\
\(26.3365]\) & {\([\)} \\
{\([\)}
\end{tabular}

\(26.8330]\) \(26.8330]\) \(26.9580]\) 27 ] 26.6250] 26.2500] \(25.9580]\) \(25.4790]\) 25.7080] \(\mathrm{NaN}]\) 25.0210] \(25.6250]\) 25.6040] \(25.5420]\) 25 .2500] \(25.4170]\) \(25.5210]\) 26.0210] \(25.4580]\) \(25.0830]\) \(24.6040]\) \(25.0830]\) \(25.9170]\) \(25.5000]\) 26.0830] \(26.3330]\) \(26.5000]\) \(26.8130]\) \(26.9380]\) \(26.7500]\) \(26.6040]\) 26.6040] \(26.5420]\) \(26.3130]\) 26.0420] \(25.8750]\) \(26.0830]\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '13-Aug-1997' & [ & 26.1918] & [ & \(26.6460]\) & [ & 25.79 \\
\hline '14-Aug-1997' & [ & \(26.2125]\) & [ & \(26.6880]\) & [ & 25.87 \\
\hline '15-Aug-1997' & [ & \(25.6750]\) & & \(26.2080]\) & & 25.50 \\
\hline '18-Aug-1997' & [ & \(25.5923]\) & & \(26.2710]\) & & 25.33 \\
\hline '19-Aug-1997' & [ & \(26.0264]\) & & \(26.5630]\) & & \\
\hline '20-Aug-1997' & [ & \(26.3572]\) & & \(26.8750]\) & & 26.41 \\
\hline '21-Aug-1997' & [ & \(26.5433]\) & [ & \(26.8130]\) & [ & 26.14 \\
\hline '22-Aug-1997' & [ & \(25.5303]\) & & \(26.1040]\) & & 25.72 \\
\hline '25-Aug-1997' & [ & \(25.9024]\) & [ & \(26.3540]\) & & 25.95 \\
\hline '26-Aug-1997' & [ & \(25.9231]\) & [ & \(26.2290]\) & [ & 25.83 \\
\hline ' 27-Aug-1997' & [ & \(25.6750]\) & & \(26.3330]\) & & 25.62 \\
\hline '28-Aug-1997' & [ & \(25.9644]\) & [ & \(26.2920]\) & [ & 25.70 \\
\hline '29-Aug-1997' & [ & \(25.5096]\) & & \(26.0420]\) & & 25.60 \\
\hline '01-Sep-1997' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) & & \\
\hline '02-Sep-1997' & [ & 25.4683 ] & [ & \(26.3330]\) & & 25.66 \\
\hline '03-Sep-1997' & [ & 26.1298] & & \(26.7080]\) & & 26.33 \\
\hline '04-Sep-1997' & [ & \(26.2745]\) & [ & \(26.5000]\) & & 25.77 \\
\hline '05-Sep-1997' & [ & \(25.9231]\) & & \(26.2080]\) & & 25.83 \\
\hline '08-Sep-1997' & [ & 26.1918] & [ & \(26.3960]\) & & 25.95 \\
\hline '09-Sep-1997' & [ & \(25.7577]\) & & \(26.3750]\) & & 25.81 \\
\hline '10-Sep-1997' & [ & \(25.8817]\) & & \(26.1460]\) & & 25.89 \\
\hline '11-Sep-1997' & [ & \(25.3856]\) & [ & \(25.6250]\) & & 24.81 \\
\hline '12-Sep-1997' & [ & \(25.1996]\) & [ & \(25.7710]\) & & 25.29 \\
\hline '15-Sep-1997' & & \(25.5717]\) & & \(25.8540]\) & & 25.58 \\
\hline '16-Sep-1997' & [ & \(25.6130]\) & [ & \(26.4580]\) & & 25.79 \\
\hline '17-Sep-1997' & [ & \(26.5433]\) & [ & \(26.7500]\) & & 26.16 \\
\hline '18-Sep-1997' & & 26.0471] & & \(26.6040]\) & & 25.91 \\
\hline '19-Sep-1997' & [ & \(26.3779]\) & [ & \(26.6460]\) & & 26.41 \\
\hline '22-Sep-1997' & [ & \(26.4606]\) & & \(26.7290]\) & & 26.50 \\
\hline '23-Sep-1997' & [ & \(26.3572]\) & [ & \(26.5630]\) & & 26.20 \\
\hline '24-Sep-1997' & [ & 26.1505] & [ & \(26.6460]\) & & 26.22 \\
\hline '25-Sep-1997' & [ & 26.0471 ] & & \(26.5420]\) & & 26.08 \\
\hline '26-Sep-1997' & [ & \(26.2538]\) & [ & \(26.7290]\) & & 26.39 \\
\hline '29-Sep-1997' & [ & \(26.2125]\) & [ & \(27]\) & & 26.37 \\
\hline '30-Sep-1997' & [ & \(26.3779]\) & [ & \(27.1460]\) & & 26.58 \\
\hline '01-0ct-1997' & [ & \(26.7913]\) & [ & \(27.4580]\) & & 26.93 \\
\hline '02-0ct-1997' & [ & 27.2668 ] & [ & \(27.9790]\) & [ & 27.41 \\
\hline
\end{tabular}

18-1865
\begin{tabular}{|c|c|c|c|c|}
\hline '03-Oct-1997' & [ & \(28.3831]\) & [ & \(28.6040]\) \\
\hline '06-Oct-1997' & [ & \(27.9076]\) & [ & \(28.1670]\) \\
\hline '07-0ct-1997' & [ & \(27.6389]\) & [ & \(28.4790]\) \\
\hline '08-Oct-1997' & [ & \(28.0730]\) & [ & \(28.3130]\) \\
\hline '09-0ct-1997' & [ & \(27.7009]\) & [ & \(28.1460]\) \\
\hline '10-Oct-1997' & [ & \(27.7009]\) & [ & \(28.0210]\) \\
\hline '13-Oct-1997' & [ & \(27.8456]\) & [ & \(28.2920]\) \\
\hline '14-Oct-1997' & [ & \(28.1970]\) & [ & \(28.9580]\) \\
\hline '15-Oct-1997' & [ & \(28.5714]\) & [ & \(29.2710]\) \\
\hline '16-Oct-1997' & [ & 28.6957] & [ & \(28.9170]\) \\
\hline '17-Oct-1997' & [ & 27.9503] & [ & \(28.1670]\) \\
\hline '20-Oct-1997' & [ & \(27.5569]\) & [ & \(27.8750]\) \\
\hline '21-Oct-1997' & [ & \(27.7640]\) & [ & \(28.0420]\) \\
\hline '22-Oct-1997' & [ & \(27.7226]\) & [ & \(28.1250]\) \\
\hline '23-Oct-1997' & [ & 27.2878] & [ & \(27.6460]\) \\
\hline '24-Oct-1997' & [ & 27.8882] & [ & \(28.2920]\) \\
\hline '27-Oct-1997' & [ & 27.1222] & [ & \(27.6040]\) \\
\hline '28-Oct-1997' & [ & 24.8447] & [ & \(27.5830]\) \\
\hline '29-0ct-1997' & [ & 27.2671] & [ & \(27.9170]\) \\
\hline '30-Oct-1997' & [ & \(27.0807]\) & [ & \(27.7080]\) \\
\hline '31-Oct-1997' & [ & \(27.1014]\) & [ & \(27.7500]\) \\
\hline '03-Nov-1997' & [ & \(27.6190]\) & [ & \(28.5000]\) \\
\hline '04-Nov-1997' & [ & 28.3851] & [ & \(28.7710]\) \\
\hline '05-Nov-1997' & [ & 28.3023] & [ & \(28.7710]\) \\
\hline '06-Nov-1997' & [ & 28.1573] & [ & \(28.9170]\) \\
\hline '07-Nov-1997' & [ & \(28.1573]\) & [ & \(29.1670]\) \\
\hline '10-Nov-1997' & [ & \(28.8820]\) & [ & \(29.0830]\) \\
\hline '11-Nov-1997' & [ & \(28.4679]\) & [ & \(28.8960]\) \\
\hline '12-Nov-1997' & [ & \(28.3230]\) & [ & \(28.7710]\) \\
\hline '13-Nov-1997' & [ & 27.7640 ] & [ & \(28.4380]\) \\
\hline '14-Nov-1997' & [ & 28.2609] & [ & \(29.1670]\) \\
\hline '17-Nov-1997' & [ & 29.1511] & [ & \(29.9170]\) \\
\hline '18-Nov-1997' & [ & \(29.2340]\) & [ & \(30.1040]\) \\
\hline '19-Nov-1997' & [ & 29.7101] & [ & \(30.4580]\) \\
\hline '20-Nov-1997' & [ & \(30.2277]\) & [ & \(30.5420]\) \\
\hline '21-Nov-1997' & [ & \(30.1863]\) & [ & \(31.5830]\) \\
\hline '24-Nov-1997' & [ & \(31.2008]\) & [ & \(31.3960]\) \\
\hline
\end{tabular}

28]
\(27.5830]\) \(27.7500]\) 27.7080] \(27.7710]\) \(27.7500]\) \(28.0420]\) 28.2920] 28.5830] \(27.8540]\) \(27.1040]\) \(27.5000]\) 27 . 6880] 27.6670] \(27.2080]\) \(27.3750]\) \(25.9170]\) 25] \(27.0830]\) \(26.8330]\) 27 . 2290] \(27.7290]\) \(28.3750]\) \(28.3130]\) 28.1670] 28.1670] 28.4580] \(28.5000]\) \(27.6880]\) \(27.9380]\) \(28.3750]\) 29.2920] 29.2500] 29.7920] \(30.1670]\) \(30.3330]\) \(30.8540]\)
\begin{tabular}{|c|}
\hline '25-Nov-1997' \\
\hline '26-Nov-1997' \\
\hline ' 27 -Nov-1997' \\
\hline '28-Nov-1997' \\
\hline '01-Dec-1997' \\
\hline '02-Dec-1997' \\
\hline '03-Dec-1997' \\
\hline '04-Dec-1997' \\
\hline '05-Dec-1997' \\
\hline '08-Dec-1997' \\
\hline '09-Dec-1997' \\
\hline '10-Dec-1997' \\
\hline '11-Dec-1997' \\
\hline '12-Dec-1997' \\
\hline '15-Dec-1997' \\
\hline '16-Dec-1997' \\
\hline '17-Dec-1997' \\
\hline '18-Dec-1997' \\
\hline '19-Dec-1997' \\
\hline '22-Dec-1997' \\
\hline '23-Dec-1997' \\
\hline '24-Dec-1997' \\
\hline '25-Dec-1997' \\
\hline '26-Dec-1997' \\
\hline '29-Dec-1997' \\
\hline '30-Dec-1997' \\
\hline '31-Dec-1997' \\
\hline '01-Jan-1998' \\
\hline '02-Jan-1998' \\
\hline '05-Jan-1998' \\
\hline '06-Jan-1998' \\
\hline '07-Jan-1998' \\
\hline '08-Jan-1998' \\
\hline '09-Jan-1998' \\
\hline '12-Jan-1998' \\
\hline '13-Jan-1998' \\
\hline '14-Jan-1998' \\
\hline
\end{tabular}
\begin{tabular}{rrrr}
\(30.9731]\) & {\([\)} & \(31.4170]\) & {\([\)} \\
\(31.1387]\) & {\([\)} & \(31.7920]\) & {\([\)} \\
\(31.3872]\) & {\([\)} & \(\mathrm{NaN}]\) & {\([\)} \\
\(31.2629]\) & {\([\)} & \(31.7710]\) & {\([\)} \\
\(32.2774]\) & {\([\)} & \(32.5830]\) & {\([\)} \\
\(31.9048]\) & {\([\)} & \(32.2500]\) & {\([\)} \\
\(30.9938]\) & {\([\)} & \(31.3130]\) & {\([\)} \\
\(30.8075]\) & {\([\)} & \(31.4790]\) & {\([\)} \\
\(31.3665]\) & {\([\)} & \(31.5630]\) & {\([\)} \\
\(31.2836]\) & {\([\)} & \(31.7710]\) & {\([\)} \\
\(31.0352]\) & {\([\)} & \(31.3330]\) & {\([\)} \\
\(30.8075]\) & {\([\)} & \(31.0830]\) & {\([\)} \\
\(30.8489]\) & {\([\)} & \(31.5210]\) & {\([\)} \\
\(31.2836]\) & {\([\)} & \(32.4380]\) & {\([\)} \\
\(32.1739]\) & {\([\)} & \(32.3750]\) & {\([\)} \\
\(31.9669]\) & {\([\)} & \(32.3130]\) & {\([\)} \\
\(32.1325]\) & {\([\)} & \(32.6040]\) & {\([\)} \\
\(31.9048]\) & {\([\)} & \(32.1250]\) & {\([\)} \\
\(31.7391]\) & {\([\)} & \(32.6460]\) & {\([\)} \\
\(32.3602]\) & {\([\)} & \(32.8330]\) & {\([\)} \\
\(32.2981]\) & {\([\)} & \(32.5630]\) & {\([\)} \\
\(31.6563]\) & {\([\)} & \(32.0630]\) & {\([\)} \\
\(31.7598]\) & {\([\)} & \(32.4790]\) & {\([\)} \\
\(32.5052]\) & {\([\)} & \(33.4170]\) & {\([\)} \\
\(32.8364]\) & {\([\)} & \(33.4170]\) & {\([\)} \\
\(33.0642]\) & {\([\)} & \(33.2710]\) & {\([\)} \\
\(33.2919]\) & {\([\)} & \(33.5830]\) & {\([\)} \\
\(32.6294]\) & {\([\)} & \(32.8960]\) & {\([\)} \\
\(32.5281]\) & {\([\)} & \(32.8330]\) & {\([\)} \\
\(32.6110]\) & {\([\)} & \(32.8130]\) & {\([\)} \\
\(32.4037]\) & {\([\)} & \(32.5830]\) & {\([\)} \\
\(31.2013]\) & {\([\)} & \(32.0420]\) & {\([\)} \\
\(31.3049]\) & {\([\)} & \(31.8330]\) & {\([\)} \\
\(31.5330]\) & {\([\)} & \(32.3750]\) & {\([\)} \\
{\([\)} & {\([\)}
\end{tabular}
30.95
31.31
31.54
31.37
31.89
31.39

31 . 08
31.31
31.14
31.08
30.68
30.95
31.39
31.89
32.10
32.08
31.08
31.91
32.47
31.60
31.62
31.83
32.66
32.89
32.87
32.56
32.66
32.45
32.31
31.18
31.25
31.39

18-1867
\begin{tabular}{|c|}
\hline '15-Jan-1998' \\
\hline '16-Jan-1998' \\
\hline '19-Jan-1998' \\
\hline '20-Jan-1998' \\
\hline '21-Jan-1998' \\
\hline '22-Jan-1998' \\
\hline '23-Jan-1998' \\
\hline '26-Jan-1998' \\
\hline '27-Jan-1998' \\
\hline '28-Jan-1998' \\
\hline '29-Jan-1998' \\
\hline '30-Jan-1998' \\
\hline '02-Feb-1998' \\
\hline '03-Feb-1998' \\
\hline ' 04-Feb-1998' \\
\hline '05-Feb-1998' \\
\hline '06-Feb-1998' \\
\hline ' 09-Feb-1998' \\
\hline '10-Feb-1998' \\
\hline '11-Feb-1998' \\
\hline '12-Feb-1998' \\
\hline '13-Feb-1998' \\
\hline '16-Feb-1998' \\
\hline '17-Feb-1998' \\
\hline '18-Feb-1998' \\
\hline '19-Feb-1998' \\
\hline ' 20-Feb-1998' \\
\hline ' 23-Feb-1998' \\
\hline '24-Feb-1998' \\
\hline '25-Feb-1998' \\
\hline ' 26-Feb-1998' \\
\hline '27-Feb-1998' \\
\hline '02-Mar-1998' \\
\hline '03-Mar-1998' \\
\hline '04-Mar-1998' \\
\hline '05-Mar-1998' \\
\hline '06-Mar-1998' \\
\hline
\end{tabular}
'15-Jan-1998'
'16-Jan-1998'
'19-Jan-1998'
'20-Jan-1998'
21-Jan-1998'
22-Jan-1998
23-Jan-1998'
26-Jan-1998'
'27-Jan-1998'
'28-Jan-1998'
'29-Jan-1998'
30-Jan-1998'
02-Feb-1998 '
03-Feb-1998
04-Feb-1998 \({ }^{\prime}\)
05-Feb-1998
06-Feb-1998'
'09-Feb-1998'
10-Feb-1998'
'11-Feb-1998'
'12-Feb-1998'
13-Feb-1998'
16-Feb-1998'
'17-Feb-1998
18-Feb-1998'
19-Feb-1998 '
20-Feb-1998
23-Feb-1998
24-Feb-1998 \({ }^{\prime}\)
25-Feb-1998
' 26 -Feb-1998'
' 27 -Feb-1998'
-Mar-1998
03-Mar-1998
04-Mar-1998
05-Mar-1998'
06-Mar-1998'
\(31.7610]\) \(31.9269]\) \(\mathrm{NaN}]\)
\(32.1756]\)
32.8391 ]
32.7147 ]
\(32.3415]\)
\(32.7976]\)
32.8183 ]
\(34.4769]\)
\(34.7464]\)
35.1818]
\(35.4513]\)
35.7415 ]
35.6378 ]
36.0732 ]
35.9281 ]
36.2183 ]
35.8866 ]
35.9903 ]
36.4878 ]
36.2598 ]
\(\mathrm{NaN}]\)
37.2135 ]
37.4622 ]
38.0427 ]
\(37.8769]\)
38.0013 ]
\(37.7110]\)
\(36.9647]\)
36.4878 ]
36.1561 ]
36.9025 ]
36.2598 ]
35.4513 ]
34.8293 ]
35.2025 ]
32.0210
\(32.1880]\)
NaN]
\(33.2500]\)
\(33.1670]\)
\(32.8750]\)
33.0630]

33 .1040]
\(34.7080]\)
35.5830 ]
36.1250 ]
\(35.9580]\)
\(36.4170]\)
\(36.0830]\)
\(36.2500]\)
36.4580 ]
36.3750 ]
36.5420 ]
36.3750 ]
36.9380 ]
36.81301
\(37.2080]\)
NaN]
\(37.6670]\)
38.4170
\(38.5000]\)
\(38.2920]\)
\(38.5830]\)
\(37.9790]\)
37.3750 ]
\(37.0420]\)
37.54201
\(37.3130]\)
\(36.8960]\)
\(35.6460]\)
\(35.2920]\)
35.4790 ]
\(31.5630]\) \(31.7500]\) NaN] 32 .2500] 32 . 6880] 32 . 1040]
\(32.2710]\)
32.3330 ]

32 .9580]
34 .5000]
\(34.8750]\)
\(35.1040]\)
35 .6040]
\(35.5830]\)
35 .7710]
\(35.8130]\)
36 .0210]
35.8540 ]
35.5000 ]

36 .1040]
36 . 2920]
36.4380 ]
\(\mathrm{NaN}]\)
37 . 2500]
37.3750 ]
\(37.8330]\)
37.7500 ]
\(37.8330]\)
37 .1880] 37 ] 36 .3330] 36 .3330] 36 .3330] 36 .3330] 34 . 8960] 34.9170 ] 35.0420 ]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '09-Mar-1998' & [ & \(34.9537]\) & [ & 35.4790 ] & & 35.08 \\
\hline '10-Mar-1998' & [ & \(35.2232]\) & [ & \(35.3960]\) & & 35.16 \\
\hline '11-Mar-1998' & [ & \(34.9952]\) & & \(35.1880]\) & & 34.79 \\
\hline '12-Mar-1998' & [ & \(34.8915]\) & [ & \(35.4380]\) & & 34.85 \\
\hline '13-Mar-1998' & [ & \(35.7830]\) & & \(35.9580]\) & & 35.02 \\
\hline '16-Mar-1998' & & \(35.3061]\) & & 36.6670 ] & & 35.39 \\
\hline '17-Mar-1998' & [ & 35.9903 ] & [ & \(36.2500]\) & & 35.56 \\
\hline '18-Mar-1998' & & \(35.5757]\) & & \(35.8330]\) & & 35.33 \\
\hline '19-Mar-1998' & [ & 35.6378 ] & & \(35.8960]\) & & 35.25 \\
\hline '20-Mar-1998' & [ & \(35.3269]\) & [ & 35.6670 ] & & 35.12 \\
\hline '23-Mar-1998' & [ & \(34.6635]\) & & \(35.2500]\) & & 34.25 \\
\hline '24-Mar-1998' & [ & \(34.8293]\) & [ & \(35.7710]\) & & 34.875 \\
\hline '25-Mar-1998' & [ & 35.4927 ] & & \(35.7920]\) & & 35.29 \\
\hline '26-Mar-1998' & [ & \(35.2025]\) & & \(36.0420]\) & & 35.37 \\
\hline '27-Mar-1998' & [ & \(35.8037]\) & & \(36.0630]\) & & 35.66 \\
\hline '30-Mar-1998' & & 35.4927 ] & & \(35.8330]\) & & 35.16 \\
\hline '31-Mar-1998' & [ & 35.1403 ] & [ & \(35.8330]\) & & 35.16 \\
\hline '01-Apr-1998' & [ & 35.4927 ] & & 35.6670 ] & & 34.97 \\
\hline '02-Apr-1998' & [ & 35.1610 ] & & \(36.3130]\) & & 35.14 \\
\hline '03-Apr-1998' & [ & 36.4671 ] & & \(36.9790]\) & & \(36.04{ }^{\text {¢ }}\) \\
\hline '06-Apr-1998' & [ & 36.8818 ] & & \(37.0630]\) & & 36.08 \\
\hline '07-Apr-1998' & [ & \(35.9598]\) & [ & \(36.1460]\) & & 35.688 \\
\hline '08-Apr-1998' & [ & \(35.8767]\) & & 36] & & 35.22 \\
\hline '09-Apr-1998' & & 35.6484 ] & & 36.4790 ] & & 35.500 \\
\hline '10-Apr-1998' & [ & NaN] & & \(\mathrm{NaN}]\) & & , \\
\hline '13-Apr-1998' & [ & \(36.2297]\) & & \(36.7920]\) & & 36.313 \\
\hline '14-Apr-1998' & & \(37.2886]\) & & \(37.7500]\) & & 37.16 \\
\hline '15-Apr-1998' & [ & 37.7038 ] & [ & \(38.2710]\) & & 37.500 \\
\hline '16-Apr-1998' & & \(37.6830]\) & & \(37.8130]\) & & 37.31 ' \\
\hline '17-Apr-1998' & [ & \(37.2886]\) & [ & \(37.8130]\) & & 37.208 \\
\hline '20-Apr-1998' & [ & 37.7038 ] & [ & \(38.6250]\) & & 37.813 \\
\hline '21-Apr-1998' & [ & \(38.3682]\) & [ & \(38.9790]\) & & 38.16 \\
\hline '22-Apr-1998' & [ & \(38.7211]\) & [ & 40.6670 ] & & 38.56 \\
\hline '23-Apr-1998' & [ & \(41.5240]\) & [ & \(42.5420]\) & & 41.14 \\
\hline '24-Apr-1998' & [ & \(41.0880]\) & [ & \(41.2290]\) & & 39.938 \\
\hline '27-Apr-1998' & [ & 40.0499 ] & [ & 40.4790 ] & & 39.75 \\
\hline '28-Apr-1998' & [ & 41.1088 ] & [ & \(41.3330]\) & [ & 40.83 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '29-Apr-1998' & [ & \(41.1710]\) & [ & \(41.5000]\) & [ & 41] \\
\hline '30-Apr-1998' & [ & 41.4617] & [ & \(41.8750]\) & [ & 41.3540 ] \\
\hline '01-May-1998' & [ & 41.5032] & [ & \(41.8960]\) & [ & \(41.4580]\) \\
\hline '04-May-1998' & [ & \(42.0846]\) & [ & 42.7920] & [ & \(42.1040]\) \\
\hline '05-May-1998' & [ & 42.4583] & [ & \(42.6040]\) & [ & \(41.5830]\) \\
\hline '06-May-1998' & [ & 42.0223] & [ & \(42.1880]\) & [ & \(41.3330]\) \\
\hline '07-May-1998' & [ & 40.0291 ] & [ & \(40.1880]\) & [ & \(39.6460]\) \\
\hline '08-May-1998' & [ & \(39.6139]\) & [ & \(39.9790]\) & [ & \(39.6250]\) \\
\hline '11-May-1998' & [ & \(39.8215]\) & [ & \(40.4170]\) & [ & \(39.8750]\) \\
\hline '12-May-1998' & [ & \(40.0707]\) & [ & \(40.2080]\) & [ & \(39.5830]\) \\
\hline '13-May-1998' & [ & \(39.4686]\) & [ & \(39.8750]\) & [ & \(39.3330]\) \\
\hline '14-May-1998' & [ & \(38.6796]\) & [ & \(39.1250]\) & [ & 38.5000 ] \\
\hline '15-May-1998' & [ & \(38.0360]\) & [ & \(38.1880]\) & [ & \(36.8540]\) \\
\hline '18-May-1998' & [ & \(36.8733]\) & [ & \(37.5000]\) & [ & \(36.3540]\) \\
\hline '19-May-1998' & [ & \(36.9564]\) & [ & \(37.2710]\) & [ & 36.7080 ] \\
\hline '20-May-1998' & [ & \(37.0394]\) & [ & \(38.3960]\) & [ & \(37.1250]\) \\
\hline '21-May-1998' & [ & \(38.1606]\) & [ & \(38.9170]\) & [ & \(38.2080]\) \\
\hline '22-May-1998' & [ & \(38.6588]\) & [ & \(38.9170]\) & [ & \(38.5000]\) \\
\hline '25-May-1998' & [ & \(\mathrm{NaN}]\) & [ & NaN] & [ & NaN ] \\
\hline '26-May-1998' & [ & \(38.7627]\) & [ & \(38.9170]\) & & \(37.0210]\) \\
\hline '27-May-1998' & [ & \(36.8526]\) & [ & \(38.2920]\) & [ & 36.8960 ] \\
\hline '28-May-1998' & [ & \(37.9737]\) & [ & \(38.1250]\) & [ & \(37.3330]\) \\
\hline '29-May-1998' & [ & \(37.8699]\) & [ & \(38.0830]\) & [ & \(37.7080]\) \\
\hline '01-Jun-1998' & [ & \(37.8284]\) & & \(37.9580]\) & [ & \(36.7920]\) \\
\hline '02-Jun-1998' & [ & \(37.1432]\) & [ & \(37.3330]\) & [ & \(36.5210]\) \\
\hline '03-Jun-1998' & [ & \(36.8110]\) & [ & \(37.1250]\) & [ & \(36.3540]\) \\
\hline '04-Jun-1998' & [ & \(36.3127]\) & [ & \(36.6250]\) & [ & \(36.0210]\) \\
\hline '05-Jun-1998' & [ & \(37.5169]\) & & \(38.3130]\) & [ & \(37.3330]\) \\
\hline '08-Jun-1998' & [ & \(38.0983]\) & [ & 38.6460 ] & [ & 37.8750 ] \\
\hline '09-Jun-1998' & [ & \(38.5135]\) & [ & \(38.8330]\) & [ & \(38.2500]\) \\
\hline '10-Jun-1998' & [ & \(39.0326]\) & [ & \(39.8960]\) & [ & 39] \\
\hline '11-Jun-1998' & [ & \(39.3232]\) & [ & \(39.5830]\) & r & 38.6880 ] \\
\hline '12-Jun-1998' & [ & 38.61731 & [ & \(38.8330]\) & [ & \(37.7500]\) \\
\hline '15-Jun-1998' & [ & 37.7661 ] & [ & \(38.3330]\) & [ & 37.3960 ] \\
\hline '16-Jun-1998' & [ & \(37.5377]\) & [ & \(38.0420]\) & [ & \(37.4170]\) \\
\hline '17-Jun-1998' & [ & 37.8699 ] & 1 & \(38.7500]\) & [ & 37.6670 ] \\
\hline '18-Jun-1998' & [ & \(37.9737]\) & [ & \(38.1460]\) & [ & \(37.3130]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '19-Jun-1998' & [ & \(36.3958]\) & [ & \(36.6250]\) & [ & 35.62 \\
\hline '22-Jun-1998' & [ & 35.0878 ] & [ & \(36.3130]\) & [ & 34.83 \\
\hline '23-Jun-1998' & [ & \(36.4996]\) & [ & \(36.7920]\) & [ & 36.208 \\
\hline '24-Jun-1998' & [ & \(36.5204]\) & [ & \(37.7710]\) & [ & 36.56 \\
\hline '25-Jun-1998' & [ & \(37.5169]\) & [ & \(37.9790]\) & [ & 37.188 \\
\hline '26-Jun-1998' & [ & \(37.2886]\) & [ & \(37.4580]\) & [ & 36.79 \\
\hline '29-Jun-1998' & [ & \(37.2886]\) & [ & 37.9170 ] & [ & 37.29 \\
\hline '30-Jun-1998' & [ & \(36.2505]\) & [ & \(36.5830]\) & [ & 35.02 \\
\hline '01-Jul-1998' & [ & \(35.3785]\) & [ & \(35.8330]\) & [ & 35.35 \\
\hline '02-Jul-1998' & [ & \(35.2331]\) & [ & 35.4790 ] & [ & 35.08 \\
\hline '03-Jul-1998' & [ & \(\mathrm{NaN}]\) & [ & \(\mathrm{NaN}]\) & [ & \\
\hline '06-Jul-1998' & [ & \(35.2954]\) & [ & \(35.4380]\) & [ & 34.938 \\
\hline '07-Jul-1998' & [ & \(35.3785]\) & [ & 35.6670 ] & & 35.33 \\
\hline '08-Jul-1998' & [ & \(35.3992]\) & [ & \(36.3130]\) & [ & 35.52 \\
\hline '09-Jul-1998' & [ & \(36.1466]\) & [ & \(37.1460]\) & & 36.16 \\
\hline '10-Jul-1998' & [ & \(37.1225]\) & [ & \(38.5000]\) & [ & 36.500 \\
\hline '13-Jul-1998' & [ & \(38.8665]\) & [ & \(39.5630]\) & [ & 38.37 \\
\hline '14-Jul-1998' & [ & \(39.6762]\) & [ & \(40.2500]\) & [ & 39.62 \\
\hline '15-Jul-1998' & [ & \(39.9253]\) & [ & \(40.3130]\) & [ & 39.18 \\
\hline '16-Jul-1998' & [ & \(38.3059]\) & [ & \(39.4380]\) & [ & 38.06 \\
\hline '17-Jul-1998' & [ & \(39.1779]\) & [ & \(39.5630]\) & [ & 38.813 \\
\hline '20-Jul-1998' & [ & \(39.2402]\) & [ & \(39.7500]\) & - & 38.500 \\
\hline '21-Jul-1998' & [ & \(38.4305]\) & [ & \(38.5630]\) & [ & 37.438 \\
\hline '22-Jul-1998' & [ & \(37.0489]\) & [ & 38] & [ & 36.813 \\
\hline '23-Jul-1998' & [ & 37.1113] & [ & \(37.8750]\) & [ & \\
\hline '24-Jul-1998' & [ & \(36.5499]\) & [ & 37] & [ & 36.06 \\
\hline '27-Jul-1998' & [ & \(36.5499]\) & [ & \(36.6880]\) & [ & \\
\hline '28-Jul-1998' & [ & \(36.1133]\) & [ & \(36.5630]\) & [ & 35.06 \\
\hline '29-Jul-1998' & [ & 35.4273 ] & [ & \(35.7500]\) & [ & 35.06 \\
\hline '30-Jul-1998' & [ & \(35.3649]\) & [ & \(35.5000]\) & [ & \\
\hline '31-Jul-1998' & [ & 35.2401 ] & [ & \(35.5000]\) & [ & 34.250 \\
\hline '03-Aug-1998' & [ & \(34.4917]\) & [ & 35] & [ & 34.500 \\
\hline '04-Aug-1998' & [ & \(34.8659]\) & [ & \(35.1880]\) & [ & 32.75 \\
\hline '05-Aug-1998' & [ & \(33.3066]\) & [ & \(34.0630]\) & [ & 32.250 \\
\hline '06-Aug-1998' & [ & \(33.6185]\) & [ & 34] & [ & 33.06 \\
\hline '07-Aug-1998' & [ & \(33.3690]\) & [ & \(33.5630]\) & [ & 32.87 \\
\hline '10-Aug-1998' & [ & \(33.3690]\) & [ & \(33.6250]\) & [ & 32.56 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & '11-Aug-1998' \\
\hline & ' 12-Aug-1998' \\
\hline & '13-Aug-1998' \\
\hline & '14-Aug-1998' \\
\hline & '17-Aug-1998' \\
\hline & '18-Aug-1998' \\
\hline & '19-Aug-1998' \\
\hline & ' 20-Aug-1998' \\
\hline & '21-Aug-1998' \\
\hline & '24-Aug-1998' \\
\hline & '25-Aug-1998' \\
\hline & '26-Aug-1998' \\
\hline & '27-Aug-1998' \\
\hline & '28-Aug-1998' \\
\hline & '31-Aug-1998' \\
\hline & '01-Sep-1998' \\
\hline & '02-Sep-1998' \\
\hline & '03-Sep-1998' \\
\hline & '04-Sep-1998' \\
\hline & '07-Sep-1998' \\
\hline & '08-Sep-1998' \\
\hline & '09-Sep-1998' \\
\hline & '10-Sep-1998' \\
\hline & '11-Sep-1998' \\
\hline & '14-Sep-1998' \\
\hline & '15-Sep-1998' \\
\hline & '16-Sep-1998' \\
\hline & '17-Sep-1998' \\
\hline & '18-Sep-1998' \\
\hline & '21-Sep-1998' \\
\hline & '22-Sep-1998' \\
\hline & '23-Sep-1998' \\
\hline & '24-Sep-1998' \\
\hline & '25-Sep-1998' \\
\hline & '28-Sep-1998' \\
\hline & '29-Sep-1998' \\
\hline & '30-Sep-1998' \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(32.2463]\) & [ & \(32.5000]\) \\
\hline \(32.0592]\) & [ & \(32.9380]\) \\
\hline \(32.4334]\) & [ & \(33.4380]\) \\
\hline \(32.3087]\) & [ & \(32.4380]\) \\
\hline 31.4978 ] & [ & \(32.2500]\) \\
\hline \(32.6205]\) & [ & \(33.6250]\) \\
\hline \(33.6808]\) & [ & \(33.8130]\) \\
\hline \(33.0571]\) & [ & \(33.8750]\) \\
\hline \(33.1819]\) & [ & \(33.4380]\) \\
\hline \(33.8680]\) & [ & \(33.9380]\) \\
\hline \(33.7432]\) & [ & \(34.6880]\) \\
\hline \(33.1195]\) & [ & \(33.6250]\) \\
\hline \(31.9344]\) & [ & \(32.5000]\) \\
\hline 30.9988 ] & [ & \(31.6880]\) \\
\hline \(30.8117]\) & [ & \(31.2500]\) \\
\hline \(28.4416]\) & [ & \(30.5000]\) \\
\hline \(30.9365]\) & [ & \(31.8750]\) \\
\hline \(29.4395]\) & [ & \(29.7500]\) \\
\hline 28.5663 ] & [ & \(28.7500]\) \\
\hline \(\mathrm{NaN}]\) & [ & NaN] \\
\hline \(29.6890]\) & [ & \(30.1880]\) \\
\hline 29.0029] & [ & \(29.0630]\) \\
\hline \(27.2565]\) & [ & \(27.7500]\) \\
\hline \(27.0694]\) & [ & \(27.9380]\) \\
\hline \(25.1983]\) & [ & \(25.2500]\) \\
\hline 24.9488 ] & [ & \(25.5000]\) \\
\hline \(25.3230]\) & [ & \(26]\) \\
\hline \(24.9488]\) & [ & \(25.7500]\) \\
\hline \(25.5725]\) & [ & \(25.8750]\) \\
\hline 24.9488 ] & [ & \(25.3750]\) \\
\hline \(25.0735]\) & [ & \(25.5000]\) \\
\hline \(26.2586]\) & [ & 27] \\
\hline 26.7576] & [ & 27.1250] \\
\hline \(25.4477]\) & [ & 26] \\
\hline 26.1338] & [ & \(26.3130]\) \\
\hline 26.1962] & [ & \(26.5630]\) \\
\hline 25.8843 ] & [ & \(26.1880]\) \\
\hline
\end{tabular}
\(31.4380]\) \(32]\) \(31.5630]\) 31 . 2500] 31 .1250] 32 .1250]
32 .6250]
32 .9380]
\(32.3130]\)
32 . 8130]
\(33.6250]\)
\(32.5000]\)
30.9380 ] 30 . 0630]

26]
27.7500] \(29.5630]\)

28]
\(27.5000]\)
\(\mathrm{NaN}]\) \(28.1250]\) \(27.5630]\) 26.6250] 25.7500] \(23.8750]\) \(24.8130]\) 25.1880] 25] 25.1250] \(24.8750]\) \(24.9380]\) \(25.7500]\) \(25.7500]\) \(25.5000]\) \(25.8130]\) \(25.7500]\) \(25.0630]\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline '01-Oct-1998' & [ & 24.9488] & [ & \(25.2500]\) & [ & 24.500 \\
\hline '02-0ct-1998' & [ & \(24.8864]\) & [ & \(25.7500]\) & [ & 24.500 \\
\hline '05-0ct-1998' & [ & \(25.1983]\) & [ & \(25.5000]\) & [ & 24.75 \\
\hline '06-0ct-1998' & [ & \(25.8220]\) & [ & 26] & [ & 24.938 \\
\hline '07-0ct-1998' & [ & \(25.3750]\) & [ & \(25.9380]\) & [ & 24.56 \\
\hline '08-0ct-1998' & [ & \(24.3750]\) & [ & \(24.8130]\) & [ & 22.62 \\
\hline '09-0ct-1998' & [ & \(23.7500]\) & [ & \(23.8130]\) & [ & 22.500 \\
\hline '12-0ct-1998' & [ & \(24.7500]\) & [ & \(25.0630]\) & [ & 24.438 \\
\hline '13-0ct-1998' & [ & \(24.5000]\) & [ & \(25.6250]\) & [ & 24.188 \\
\hline '14-0ct-1998' & [ & \(25.1250]\) & [ & \(25.6250]\) & [ & 24.25 \\
\hline '15-0ct-1998' & [ & 24.4375] & [ & \(26]\) & [ & 24.188 \\
\hline '16-0ct-1998' & [ & \(25.9375]\) & [ & 26] & [ & 25.12 \\
\hline '19-0ct-1998' & [ & \(25.1250]\) & [ & \(26.0630]\) & & 25.12 \\
\hline '20-0ct-1998' & [ & \(26.3750]\) & [ & \(27.5000]\) & [ & 26.188 \\
\hline '21-0ct-1998' & [ & \(27.1250]\) & [ & \(27.7500]\) & [ & 26.938 \\
\hline '22-Oct-1998' & [ & 27.8125] & [ & 28] & [ & 27.063 \\
\hline '23-0ct-1998' & [ & 27.8125] & [ & \(27.8130]\) & [ & 27.063 \\
\hline '26-0ct-1998' & [ & \(27.9375]\) & [ & 28] & [ & 27.500 \\
\hline '27-0ct-1998' & [ & \(27.7500]\) & [ & \(27.7500]\) & [ & 26.75 \\
\hline '28-0ct-1998' & [ & \(27]\) & [ & \(27.0630]\) & - & 25.75 \\
\hline '29-0ct-1998' & [ & \(26.7500]\) & [ & \(26.8750]\) & [ & 26.12 \\
\hline '30-0ct-1998' & [ & 26.8125] & [ & \(27.3130]\) & - & 26.56 \\
\hline '02-Nov-1998' & [ & \(27.5000]\) & [ & \(29.1250]\) & [ & 27.438 \\
\hline '03-Nov-1998' & [ & 28.9375] & [ & \(29.7500]\) & [ & 28.87 \\
\hline '04-Nov-1998' & [ & 30] & [ & \(30.2500]\) & [ & 28.56 \\
\hline '05-Nov-1998' & [ & \(28.4375]\) & [ & \(30.1880]\) & [ & 27.938 \\
\hline '06-Nov-1998' & [ & \(30.0625]\) & [ & \(30.6250]\) & [ & 29.813 \\
\hline '09-Nov-1998' & [ & \(30.5000]\) & [ & \(30.6250]\) & [ & 29.313 \\
\hline '10-Nov-1998' & [ & 29.1875] & [ & \(29.3750]\) & [ & 28.688 \\
\hline '11-Nov-1998' & [ & \(29.0625]\) & [ & \(29.3130]\) & [ & 28.813 \\
\hline '12-Nov-1998' & [ & \(28.6875]\) & [ & \(28.8130]\) & [ & 28.12 \\
\hline '13-Nov-1998' & [ & \(28.7500]\) & [ & \(29.3750]\) & [ & 28.25 \\
\hline '16-Nov-1998' & [ & 29.3125] & [ & \(29.8130]\) & [ & 28.87 \\
\hline '17-Nov-1998' & [ & 29.0625] & [ & \(29.2500]\) & [ & 28.56 \\
\hline '18-Nov-1998' & [ & \(28.5625]\) & [ & \(29.1250]\) & [ & 28.25 \\
\hline '19-Nov-1998' & [ & \(28.4375]\) & [ & \(28.8750]\) & [ & 28.12 \\
\hline '20-Nov-1998' & [ & \(28.4375]\) & [ & \(28.6880]\) & [ & 28.12 \\
\hline
\end{tabular}

18-1873
\begin{tabular}{|c|}
\hline ' 23-Nov-1998' \\
\hline '24-Nov-1998' \\
\hline '25-Nov-1998' \\
\hline '26-Nov-1998' \\
\hline '27-Nov-1998' \\
\hline '30-Nov-1998' \\
\hline '01-Dec-1998' \\
\hline '02-Dec-1998' \\
\hline '03-Dec-1998' \\
\hline '04-Dec-1998' \\
\hline '07-Dec-1998' \\
\hline ' 08-Dec-1998' \\
\hline '09-Dec-1998' \\
\hline '10-Dec-1998' \\
\hline '11-Dec-1998' \\
\hline '14-Dec-1998' \\
\hline '15-Dec-1998' \\
\hline '16-Dec-1998' \\
\hline '17-Dec-1998' \\
\hline '18-Dec-1998' \\
\hline '21-Dec-1998' \\
\hline '22-Dec-1998' \\
\hline '23-Dec-1998' \\
\hline '24-Dec-1998' \\
\hline '25-Dec-1998' \\
\hline '28-Dec-1998' \\
\hline '29-Dec-1998' \\
\hline '30-Dec-1998' \\
\hline '31-Dec-1998' \\
\hline '01-Jan-1999' \\
\hline '04-Jan-1999' \\
\hline '05-Jan-1999' \\
\hline '06-Jan-1999' \\
\hline '07-Jan-1999' \\
\hline '08-Jan-1999' \\
\hline '11-Jan-1999' \\
\hline '12-Jan-1999' \\
\hline
\end{tabular}
\begin{tabular}{rr}
\(28.6875]\) & {\([\)} \\
\(29.6875]\) & {\([\)} \\
\(29.8125]\) & {\([\)} \\
\(\mathrm{NaN}]\) & {\([\)} \\
\(31]\) & {\([\)} \\
\(32.4375]\) & {\([\)} \\
\(31.8750]\) & {\([\)} \\
\(31.3125]\) & {\([\)} \\
\(31.3750]\) & {\([\)} \\
\(31.4375]\) & {\([\)} \\
\(31.3750]\) & {\([\)} \\
\(31.3750]\) & {\([\)} \\
\(32.1875]\) & {\([\)} \\
\(33.5625]\) & {\([\)} \\
\(32.0625]\) & {\([\)} \\
\(31.3125]\) & {\([\)} \\
\(31]\) & {\([\)} \\
\(31.1875]\) & {\([\)} \\
\(30.7500]\) & {\([\)} \\
\(30.8750]\) & {\([\)} \\
\(30.7500]\) & {\([\)} \\
\(30.6250]\) & {\([\)} \\
\(30.4375]\) & {\([\)} \\
\(30.8750]\) & {\([\)} \\
\(30.8750]\) & {\([\)} \\
\(30.6250]\) & {\([\)} \\
\(30.5000]\) & {\([\)} \\
\(29.8750]\) & {\([\)} \\
\(30.1875]\) & {\([\)} \\
\(29.7500]\) & {\([\)} \\
\(30.5625]\) & {\([\)} \\
\(30.0625]\) & {\([\)} \\
\(32.3125]\) & {\([\)} \\
\(33.1250]\) & {\([\)} \\
\(38.3750]\) & {\([\)} \\
{\([\)}
\end{tabular}

\(29.5000]\) \(29.6250]\) NaN] \(30.8130]\) 31 .5630] 31 .1250] 30.6880 ] 30.8130 ] 31 . 2500] 30.8750 ] 31.3130 ] 32.0630 ] 32 .2500] 31.4380 ] 30.1250 ] 30.6880 ] 30 .5630] 30 . 7500] 30.0630 ] 30.3130 ] \(29.9380]\) 30 .1880] 30.5000 ] \(\mathrm{NaN}]\) 30 . 2500] 30 .2500] 29.7500] \(29.5630]\) \(\mathrm{NaN}]\) 29.2500] 29.6880] 29.7500] 30 ] \(31.8130]\) 33 .0630] 37.1880 ]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{15-Jan-1999'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{19-Jan-1999'} \\
\hline \multicolumn{2}{|l|}{-Jan-1} \\
\hline & 21-Jan-1909' \\
\hline \multicolumn{2}{|l|}{22-Jan-1999'} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{'25-Jan-1999'}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'27-Jan-1999'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{02-Feb-1999'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'04-Feb-1999'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'08-Feb-1999'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'10-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{'11-Feb-1999'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{17-Feb-1999'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'19-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{-Feb-199} \\
\hline \multicolumn{2}{|l|}{23-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{-Feb-1999} \\
\hline \multicolumn{2}{|l|}{-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{26-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{'01-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'02-Mar-1999'} \\
\hline & Mar-1999 \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{rr}
\(34.5000]\) & {\([\)} \\
\(36.7500]\) & {\([\)} \\
\(36.5625]\) & {\([\)} \\
\(\mathrm{NaN}]\) & {\([\)} \\
\(36]\) & {\([\)} \\
\(36.8125]\) & {\([\)} \\
\(35.9375]\) & {\([\)} \\
\(34.1250]\) & {\([\)} \\
\(34.1875]\) & {\([\)} \\
\(34.9375]\) & {\([\)} \\
\(34.2500]\) & {\([\)} \\
\(33.9375]\) & {\([\)} \\
\(33.6875]\) & {\([\)} \\
\(33.8125]\) & {\([\)} \\
\(33.5000]\) & {\([\)} \\
\(33.3750]\) & {\([\)} \\
\(33.6250]\) & {\([\)} \\
\(33.8750]\) & {\([\)} \\
\(34.2500]\) & {\([\)} \\
\(34.1875]\) & {\([\)} \\
\(33.6250]\) & {\([\)} \\
\(34]\) & {\([\)} \\
\(35.4375]\) & {\([\)} \\
\(N a N]\) & {\([\)} \\
\(35.9375]\) & {\([\)} \\
\(34.7500]\) & {\([\)} \\
\(34.6875]\) & {\([\)} \\
\(34.2500]\) & {\([\)} \\
\(34.1250]\) & {\([\)} \\
\(35.1875]\) & {\([\)} \\
\(35]\) & {\([\)} \\
\(34.6250]\) & {\([\)} \\
\(35.2500]\) & {\([\)} \\
\(35.1875]\) & {\([\)} \\
\(34.5625]\) & {\([\)} \\
\(34.6250]\) & {\([\)}
\end{tabular}
\begin{tabular}{rr}
\(37.3750]\) & {\([\)} \\
\(37.2500]\) & {\([\)} \\
\(36.6880]\) & {\([\)} \\
NaN \(]\) & {\([\)} \\
\(36.6250]\) & {\([\)} \\
\(36.9380]\) & {\([\)} \\
\(36]\) & {\([\)} \\
\(34.5630]\) & {\([\)} \\
\(35]\) & {\([\)} \\
\(35.3750]\) & {\([\)} \\
\(34.3750]\) & {\([\)} \\
\(34.3750]\) & {\([\)} \\
\(34]\) & {\([\)} \\
\(33.9380]\) & {\([\)} \\
\(33.6880]\) & {\([\)} \\
\(33.8750]\) & {\([\)} \\
\(34.0630]\) & {\([\)} \\
\(34.6880]\) & {\([\)} \\
\(34.2500]\) & {\([\)} \\
\(34.6250]\) & {\([\)} \\
\(34.1880]\) & {\([\)} \\
\(35.5000]\) & {\([\)} \\
\(35.5630]\) & {\([\)} \\
NaN \(]\) & {\([\)} \\
\(36]\) & {\([\)} \\
\(35.2500]\) & {\([\)} \\
\(34.8750]\) & {\([\)} \\
\(34.5000]\) & {\([\)} \\
\(35.1250]\) & {\([\)} \\
\(35.5000]\) & {\([\)} \\
\(366]\) & {\([\)} \\
\(35.2500]\) & {\([\)} \\
\(35.6880]\) & {\([\)} \\
\(35.2500]\) & {\([\)} \\
\(35.1880]\) & {\([\)} \\
\(35.1250]\) & {\([\)} \\
\(35.3130]\) & {\([\)}
\end{tabular}
34.37
35.81
35.62
35.813
35.87
34.12
34.06
34.18
32.68
33.31
33.25
32.81
33.25
33.56
33.81
33.43
33.31
33.81
34.56
34.62
34.56
34.25
34.12
34.87
34.93
34.06
34.06
34.56
34.06
34.37
34.56

18-1875
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'09-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{10-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{12-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{5-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'16-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{- Mar-1999 '} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{- Mar-1999'} \\
\hline \multicolumn{2}{|l|}{22-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{,} \\
\hline \multicolumn{2}{|l|}{'} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{'} \\
\hline & \\
\hline
\end{tabular}

Column 5
'CLOSE: (782)
[ 21.2920]
[ 21.6250]
\(21.8330]\)
21.8750]
21.6670]

NaN]
21.4580]
21.2080]
20.2920]
20.1250]
20.4580]
20.6250]
20.7500]
20.7920]
20.9580]
21.0420]
\begin{tabular}{llrl}
\(35.8125]\) & {\([\)} & \(36]\) & {\([\)} \\
\(35.9375]\) & {\([\)} & \(36.6880]\) & {\([\)} \\
\(35.7500]\) & {\([\)} & \(35.8130]\) & {\([\)} \\
\(34.6875]\) & {\([\)} & \(35.0630]\) & {\([\)} \\
\(34.1250]\) & {\([\)} & \(34.9380]\) & {\([\)} \\
\(35.6250]\) & {\([\)} & \(36.4380]\) & {\([\)} \\
\(36.1250]\) & {\([\)} & \(36.5630]\) & {\([\)} \\
\(35.7500]\) & {\([\)} & \(36.4380]\) & {\([\)} \\
\(35.2500]\) & {\([\)} & \(35.5630]\) & {\([\)} \\
\(34.8125]\) & {\([\)} & \(35.6880]\) & {\([\)} \\
\(35.7500]\) & {\([\)} & \(35.8130]\) & {\([\)} \\
\(34.9375]\) & {\([\)} & \\
\(34.1250]\) & {\([\)} & \(34.1880]\) & {\([\)} \\
\(33.0625]\) & {\([\)} & \(33.2500]\) & {\([\)} \\
\(33.5000]\) & {\([\)} & \(33.6250]\) & {\([\)} \\
\(33.3125]\) & {\([\)} & \(33.3750]\) & {\([\)} \\
\(33.0625]\) & {\([\)} & \(33.1880]\) & {\([\)}
\end{tabular}
\(35.5630]\) 35.9380 ] 34 .3130] 34 .3750] 34 .1250] 35 .6250] \(35.1250]\) 35.0630 ] 34 .5000] 34 . 6880] 34.8750 ] 34 .2500] \(32.8130]\) 32.6250 ] 32 . 8750] \(32.7500]\) 32.7500 ]
\begin{tabular}{rr}
{\([\)} & \(20.8750]\) \\
{\([\)} & \(20.5830]\) \\
{\([\)} & \(20.2080]\) \\
{\([\)} & \(20.4170]\) \\
{\([\)} & \(20.6250]\) \\
{\([\)} & \(20.6250]\) \\
{\([\)} & \(20.6670]\) \\
{\([\)} & \(20.1670]\) \\
{\([\)} & \(20]\) \\
{\([\)} & \(19.6670]\) \\
{\([\)} & \(20.0420]\) \\
{\([\)} & \(19.7920]\) \\
{\([\)} & \(19.6670]\) \\
{\([\)} & \(19.4170]\) \\
{\([\)} & \(19.7500]\) \\
{\([\)} & \(20.2500]\) \\
{\([\)} & \(20.2920]\) \\
{\([\)} & \(20.1250]\) \\
{\([\)} & \(20.2500]\) \\
{\([\)} & \(20.4170]\) \\
{\([\)} & \(20.6250]\) \\
{\([\)} & \(20.7920]\) \\
{\([\)} & \(20.9170]\) \\
{\([\)} & \(20.6670]\) \\
{\([\)} & \(20.8330]\) \\
{\([\)} & \(20.7 a N]\) \\
{\([\)} & \(20.7080]\) \\
{\([\)} & \(20.1670]\) \\
{\([\)} & \(20.4170]\) \\
{\([\)} & \(20.2500]\) \\
{\([\)} & \(20.1250]\) \\
{\([\)} & \(20.0420]\) \\
{\([\)} & \(20.1670]\) \\
{\([\)} & \(20.8330]\) \\
{\([\)} & \(21.0830]\) \\
{\([\)} & \(20.7920]\) \\
{\([\)} & \(20.7920]\)
\end{tabular}
\begin{tabular}{lr}
{\([\)} & \(20.7920]\) \\
{\([\)} & \(20.5830]\) \\
{\([\)} & \(20.5000]\) \\
{\([\)} & \(20.6670]\) \\
{\([\)} & \(20.3330]\) \\
{\([\)} & \(20.3750]\) \\
{\([\)} & \(20.5830]\) \\
{\([\)} & \(21]\) \\
{\([\)} & \(20.7500]\) \\
{\([\)} & \(21.0830]\) \\
{\([\)} & \(20.7920]\) \\
{\([\)} & \(20.0420]\) \\
{\([\)} & \(20.7500]\) \\
{\([\)} & \(20.4170]\) \\
{\([\)} & \(20.3330]\) \\
{\([\)} & \\
{\([\)} & NaN \(]\) \\
{\([\)} & \(19.7920]\) \\
{\([\)} & \(19.6670]\) \\
{\([\)} & \(19.1670]\) \\
{\([\)} & \(18.3750]\) \\
{\([\)} & \(18.7080]\) \\
{\([\)} & \(18.2920]\) \\
{\([\)} & \(18.6670]\) \\
{\([\)} & \(18.6670]\) \\
{\([\)} & \(19.0830]\) \\
{\([\)} & \(19.1250]\) \\
{\([\)} & \(18.6670]\) \\
{\([\)} & \(18.5000]\) \\
{\([\)} & \(18.1250]\) \\
{\([\)} & \(18.1250]\) \\
{\([\)} & \(18.0420]\) \\
{\([\)} & \(17.7920]\) \\
{\([\)} & \(18.4170]\) \\
{\([\)} & \(18.5420]\) \\
{\([\)} & \(19.1250]\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(19.3330]\) \\
\hline [ & \(19.4580]\) \\
\hline [ & \(19.6670]\) \\
\hline [ & \(19.4580]\) \\
\hline [ & 19.1670] \\
\hline [ & \(19.0420]\) \\
\hline [ & \(19.5000]\) \\
\hline [ & \(19.3330]\) \\
\hline [ & \(19.3750]\) \\
\hline [ & \(19.2920]\) \\
\hline [ & \(19.3750]\) \\
\hline [ & \(19.3330]\) \\
\hline [ & \(19.0830]\) \\
\hline [ & \(19.2920]\) \\
\hline [ & \(19.3750]\) \\
\hline [ & \(19.4580]\) \\
\hline [ & \(19.7920]\) \\
\hline [ & 19.6670 ] \\
\hline [ & \(19.4170]\) \\
\hline [ & \(19.2500]\) \\
\hline [ & 19] \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & 19] \\
\hline [ & 18.9170] \\
\hline [ & \(18.5420]\) \\
\hline [ & 19] \\
\hline [ & \(19.4170]\) \\
\hline [ & \(19.2920]\) \\
\hline [ & 19.5420] \\
\hline [ & \(20.1670]\) \\
\hline [ & \(20.2500]\) \\
\hline [ & \(20.0830]\) \\
\hline [ & \(20.3750]\) \\
\hline [ & \(20.4170]\) \\
\hline [ & \(21.1670]\) \\
\hline [ & \(21.0420]\) \\
\hline [ & \(21.2080]\) \\
\hline
\end{tabular}
\begin{tabular}{rr}
{\([\)} & \(20.9170]\) \\
{\([\)} & \(20.8750]\) \\
{\([\)} & \(20.6670]\) \\
{\([\)} & \(21]\) \\
{\([\)} & \(21.0830]\) \\
{\([\)} & \(20.8330]\) \\
{\([\)} & \(20.9580]\) \\
{\([\)} & \(21.0420]\) \\
{\([\)} & \(21.3750]\) \\
{\([\)} & \(21.3750]\) \\
{\([\)} & \(21.2080]\) \\
{\([\)} & \(21.1670]\) \\
{\([\)} & \(21.2080]\) \\
{\([\)} & \(21.3330]\) \\
{\([\)} & \(21.4580]\) \\
{\([\)} & \(21.8330]\) \\
{\([\)} & \(21.6250]\) \\
{\([\)} & \(21.6670]\) \\
{\([\)} & \(21.8750]\) \\
{\([\)} & \(22.2080]\) \\
{\([\)} & \(22.0420]\) \\
{\([\)} & \(21.7920]\) \\
{\([\)} & \(22.0830]\) \\
{\([\)} & \(22.1250]\) \\
{\([\)} & \(21.9170]\) \\
{\([\)} & \(21.8750]\) \\
{\([\)} & \(21.9580]\) \\
{\([\)} & \(21.8330]\) \\
{\([\)} & \(22.2920]\) \\
{\([\)} & \(22.5420]\) \\
{\([\)} & \(22.5830]\) \\
{\([\)} & \(22.8330]\) \\
{\([\)} & \(23.4580]\) \\
{\([\)} & \(23.6250]\) \\
{\([\)} & \(23.5420]\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(23.5420]\) \\
\hline [ & \(24.0830]\) \\
\hline [ & \(23.7920]\) \\
\hline [ & 23.6670 ] \\
\hline [ & \(23.9170]\) \\
\hline [ & \(24.0830]\) \\
\hline [ & \(24.0420]\) \\
\hline [ & \(24.5000]\) \\
\hline [ & \(25.3330]\) \\
\hline [ & \(24.6250]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(24.6250]\) \\
\hline [ & \(24.6250]\) \\
\hline [ & 23.9580 ] \\
\hline [ & \(24]\) \\
\hline [ & \(23.9580]\) \\
\hline [ & \(23.8330]\) \\
\hline [ & \(24.3750]\) \\
\hline [ & \(24.4170]\) \\
\hline [ & \(24.0420]\) \\
\hline [ & \(23.4170]\) \\
\hline [ & \(23.4170]\) \\
\hline [ & \(23.1250]\) \\
\hline [ & \(23.6250]\) \\
\hline [ & \(23.8330]\) \\
\hline [ & \(24.1250]\) \\
\hline [ & \(24.1250]\) \\
\hline [ & \(24.0420]\) \\
\hline [ & \(23.8330]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(23.7920]\) \\
\hline [ & \(23.7500]\) \\
\hline [ & \(23.3330]\) \\
\hline [ & \(23.2500]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(22.4580]\) \\
\hline [ & \(23.0830]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & 25.1670 ] \\
\hline [ & 25.2920] \\
\hline [ & 24.7500] \\
\hline [ & \(24.4580]\) \\
\hline [ & \(24.2500]\) \\
\hline [ & \(24.5000]\) \\
\hline [ & \(25.0420]\) \\
\hline [ & \(25.3330]\) \\
\hline [ & \(25.5830]\) \\
\hline [ & \(25.7080]\) \\
\hline [ & \(25.1250]\) \\
\hline [ & \(24.4170]\) \\
\hline [ & \(24.9170]\) \\
\hline [ & \(25.3330]\) \\
\hline [ & 25.1670 ] \\
\hline [ & 25] \\
\hline [ & \(24.8330]\) \\
\hline [ & \(24.6670]\) \\
\hline [ & 25] \\
\hline [ & \(24.9170]\) \\
\hline [ & \(25.0830]\) \\
\hline [ & 25] \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(24.2920]\) \\
\hline [ & \(24.1250]\) \\
\hline [ & \(24.1250]\) \\
\hline [ & 24.2080] \\
\hline [ & \(24.5830]\) \\
\hline [ & \(24.5830]\) \\
\hline [ & \(24.6250]\) \\
\hline [ & \(24.5830]\) \\
\hline [ & \(24.6670]\) \\
\hline [ & \(24.1250]\) \\
\hline [ & \(23.7080]\) \\
\hline [ & \(24.6250]\) \\
\hline [ & \(25.2080]\) \\
\hline [ & \(25.2500]\) \\
\hline
\end{tabular}
\begin{tabular}{rr}
{\([\)} & \(25.5830]\) \\
{\([\)} & \(25.6250]\) \\
{\([\)} & \(26.0830]\) \\
{\([\)} & \(26.3750]\) \\
{\([\)} & \(26.0830]\) \\
{\([\)} & \(25.7920]\) \\
{\([\)} & \(25.8750]\) \\
{\([\)} & \(26.9170]\) \\
{\([\)} & \(27.2500]\) \\
{\([\)} & \(26.7920]\) \\
{\([\)} & \(27.3750]\) \\
{\([\)} & \(27.4170]\) \\
{\([\)} & \(26.8330]\) \\
{\([\)} & \(27.0830]\) \\
{\([\)} & \(27.4170]\) \\
{\([\)} & \(28.1670]\) \\
{\([\)} & \(27.8750]\) \\
{\([\)} & \(27.8750]\) \\
{\([\)} & \(27.6250]\) \\
{\([\)} & \(26.9580]\) \\
{\([\)} & \(27.7500]\) \\
{\([\)} & \(27.8330]\) \\
{\([\)} & \(27.3750]\) \\
{\([\)} & \(27.3750]\) \\
{\([\)} & \(27.7500]\) \\
{\([\)} & NaN] \\
{\([\)} & \(27.9170]\) \\
{\([\)} & \(27.9580]\) \\
{\([\)} & \(27.6250]\) \\
{\([\)} & \(27.2920]\) \\
{\([\)} & \(26.9580]\) \\
{\([\)} & \(26.8750]\) \\
{\([\)} & \(26.6250]\) \\
{\([\)} & \(26.9170]\) \\
{\([\)} & \(27.1250]\) \\
{\([\)} & \(27]\)
\end{tabular}
\begin{tabular}{lr}
{\([\)} & \(27.2920]\) \\
{\([\)} & \(27.1250]\) \\
{\([\)} & \(27.2080]\) \\
{\([\)} & \(27.8330]\) \\
{\([\)} & \(27.9580]\) \\
{\([\)} & \(28]\) \\
{\([\)} & \(27.5000]\) \\
{\([\)} & \(27.7920]\) \\
{\([\)} & \(27.4170]\) \\
{\([\)} & \(26.8750]\) \\
{\([\)} & \(27.5000]\) \\
{\([\)} & \(27.3330]\) \\
{\([\)} & \(27.1880]\) \\
{\([\)} & \(26.6460]\) \\
{\([\)} & \(26.7500]\) \\
{\([\)} & \(26.1880]\) \\
{\([\)} & \(25.6250]\) \\
{\([\)} & \(25.7500]\) \\
{\([\)} & \(25.3330]\) \\
{\([\)} & \(26.0210]\) \\
{\([\)} & \(26.6880]\) \\
{\([\)} & \(25.6250]\) \\
{\([\)} & \(25.6200]\) \\
{\([\)} & \(25.4990]\) \\
{\([\)} & \(25.7920]\) \\
{\([\)} & \(25.9790]\) \\
{\([\)} & \(26.2920]\) \\
{\([\)} & \(25.9170]\) \\
{\([\)} & \(25.2920]\) \\
{\([\)} & \(25.0630]\) \\
{\([\)} & \(25.8750]\) \\
{\([\)} & \(25.9790]\) \\
{\([\)} & \(26.4380]\) \\
{\([\)} & \(26.3330]\) \\
{\([\)} & \(26.5420]\) \\
{\([\)} & \(26.7080]\) \\
{\([\)} & \(26.9790]\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(26.9380]\) \\
\hline [ & \(26.8540]\) \\
\hline [ & \(26.9790]\) \\
\hline [ & \(26.6460]\) \\
\hline [ & \(26.9380]\) \\
\hline [ & \(26.3750]\) \\
\hline [ & \(26.3960]\) \\
\hline [ & \(26.5420]\) \\
\hline [ & \(26.1250]\) \\
\hline [ & \(26.3330]\) \\
\hline [ & \(26.2920]\) \\
\hline [ & \(25.5420]\) \\
\hline [ & \(26.2080]\) \\
\hline [ & \(26.5630]\) \\
\hline [ & \(26.7920]\) \\
\hline [ & \(26.2920]\) \\
\hline [ & \(26.0420]\) \\
\hline [ & \(26.1040]\) \\
\hline [ & \(25.8330]\) \\
\hline [ & 26.1670 ] \\
\hline [ & \(25.9170]\) \\
\hline [ & 25.6040 ] \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(26.3330]\) \\
\hline [ & \(26.5210]\) \\
\hline [ & \(25.8960]\) \\
\hline [ & \(26.0630]\) \\
\hline [ & \(25.9580]\) \\
\hline [ & \(26.1670]\) \\
\hline [ & \(25.9170]\) \\
\hline [ & \(25.2500]\) \\
\hline [ & \(25.7080]\) \\
\hline [ & \(25.7290]\) \\
\hline [ & \(26.3540]\) \\
\hline [ & \(26.2920]\) \\
\hline [ & \(26.4380]\) \\
\hline [ & \(26.6460]\) \\
\hline
\end{tabular}
\begin{tabular}{lr}
{\([\)} & \(26.5210]\) \\
{\([\)} & \(26.3330]\) \\
{\([\)} & \(26.2290]\) \\
{\([\)} & \(26.5420]\) \\
{\([\)} & \(26.5000]\) \\
{\([\)} & \(26.6670]\) \\
{\([\)} & \(26.8750]\) \\
{\([\)} & \(27.3330]\) \\
{\([\)} & \(27.9380]\) \\
{\([\)} & \(28.1250]\) \\
{\([\)} & \(27.6670]\) \\
{\([\)} & \(28.3960]\) \\
{\([\)} & \(28]\) \\
{\([\)} & \(28.0630]\) \\
{\([\)} & \(27.8960]\) \\
{\([\)} & \(28.2080]\) \\
{\([\)} & \(28.8130]\) \\
{\([\)} & \(28.9580]\) \\
{\([\)} & \(28.3130]\) \\
{\([\)} & \(27.5420]\) \\
{\([\)} & \(27.8540]\) \\
{\([\)} & \(27.8960]\) \\
{\([\)} & \(27.6880]\) \\
{\([\)} & \(27.4380]\) \\
{\([\)} & \(27.4580]\) \\
{\([\)} & \(25.9170]\) \\
{\([\)} & \(27.4380]\) \\
{\([\)} & \(27.6460]\) \\
{\([\)} & \(26.8750]\) \\
{\([\)} & \(27.4580]\) \\
{\([\)} & \(28.5000]\) \\
{\([\)} & \(28.7500]\) \\
{\([\)} & \(28.3750]\) \\
{\([\)} & \(28.7920]\) \\
{\([\)} & \(28.7710]\) \\
{\([\)} & \(28.4790]\) \\
{\([\)} & \(28.6670]\)
\end{tabular}
\begin{tabular}{rr}
{\([\)} & \(27.6880]\) \\
{\([\)} & \(28.2290]\) \\
{\([\)} & \(28.8960]\) \\
{\([\)} & \(29.6670]\) \\
{\([\)} & \(29.7500]\) \\
{\([\)} & \(30.4580]\) \\
{\([\)} & \(30.2290]\) \\
{\([\)} & \(31.5830]\) \\
{\([\)} & \(31.2080]\) \\
{\([\)} & \(31.2080]\) \\
{\([\)} & \(31.5000]\) \\
{\([\)} & \(31.6460]\) \\
{\([\)} & \(32.5420]\) \\
{\([\)} & \(32.1880]\) \\
{\([\)} & \(31.7290]\) \\
{\([\)} & \(31.1880]\) \\
{\([\)} & \(31.3330]\) \\
{\([\)} & \(31.4580]\) \\
{\([\)} & \(31.4380]\) \\
{\([\)} & \(31.2710]\) \\
{\([\)} & \(30.9380]\) \\
{\([\)} & \(31.2080]\) \\
{\([\)} & \(32.3750]\) \\
{\([\)} & \(32]\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(33.2080]\) \\
\hline [ & \(32.9380]\) \\
\hline [ & \(32.8130]\) \\
\hline [ & \(32.8330]\) \\
\hline [ & \(32.5630]\) \\
\hline [ & 32] \\
\hline [ & \(31.4790]\) \\
\hline [ & 31.6670 ] \\
\hline [ & \(32.1670]\) \\
\hline [ & \(31.8960]\) \\
\hline [ & \(32.0420]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(33.1250]\) \\
\hline [ & \(32.9580]\) \\
\hline [ & \(32.1670]\) \\
\hline [ & \(32.8750]\) \\
\hline [ & \(32.4580]\) \\
\hline [ & \(34.2500]\) \\
\hline [ & 35] \\
\hline [ & \(35.4170]\) \\
\hline [ & \(35.6250]\) \\
\hline [ & \(36.2710]\) \\
\hline [ & 36] \\
\hline [ & \(36.1040]\) \\
\hline [ & \(36.1040]\) \\
\hline [ & \(36.1880]\) \\
\hline [ & 35.8960 ] \\
\hline [ & \(36.1670]\) \\
\hline [ & \(36.9380]\) \\
\hline [ & \(36.7080]\) \\
\hline [ & \(37.1460]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(37.6670]\) \\
\hline [ & \(38.2920]\) \\
\hline [ & \(38.0630]\) \\
\hline [ & \(38.1250]\) \\
\hline [ & \(38.0210]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(37.3130]\) \\
\hline [ & \(37.0830]\) \\
\hline [ & \(36.6670]\) \\
\hline [ & \(37.3130]\) \\
\hline [ & \(36.4580]\) \\
\hline [ & 36.6670 ] \\
\hline [ & \(35.6250]\) \\
\hline [ & \(35.0630]\) \\
\hline [ & \(35.2080]\) \\
\hline [ & \(35.2710]\) \\
\hline [ & \(35.2920]\) \\
\hline [ & \(34.9380]\) \\
\hline [ & \(35.3130]\) \\
\hline [ & \(35.3330]\) \\
\hline [ & \(36.5420]\) \\
\hline [ & 35.8960 ] \\
\hline [ & \(35.7710]\) \\
\hline [ & \(35.4380]\) \\
\hline [ & \(35.6670]\) \\
\hline [ & \(34.3330]\) \\
\hline [ & 35.6460 ] \\
\hline [ & \(35.6250]\) \\
\hline [ & \(35.8960]\) \\
\hline [ & \(35.7500]\) \\
\hline [ & \(35.1880]\) \\
\hline [ & \(35.5830]\) \\
\hline [ & \(35.3330]\) \\
\hline [ & \(36.2920]\) \\
\hline [ & \(36.9790]\) \\
\hline [ & \(36.1250]\) \\
\hline [ & \(35.9580]\) \\
\hline [ & \(35.6670]\) \\
\hline [ & \(36.3540]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(36.7500]\) \\
\hline [ & \(37.7290]\) \\
\hline [ & \(37.8540]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(37.3330]\) \\
\hline [ & \(37.7920]\) \\
\hline [ & \(38.4580]\) \\
\hline [ & \(38.9170]\) \\
\hline [ & \(40.6670]\) \\
\hline [ & \(41.2290]\) \\
\hline [ & \(40.7080]\) \\
\hline [ & \(40.3130]\) \\
\hline [ & \(41.1670]\) \\
\hline [ & \(41.2920]\) \\
\hline [ & \(41.5210]\) \\
\hline [ & \(41.8960]\) \\
\hline [ & \(42.3750]\) \\
\hline [ & \(42.2290]\) \\
\hline [ & \(41.3960]\) \\
\hline [ & \(39.7290]\) \\
\hline [ & \(39.8330]\) \\
\hline [ & \(40.2920]\) \\
\hline [ & \(39.6040]\) \\
\hline [ & \(39.5000]\) \\
\hline [ & \(38.6880]\) \\
\hline [ & \(36.8750]\) \\
\hline [ & \(36.5630]\) \\
\hline [ & \(36.9790]\) \\
\hline [ & \(38.2080]\) \\
\hline [ & \(38.6460]\) \\
\hline [ & \(38.7710]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(37.2500]\) \\
\hline [ & \(38.1040]\) \\
\hline [ & \(37.7920]\) \\
\hline [ & \(37.7500]\) \\
\hline [ & \(36.9380]\) \\
\hline [ & \(36.7080]\) \\
\hline [ & \(36.5210]\) \\
\hline [ & \(36.5210]\) \\
\hline [ & \(38.2290]\) \\
\hline
\end{tabular}
38.6250 ]
\(38.8330]\)
39.4380 ]
38.7290]
\(38.3540]\)
37.3960 ]
37.6250 ]
38.1040]
\(37.3330]\)
35.8540 ]
\(36.2500]\)
\(36.5830]\)
\(37.5630]\)
\(37.5000]\)
\(36.8330]\)
37.7290]
\(35.0210]\)
35.4170]
35.4790 ]
\(\mathrm{NaN}]\)
\(35.2710]\)
\(35.5210]\)
\(36.1040]\)
37]
\(38.1250]\)
\(39.3750]\)
\(39.8750]\)
\(39.3750]\)
\(39.3130]\)
39.3750 ]
\(38.5630]\)
\(37.7500]\)
\(37.1880]\)
\(36.2500]\)
\(36.8130]\)
36.6250 ]
35.3750 ]
\begin{tabular}{lr}
{\([\)} & \(35.3750]\) \\
{\([\)} & \(35.3130]\) \\
{\([\)} & \(34.4380]\) \\
{\([\)} & \(34.6880]\) \\
{\([\)} & \(32.8130]\) \\
{\([\)} & \(33.5630]\) \\
{\([\)} & \(33.3130]\) \\
{\([\)} & \(33.3750]\) \\
{\([\)} & \(32.8750]\) \\
{\([\)} & \(32.1250]\) \\
{\([\)} & \(32.4380]\) \\
{\([\)} & \(31.8130]\) \\
{\([\)} & \(31.7500]\) \\
{\([\)} & \(32.1880]\) \\
{\([\)} & \(33.5000]\) \\
{\([\)} & \(33.1250]\) \\
{\([\)} & \(33.6250]\) \\
{\([\)} & \(33.2500]\) \\
{\([\)} & \(33.3750]\) \\
{\([\)} & \(34.0630]\) \\
{\([\)} & \(31.33]\) \\
{\([\)} & \(31.7500]\) \\
{\([\)} & \(30.6250]\) \\
{\([\)} & \(27.4380]\) \\
{\([\)} & \(30.3750]\) \\
{\([\)} & \(29.8750]\) \\
{\([\)} & \(28.3130]\) \\
{\([\)} & \(28.2500]\) \\
{\([\)} & NaN]
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(25.5630]\) \\
\hline [ & \(25.1250]\) \\
\hline [ & \(25.1880]\) \\
\hline [ & \(26.8130]\) \\
\hline [ & \(25.8750]\) \\
\hline [ & \(25.6250]\) \\
\hline [ & \(26.2500]\) \\
\hline [ & \(26]\) \\
\hline [ & \(25.3750]\) \\
\hline [ & \(24.9380]\) \\
\hline [ & \(25.2500]\) \\
\hline [ & \(25.0630]\) \\
\hline [ & \(25.3750]\) \\
\hline [ & \(24.9380]\) \\
\hline [ & \(23.5000]\) \\
\hline [ & \(23.6880]\) \\
\hline [ & \(24.6250]\) \\
\hline [ & \(25.5000]\) \\
\hline [ & \(24.3750]\) \\
\hline [ & \(25.8750]\) \\
\hline [ & \(25.5000]\) \\
\hline [ & \(26.0630]\) \\
\hline [ & \(27.0630]\) \\
\hline [ & \(27.5630]\) \\
\hline [ & 28] \\
\hline [ & \(27.7500]\) \\
\hline [ & \(27.9380]\) \\
\hline [ & \(26.8130]\) \\
\hline [ & \(26.4380]\) \\
\hline [ & \(26.6250]\) \\
\hline [ & \(26.9380]\) \\
\hline [ & \(28.8130]\) \\
\hline [ & \(29.5630]\) \\
\hline [ & \(28.6250]\) \\
\hline [ & \(30.1880]\) \\
\hline [ & \(30.2500]\) \\
\hline [ & \(29.5630]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(28.8750]\) \\
\hline [ & \(28.8750]\) \\
\hline [ & \(28.5630]\) \\
\hline [ & \(29.1250]\) \\
\hline [ & \(29.0630]\) \\
\hline [ & \(29.0630]\) \\
\hline [ & 29] \\
\hline [ & \(28.3130]\) \\
\hline [ & \(28.5000]\) \\
\hline [ & \(29.5000]\) \\
\hline [ & \(29.8130]\) \\
\hline [ & \(30.9380]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(31.8750]\) \\
\hline [ & \(32.1880]\) \\
\hline [ & \(31.5000]\) \\
\hline [ & \(31.1880]\) \\
\hline [ & \(30.8750]\) \\
\hline [ & \(31.3750]\) \\
\hline [ & \(31.1250]\) \\
\hline [ & 32] \\
\hline [ & \(33.5630]\) \\
\hline [ & \(32.4380]\) \\
\hline [ & 32] \\
\hline [ & \(30.6250]\) \\
\hline [ & \(30.7500]\) \\
\hline [ & \(30.7500]\) \\
\hline [ & \(30.8750]\) \\
\hline [ & \(30.8130]\) \\
\hline [ & \(31]\) \\
\hline [ & \(29.9380]\) \\
\hline [ & \(30.9380]\) \\
\hline [ & \(30.5630]\) \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(30.4380]\) \\
\hline [ & \(30.4380]\) \\
\hline [ & \(29.8750]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & 30] \\
\hline [ & NaN ] \\
\hline [ & \(29.5630]\) \\
\hline [ & \(30.5630]\) \\
\hline [ & \(30.9380]\) \\
\hline [ & \(31.7500]\) \\
\hline [ & \(32.5630]\) \\
\hline [ & \(35.2500]\) \\
\hline [ & 38] \\
\hline [ & \(36.1250]\) \\
\hline [ & \(36.0630]\) \\
\hline [ & 36] \\
\hline [ & \(\mathrm{NaN}]\) \\
\hline [ & \(36.5000]\) \\
\hline [ & \(36]\) \\
\hline [ & \(34.5630]\) \\
\hline [ & \(34.1250]\) \\
\hline [ & \(34.9380]\) \\
\hline [ & \(34.5630]\) \\
\hline [ & \(32.9380]\) \\
\hline [ & \(33.5000]\) \\
\hline [ & 33] \\
\hline [ & 33.6880 ] \\
\hline [ & \(33.3750]\) \\
\hline [ & \(33.6250]\) \\
\hline [ & \(33.1250]\) \\
\hline [ & \(34.2500]\) \\
\hline [ & 34] \\
\hline [ & \(33.5000]\) \\
\hline [ & \(34.0630]\) \\
\hline [ & 35.1880 ] \\
\hline [ & \(35.4380]\) \\
\hline [ & NaN ] \\
\hline [ & \(35.0630]\) \\
\hline [ & \(34.8750]\) \\
\hline [ & \(34.5000]\) \\
\hline [ & \(34.1250]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [ & \(34.8750]\) \\
\hline [ & \(34.8750]\) \\
\hline [ & \(35.0630]\) \\
\hline [ & 34.5000 ] \\
\hline [ & 35.1880 ] \\
\hline [ & \(34.8130]\) \\
\hline [ & \(34.1880]\) \\
\hline [ & 34.5000 ] \\
\hline [ & 35.1880 ] \\
\hline [ & \(35.8130]\) \\
\hline [ & \(36.4380]\) \\
\hline [ & 34.6880 ] \\
\hline [ & 34.5000 ] \\
\hline [ & 34.6880 ] \\
\hline [ & \(36.0630]\) \\
\hline [ & \(35.8750]\) \\
\hline [ & 35.0630 ] \\
\hline [ & \(34.5000]\) \\
\hline [ & 35.4380 ] \\
\hline [ & 35.0630 ] \\
\hline [ & 34.3750 ] \\
\hline [ & 33.1880 ] \\
\hline [ & 33.1880 ] \\
\hline [ & \(33.3750]\) \\
\hline [ & \(32.9380]\) \\
\hline [ & \(33.0630]\) \\
\hline
\end{tabular}


See Also
tsaccel
\begin{tabular}{|c|c|}
\hline Purpose & Moving average \\
\hline \multirow[t]{5}{*}{Syntax} & \[
\begin{aligned}
& \text { output }=\text { tsmovavg(tsobj,'s',lag, dim) } \\
& \text { output }=\text { tsmovavg(vector,'s',lag,dim) }
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \text { output }=\text { tsmovavg(tsobj,'e',timeperiod,dim) } \\
& \text { output }=\text { tsmovavg(vector,'e',timeperiod, dim) }
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \text { output = tsmovavg(tsobj,'t', numperiod,dim) } \\
& \text { output }=\text { tsmovavg(vector,'t', numperiod, dim) }
\end{aligned}
\] \\
\hline & ```
output = tsmovavg(tsobj,'w',weights,dim)
output = tsmovavg(vector,'w',weights,dim)
``` \\
\hline & ```
output = tsmovavg(tsobj,'m',numperiod,dim)
output = tsmovavg(vector,'m',numperiod,dim)
``` \\
\hline \multirow[t]{3}{*}{Description} & output = tsmovavg(tsobj,'s',lag,dim) returns the simple moving average for financial time series object, tsobj. lag indicates the number of previous data points used with the current data point when calculating the moving average. \\
\hline & output = tsmovavg(vector, 's', lag, dim) returns the simple moving average for a vector. lag indicates the number of previous data points used with the current data point when calculating the moving average. \\
\hline & output = tsmovavg(tsobj, 'e',timeperiod,dim) returns the exponential weighted moving average for financial time series object, tsobj. The exponential moving average is a weighted moving average where timeperiod specifies the time period. Exponential moving averages reduce the lag by applying more weight to recent prices. For example, a 10 -period exponential moving average weights the most recent price by \(18.18 \%\). (2/(timeperiod + 1)). \\
\hline
\end{tabular}
output = tsmovavg(vector,'e',timeperiod, dim) returns the exponential weighted moving average for a vector. The exponential moving average is a weighted moving average, where timeperiod specifies the time period. Exponential moving averages reduce the lag by applying more weight to recent prices. For example, a 10 -period exponential moving average weights the most recent price by \(18.18 \%\). (2/(timeperiod + 1)).
output = tsmovavg(tsobj,'t', numperiod,dim) returns the triangular moving average for financial time series object, tsobj. The triangular moving average double-smooths the data. tsmovavg calculates the first simple moving average with window width of ceil(numperiod +1 )/2. Then it calculates a second simple moving average on the first moving average with the same window size.
output = tsmovavg(vector, 't', numperiod, dim) returns the triangular moving average for a vector. The triangular moving average double-smooths the data. tsmovavg calculates the first simple moving average with window width of ceil(numperiod +1 )/2. Then it calculates a second simple moving average on the first moving average with the same window size.
output = tsmovavg(tsobj, 'w', weights, dim) returns the weighted moving average for the financial time series object, tsobj, by supplying weights for each element in the moving window. The length of the weight vector determines the size of the window. If larger weight factors are used for more recent prices and smaller factors for previous prices, the trend is more responsive to recent changes.
output = tsmovavg(vector, 'w', weights, dim) returns the weighted moving average for the vector by supplying weights for each element in the moving window. The length of the weight vector determines the size of the window. If larger weight factors are used for more recent prices and smaller factors for previous prices, the trend is more responsive to recent changes.

\section*{Input Arguments}
output = tsmovavg(tsobj,'m', numperiod,dim) returns the modified moving average for the financial time series object, tsobj. The modified moving average is similar to the simple moving average. Consider the argument numperiod to be the lag of the simple moving average. The first modified moving average is calculated like a simple moving average. Subsequent values are calculated by adding the new price and subtracting the last average from the resulting sum.
output = tsmovavg(vector, 'm', numperiod, dim) returns the modified moving average for the vector. The modified moving average is similar to the simple moving average. Consider the argument numperiod to be the lag of the simple moving average. The first modified moving average is calculated like a simple moving average. Subsequent values are calculated by adding the new price and subtracting the last average from the resulting sum.

\section*{tsobi-Financial time series object \\ object}

Financial time series object specified using a time series object created using fints.

\section*{lag - Number of previous data points \\ nonnegative integer}

Number of previous data points specified as a nonnegative integer. Lag indicates the window size or number of periods of the moving average.

\section*{vector - Set of observations}
vector or matrix
Set of observations specified as a vector or matrix.

\section*{dim-dimension to operate along}
positive integer with value 1 or 2
Dimension to operate along, specified as a positive integer with a value of 1 or 2 . dim is an optional input argument, and if it is not included
as an input, the default value 2 is assumed. The default of dim \(=2\) indicates a row-oriented matrix, where each row is a variable and each column is an observation.

If \(\operatorname{dim}=1\), the input is assumed to be a column vector or column-oriented matrix, where each column is a variable and each row an observation.

\section*{timeperiod - Length of time period \\ nonnegative integer}

Length of time period specified as a nonnegative integer.

\section*{numperiod - Number of periods considered}
nonnegative integer
Number of periods considered specified as a nonnegative integer.

\section*{weights - Weights for each element in the moving window}
vector of weights
Weights for each element in the window specified as a vector of weights.

\section*{Output Arguments}

\section*{Examples}

\section*{output - Moving average calculation}
vector or matrix
Moving average calculation returned as a vector or matrix. The output returned from tsmovavg is identical in format to the input.

\section*{Compute Five Forms of Moving Averages Using a Financial Time Series Object}

Load the financial time series object, dis for Disney stock and look at the weekly data for this time series.
```

```
load disney.mat
```

```
load disney.mat
weekly = toweekly(dis);
weekly = toweekly(dis);
dates = (weekly.dates);
dates = (weekly.dates);
price = fts2mat(weekly.CLOSE);
```

```
price = fts2mat(weekly.CLOSE);
```

```

Set the |lag | input argument for the window size for the moving average.
window_size = 12;
Calculate the simple moving average.
```

simple = tsmovavg(price,'s',window_size,1);

```

Calculate the simple moving average.
```

simple = tsmovavg(price,'s',window_size,1);

```

Calculate the exponential weighted moving average moving average.
```

exp = tsmovavg(price,'e',window_size,1);

```

Calculate the triangular moving average moving average.
```

tri = tsmovavg(price,'t',window_size,1);

```

Calculate the weighted moving average moving average.
```

semi_gaussian = [0.026 0.045 0.071 0.1 0.12 0.138];
semi_gaussian = [semi_gaussian fliplr(semi_gaussian)];
weighted = tsmovavg(price,'w',semi_gaussian,1);

```

Calculate the modified moving average moving average.
```

modif = tsmovavg(price,'m',window_size,1);

```

Plot the results for the five moving average calculations for Disney stock.
```

plot(dates,price,...
dates,simple,...
dates,exp,...
dates,tri,...
dates,weighted,...

```
```

 dates,modif)
 datetick
legend('Stock Price','Simple','Exponential','Triangular','Weighted',...
'Modified','Location','NorthWest')
title('Disney Weekly Price \& Moving Averages')

```

Disney Weekly Price \& Moving Averages


\section*{References}

Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 184-192.

See Also mean I peravg

\section*{typprice}

\section*{Purpose Typical price}

Syntax tprc = typprice(highp, lowp, closep)
tprc = typprice([highp lowp closep])
tprcts = typprice(tsobj)
tprcts = typprice(tsobj, ParameterName, ParameterValue, ...)

\section*{Arguments}
\begin{tabular}{ll} 
highp & High price (vector). \\
lowp & Low price (vector). \\
closep & Closing price (vector). \\
tsobj & Financial time series object.
\end{tabular}

\section*{Description}
tprc = typprice(highp, lowp, closep) calculates the typical prices tprc from the high (highp), low (lowp), and closing (closep) prices. The typical price is the average of the high, low, and closing prices for each period.
tprc = typprice([highp lowp closep]) accepts a three-column matrix as the input rather than two individual vectors. The columns of the matrix represent the high, low, and closing prices, in that order.
tprcts = typprice(tsobj) calculates the typical prices from the stock data contained in the financial time series object tsobj. The object must contain, at least, the High, Low, and Close data series. The typical price is the average of the closing price plus the high and low prices. tprcts is a financial time series object of the same dates as tsobj containing the data series TypPrice.
tprcts = typprice(tsobj, ParameterName, ParameterValue, ...) accepts parameter name/parameter value pairs as input. These pairs specify the name(s) for the required data series if it is different from the expected default name(s). Valid parameter names are
- HighName: high prices series name

\section*{typprice}
- LowName: low prices series name
- CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter names.

\section*{Examples Compute the Typical Price}

This example shows how to compute the typical price for Disney stock and plot the results.
```

load disney.mat
dis_Typ = typprice(dis);
plot(dis_Typ)
title('Typical Price for Disney')

```

\section*{typprice}


\author{
References Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 291-292.
}

See Also medprice | wclose
Purpose

Univariate \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) parameter estimation with Gaussian innovations
[Kappa, Alpha, Beta] = ugarch(U, P, Q)
Syntax
Arguments
Description

U Single column vector of random disturbances, that is, the residuals or innovations \(\left(\varepsilon_{t}\right)\), of an econometric model representing a mean-zero, discrete-time stochastic process. The innovations time series \(U\) is assumed to follow a GARCH \((\mathrm{P}, \mathrm{Q})\) process.

Note The latest value of residuals is the last element of vector U.

P Nonnegative, scalar integer representing a model order of the GARCH process. P is the number of lags of the conditional variance. \(P\) can be zero; when \(P=0\), a \(\operatorname{GARCH}(0, Q)\) process is actually an \(\mathrm{ARCH}(\mathrm{Q})\) process.

Q Positive, scalar integer representing a model order of the GARCH process. \(Q\) is the number of lags of the squared innovations.
[Kappa, Alpha, Beta] = ugarch(U, P, Q) computes estimated univariate \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) parameters with Gaussian innovations.
Kappa is the estimated scalar constant term ([[KAPPA]]) of the GARCH process.

Alpha is a P-by- 1 vector of estimated coefficients, where \(P\) is the number of lags of the conditional variance included in the GARCH process.

Beta is a Q-by- 1 vector of estimated coefficients, where \(Q\) is the number of lags of the squared innovations included in the GARCH process.

The time-conditional variance, \(\sigma_{t}^{2}\), of a \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process is modeled as
\[
\sigma_{t}^{2}=K+\sum_{i=1}^{P} \alpha_{i} \sigma_{t-i}^{2}+\sum_{j=1}^{Q} \beta_{j} \varepsilon_{t-j}^{2}
\]
where \(\alpha\) represents the argument Alpha, \(\beta\) represents Beta, and the \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) coefficients \(\{K, a, \beta\}\) are subject to the following constraints.
\[
\begin{aligned}
& \sum_{i=1}^{P} \alpha_{i}+\sum_{j=1}^{Q} \beta_{j}<1 \\
& K>0 \\
& \alpha_{i} \geq 0 \quad i=1,2, \ldots, P \\
& \beta_{j} \geq 0 \quad j=1,2, \ldots, Q .
\end{aligned}
\]

Note that \(U\) is a vector of residuals or innovations \(\left(\varepsilon_{t}\right)\) of an econometric model, representing a mean-zero, discrete-time stochastic process.

Although \(\sigma_{t}^{2}\) is generated using the equation above, \(\varepsilon_{t}\) and \(\sigma_{t}^{2}\) are related as
\[
\varepsilon_{t}=\sigma_{t} v_{t}
\]
where \(\left\{v_{t}\right\}\) is an independent, identically distributed (iid) sequence \(\sim\) \(\mathrm{N}(0,1)\).

> Note ugarch corresponds generally to the Econometrics Toolbox function garchfit. The Econometrics Toolbox software provides a comprehensive and integrated computing environment for the analysis of volatility in time series. For information, see the Econometrics Toolbox documentation or the financial products Web page at http://www.mathworks.com/products/finprod/.

\author{
Examples See ugarchsim for an example of a \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process. \\ References James D. Hamilton, Time Series Analysis, Princeton University Press, 1994
}

\author{
See Also \\ ugarchpred | ugarchsim | garchfit
}

\section*{ugarchllf}

Purpose \(\begin{aligned} & \text { Log-likelihood objective function of univariate GARCH }(\mathrm{P}, \mathrm{Q}) \text { processes } \\ & \text { with Gaussian innovations }\end{aligned}\)
Syntax
LogLikelihood = ugarchllf(Parameters, U, P, Q)
Arguments
Parameters (1 + P + Q )-by-1 column vector of GARCH \((P, Q)\) process parameters. The first element is the scalar constant term [[KAPPA]] of the GARCH process; the next \(P\) elements are coefficients associated with the \(P\) lags of the conditional variance terms; the next \(Q\) elements are coefficients associated with the \(Q\) lags of the squared innovations terms.

U

P

Q

Single column vector of random disturbances, that is, the residuals or innovations ( \(\varepsilon_{t}\) ), of an econometric model representing a mean-zero, discrete-time stochastic process. The innovations time series \(U\) is assumed to follow a GARCH \((\mathrm{P}, \mathrm{Q})\) process.

Note The latest value of residuals is the last element of vector \(U\).

Nonnegative, scalar integer representing a model order of the GARCH process. \(P\) is the number of lags of the conditional variance. \(P\) can be zero; when \(P=\) 0 , a GARCH \((0, Q)\) process is actually an \(\operatorname{ARCH}(\mathrm{Q})\) process.

Positive, scalar integer representing a model order of the GARCH process. \(Q\) is the number of lags of the squared innovations.

\section*{Description}

LogLikelihood = ugarchllf(Parameters, U, P, Q) computes the log-likelihood objective function of univariate \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) processes with Gaussian innovations.

LogLikelinood is a scalar value of the \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) log-likelihood objective function given the input arguments. This function is meant to be optimized via the fmincon function of the Optimization Toolbox software.
fmincon is a minimization routine. To maximize the log-likelihood function, the LogLikelihood output parameter is actually the negative of what is formally presented in most time series or econometrics references.

The time-conditional variance, \(\sigma_{t}^{2}\), of a \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process is modeled as
\[
\sigma_{t}^{2}=K+\sum_{i=1}^{P} \alpha_{i} \sigma_{t-i}^{2}+\sum_{j=1}^{Q} \beta_{j} \varepsilon_{t-j}^{2}
\]
where \(\alpha\) represents the argument Alpha, and \(\beta\) represents Beta. U is a vector of residuals or innovations \(\left(\varepsilon_{t}\right)\) representing a mean-zero, discrete time stochastic process. Although \(\sigma_{t}^{2}\) is generated via the equation above, \(\varepsilon_{t}\) and \(\sigma_{t}^{2}\) are related as
\[
\varepsilon_{t}=\sigma_{t} v_{t}
\]
where \(\left\{v_{t}\right\}\) is an independent, identically distributed (iid) sequence \(\sim\) \(\mathrm{N}(0,1)\).

Since ugarchllf is really just a helper function, no argument checking is performed. This function is not meant to be called directly from the command line.

> Note The Econometrics Toolbox software provides a comprehensive and integrated computing environment for the analysis of volatility in time series. For information, see the Econometrics Toolbox documentation or the financial products Web page at http://www.mathworks.com/products/finprod/.

See Also
ugarch | ugarchpred | ugarchsim

\section*{Purpose}

\section*{Syntax}

Arguments

Forecast conditional variance of univariate \(\mathrm{GARCH}(\mathrm{P}, \mathrm{Q})\) processes
[VarianceForecast, H] = ugarchpred(U, Kappa, Alpha, Beta, NumPeriods)

> Single column vector of random disturbances, that is, the residuals or innovations ( \(\varepsilon_{t}\) ), of an econometric model representing a mean-zero, discrete-time stochastic process. The innovations time series \(U\) is assumed to follow a \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process.

Note The latest value of residuals is the last element of vector \(U\).

Kappa Scalar constant term [[KAPPA]] of the GARCH process.

Alpha \(\quad \mathrm{P}\)-by-1 vector of coefficients, where \(P\) is the number of lags of the conditional variance included in the GARCH process. Alpha can be an empty matrix, in which case \(P\) is assumed 0 ; when \(P=0\), a \(\operatorname{GARCH}(0, Q)\) process is actually an \(\operatorname{ARCH}(\mathrm{Q})\) process.
Beta \(Q\)-by-1 vector of coefficients, where \(Q\) is the number of lags of the squared innovations included in the GARCH process.

NumPeriods
Positive, scalar integer representing the forecast horizon of interest, expressed in periods compatible with the sampling frequency of the input innovations column vector \(U\).

\section*{ugarchpred}

Description
[VarianceForecast, H] = ugarchpred(U, Kappa, Alpha, Beta, NumPeriods) forecasts the conditional variance of univariate \(\mathrm{GARCH}(\mathrm{P}, \mathrm{Q})\) processes.

VarianceForecast is a number of periods (NUMPERIODS)-by-1 vector of the minimum mean-square error forecast of the conditional variance of the innovations time series vector \(U\) (that is, \(\varepsilon_{\mathrm{t}}\) ). The first element contains the 1-period-ahead forecast, the second element contains the 2 -period-ahead forecast, and so on. Thus, if a forecast horizon greater than 1 is specified (NUMPERIODS > 1), the forecasts of all intermediate horizons are returned as well. In this case, the last element contains the variance forecast of the specified horizon, NumPeriods from the most recent observation in \(U\).

H is a vector of the conditional variances \(\left(\sigma_{\mathrm{t}}{ }^{2}\right)\) corresponding to the innovations vector \(U\). It is inferred from the innovations \(U\), and is a reconstruction of the "past" conditional variances, whereas the VarianceForecast output represents the projection of conditional variances into the "future." This sequence is based on setting pre-sample values of \(\sigma_{t}^{2}\) to the unconditional variance of the \(\left\{\varepsilon_{t}\right\}\) process. H is a single column vector of the same length as the input innovations vector \(U\).

The time-conditional variance, \(\sigma_{t}^{2}\), of a \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process is modeled as
\[
\sigma_{t}^{2}=K+\sum_{i=1}^{P} \alpha_{i} \sigma_{t-i}^{2}+\sum_{j=1}^{Q} \beta_{j} \varepsilon_{t-j}^{2},
\]
where \(\alpha\) represents the argument Alpha, \(\beta\) represents Beta, and the \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) coefficients \(\{K, \alpha, \beta\}\) are subject to the following constraints.
\[
\begin{aligned}
& \sum_{i=1}^{P} \alpha_{i}+\sum_{j=1}^{Q} \beta_{j}<1 \\
& K>0 \\
& \alpha_{i} \geq 0 \quad i=1,2, \ldots, P \\
& \beta_{j} \geq 0 \quad j=1,2, \ldots, Q .
\end{aligned}
\]

Note that \(U\) is a vector of residuals or innovations \(\left(\varepsilon_{t}\right)\) of an econometric model, representing a mean-zero, discrete-time stochastic process.

Although \(\sigma_{t}^{2}\) is generated using the equation above, \(\varepsilon_{t}\) and \(\sigma_{t}^{2}\) are related as
\[
\varepsilon_{t}=\sigma_{t} v_{t}
\]
where \(\left\{v_{t}\right\}\) is an independent, identically distributed (iid) sequence \(\sim\) \(\mathrm{N}(0,1)\).

Note ugarchpred corresponds generally to the Econometrics Toolbox function garchpred. The Econometrics Toolbox software provides a comprehensive and integrated computing environment for the analysis of volatility in time series. For information, see the Econometrics Toolbox documentation or the financial products Web page at http://www.mathworks.com/products/finprod/.

\section*{Examples See ugarchsim for an example of forecasting the conditional variance of a univariate GARCH \((\mathrm{P}, \mathrm{Q})\) process.}

See Also ugarch | ugarchsim | garchpred

Purpose
Syntax
Arguments

Simulate univariate \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process with Gaussian innovations
[U, H] = ugarchsim(Kappa, Alpha, Beta, NumSamples)

Kappa Scalar constant term [[KAPPA]] of the GARCH process.
Alpha \(\quad\)-by- 1 vector of coefficients, where \(P\) is the number of lags of the conditional variance included in the GARCH process. Alpha can be an empty matrix, in which case \(P\) is assumed 0 ; when \(P=0\), a \(\operatorname{GARCH}(0, Q)\) process is actually an \(\operatorname{ARCH}(Q)\) process.
Beta \(\quad\)-by- 1 vector of coefficients, where \(Q\) is the number of lags of the squared innovations included in the GARCH process.
NumSamples Positive, scalar integer indicating the number of samples of the innovations \(U\) and conditional variance H (see below) to simulate.

\section*{Description}
[U, H] = ugarchsim(Kappa, Alpha, Beta, NumSamples) simulates a univariate \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process with Gaussian innovations.
\(U\) is a number of samples (NUMSAMPLES)-by-1 vector of innovations \(\left(\varepsilon_{t}\right)\), representing a mean-zero, discrete-time stochastic process. The innovations time series \(U\) is designed to follow the \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process specified by the inputs Kappa, Alpha, and Beta.

H is a NUMSAMPLES-by- 1 vector of the conditional variances ( \(\sigma_{t}^{2}\) ) corresponding to the innovations vector \(U\). Note that \(U\) and \(H\) are the same length, and form a "matching" pair of vectors. As shown in
the following equation, \(\sigma_{t}^{2}\) (that is, \(\left.H(t)\right)\) represents the time series inferred from the innovations time series \(\left\{\varepsilon_{t}\right\}\) (that is, \(U\) ).

The time-conditional variance, \(\sigma_{t}^{2}\), of a \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process is modeled as
\[
\sigma_{t}^{2}=K+\sum_{i=1}^{P} \alpha_{i} \sigma_{t-i}^{2}+\sum_{j=1}^{Q} \beta_{j} \varepsilon_{t-j}^{2}
\]
where a represents the argument Alpha, \(B\) represents Beta, and the \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) coefficients \(\{K, \alpha, \beta\}\) are subject to the following constraints.
\[
\begin{aligned}
& \sum_{i=1}^{P} \alpha_{i}+\sum_{j=1}^{Q} \beta_{j}<1 \\
& K>0 \\
& \alpha_{i} \geq 0 \quad i=1,2, \ldots, P \\
& \beta_{j} \geq 0 \quad j=1,2, \ldots, Q .
\end{aligned}
\]

Note that \(U\) is a vector of residuals or innovations \(\left(\varepsilon_{t}\right)\) of an econometric model, representing a mean-zero, discrete-time stochastic process.

Although \(\sigma_{t}^{2}\) is generated using the equation above, \(\varepsilon_{t}\) and \(\sigma_{t}^{2}\) are related as
\[
\varepsilon_{t}=\sigma_{t} v_{t}
\]
where \(\left\{v_{t}\right\}\) is an independent, identically distributed (iid) sequence \(\sim\) \(\mathrm{N}(0,1)\).

The output vectors \(U\) and \(H\) are designed to be steady-state sequences in which transients have arbitrarily small effect. The (arbitrary) metric used by ugarchsim strips the first \(N\) samples of \(U\) and \(H\) such that the

\section*{ugarchsim}
sum of the GARCH coefficients, excluding Kappa, raised to the Nth power, does not exceed 0.01.
```

0.01 = (sum(Alpha) + sum(Beta))^N

```

Thus
\[
N=\log (0.01) / \log ((\text { sum (Alpha })+\operatorname{sum}(\text { Beta })))
\]

Note ugarchsim corresponds generally to the Econometrics Toolbox function garchsim. The Econometrics Toolbox software provides a comprehensive and integrated computing environment for the analysis of volatility in time series. For information see the Econometrics Toolbox documentation or the financial products Web page at http://www.mathworks.com/products/finprod/.
```

Examples This example simulates a $\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})$ process with $\mathrm{P}=2$ and $\mathrm{Q}=1$.
\% Set the random number generator seed for reproducability.
rng('default')
\% Set the simulation parameters of $\operatorname{GARCH}(P, Q)=\operatorname{GARCH}(2,1)$ process.
Kappa $=0.25 ; \quad$ \%a positive scalar.
Alpha $=[0.20 .1]$; \%a column vector of nonnegative numbers ($\mathrm{P}=2$).
Beta $=0.4 ; \quad$ \% $Q=1$.
NumSamples $=500$; number of samples to simulate.
\% Now simulate the process.
[U , H] = ugarchsim(Kappa, Alpha, Beta, NumSamples);
\% Estimate the process parameters

```
```

P = 2; % Model order P (P = length of Alpha).
Q = 1; % Model order Q (Q = length of Beta).
[k, a, b] = ugarch(U , P , Q);
disp(' ')
disp(' Estimated Coefficients:')
disp(' ----------------------')
disp([k; a; b])
disp(' ')
% Forecast the conditional variance using the estimated
% coefficients.
NumPeriods = 10; % Forecast out to 10 periods.
[VarianceForecast, H1] = ugarchpred(U, k, a, b, NumPeriods);
disp(' Variance Forecasts:')
disp(' -----------------')
disp(VarianceForecast)
disp(' ')

```

When the above code is executed, the screen output looks like the display shown.

\section*{Diagnostic Information}
```

Number of variables: 4

```
Functions
Objective: ugarchllf
Gradient: finite-differencing
Hessian: finite-differencing (or Quasi-Newton)
Constraints
Nonlinear constraints: do not exist
Number of linear inequality constraints: 1
Number of linear equality constraints: 0
\begin{tabular}{ll} 
Number of lower bound constraints: & 4 \\
Number of upper bound constraints: & 0 \\
Algorithm selected \\
\(\quad\) medium-scale: SQP, Quasi-Newton, line-search
\end{tabular}

End diagnostic information


Local minimum possible. Constraints satisfied.
fmincon stopped because the predicted change in the objective function
is less than the default value of the function tolerance and constraints are satisfied to within the default value of the constraint tolerance.

No active inequalities.

Estimated Coefficients:
0.2868
0.1984
0.0164

Variance Forecasts:
0.4130
0.5453
0.6240
0.6740
0.7055
0.7254
0.7380
0.7460
0.7510
0.7542

\section*{References James D. Hamilton, Time Series Analysis, Princeton University Press, 1994}

See Also ugarch | ugarchpred | garchsim

\section*{uicalendar}

Purpose Graphical calendar
Syntax uicalendar('PARAM1', VALUE1, 'PARAM2', VALUE2', ...)
Arguments
\begin{tabular}{|c|c|}
\hline 'BusDays ' & \begin{tabular}{l}
Values are: \\
- 0 - (Default) Standard calendar without nonbusiness day indicators. \\
- 1 - Marks NYSE nonbusiness days in red.
\end{tabular} \\
\hline 'BusDaySelect' & \begin{tabular}{l}
Values are: \\
- 0 - Only allow selection of business days. Nonbusiness days are determined from the following parameters: \\
- 'BusDays' \\
- 'Holiday' \\
- 'Weekend' \\
- 1 - (Default) Allows selections of business and nonbusiness days.
\end{tabular} \\
\hline 'DateBoxColor \({ }^{\text {' }}\) & [date R G B] : Sets the color of the date squares to the specified [R G B] color. \\
\hline 'DateStrColor' & [date R G B] : Sets the color of the numeric date number in the date square to the specified \([\mathrm{RG}\) B] color. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 'DestinationUI' & \begin{tabular}{l}
Values are: \\
- H - Scalar or vector of the destination object's handles. The default UI property that is populated with the date(s) is 'string'. \\
- \(\{\mathrm{H},\{\operatorname{Prop}\}\}\) - Cell array of handles and the destination object's UI properties. H must be a scalar or vector and Prop must be a single property string or a cell array of property strings.
\end{tabular} \\
\hline 'Holiday ' & Sets the specified holiday dates into the calendar. The corresponding date string of the holiday will appear Red. The Date(s) must be a scalar or vector of datenums. \\
\hline 'InitDate' & \begin{tabular}{l}
Values are: \\
- Datenum - Numeric date value specifying the initial start date when the calendar is initialized. The default date is TODAY. \\
- Datestr - Date string value specifying the initial start date when the calendar is initialized. Datestr must include a Year, Month, and Day (for example, 01-Jan-2006).
\end{tabular} \\
\hline ' InputDateForm & ' Format - Sets the format of initial start date, InitDate. See 'help datestr' for date format values. \\
\hline 'OutputDateForm & Format - Sets the format of output date string. See 'help datestr' for date format values. \\
\hline
\end{tabular}

\section*{uicalendar}
'OutputDateStyle'Values are:
- 0 - (Default) Returns a single date string or a cell array (row) of date string. For example, \{'01-Jan-2001, 02-Jan-2001, ...'\}.
- 1 - Returns a single date string or a cell (column) array of date strings. For example, \{'01-Jan-2001; 02-Jan-2001; ...'\}.
- 2 - Returns a string representation of a row vector of datenums. For example, ' [732758, 732759, 732760, 732761]'.
- 3 - Returns a string representation of a column vector of datenums. For example, '[732758; 732759; 732760; 732761]'.
'SelectionType' Values are:
- 0 - Allows multiple date selections.
- 1 - (Default) Allows only a single date selection.
'Weekend ' DayOfWeek - Sets the specified days of the week as weekend days. Weekend days are marked in red. DayOfWeek can be a vector containing the following numeric values:
- 1 -Sunday
- 2 - Monday
- 3 - Tuesday
- 4 - Wednesday
- 5 - Thursday
- 6 - Friday
- 7 - Saturday
\(\left.\begin{array}{l}\text { Also this value can be a vector of length } 7 \\ \text { containing 0's and 1's. The value 1 indicates a } \\ \text { weekend day. The first element of this vector } \\ \text { corresponds to Sunday. For example, when } \\ \text { Saturday and Sunday are weekend days then } \\ \text { WEEKEND = } \begin{array}{llll}1 & 0 & 0 & 0\end{array} 0001\end{array}\right]\).

\section*{Description}
uicalendar('PARAM1', VALUE1, 'PARAM2', VALUE2', ...) supports a customizable graphical calendar that interfaces with uicontrols. uicalendar populates uicontrols with user-selected dates.

Examples
Create a uicontrol:
```

textH1 = uicontrol('style', 'edit', 'position', [10 10 100 20]);

```

Call UICalendar:
```

uicalendar('DestinationUI', {textH1, 'string'})

```

Select a date and click ' OK '.

\section*{uicalendar}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline - \({ }^{\text {UI }}\) & Cale & ndar & & & & - \(x\) \\
\hline & & & 20 & 07 & \(\checkmark\) & - \\
\hline Su & Mo & Tu & ave & Th & Fr & Sa \\
\hline 29 & 30 & 1 & 2 & 3 & 4 & 5 \\
\hline 6 & 7 & \(\bigcirc\) & 9 & 10 & 11 & 12 \\
\hline 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\hline 20 & 21 & 22 & 23 & 24 & 25 & 26 \\
\hline 27 & 28 & 29 & 30 & 31 & & 2 \\
\hline 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline \multicolumn{2}{|l|}{Clear all} & & & OK & & ncel \\
\hline
\end{tabular}

For more information on using uicalendar with an application, see "Example of Using UICalendar with an Application" on page 15-5.

See Also
holidays
\begin{tabular}{ll} 
Purpose & Unary minus of financial time series object \\
Syntax & uminus \\
Description & uminus implements unary minus for a financial time series object. \\
See Also & uplus
\end{tabular}

Purpose Unary plus of financial time series object

\section*{Syntax uplus}

Description uplus implements unary plus for a financial time series object.
See Also uminus

\section*{Purpose Variance}

Syntax \(\quad y=\operatorname{var}(X)\)
\(\mathrm{y}=\operatorname{var}(\mathrm{X}, 1)\)
\(\mathrm{y}=\operatorname{var}(\mathrm{X}, \mathrm{W})\)
\(\mathrm{y}=\operatorname{var}(\mathrm{X}, \mathrm{W}, \mathrm{DIM})\)

\section*{Arguments}
\begin{tabular}{ll}
X & Financial times series object. \\
W & Weight vector used in calculating variance. \\
DIM & Dimension of X used in calculating variance.
\end{tabular}

\section*{Description}
var supports financial time series objects based on the MATLAB var function. See var in the MATLAB documentation.
\(y=\operatorname{var}(X)\), if \(X\) is a financial time series object and returns the variance of each series.
var normalizes y by \(\mathrm{N}-1\) if \(\mathrm{N}>1\), where N is the sample size. This is an unbiased estimator of the variance of the population from which \(X\) is drawn, as long as X consists of independent, identically distributed samples. For \(N=1\), \(y\) is normalized by \(N\).
\(y=\operatorname{var}(X, 1)\) normalizes by \(N\) and produces the second moment of the sample about its mean. \(\operatorname{var}(X, 0)\) is the same as \(\operatorname{var}(X)\).
\(y=\operatorname{var}(X, W)\) computes the variance using the weight vector \(W\). The length of \(W\) must equal the length of the dimension over which var operates, and its elements must be nonnegative. var normalizes \(W\) to sum to 1 . Use a value of 0 for \(W\) to use the default normalization by \(N\) -1 , or use a value of 1 to use \(N\).
\(y=\operatorname{var}(X, W\), DIM \()\) takes the variance along the dimension DIM of \(X\).
```

Examples The variance is the square of the standard deviation. Consider if
$\mathrm{f}=$ fints((today:today+1)', $[4-21 ; 9$ 7])
then
$\operatorname{var}(f, 0,1)$
is
[12.5 24.5 18.0]
and
var(f, 0, 2)
is
[9.0; 4.0]

```
```

See Also
corrcoef | cov | mean | std

```

\section*{Purpose}

Concatenate financial time series objects vertically

\section*{Syntax}
vertcat
Description
vertcat implements vertical concatenation of financial time series objects. vertcat essentially adds data points to a time series object. Objects to be vertically concatenated must not have any duplicate dates and/or times or any overlapping dates and/or times. The description fields are concatenated as well. They are separated by ||.

Examples
Create two financial time series objects with daily frequencies:
```

myfts = fints((today:today+4)', (1:5)', 'DataSeries', 'd');
yourfts = fints((today+5:today+9)', (11:15)', 'DataSeries', 'd');

```

Use vertcat to concatenate them vertically:
```

newfts1 = [myfts; yourfts]

```
newfts1 =
    desc: ||
    freq: Daily (1)
    'dates: (10)' 'DataSeries: (10)
    '11-Dec-2001' [ 1]
    '12-Dec-2001' [ 2]
    '13-Dec-2001' [ 3]
    '14-Dec-2001' [ 4]
    '15-Dec-2001' [ 5]
    '16-Dec-2001' [ 11]
    '17-Dec-2001' [ 12]
    '18-Dec-2001' [ 13]
    '19-Dec-2001' [ 14]
    '20-Dec-2001' [ 15]

Create two financial time series objects with different frequencies:
```

myfts = fints((today:today+4)', (1:5)', 'DataSeries', 'd');
hisfts = fints((today+5:7:today+34)', (11:15)', 'DataSeries',...
'w');

```

Concatenate these two objects vertically:
```

newfts2 = [myfts; hisfts]
newfts2 =
desc: ||
freq: Unknown (0)
'dates: (10)' 'DataSeries: (10)'
'11-Dec-2001' [1]
'12-Dec-2001' [2]
'13-Dec-2001' [3]
'14-Dec-2001' [4]
'15-Dec-2001' [5]
'16-Dec-2001' [11]
'23-Dec-2001' [12]
'30-Dec-2001' [13]
'06-Jan-2002' [14]
'13-Jan-2002' [15]

```

If all frequency indicators are the same, the new object has the same frequency indicator. However, if one of the concatenated objects has a different freq from the other(s), the frequency of the resulting object is set to Unknown (0). In these examples, newfts1 has Daily frequency, while newfts2 has Unknown (0) frequency.

\section*{See Also horzcat}
\begin{tabular}{ll} 
Purpose & Price and volume chart \\
Syntax & volarea (X) \\
Arguments &
\end{tabular}

X M-by-3 matrix where the first column contains date numbers, the second column is the asset price, and the third column is the volume.

\section*{Description}

\section*{Examples}
volarea( X ) plots asset date, price, and volume on a single axis.

\section*{Plot Asset Date, Price, and Volume on a Single Axis}

This example shows how to plot asset date, price, and volume on a single axis, given asset X as an M-by-3 matrix of date numbers, asset price, and volume.

X = [...
733299.00
733300.00
733303.00
733304.00
733305.00
733306.00
733307.00
733310.00
733311.00
733312.00
733313.00
733314.00
733317.00
733318.00
41.99 15045445.00;...
42.14 15346658.00;...
41.93 9034397.00;...
41.98 14486275.00;...
41.75 16389872.00;...
41.61 20475208.00;...
42.29 14833200.00;...
42.19 18945176.00;...
41.82 25188101.00;...
41.93 22689878.00;...
41.81 21084723.00;...
41.37 27963619.00;...
41.17 20385033.00;...
42.02 27783775.00];

\section*{volarea}
volarea(X)


See Also
bolling | candle | highlow | kagi | linebreak | movavg | pointfig | priceandvol | renko

\section*{Purpose Volume rate of change}

Syntax
Arguments
\begin{tabular}{ll} 
tvolume & Volume traded. \\
nTimes & (Optional) Time difference. Default \(=12\). \\
tsobj & Financial time series object.
\end{tabular}

\section*{Description}
vroc \(=\) volroc(tvolume nTimes) calculates the volume rate of change, vroc, from the volume traded data tvolume. If nTimes is specified, the volume rate of change is calculated between the current volume and the volume nTimes ago.
vrocts = volroc(tsobj, nTimes) calculates the volume rate of change, vrocts, from the financial time series object tsobj. The vrocts output is a financial time series object with similar dates as tsobj and a data series named VolumeROC. If nTimes is specified, the volume rate of change is calculated between the current volume and the volume nTimes ago.
vrocts = volroc(tsobj, nTimes, ParameterName, ParameterValue) specifies the name for the required data series when it is different from the default name. The valid parameter name is
- VolumeName: volume traded series name

The parameter value is a string that represents the valid parameter name.

Note, to compute a quantity over \(n\) periods, you must specify \(n+1\) for \(n\) Times. If you specify \(n T i m e s=0\), the function returns your original time series.

\section*{Examples Compute the Volume Rate of Change}

This example shows how to compute the volume rate of change for Disney stock and plot the results.
```

load disney.mat
dis_VolRoc = volroc(dis)
plot(dis_VolRoc)
title('Volume Rate of Change for Disney')

```
dis_VolRoc =
    desc: VolROC: Walt Disney Company (DIS)
    freq: Unknown (0)
    'dates: (782)' 'VolumeROC: (782)
    29-Mar-1996' [ NaN]
    01-Apr-1996' [ NaN]
    '02-Apr-1996' [ NaN]
    '03-Apr-1996' [ NaN]
    '04-Apr-1996' [ NaN]
    '05-Apr-1996' [ NaN]
    '08-Apr-1996' [ NaN]
    '09-Apr-1996' [ NaN]
    '10-Apr-1996' [ NaN]
    11-Apr-1996' [ NaN]
    '12-Apr-1996' [ NaN]
    '15-Apr-1996' [ 34.5367]
    '16-Apr-1996' [ 31.3764]
    17-Apr-1996' [ -15.0623]
    '18-Apr-1996' [ 1.6885]
    '19-Apr-1996' [ 8.6476]
    '22-Apr-1996' [ NaN]
    '23-Apr-1996' [ 29.5988]
    '24-Apr-1996' [ 369.4247]
    '25-Apr-1996' [ -13.6671]
    '26-Apr-1996' [ -52.5474]
\begin{tabular}{|c|c|c|}
\hline '29-Apr-1996' & [ & -58.9663] \\
\hline '30-Apr-1996' & [ & -35.4197] \\
\hline '01-May-1996' & [ & 89.8976] \\
\hline '02-May-1996' & [ & \(56.8838]\) \\
\hline '03-May-1996' & [ & 157.7661] \\
\hline '06-May-1996' & [ & \(43.0730]\) \\
\hline '07-May-1996' & [ & -12.0942] \\
\hline '08-May-1996' & [ & \(3.4186]\) \\
\hline '09-May-1996' & [ & -63.5080] \\
\hline '10-May-1996' & [ & -42.7512] \\
\hline '13-May-1996' & [ & \(6.1815]\) \\
\hline '14-May-1996' & [ & 14.1969] \\
\hline '15-May-1996' & [ & 97.6768] \\
\hline '16-May-1996' & [ & -44.1805] \\
\hline '17-May-1996' & [ & -17.4588] \\
\hline '20-May-1996' & [ & -39.3110] \\
\hline '21-May-1996' & [ & -29.6926] \\
\hline '22-May-1996' & [ & -7.9504] \\
\hline '23-May-1996' & [ & -42.6056] \\
\hline '24-May-1996' & [ & -28.0094] \\
\hline '27-May-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '28-May-1996' & [ & -39.3989] \\
\hline '29-May-1996' & [ & 16.7959] \\
\hline '30-May-1996' & [ & -28.0197] \\
\hline '31-May-1996' & [ & -13.6442] \\
\hline '03-Jun-1996' & [ & -33.4080] \\
\hline '04-Jun-1996' & [ & \(33.9201]\) \\
\hline '05-Jun-1996' & [ & \(23.3956]\) \\
\hline '06-Jun-1996' & [ & 87.7259] \\
\hline '07-Jun-1996' & [ & \(56.2560]\) \\
\hline '10-Jun-1996' & [ & -28.8118] \\
\hline '11-Jun-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '12-Jun-1996' & [ & -17.7625] \\
\hline '13-Jun-1996' & [ & -49.8164] \\
\hline '14-Jun-1996' & [ & -19.4850] \\
\hline '17-Jun-1996' & [ & -34.4091] \\
\hline '18-Jun-1996' & [ & \(9.0391]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 19-Jun-1996 ' & [ & -44.9614] \\
\hline 20-Jun-1996' & [ & -23.9619] \\
\hline 21-Jun-1996' & [ & 19.2479] \\
\hline 24-Jun-1996' & [ & -45.2996] \\
\hline 25-Jun-1996' & [ & 50.6788] \\
\hline 26-Jun-1996' & [ & -20.8493] \\
\hline '27-Jun-1996' & [ & \(9.8754]\) \\
\hline 28-Jun-1996' & [ & \(117.6214]\) \\
\hline 01-Jul-1996' & [ & -3.7163] \\
\hline 02-Jul-1996' & [ & \(115.4816]\) \\
\hline 03-Jul-1996' & [ & 91.2559] \\
\hline 04-Jul-1996' & [ & \(\mathrm{NaN}]\) \\
\hline 05-Jul-1996' & [ & -9.6536] \\
\hline 08-Jul-1996' & [ & -26.9873] \\
\hline 09-Jul-1996' & [ & 85.5680] \\
\hline 10-Jul-1996' & [ & \(28.5974]\) \\
\hline 11-Jul-1996' & [ & 113.1623] \\
\hline 12-Jul-1996' & [ & 85.2158] \\
\hline 15-Jul-1996' & [ & 83.5080] \\
\hline 16-Jul-1996' & [ & \(303.8133]\) \\
\hline 17-Jul-1996' & [ & 44.1629] \\
\hline 18-Jul-1996' & [ & -34.9305] \\
\hline 19-Jul-1996' & [ & \(\mathrm{NaN}]\) \\
\hline 22-Jul-1996' & [ & 28.9060] \\
\hline 23-Jul-1996' & [ & -28.5206] \\
\hline 24-Jul-1996' & [ & -25.8220] \\
\hline '25-Jul-1996' & [ & -8.2712] \\
\hline '26-Jul-1996' & [ & \(21.0962]\) \\
\hline 29-Jul-1996' & [ & \(0.7370]\) \\
\hline '30-Jul-1996' & [ & -35.8638] \\
\hline '31-Jul-1996' & [ & -53.8543] \\
\hline '01-Aug-1996' & [ & -18.2930] \\
\hline 02-Aug-1996' & [ & \(2.8381]\) \\
\hline '05-Aug-1996' & [ & -29.0490] \\
\hline '06-Aug-1996' & [ & -4.1309] \\
\hline '07-Aug-1996' & [ & -19.8781] \\
\hline 08-Aug-1996' & [ & -18.1307] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 09-Aug-1996' & [ & -48.0521] \\
\hline 12-Aug-1996' & [ & -68.2077] \\
\hline '13-Aug-1996' & [ & -57.0222] \\
\hline 14-Aug-1996' & [ & -49.7417] \\
\hline 15-Aug-1996' & [ & -66.0625] \\
\hline 16-Aug-1996' & [ & -52.2580] \\
\hline 19-Aug-1996' & [ & -50.7469] \\
\hline 20-Aug-1996' & [ & -16.3121] \\
\hline 21-Aug-1996' & [ & -41.8400] \\
\hline '22-Aug-1996' & [ & -7.1575] \\
\hline 23-Aug-1996' & [ & -23.4593] \\
\hline 26-Aug-1996' & [ & 13.2113] \\
\hline 27-Aug-1996' & [ & -10.4481] \\
\hline 28-Aug-1996' & [ & -34.6799] \\
\hline 29-Aug-1996' & [ & \(2.4382]\) \\
\hline 30-Aug-1996' & [ & \(105.8539]\) \\
\hline 02-Sep-1996' & [ & \(\mathrm{NaN}]\) \\
\hline 03-Sep-1996' & [ & 11.6415] \\
\hline 04-Sep-1996' & [ & -10.3148] \\
\hline 05-Sep-1996' & [ & \(21.2498]\) \\
\hline 06-Sep-1996' & [ & \(17.5947]\) \\
\hline 09-Sep-1996' & [ & -8.4905] \\
\hline 10-Sep-1996' & [ & \(24.0493]\) \\
\hline '11-Sep-1996' & [ & \(7.9827]\) \\
\hline 12-Sep-1996' & [ & \(308.0565]\) \\
\hline '13-Sep-1996' & [ & \(93.2757]\) \\
\hline 16-Sep-1996' & [ & -6.6852] \\
\hline 17-Sep-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '18-Sep-1996' & [ & \(9.7210]\) \\
\hline '19-Sep-1996' & [ & \(207.9374]\) \\
\hline '20-Sep-1996' & [ & 166.6801 ] \\
\hline '23-Sep-1996' & [ & -32.4118] \\
\hline '24-Sep-1996' & [ & \(25.9376]\) \\
\hline '25-Sep-1996' & [ & -26.3614] \\
\hline '26-Sep-1996' & [ & 11.0468] \\
\hline '27-Sep-1996' & [ & -71.0546] \\
\hline 30-Sep-1996' & [ & -34.4047] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '01-0ct-1996' & [ & -31.0242] \\
\hline '02-0ct-1996' & [ & -19.9211] \\
\hline '03-0ct-1996' & [ & \(6.1397]\) \\
\hline '04-0ct-1996' & [ & -29.7913] \\
\hline '07-0ct-1996' & [ & -73.5090] \\
\hline '08-0ct-1996' & [ & -4.3232] \\
\hline '09-0ct-1996' & [ & -15.5398] \\
\hline '10-0ct-1996' & [ & -30.5308] \\
\hline '11-0ct-1996' & [ & -50.9436] \\
\hline '14-0ct-1996' & [ & -10.5500] \\
\hline '15-0ct-1996' & [ & -25.9387] \\
\hline '16-0ct-1996' & [ & \(45.1999]\) \\
\hline '17-0ct-1996' & [ & -13.1823] \\
\hline '18-0ct-1996' & [ & \(5.6904]\) \\
\hline '21-0ct-1996' & [ & -35.9078] \\
\hline '22-0ct-1996' & [ & \(78.1134]\) \\
\hline '23-0ct-1996' & [ & \(70.9072]\) \\
\hline '24-0ct-1996' & [ & -8.9688] \\
\hline '25-0ct-1996' & [ & 17.9181] \\
\hline '28-0ct-1996' & [ & 108.0031] \\
\hline '29-0ct-1996' & [ & 35.7478 ] \\
\hline '30-0ct-1996' & [ & -35.8872] \\
\hline '31-0ct-1996' & [ & -27.0114] \\
\hline '01-Nov-1996' & [ & 8.6126] \\
\hline '04-Nov-1996' & [ & 10.7482] \\
\hline '05-Nov-1996' & [ & 18.5290] \\
\hline '06-Nov-1996' & [ & -14.6240] \\
\hline '07-Nov-1996' & [ & \(5.0437]\) \\
\hline '08-Nov-1996' & [ & \(40.2094]\) \\
\hline '11-Nov-1996' & [ & \(110.1261]\) \\
\hline '12-Nov-1996' & [ & 82.1654] \\
\hline '13-Nov-1996' & [ & \(57.8247]\) \\
\hline '14-Nov-1996' & [ & \(110.5142]\) \\
\hline '15-Nov-1996' & [ & \(236.4852]\) \\
\hline '18-Nov-1996' & [ & 8.3618] \\
\hline '19-Nov-1996' & [ & 18.2752] \\
\hline '20-Nov-1996' & [ & \(32.1772]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '21-Nov-1996' & [ & -6.2125] \\
\hline '22-Nov-1996' & [ & -10.2356] \\
\hline '25-Nov-1996' & [ & \(24.6466]\) \\
\hline '26-Nov-1996' & [ & \(186.1727]\) \\
\hline '27-Nov-1996' & [ & 13.9942] \\
\hline '28-Nov-1996' & [ & NaN ] \\
\hline '29-Nov-1996' & [ & -44.1001] \\
\hline '02-Dec-1996' & [ & -46.9741] \\
\hline '03-Dec-1996' & [ & \(22.3150]\) \\
\hline '04-Dec-1996' & [ & 20.6498] \\
\hline '05-Dec-1996' & [ & -31.4637] \\
\hline '06-Dec-1996' & [ & \(46.9278]\) \\
\hline '09-Dec-1996' & [ & -12.1216] \\
\hline '10-Dec-1996' & [ & -34.0378] \\
\hline '11-Dec-1996' & [ & -64.6159] \\
\hline '12-Dec-1996' & [ & -22.7444] \\
\hline '13-Dec-1996' & [ & NaN ] \\
\hline '16-Dec-1996' & [ & \(75.2750]\) \\
\hline '17-Dec-1996' & [ & \(16.2909]\) \\
\hline '18-Dec-1996' & [ & \(5.8614]\) \\
\hline '19-Dec-1996' & [ & -24.1170] \\
\hline '20-Dec-1996' & [ & \(188.5865]\) \\
\hline '23-Dec-1996' & [ & -44.7300] \\
\hline '24-Dec-1996' & [ & -69.0092] \\
\hline '25-Dec-1996' & [ & NaN ] \\
\hline '26-Dec-1996' & [ & -65.7062] \\
\hline '27-Dec-1996' & [ & -72.3844] \\
\hline '30-Dec-1996' & [ & -45.9509] \\
\hline '31-Dec-1996' & [ & -23.1583] \\
\hline '01-Jan-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '02-Jan-1997' & [ & 91.0895] \\
\hline '03-Jan-1997' & [ & \(26.1533]\) \\
\hline '06-Jan-1997' & [ & -62.5534] \\
\hline '07-Jan-1997' & [ & \(45.8538]\) \\
\hline '08-Jan-1997' & [ & \(179.9102]\) \\
\hline '09-Jan-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '10-Jan-1997' & [ & 196.9370 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '13-Jan-1997' & [ & \(220.8936]\) \\
\hline '14-Jan-1997' & [ & \(65.3529]\) \\
\hline '15-Jan-1997' & [ & \(99.0827]\) \\
\hline '16-Jan-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '17-Jan-1997' & [ & -31.3142] \\
\hline '20-Jan-1997' & [ & -4.0953] \\
\hline '21-Jan-1997' & [ & \(37.6711]\) \\
\hline '22-Jan-1997' & [ & 44.3610] \\
\hline '23-Jan-1997' & [ & 152.6172] \\
\hline '24-Jan-1997' & [ & \(1.3339]\) \\
\hline '27-Jan-1997' & [ & -6.3620] \\
\hline '28-Jan-1997' & [ & 74.7075] \\
\hline '29-Jan-1997' & [ & \(30.6345]\) \\
\hline '30-Jan-1997' & [ & -20.7743] \\
\hline '31-Jan-1997' & [ & -37.7268] \\
\hline '03-Feb-1997' & [ & -38.4741] \\
\hline '04-Feb-1997' & [ & -48.7995] \\
\hline '05-Feb-1997' & [ & -1.0367] \\
\hline '06-Feb-1997' & [ & \(2.7288]\) \\
\hline '07-Feb-1997' & [ & -44.8460] \\
\hline '10-Feb-1997' & [ & 27.1228] \\
\hline '11-Feb-1997' & [ & -25.0785] \\
\hline '12-Feb-1997' & [ & -58.7839] \\
\hline '13-Feb-1997' & [ & -5.5520] \\
\hline '14-Feb-1997' & [ & \(34.1372]\) \\
\hline '17-Feb-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '18-Feb-1997' & [ & \(21.8645]\) \\
\hline '19-Feb-1997' & [ & 58.8995] \\
\hline '20-Feb-1997' & [ & -38.0700] \\
\hline '21-Feb-1997' & [ & -29.1565] \\
\hline '24-Feb-1997' & [ & -34.6307] \\
\hline '25-Feb-1997' & [ & -46.4602] \\
\hline '26-Feb-1997' & [ & \(20.2234]\) \\
\hline '27-Feb-1997' & [ & -5.7376] \\
\hline '28-Feb-1997' & [ & -46.0897] \\
\hline '03-Mar-1997' & [ & -20.1724] \\
\hline '04-Mar-1997' & [ & \(\mathrm{NaN}]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '05-Mar-1997' & & \(11.6894]\) \\
\hline '06-Mar-1997' & [ & \(28.5738]\) \\
\hline '07-Mar-1997' & [ & \(57.1741]\) \\
\hline '10-Mar-1997' & [ & -31.7222] \\
\hline '11-Mar-1997' & [ & \(4.0075]\) \\
\hline '12-Mar-1997' & [ & 12.9261] \\
\hline '13-Mar-1997' & [ & -29.2908] \\
\hline '14-Mar-1997' & [ & \(37.8503]\) \\
\hline '17-Mar-1997' & & \(8.3197]\) \\
\hline '18-Mar-1997' & [ & -31.1850] \\
\hline '19-Mar-1997' & & -31.3832] \\
\hline '20-Mar-1997' & [ & -44.6139] \\
\hline '21-Mar-1997' & [ & -10.1663] \\
\hline '24-Mar-1997' & [ & -20.5179] \\
\hline '25-Mar-1997' & [ & \(48.5654]\) \\
\hline '26-Mar-1997' & [ & \(2.7380]\) \\
\hline '27-Mar-1997' & [ & \(12.0570]\) \\
\hline '28-Mar-1997' & [ & NaN] \\
\hline '31-Mar-1997' & [ & 17.1313] \\
\hline '01-Apr-1997' & [ & 26.0843 ] \\
\hline '02-Apr-1997' & [ & \(34.3729]\) \\
\hline '03-Apr-1997' & [ & 17.0206] \\
\hline '04-Apr-1997' & [ & \(38.5928]\) \\
\hline '07-Apr-1997' & [ & -52.2285] \\
\hline '08-Apr-1997' & [ & -43.2975] \\
\hline '09-Apr-1997' & [ & -43.1138] \\
\hline '10-Apr-1997' & [ & \(29.5087]\) \\
\hline '11-Apr-1997' & [ & \(30.3496]\) \\
\hline '14-Apr-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '15-Apr-1997' & [ & -28.4044] \\
\hline '16-Apr-1997' & [ & \(24.3669]\) \\
\hline '17-Apr-1997' & [ & -20.1934] \\
\hline '18-Apr-1997' & [ & \(0.5364]\) \\
\hline '21-Apr-1997' & [ & 19.7640] \\
\hline '22-Apr-1997' & [ & 226.9412] \\
\hline '23-Apr-1997' & [ & 215.2128] \\
\hline '24-Apr-1997' & [ & \(93.1543]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '25-Apr-1997' & [ & -15.3622] \\
\hline '28-Apr-1997' & [ & -40.8313] \\
\hline '29-Apr-1997' & [ & \(55.5159]\) \\
\hline '30-Apr-1997' & [ & 93.8849] \\
\hline '01-May-1997' & [ & -36.2274] \\
\hline '02-May-1997' & [ & \(4.8829]\) \\
\hline '05-May-1997' & [ & 26.2138] \\
\hline '06-May-1997' & [ & \(3.6223]\) \\
\hline '07-May-1997' & [ & -46.6351] \\
\hline ' 08-May-1997' & [ & -29.5276] \\
\hline '09-May-1997' & [ & -16.5178] \\
\hline '12-May-1997' & [ & \(38.0515]\) \\
\hline '13-May-1997' & [ & \(15.2752]\) \\
\hline '14-May-1997' & [ & -55.9624] \\
\hline '15-May-1997' & [ & -63.1703] \\
\hline '16-May-1997' & [ & 63.3969] \\
\hline '19-May-1997' & [ & -18.7420] \\
\hline '20-May-1997' & [ & -6.7986] \\
\hline '21-May-1997' & [ & -28.5812] \\
\hline '22-May-1997' & [ & -20.4233] \\
\hline '23-May-1997' & [ & -69.0085] \\
\hline '26-May-1997' & [ & NaN ] \\
\hline '27-May-1997' & [ & -43.4966] \\
\hline '28-May-1997' & [ & -28.4766] \\
\hline '29-May-1997' & [ & -10.5822] \\
\hline '30-May-1997' & [ & 48.2324] \\
\hline '02-Jun-1997' & [ & -54.3777] \\
\hline '03-Jun-1997' & [ & -7.8884] \\
\hline '04-Jun-1997' & [ & -32.8672] \\
\hline '05-Jun-1997' & [ & -6.1015] \\
\hline '06-Jun-1997' & [ & \(39.4331]\) \\
\hline '09-Jun-1997' & [ & 117.3842] \\
\hline '10-Jun-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '11-Jun-1997' & [ & 51.2977] \\
\hline '12-Jun-1997' & [ & 97.0133] \\
\hline '13-Jun-1997' & [ & \(116.5524]\) \\
\hline '16-Jun-1997' & [ & \(3.4868]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 17-Jun-1997' & [ & 74.7650] \\
\hline '18-Jun-1997' & [ & 24.7885] \\
\hline '19-Jun-1997' & [ & 80.8130] \\
\hline '20-Jun-1997' & [ & 83.9029] \\
\hline 23-Jun-1997' & [ & -29.0424] \\
\hline 24-Jun-1997' & [ & \(35.0197]\) \\
\hline 25-Jun-1997' & [ & 34.1973] \\
\hline 26-Jun-1997' & [ & \(1.3709]\) \\
\hline 27-Jun-1997' & [ & \(9.1683]\) \\
\hline 30-Jun-1997' & [ & \(31.7139]\) \\
\hline 01-Jul-1997' & [ & 60.2449] \\
\hline 02-Jul-1997' & [ & \(102.0696]\) \\
\hline 03-Jul-1997' & [ & 62.8825] \\
\hline 04-Jul-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '07-Jul-1997' & [ & 88.1185] \\
\hline 08-Jul-1997' & [ & \(217.9757]\) \\
\hline 09-Jul-1997' & [ & \(50.9072]\) \\
\hline 10-Jul-1997' & [ & \(2.7102]\) \\
\hline 11-Jul-1997' & [ & \(36.7943]\) \\
\hline 14-Jul-1997' & [ & 7.5187] \\
\hline 15-Jul-1997' & [ & -34.9914] \\
\hline 16-Jul-1997' & [ & -1.3052] \\
\hline '17-Jul-1997' & [ & -33.2895] \\
\hline '18-Jul-1997' & [ & \(33.6052]\) \\
\hline '21-Jul-1997' & [ & NaN ] \\
\hline '22-Jul-1997' & [ & -17.5326] \\
\hline 23-Jul-1997' & [ & -26.3698] \\
\hline '24-Jul-1997' & [ & -19.7485] \\
\hline 25-Jul-1997' & [ & -16.8706] \\
\hline '28-Jul-1997' & [ & -45.4649] \\
\hline 29-Jul-1997' & [ & -22.8980] \\
\hline '30-Jul-1997' & [ & -2.4211] \\
\hline 31-Jul-1997' & [ & -39.7038] \\
\hline '01-Aug-1997' & [ & -29.3268] \\
\hline '04-Aug-1997' & [ & -47.2485] \\
\hline '05-Aug-1997' & [ & -22.7566] \\
\hline '06-Aug-1997' & [ & -58.8315] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '07-Aug-1997' & [ & -45.2445] \\
\hline ' 08-Aug-1997' & [ & -25.4578] \\
\hline '11-Aug-1997' & [ & -5.9749] \\
\hline '12-Aug-1997' & [ & 80.3368 ] \\
\hline '13-Aug-1997' & [ & \(20.9490]\) \\
\hline '14-Aug-1997' & [ & -2.9295] \\
\hline '15-Aug-1997' & [ & \(33.4184]\) \\
\hline '18-Aug-1997' & [ & \(38.1664]\) \\
\hline '19-Aug-1997' & [ & \(95.1632]\) \\
\hline ' 20-Aug-1997' & [ & \(8.0857]\) \\
\hline '21-Aug-1997' & [ & -13.0710] \\
\hline ' 22-Aug-1997' & [ & \(3.4688]\) \\
\hline ' 25-Aug-1997' & [ & -31.4416] \\
\hline ' 26-Aug-1997' & [ & -25.6015] \\
\hline ' 27-Aug-1997' & [ & -37.3469] \\
\hline ' 28-Aug-1997' & [ & -23.4343] \\
\hline '29-Aug-1997' & [ & -39.9935] \\
\hline '01-Sep-1997' & [ & NaN] \\
\hline '02-Sep-1997' & [ & -53.4264] \\
\hline '03-Sep-1997' & [ & -58.8091] \\
\hline '04-Sep-1997' & [ & \(29.7281]\) \\
\hline '05-Sep-1997' & [ & 14.0873 ] \\
\hline '08-Sep-1997' & [ & -37.1028] \\
\hline '09-Sep-1997' & [ & \(3.5606]\) \\
\hline '10-Sep-1997' & [ & -24.7100] \\
\hline '11-Sep-1997' & [ & 109.6703] \\
\hline '12-Sep-1997' & [ & \(11.8334]\) \\
\hline '15-Sep-1997' & [ & -14.6759] \\
\hline '16-Sep-1997' & [ & NaN] \\
\hline '17-Sep-1997' & [ & \(35.1360]\) \\
\hline '18-Sep-1997' & [ & \(74.1561]\) \\
\hline '19-Sep-1997' & [ & -23.9521] \\
\hline '22-Sep-1997' & [ & -15.7369] \\
\hline '23-Sep-1997' & [ & 18.6688] \\
\hline '24-Sep-1997' & [ & 8.8829] \\
\hline '25-Sep-1997' & [ & \(40.5645]\) \\
\hline '26-Sep-1997' & [ & -53.9996] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ' 29-Sep-1997' & [ & -32.4526] \\
\hline '30-Sep-1997' & [ & \(57.3933]\) \\
\hline '01-0ct-1997' & [ & \(14.8994]\) \\
\hline '02-0ct-1997' & & \(39.9375]\) \\
\hline '03-0ct-1997' & [ & \(5.7408]\) \\
\hline '06-0ct-1997' & [ & -33.1252] \\
\hline '07-0ct-1997' & & \(13.7705]\) \\
\hline '08-0ct-1997' & [ & \(62.4804]\) \\
\hline '09-0ct-1997' & & -21.5161] \\
\hline '10-0ct-1997' & [ & -10.5345] \\
\hline '13-0ct-1997' & [ & -55.0677] \\
\hline '14-0ct-1997' & & \(17.5253]\) \\
\hline '15-0ct-1997' & [ & \(41.4528]\) \\
\hline '16-0ct-1997' & & -5.6759] \\
\hline '17-0ct-1997' & [ & 15.0097] \\
\hline '20-0ct-1997' & [ & -42.7324] \\
\hline '21-0ct-1997' & [ & 7.7641] \\
\hline '22-0ct-1997' & [ & -5.0242] \\
\hline '23-0ct-1997' & [ & -9.3316] \\
\hline '24-0ct-1997' & [ & 177.4083] \\
\hline '27-0ct-1997' & [ & \(93.3861]\) \\
\hline '28-0ct-1997' & [ & 508.1125] \\
\hline '29-0ct-1997' & [ & \(35.3925]\) \\
\hline '30-0ct-1997' & [ & -30.6459] \\
\hline '31-Oct-1997' & & -12.2698] \\
\hline ' \(03-\) Nov-1997' & [ & -38.2487] \\
\hline ' 04 -Nov-1997' & [ & \(7.7575]\) \\
\hline ' 05 -Nov-1997' & & \(41.1050]\) \\
\hline ' 06-Nov-1997' & [ & \(33.7405]\) \\
\hline '07-Nov-1997' & & \(9.0482]\) \\
\hline '10-Nov-1997' & [ & -67.9096] \\
\hline '11-Nov-1997' & [ & -67.3357] \\
\hline '12-Nov-1997' & [ & -52.0011] \\
\hline '13-Nov-1997' & [ & -13.2262] \\
\hline '14-Nov-1997' & [ & 31.3863 ] \\
\hline '17-Nov-1997' & [ & \(43.7630]\) \\
\hline '18-Nov-1997' & [ & \(74.4832]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '19-Nov-1997' & [ & \(42.0933]\) \\
\hline '20-Nov-1997' & [ & \(76.0575]\) \\
\hline '21-Nov-1997' & [ & \(79.8202]\) \\
\hline ' 24 -Nov-1997' & [ & \(64.3205]\) \\
\hline '25-Nov-1997' & [ & \(97.7331]\) \\
\hline '26-Nov-1997' & & 124.8198] \\
\hline ' 27 -Nov-1997' & [ & NaN] \\
\hline '28-Nov-1997' & [ & -62.1640] \\
\hline '01-Dec-1997' & [ & -22.6237] \\
\hline '02-Dec-1997' & [ & -11.3508] \\
\hline '03-Dec-1997' & [ & -44.5835] \\
\hline '04-Dec-1997' & [ & 44.5462 ] \\
\hline '05-Dec-1997' & & -23.3968] \\
\hline '08-Dec-1997' & [ & -56.0270] \\
\hline '09-Dec-1997' & [ & -47.2149] \\
\hline '10-Dec-1997' & [ & -31.7687] \\
\hline '11-Dec-1997' & [ & -13.0325] \\
\hline '12-Dec-1997' & [ & NaN] \\
\hline '15-Dec-1997' & [ & 245.4164] \\
\hline '16-Dec-1997' & [ & \(14.9065]\) \\
\hline '17-Dec-1997' & [ & -36.9823] \\
\hline '18-Dec-1997' & [ & 17.8468 ] \\
\hline '19-Dec-1997' & [ & 10.9533] \\
\hline '22-Dec-1997' & [ & -38.9697] \\
\hline '23-Dec-1997' & [ & \(26.1119]\) \\
\hline '24-Dec-1997' & [ & -56.0901] \\
\hline '25-Dec-1997' & [ & NaN] \\
\hline '26-Dec-1997' & [ & -81.0903] \\
\hline '29-Dec-1997' & & -40.6130] \\
\hline '30-Dec-1997' & [ & 5.8155] \\
\hline '31-Dec-1997' & [ & -5.1482] \\
\hline '01-Jan-1998' & [ & NaN] \\
\hline '02-Jan-1998' & [ & -29.2577] \\
\hline '05-Jan-1998' & [ & \(49.9080]\) \\
\hline '06-Jan-1998' & [ & \(28.6793]\) \\
\hline '07-Jan-1998' & [ & \(6.0219]\) \\
\hline '08-Jan-1998' & [ & \(69.7042]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '09-Jan-1998' & [ & NaN] \\
\hline '12-Jan-1998' & [ & 838.1616] \\
\hline '13-Jan-1998' & [ & 119.4733] \\
\hline '14-Jan-1998' & [ & -43.6972] \\
\hline '15-Jan-1998' & [ & -25.9653] \\
\hline '16-Jan-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '19-Jan-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '20-Jan-1998' & [ & -65.8278] \\
\hline '21-Jan-1998' & [ & -17.2192] \\
\hline '22-Jan-1998' & [ & -39.6980] \\
\hline '23-Jan-1998' & [ & 95.7925] \\
\hline '26-Jan-1998' & [ & -42.9540] \\
\hline '27-Jan-1998' & [ & \(60.0059]\) \\
\hline '28-Jan-1998' & [ & 76.7173] \\
\hline '29-Jan-1998' & [ & \(62.3303]\) \\
\hline '30-Jan-1998' & [ & 42.7239] \\
\hline '02-Feb-1998' & [ & \(24.4240]\) \\
\hline '03-Feb-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '04-Feb-1998' & [ & -15.0726] \\
\hline '05-Feb-1998' & [ & -0.6490] \\
\hline '06-Feb-1998' & [ & -16.6836] \\
\hline '09-Feb-1998' & [ & -52.7233] \\
\hline '10-Feb-1998' & [ & \(9.7731]\) \\
\hline '11-Feb-1998' & [ & -60.0823] \\
\hline '12-Feb-1998' & [ & -53.5085] \\
\hline '13-Feb-1998' & [ & -47.3077] \\
\hline '16-Feb-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '17-Feb-1998' & [ & -19.7985] \\
\hline '18-Feb-1998' & [ & -13.7832] \\
\hline '19-Feb-1998' & [ & 8.1688] \\
\hline '20-Feb-1998' & [ & 19.1147] \\
\hline '23-Feb-1998' & [ & 103.7774] \\
\hline '24-Feb-1998' & [ & \(94.0595]\) \\
\hline '25-Feb-1998' & [ & \(23.6847]\) \\
\hline ' 26-Feb-1998' & [ & 12.7373] \\
\hline '27-Feb-1998' & [ & \(9.8284]\) \\
\hline '02-Mar-1998' & [ & \(27.4406]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '03-Mar-1998' & [ & NaN] \\
\hline '04-Mar-1998' & [ & 160.3735] \\
\hline '05-Mar-1998' & [ & 81.8773] \\
\hline '06-Mar-1998' & [ & \(7.7230]\) \\
\hline ' 09-Mar-1998' & [ & -18.9119] \\
\hline '10-Mar-1998' & [ & -32.2238] \\
\hline '11-Mar-1998' & [ & -30.0545] \\
\hline '12-Mar-1998' & [ & -21.5727] \\
\hline '13-Mar-1998' & [ & -30.9326] \\
\hline '16-Mar-1998' & [ & -16.1492] \\
\hline '17-Mar-1998' & [ & -10.7050] \\
\hline '18-Mar-1998' & [ & -3.4679] \\
\hline '19-Mar-1998' & [ & -71.8597] \\
\hline '20-Mar-1998' & [ & -22.7544] \\
\hline '23-Mar-1998' & [ & \(94.1693]\) \\
\hline '24-Mar-1998' & [ & 134.9439] \\
\hline '25-Mar-1998' & [ & \(17.6453]\) \\
\hline '26-Mar-1998' & [ & -8.6160] \\
\hline '27-Mar-1998' & [ & -2.8780] \\
\hline '30-Mar-1998' & [ & -8.7264] \\
\hline '31-Mar-1998' & [ & -2.1408] \\
\hline '01-Apr-1998' & [ & \(37.0772]\) \\
\hline '02-Apr-1998' & [ & \(53.1085]\) \\
\hline '03-Apr-1998' & [ & \(32.4126]\) \\
\hline '06-Apr-1998' & [ & -39.2802] \\
\hline '07-Apr-1998' & [ & -68.5414] \\
\hline '08-Apr-1998' & [ & -59.4478] \\
\hline '09-Apr-1998' & [ & \(2.9664]\) \\
\hline '10-Apr-1998' & [ & NaN] \\
\hline '13-Apr-1998' & [ & 16.4783] \\
\hline '14-Apr-1998' & [ & \(74.7411]\) \\
\hline '15-Apr-1998' & [ & \(62.2346]\) \\
\hline '16-Apr-1998' & [ & -12.7095] \\
\hline '17-Apr-1998' & [ & -13.3416] \\
\hline '20-Apr-1998' & [ & \(23.9465]\) \\
\hline '21-Apr-1998' & [ & \(53.4429]\) \\
\hline '22-Apr-1998' & [ & 55.9738 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '23-Apr-1998' & [ & \(744.0086]\) \\
\hline '24-Apr-1998' & [ & \(318.2164]\) \\
\hline '27-Apr-1998' & [ & NaN ] \\
\hline '28-Apr-1998' & [ & 104.6559] \\
\hline '29-Apr-1998' & [ & -9.0960] \\
\hline '30-Apr-1998' & [ & -15.9217] \\
\hline '01-May-1998' & [ & -5.8210] \\
\hline '04-May-1998' & [ & \(10.3339]\) \\
\hline '05-May-1998' & [ & -26.7408] \\
\hline '06-May-1998' & [ & -35.3200] \\
\hline '07-May-1998' & [ & 190.7922] \\
\hline '08-May-1998' & [ & -77.4942] \\
\hline '11-May-1998' & [ & -75.0614] \\
\hline '12-May-1998' & [ & -50.1274] \\
\hline '13-May-1998' & [ & -44.3324] \\
\hline '14-May-1998' & [ & \(63.8872]\) \\
\hline '15-May-1998' & [ & \(198.4853]\) \\
\hline '18-May-1998' & [ & \(144.5757]\) \\
\hline '19-May-1998' & [ & \(58.9707]\) \\
\hline '20-May-1998' & [ & 72.8415] \\
\hline '21-May-1998' & [ & 85.1385] \\
\hline '22-May-1998' & [ & -64.5439] \\
\hline '25-May-1998' & [ & NaN ] \\
\hline '26-May-1998' & [ & 51.3113] \\
\hline '27-May-1998' & [ & 95.8213] \\
\hline '28-May-1998' & [ & -14.5147] \\
\hline '29-May-1998' & [ & -56.3610] \\
\hline '01-Jun-1998' & [ & -73.1801] \\
\hline '02-Jun-1998' & [ & -30.8283] \\
\hline '03-Jun-1998' & [ & -44.2177] \\
\hline '04-Jun-1998' & [ & -42.9508] \\
\hline '05-Jun-1998' & [ & \(55.7756]\) \\
\hline '08-Jun-1998' & [ & \(56.8327]\) \\
\hline '09-Jun-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '10-Jun-1998' & [ & 18.2811] \\
\hline '11-Jun-1998' & [ & -35.1867] \\
\hline '12-Jun-1998' & [ & \(61.2776]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '15-Jun-1998' & [ & 49.6306] \\
\hline '16-Jun-1998' & [ & 49.5288] \\
\hline '17-Jun-1998' & [ & \(2.7879]\) \\
\hline '18-Jun-1998' & [ & 84.5415] \\
\hline '19-Jun-1998' & [ & \(443.0772]\) \\
\hline '22-Jun-1998' & [ & 72.5567] \\
\hline '23-Jun-1998' & [ & 1.2518 ] \\
\hline '24-Jun-1998' & [ & 51.6312] \\
\hline '25-Jun-1998' & [ & -10.8948] \\
\hline '26-Jun-1998' & [ & -1.6560] \\
\hline '29-Jun-1998' & [ & -7.9738] \\
\hline '30-Jun-1998' & [ & \(371.4423]\) \\
\hline '01-Jul-1998' & [ & \(135.0784]\) \\
\hline '02-Jul-1998' & [ & \(25.5176]\) \\
\hline '03-Jul-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '06-Jul-1998' & [ & -62.7438] \\
\hline '07-Jul-1998' & [ & -41.4401] \\
\hline '08-Jul-1998' & [ & 53.7332] \\
\hline '09-Jul-1998' & [ & 108.2072] \\
\hline '10-Jul-1998' & [ & \(153.5802]\) \\
\hline '13-Jul-1998' & [ & \(232.2548]\) \\
\hline '14-Jul-1998' & [ & \(136.5600]\) \\
\hline '15-Jul-1998' & [ & -61.0363] \\
\hline '16-Jul-1998' & [ & -29.5837] \\
\hline '17-Jul-1998' & [ & -28.3753] \\
\hline '20-Jul-1998' & [ & NaN ] \\
\hline 21-Jul-1998' & [ & -17.9778] \\
\hline '22-Jul-1998' & [ & -4.2023] \\
\hline '23-Jul-1998' & [ & -51.4922] \\
\hline '24-Jul-1998' & [ & -67.0782] \\
\hline '27-Jul-1998' & [ & -75.3586] \\
\hline '28-Jul-1998' & [ & -58.8354] \\
\hline '29-Jul-1998' & [ & -67.3264] \\
\hline '30-Jul-1998' & [ & -35.7097] \\
\hline '31-Jul-1998' & [ & -61.9565] \\
\hline '03-Aug-1998' & [ & -28.0286] \\
\hline '04-Aug-1998' & [ & 20.9986] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 05-Aug-1998 \({ }^{\text {' }}\) & [ & \(21.3420]\) \\
\hline '06-Aug-1998' & [ & -35.8346] \\
\hline 07-Aug-1998' & [ & \(5.3398]\) \\
\hline '10-Aug-1998' & [ & 5.6955] \\
\hline '11-Aug-1998' & [ & 120.4189] \\
\hline 12-Aug-1998' & [ & 12.0538] \\
\hline '13-Aug-1998' & [ & \(17.7862]\) \\
\hline 14-Aug-1998' & [ & -19.5641] \\
\hline 17-Aug-1998' & [ & 14.9401] \\
\hline 18-Aug-1998' & [ & \(39.4953]\) \\
\hline '19-Aug-1998' & [ & -40.6215] \\
\hline 20-Aug-1998' & [ & -50.8781] \\
\hline 21-Aug-1998' & [ & -3.4788] \\
\hline 24-Aug-1998' & [ & -31.2438] \\
\hline 25-Aug-1998' & [ & -4.6428] \\
\hline 26-Aug-1998' & [ & -35.8160] \\
\hline 27-Aug-1998' & [ & 5.3613] \\
\hline 28-Aug-1998' & [ & \(44.0784]\) \\
\hline 31-Aug-1998' & [ & \(155.5923]\) \\
\hline 01-Sep-1998' & [ & 247.3995] \\
\hline 02-Sep-1998' & [ & \(40.5117]\) \\
\hline 03-Sep-1998' & [ & \(59.6875]\) \\
\hline 04-Sep-1998' & [ & 100.9695] \\
\hline 07-Sep-1998' & [ & \(\mathrm{NaN}]\) \\
\hline 08-Sep-1998' & [ & 164.0107] \\
\hline 09-Sep-1998' & [ & 96.7565] \\
\hline 10-Sep-1998' & [ & \(51.3622]\) \\
\hline 11-Sep-1998' & [ & -2.0106] \\
\hline 14-Sep-1998' & [ & \(239.6534]\) \\
\hline 15-Sep-1998' & [ & -3.9058] \\
\hline '16-Sep-1998' & [ & -36.2467] \\
\hline '17-Sep-1998' & [ & -24.0297] \\
\hline '18-Sep-1998' & [ & \(9.1775]\) \\
\hline '21-Sep-1998' & [ & -35.3023] \\
\hline '22-Sep-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '23-Sep-1998' & [ & -3.4929] \\
\hline 24-Sep-1998' & [ & -25.5393] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 25-Sep-1998' & [ & -47.2104] \\
\hline '28-Sep-1998' & [ & -40.3639] \\
\hline '29-Sep-1998' & [ & -81.3259] \\
\hline '30-Sep-1998' & [ & -53.2807] \\
\hline '01-Oct-1998' & [ & -28.5641] \\
\hline 02-Oct-1998' & [ & -15.8860] \\
\hline 05-Oct-1998' & [ & -46.7000] \\
\hline 06-Oct-1998' & [ & -5.5801] \\
\hline 07-Oct-1998' & [ & -24.3088] \\
\hline 08-Oct-1998' & [ & 14.0277] \\
\hline 09-Oct-1998' & [ & -1.6769] \\
\hline 12-Oct-1998' & [ & \(3.7563]\) \\
\hline '13-0ct-1998' & [ & \(13.3030]\) \\
\hline 14-Oct-1998' & [ & 18.4247] \\
\hline '15-0ct-1998' & [ & \(2.1730]\) \\
\hline '16-0ct-1998' & [ & -7.6190] \\
\hline '19-0ct-1998' & [ & -2.8205] \\
\hline '20-0ct-1998' & [ & \(86.0524]\) \\
\hline '21-Oct-1998' & [ & \(9.2468]\) \\
\hline 22-0ct-1998' & [ & -22.1511] \\
\hline '23-0ct-1998' & [ & -60.1907] \\
\hline 26-0ct-1998' & [ & -45.0385] \\
\hline 27-Oct-1998' & [ & \(32.1959]\) \\
\hline 28-0ct-1998' & [ & 16.5442] \\
\hline '29-0ct-1998' & [ & -27.9902] \\
\hline '30-0ct-1998' & [ & -6.8526] \\
\hline '02-Nov-1998' & [ & \(13.2817]\) \\
\hline '03-Nov-1998' & [ & \(65.8784]\) \\
\hline '04-Nov-1998' & [ & 11.3571] \\
\hline '05-Nov-1998' & [ & \(38.5374]\) \\
\hline '06-Nov-1998' & [ & 66.0346] \\
\hline '09-Nov-1998' & [ & \(26.6260]\) \\
\hline '10-Nov-1998' & [ & 89.8959] \\
\hline '11-Nov-1998' & [ & -27.5085] \\
\hline '12-Nov-1998' & [ & -26.3474] \\
\hline '13-Nov-1998' & [ & 13.5591] \\
\hline '16-Nov-1998' & [ & 3.6062 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '17-Nov-1998' & [ & -32.3580] \\
\hline '18-Nov-1998' & [ & -35.6125] \\
\hline '19-Nov-1998' & [ & -20.2156] \\
\hline '20-Nov-1998' & [ & -14.0100] \\
\hline '23-Nov-1998' & [ & 14.0447] \\
\hline '24-Nov-1998' & [ & \(107.9945]\) \\
\hline '25-Nov-1998' & [ & -1.1435] \\
\hline '26-Nov-1998' & [ & NaN ] \\
\hline '27-Nov-1998' & [ & 4.2548] \\
\hline '30-Nov-1998' & [ & \(116.0221]\) \\
\hline '01-Dec-1998' & [ & 25.5982] \\
\hline '02-Dec-1998' & [ & -6.6905] \\
\hline '03-Dec-1998' & [ & -16.6218] \\
\hline '04-Dec-1998' & [ & -44.0912] \\
\hline '07-Dec-1998' & [ & -26.4382] \\
\hline '08-Dec-1998' & [ & -12.4101] \\
\hline '09-Dec-1998' & [ & -31.0063] \\
\hline '10-Dec-1998' & [ & -12.4826] \\
\hline '11-Dec-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '14-Dec-1998' & [ & \(23.7577]\) \\
\hline '15-Dec-1998' & [ & -42.1634] \\
\hline '16-Dec-1998' & [ & -32.6049] \\
\hline '17-Dec-1998' & [ & -21.3575] \\
\hline '18-Dec-1998' & [ & \(36.6515]\) \\
\hline '21-Dec-1998' & [ & \(48.7864]\) \\
\hline '22-Dec-1998' & [ & \(50.6287]\) \\
\hline '23-Dec-1998' & [ & -2.3099] \\
\hline '24-Dec-1998' & [ & -74.3433] \\
\hline '25-Dec-1998' & [ & NaN ] \\
\hline '28-Dec-1998' & [ & -0.4692] \\
\hline '29-Dec-1998' & [ & -16.6726] \\
\hline '30-Dec-1998' & [ & -4.9259] \\
\hline '31-Dec-1998' & [ & \(31.0259]\) \\
\hline '01-Jan-1999' & [ & NaN ] \\
\hline '04-Jan-1999' & [ & 14.9655] \\
\hline '05-Jan-1999' & [ & \(7.2463]\) \\
\hline '06-Jan-1999' & [ & \(55.8021]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 07-Jan-1999 ' & [ & \(87.3554]\) \\
\hline 08-Jan-1999' & [ & \(492.5531]\) \\
\hline 11-Jan-1999' & [ & \(\mathrm{NaN}]\) \\
\hline 12-Jan-1999' & [ & \(362.0289]\) \\
\hline 13-Jan-1999' & [ & 247.7803] \\
\hline 14-Jan-1999' & [ & \(47.6069]\) \\
\hline 15-Jan-1999 \({ }^{\prime}\) & [ & \(16.9650]\) \\
\hline 18-Jan-1999 ' & [ & \(\mathrm{NaN}]\) \\
\hline 19-Jan-1999' & [ & -1.0880] \\
\hline 20-Jan-1999 ' & [ & 19.3986] \\
\hline 21-Jan-1999' & [ & -28.7987] \\
\hline 22-Jan-1999 ' & [ & -53.9244] \\
\hline 25-Jan-1999' & [ & -61.4558] \\
\hline 26-Jan-1999 ' & [ & -67.1947] \\
\hline 27-Jan-1999' & [ & -45.3447] \\
\hline 28-Jan-1999 ' & [ & -22.2899] \\
\hline '29-Jan-1999' & [ & 17.9831] \\
\hline 01-Feb-1999 ' & [ & -5.0612] \\
\hline 02-Feb-1999 ' & [ & \(\mathrm{NaN}]\) \\
\hline 03-Feb-1999 ' & [ & -6.2196] \\
\hline 04-Feb-1999 ' & [ & -21.6298] \\
\hline 05-Feb-1999 ' & [ & -1.2703] \\
\hline 08-Feb-1999 ' & [ & -4.6708] \\
\hline 09-Feb-1999 ' & [ & \(40.2075]\) \\
\hline 10-Feb-1999 ' & [ & \(6.8473]\) \\
\hline 11-Feb-1999 \({ }^{\prime}\) & [ & -43.7415] \\
\hline 12-Feb-1999 ' & [ & -45.1220] \\
\hline '15-Feb-1999' & [ & \(\mathrm{NaN}]\) \\
\hline 16-Feb-1999 ' & [ & -19.3262] \\
\hline '17-Feb-1999' & [ & -25.3108] \\
\hline 18-Feb-1999 ' & [ & -26.7574] \\
\hline 19-Feb-1999' & [ & -45.4470] \\
\hline 22-Feb-1999 ' & [ & -26.0340] \\
\hline '23-Feb-1999' & [ & \(3.0124]\) \\
\hline '24-Feb-1999' & [ & \(6.7252]\) \\
\hline '25-Feb-1999 ' & [ & -11.9542] \\
\hline '26-Feb-1999' & [ & -11.8716] \\
\hline
\end{tabular}

-30.6575]
\(\mathrm{NaN}]\)
-1.1571]
14.3925]
8.3755]
\(90.6224]\)
52.3981]
12.3846]
-13.0445]
63.6503 ]
-3.4874]
-8.9174]
-2.6610]
7.5482]
8.8402]
-17.0525]
61.8062]
-27.3733]
\(42.3166]\)
3.6841]
-27.6417]


\footnotetext{
References Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 310-311.

See Also proroc
}

\section*{Purpose Weighted close}

Syntax
```

wcls = wclose(highp, lowp, closep)
wcls = wclose([highp lowp closep])
wclsts = wclose(tsobj)
wclsts = wclose(tsobj, ParameterName, ParameterValue, ...)

```

\section*{Arguments}
\begin{tabular}{ll} 
highp & High price (vector). \\
lowp & Low price (vector). \\
closep & Closing price (vector). \\
tsobj & Financial time series object.
\end{tabular}

\section*{Description}

The weighted close price is the average of twice the closing price plus the high and low prices.
wcls = wclose(highp, lowp, closep) calculates the weighted close prices wcls based on the high (highp), low (lowp), and closing (closep) prices per period.
wcls = wclose([highp lowp closep]) accepts a three-column matrix consisting of the high, low, and closing prices, in that order.
wclsts = wclose(tsobj) computes the weighted close prices for a set of stock price data contained in the financial time series object tsobj. The object must contain the high, low, and closing prices needed for this function. The function assumes that the series are named High, Low, and Close. All three are required. wclsts is a financial time series object of the same dates as tsobj and contains the data series named WClose.
wclsts = wclose(tsobj, ParameterName, ParameterValue, ...) accepts parameter name/parameter value pairs as input. These pairs specify the name(s) for the required data series if it is different from the expected default name(s). Valid parameter names are
- HighName: high prices series name
- LowName: low prices series name
- CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter names.

\section*{Examples Compute the Weighted Closing Prices}

This example shows how to compute the weighted closing prices for Disney stock and plot the results.
```

load disney.mat
dis_Wclose = wclose(dis)
plot(dis_Wclose)
title('Weighted Closing Prices for Disney')
dis_Wclose =
desc: WClose: Walt Disney Company (DIS)
freq: Unknown (0)
'dates: (782)' 'WClose: (782)
'29-Mar-1996' [21.3753]
'01-Apr-1996' [21.5730]
'02-Apr-1996' [21.8020]
'03-Apr-1996' [21.8438]
'04-Apr-1996' [21.6773]
'05-Apr-1996' [NaN]
'08-Apr-1996' [21.4477]
'09-Apr-1996' [21.2915]
'10-Apr-1996' [20.5003]
'11-Apr-1996' [20.1980]
'12-Apr-1996' [20.3955]
'15-Apr-1996' [20.6043]
'16-Apr-1996' [20.6460]

```
\begin{tabular}{|c|c|c|}
\hline '17-Apr-1996' & [ & 20.8023] \\
\hline '18-Apr-1996' & [ & 20.9375] \\
\hline '19-Apr-1996' & [ & \(21.0420]\) \\
\hline '22-Apr-1996' & [ & 20.9165] \\
\hline '23-Apr-1996' & [ & 20.6145] \\
\hline '24-Apr-1996' & [ & 20.2188] \\
\hline '25-Apr-1996' & [ & \(20.4063]\) \\
\hline '26-Apr-1996' & [ & 20.6668] \\
\hline '29-Apr-1996' & [ & \(20.6250]\) \\
\hline '30-Apr-1996' & [ & 20.6460] \\
\hline '01-May-1996' & [ & 20.2710] \\
\hline '02-May-1996' & [ & 20.0313] \\
\hline '03-May-1996' & [ & 19.7710] \\
\hline '06-May-1996' & [ & \(19.9273]\) \\
\hline '07-May-1996' & [ & 19.8335] \\
\hline '08-May-1996' & [ & 19.5835] \\
\hline '09-May-1996' & [ & 19.4898] \\
\hline '10-May-1996' & [ & 19.7083] \\
\hline '13-May-1996' & [ & 20.1563] \\
\hline '14-May-1996' & [ & 20.3023] \\
\hline '15-May-1996' & [ & \(20.1770]\) \\
\hline '16-May-1996' & [ & 20.2083] \\
\hline '17-May-1996' & [ & 20.4273] \\
\hline '20-May-1996' & [ & \(20.5730]\) \\
\hline '21-May-1996' & [ & \(20.6980]\) \\
\hline '22-May-1996' & [ & \(20.8960]\) \\
\hline '23-May-1996' & [ & \(20.7605]\) \\
\hline '24-May-1996' & [ & \(20.8330]\) \\
\hline '27-May-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '28-May-1996' & [ & 20.7395] \\
\hline '29-May-1996' & [ & 20.3023] \\
\hline '30-May-1996' & [ & 20.3438] \\
\hline '31-May-1996' & [ & \(20.3227]\) \\
\hline '03-Jun-1996' & [ & 20.1458] \\
\hline '04-Jun-1996' & [ & \(20.0315]\) \\
\hline '05-Jun-1996' & [ & 20.0938] \\
\hline '06-Jun-1996' & [ & 20.8747] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 07-Jun-1996' & [ & \(20.9165]\) \\
\hline '10-Jun-1996' & [ & \(20.8753]\) \\
\hline '11-Jun-1996' & [ & 20.8125] \\
\hline '12-Jun-1996' & [ & \(20.8125]\) \\
\hline '13-Jun-1996' & [ & \(20.6455]\) \\
\hline '14-Jun-1996' & [ & 20.4688] \\
\hline '17-Jun-1996' & [ & \(20.6250]\) \\
\hline '18-Jun-1996' & [ & \(20.4165]\) \\
\hline '19-Jun-1996' & [ & \(20.3750]\) \\
\hline '20-Jun-1996' & [ & 20.5208] \\
\hline '21-Jun-1996' & [ & \(20.8855]\) \\
\hline '24-Jun-1996' & [ & 20.7915] \\
\hline '25-Jun-1996' & [ & \(21.0310]\) \\
\hline '26-Jun-1996' & [ & \(20.7918]\) \\
\hline '27-Jun-1996' & [ & \(20.9898]\) \\
\hline '28-Jun-1996' & , & \(21.0102]\) \\
\hline '01-Jul-1996' & [ & \(20.7605]\) \\
\hline '02-Jul-1996' & , & 20.5003] \\
\hline '03-Jul-1996' & [ & \(20.2810]\) \\
\hline '04-Jul-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '05-Jul-1996' & [ & \(19.8753]\) \\
\hline '08-Jul-1996' & [ & \(19.7398]\) \\
\hline '09-Jul-1996' & [ & 19.3128] \\
\hline '10-Jul-1996' & [ & \(19.3125]\) \\
\hline '11-Jul-1996' & [ & \(18.8540]\) \\
\hline '12-Jul-1996' & [ & 18.9477] \\
\hline '15-Jul-1996' & [ & 18.5418] \\
\hline '16-Jul-1996' & [ & 18.5210] \\
\hline '17-Jul-1996' & [ & 18.7710] \\
\hline '18-Jul-1996' & [ & 19.0102] \\
\hline '19-Jul-1996' & [ & 19.0938] \\
\hline '22-Jul-1996' & [ & \(18.7608]\) \\
\hline '23-Jul-1996' & [ & 18.5625] \\
\hline '24-Jul-1996' & [ & 18.1875] \\
\hline '25-Jul-1996' & [ & \(18.1668]\) \\
\hline '26-Jul-1996' & [ & 18.0418] \\
\hline '29-Jul-1996' & [ & \(17.8960]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '30-Jul-1996' & [ & 18.2710] \\
\hline '31-Jul-1996' & [ & 18.4898] \\
\hline '01-Aug-1996' & [ & 19.0313] \\
\hline '02-Aug-1996' & [ & \(19.3852]\) \\
\hline '05-Aug-1996' & [ & 19.4685] \\
\hline '06-Aug-1996' & [ & \(19.6250]\) \\
\hline '07-Aug-1996' & [ & 19.4790 ] \\
\hline '08-Aug-1996' & [ & \(19.2293]\) \\
\hline '09-Aug-1996' & [ & \(19.0523]\) \\
\hline '12-Aug-1996' & [ & \(19.3333]\) \\
\hline '13-Aug-1996' & [ & 19.3435] \\
\hline '14-Aug-1996' & [ & \(19.3438]\) \\
\hline '15-Aug-1996' & [ & \(19.3440]\) \\
\hline '16-Aug-1996' & [ & \(19.3438]\) \\
\hline '19-Aug-1996' & [ & 19.3645] \\
\hline '20-Aug-1996' & [ & 19.1455] \\
\hline '21-Aug-1996' & [ & 19.2188] \\
\hline '22-Aug-1996' & [ & 19.3958] \\
\hline '23-Aug-1996' & [ & 19.3852] \\
\hline '26-Aug-1996' & [ & 19.6983] \\
\hline '27-Aug-1996' & [ & 19.7085] \\
\hline '28-Aug-1996' & [ & \(19.4585]\) \\
\hline '29-Aug-1996' & [ & 19.2188] \\
\hline '30-Aug-1996' & [ & 19] \\
\hline '02-Sep-1996' & [ & NaN] \\
\hline '03-Sep-1996' & [ & \(18.9480]\) \\
\hline '04-Sep-1996' & [ & \(18.9065]\) \\
\hline '05-Sep-1996' & [ & \(18.6460]\) \\
\hline '06-Sep-1996' & [ & 18.9063 ] \\
\hline '09-Sep-1996' & [ & \(19.3233]\) \\
\hline '10-Sep-1996' & , & 19.2815] \\
\hline '11-Sep-1996' & [ & \(19.4585]\) \\
\hline '12-Sep-1996' & , & 20.0418] \\
\hline '13-Sep-1996' & [ & 20.2500] \\
\hline '16-Sep-1996' & [ & 20.2080] \\
\hline '17-Sep-1996' & [ & \(20.3020]\) \\
\hline '18-Sep-1996' & [ & \(20.3960]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '19-Sep-1996' & [ & 20.9483] \\
\hline '20-Sep-1996' & [ & \(21.0003]\) \\
\hline '23-Sep-1996' & [ & \(21.1455]\) \\
\hline '24-Sep-1996' & [ & 20.9898] \\
\hline '25-Sep-1996' & [ & 20.9168] \\
\hline '26-Sep-1996' & [ & 20.7918] \\
\hline '27-Sep-1996' & [ & \(20.8855]\) \\
\hline '30-Sep-1996' & [ & \(21.0938]\) \\
\hline '01-0ct-1996' & [ & \(20.9267]\) \\
\hline '02-Oct-1996' & [ & 20.9790] \\
\hline '03-0ct-1996' & [ & \(21.0315]\) \\
\hline '04-Oct-1996' & [ & \(21.3645]\) \\
\hline '07-0ct-1996' & [ & \(21.3750]\) \\
\hline '08-Oct-1996' & [ & 21.2602] \\
\hline '09-0ct-1996' & [ & 21.1253] \\
\hline '10-0ct-1996' & [ & 21.1665] \\
\hline '11-Oct-1996' & [ & \(21.3330]\) \\
\hline '14-0ct-1996' & [ & \(21.4168]\) \\
\hline '15-0ct-1996' & [ & 21.4063] \\
\hline '16-0ct-1996' & [ & 21.7185] \\
\hline '17-Oct-1996' & [ & 21.6977] \\
\hline '18-Oct-1996' & [ & 21.6253] \\
\hline '21-Oct-1996' & [ & \(21.8333]\) \\
\hline '22-Oct-1996' & [ & \(22.1352]\) \\
\hline '23-0ct-1996' & [ & \(22.0420]\) \\
\hline '24-0ct-1996' & [ & \(21.8440]\) \\
\hline '25-0ct-1996' & I & 21.9892] \\
\hline '28-0ct-1996' & [ & 22.1513] \\
\hline '29-0ct-1996' & [ & \(21.9898]\) \\
\hline '30-0ct-1996' & [ & \(21.9168]\) \\
\hline '31-0ct-1996' & [ & \(21.9060]\) \\
\hline '01-Nov-1996' & [ & \(21.8747]\) \\
\hline '04-Nov-1996' & [ & \(22.1773]\) \\
\hline '05-Nov-1996' & [ & \(22.4690]\) \\
\hline '06-Nov-1996' & [ & \(22.5102]\) \\
\hline '07-Nov-1996' & [ & \(22.8855]\) \\
\hline '08-Nov-1996' & [ & \(22.8020]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 11-Nov-1996' & [ & \(23.3017]\) \\
\hline 12-Nov-1996' & [ & 23.5938] \\
\hline 13-Nov-1996' & [ & \(23.5523]\) \\
\hline 14-Nov-1996' & [ & \(23.4793]\) \\
\hline '15-Nov-1996' & [ & 24.0205] \\
\hline 18-Nov-1996' & [ & \(23.8128]\) \\
\hline '19-Nov-1996' & [ & \(23.7190]\) \\
\hline 20-Nov-1996' & [ & 23.8233] \\
\hline 21-Nov-1996' & [ & 24.0208] \\
\hline 22-Nov-1996' & [ & \(24.1355]\) \\
\hline 25-Nov-1996' & [ & 24.3438] \\
\hline 26-Nov-1996' & [ & \(25.3020]\) \\
\hline 27-Nov-1996' & [ & \(24.7293]\) \\
\hline 28-Nov-1996' & [ & \(\mathrm{NaN}]\) \\
\hline 29-Nov-1996' & [ & 24.5625] \\
\hline 02-Dec-1996' & [ & \(24.6040]\) \\
\hline '03-Dec-1996' & [ & \(24.1250]\) \\
\hline 04-Dec-1996' & [ & \(23.8645]\) \\
\hline 05-Dec-1996' & [ & 23.8852] \\
\hline 06-Dec-1996' & [ & \(23.6770]\) \\
\hline 09-Dec-1996' & [ & 24.2188] \\
\hline 10-Dec-1996' & [ & 24.4168] \\
\hline 11-Dec-1996' & [ & 24.0523] \\
\hline 12-Dec-1996' & [ & \(23.5730]\) \\
\hline 13-Dec-1996' & [ & \(23.3855]\) \\
\hline '16-Dec-1996' & [ & 23.2188] \\
\hline '17-Dec-1996' & [ & \(23.5208]\) \\
\hline '18-Dec-1996' & [ & \(23.8227]\) \\
\hline '19-Dec-1996' & [ & 24.0313] \\
\hline '20-Dec-1996' & [ & 24.2083] \\
\hline '23-Dec-1996' & [ & \(24.0210]\) \\
\hline '24-Dec-1996' & [ & \(23.8540]\) \\
\hline 25-Dec-1996 ' & [ & NaN ] \\
\hline '26-Dec-1996' & [ & 23.7918] \\
\hline '27-Dec-1996' & [ & 23.8023] \\
\hline '30-Dec-1996' & [ & \(23.4583]\) \\
\hline '31-Dec-1996' & [ & 23.2813] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '01-Jan-1997' & & NaN] \\
\hline '02-Jan-1997' & [ & 22.6145] \\
\hline '03-Jan-1997' & & \(22.9997]\) \\
\hline '06-Jan-1997' & [ & 23.0313] \\
\hline '07-Jan-1997' & & \(22.9165]\) \\
\hline '08-Jan-1997' & & \(22.7188]\) \\
\hline '09-Jan-1997' & & \(22.5835]\) \\
\hline '10-Jan-1997' & & \(22.5000]\) \\
\hline '13-Jan-1997' & [ & \(22.6980]\) \\
\hline '14-Jan-1997' & [ & \(23]\) \\
\hline '15-Jan-1997' & & 23.0315] \\
\hline '16-Jan-1997' & [ & \(22.9685]\) \\
\hline '17-Jan-1997' & & \(23.2497]\) \\
\hline '20-Jan-1997' & [ & \(23.5105]\) \\
\hline '21-Jan-1997' & [ & 23.2188] \\
\hline '22-Jan-1997' & & \(23.4685]\) \\
\hline '23-Jan-1997' & [ & 23.5622] \\
\hline '24-Jan-1997' & & \(23.6250]\) \\
\hline '27-Jan-1997' & [ & 23.8125] \\
\hline '28-Jan-1997' & & \(24.3645]\) \\
\hline '29-Jan-1997' & [ & \(24.4997]\) \\
\hline '30-Jan-1997' & & \(24.2500]\) \\
\hline '31-Jan-1997' & & \(24.3125]\) \\
\hline '03-Feb-1997' & & \(24.2190]\) \\
\hline '04-Feb-1997' & & \(24.2290]\) \\
\hline '05-Feb-1997' & & \(24.3230]\) \\
\hline '06-Feb-1997' & & \(24.5938]\) \\
\hline ' 07-Feb-1997' & [ & 24.9688] \\
\hline '10-Feb-1997' & & \(25.3227]\) \\
\hline '11-Feb-1997' & & \(25.0520]\) \\
\hline '12-Feb-1997' & [ & \(25.4378]\) \\
\hline '13-Feb-1997' & & \(25.8440]\) \\
\hline '14-Feb-1997' & [ & \(26.0940]\) \\
\hline '17-Feb-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '18-Feb-1997' & [ & 25.8122] \\
\hline '19-Feb-1997' & [ & \(25.4583]\) \\
\hline ' 20-Feb-1997' & [ & 25.0418] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '21-Feb-1997' & [ & 25.1563] \\
\hline '24-Feb-1997' & [ & 25.1560 ] \\
\hline '25-Feb-1997' & [ & \(25.3438]\) \\
\hline '26-Feb-1997' & [ & \(25.0730]\) \\
\hline '27-Feb-1997' & [ & 25.2815] \\
\hline '28-Feb-1997' & [ & 24.8333] \\
\hline '03-Mar-1997' & [ & \(24.5310]\) \\
\hline '04-Mar-1997' & [ & 24.2918] \\
\hline '05-Mar-1997' & [ & 24.4063] \\
\hline '06-Mar-1997' & [ & 24.9273] \\
\hline '07-Mar-1997' & [ & 25.3122] \\
\hline '10-Mar-1997' & [ & 25.4790 ] \\
\hline '11-Mar-1997' & [ & 25.7185] \\
\hline '12-Mar-1997' & [ & 25.2398] \\
\hline '13-Mar-1997' & [ & 24.5835] \\
\hline '14-Mar-1997' & [ & 24.8648] \\
\hline '17-Mar-1997' & [ & \(25.1977]\) \\
\hline '18-Mar-1997' & [ & \(25.1980]\) \\
\hline '19-Mar-1997' & [ & \(24.9375]\) \\
\hline '20-Mar-1997' & [ & \(24.8540]\) \\
\hline '21-Mar-1997' & [ & \(24.6980]\) \\
\hline '24-Mar-1997' & [ & 24.9168] \\
\hline '25-Mar-1997' & , & 24.9585] \\
\hline '26-Mar-1997' & [ & 25.0622] \\
\hline '27-Mar-1997' & [ & \(24.9063]\) \\
\hline '28-Mar-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '31-Mar-1997' & , & 24.3335] \\
\hline '01-Apr-1997' & [ & 24.1043] \\
\hline '02-Apr-1997' & [ & 24.1458] \\
\hline '03-Apr-1997' & [ & \(24.1040]\) \\
\hline '04-Apr-1997' & [ & \(24.4267]\) \\
\hline '07-Apr-1997' & [ & \(24.5830]\) \\
\hline '08-Apr-1997' & [ & \(24.5520]\) \\
\hline '09-Apr-1997' & [ & \(24.5830]\) \\
\hline '10-Apr-1997' & [ & 24.7503] \\
\hline '11-Apr-1997' & [ & \(24.3125]\) \\
\hline '14-Apr-1997' & [ & \(23.7290]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ' 15-Apr-1997' & [ & \(24.4270]\) \\
\hline '16-Apr-1997' & [ & \(25.0205]\) \\
\hline '17-Apr-1997' & [ & \(25.2602]\) \\
\hline '18-Apr-1997' & [ & \(25.5000]\) \\
\hline '21-Apr-1997' & [ & \(25.6563]\) \\
\hline '22-Apr-1997' & & \(25.9790]\) \\
\hline '23-Apr-1997' & [ & \(26.3438]\) \\
\hline '24-Apr-1997' & [ & \(26.1770]\) \\
\hline '25-Apr-1997' & [ & \(25.8438]\) \\
\hline '28-Apr-1997' & [ & \(25.8958]\) \\
\hline '29-Apr-1997' & & 26.7188 ] \\
\hline '30-Apr-1997' & [ & 27.1668 ] \\
\hline ' 01 -May-1997' & & \(27.0208]\) \\
\hline '02-May-1997' & [ & \(26.8858]\) \\
\hline ' 05-May-1997' & [ & \(27.1875]\) \\
\hline '06-May-1997' & [ & \(27.3543]\) \\
\hline '07-May-1997' & [ & \(26.9583]\) \\
\hline '08-May-1997' & [ & \(27.0102]\) \\
\hline '09-May-1997' & [ & \(27.3128]\) \\
\hline '12-May-1997' & [ & \(28.0418]\) \\
\hline '13-May-1997' & [ & \(27.8750]\) \\
\hline '14-May-1997' & [ & \(27.9375]\) \\
\hline '15-May-1997' & [ & \(27.6460]\) \\
\hline '16-May-1997' & [ & \(27.1040]\) \\
\hline '19-May-1997' & [ & \(27.5523]\) \\
\hline '20-May-1997' & [ & 27.6872] \\
\hline '21-May-1997' & [ & 27.4898] \\
\hline '22-May-1997' & [ & \(27.3958]\) \\
\hline '23-May-1997' & [ & 27.7083 ] \\
\hline '26-May-1997' & [ & NaN] \\
\hline '27-May-1997' & [ & 27.7918] \\
\hline '28-May-1997' & [ & \(27.8852]\) \\
\hline '29-May-1997' & [ & \(27.6770]\) \\
\hline '30-May-1997' & [ & \(27.1773]\) \\
\hline '02-Jun-1997' & [ & \(27.0727]\) \\
\hline '03-Jun-1997' & [ & \(26.8855]\) \\
\hline '04-Jun-1997' & [ & \(26.6875]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '05-Jun-1997' & [ & 26.9168] \\
\hline '06-Jun-1997' & [ & \(27.0313]\) \\
\hline '09-Jun-1997' & [ & \(27.0727]\) \\
\hline '10-Jun-1997' & [ & 27.2293] \\
\hline '11-Jun-1997' & [ & \(27.1250]\) \\
\hline '12-Jun-1997' & [ & 27.1977] \\
\hline '13-Jun-1997' & [ & 27.7395] \\
\hline '16-Jun-1997' & [ & 27.8852] \\
\hline '17-Jun-1997' & [ & \(27.9270]\) \\
\hline '18-Jun-1997' & [ & \(27.5730]\) \\
\hline '19-Jun-1997' & [ & \(27.6460]\) \\
\hline '20-Jun-1997' & [ & 27.4898] \\
\hline '23-Jun-1997' & [ & \(27.0102]\) \\
\hline '24-Jun-1997' & [ & 27.3333] \\
\hline '25-Jun-1997' & [ & 27.3357] \\
\hline '26-Jun-1997' & [ & 27.1983] \\
\hline '27-Jun-1997' & [ & \(26.8075]\) \\
\hline '30-Jun-1997' & [ & 26.6408] \\
\hline '01-Jul-1997' & [ & 26.2293] \\
\hline '02-Jul-1997' & [ & 25.6615] \\
\hline '03-Jul-1997' & [ & 25.8438] \\
\hline '04-Jul-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '07-Jul-1997' & [ & 25.4425] \\
\hline '08-Jul-1997' & [ & 25.9480 ] \\
\hline '09-Jul-1997' & [ & 25.7868] \\
\hline '10-Jul-1997' & [ & 25.6928] \\
\hline '11-Jul-1997' & [ & 25.4688] \\
\hline '14-Jul-1997' & [ & 25.7190] \\
\hline '15-Jul-1997' & [ & 25.8645] \\
\hline '16-Jul-1997' & [ & 26.2763] \\
\hline '17-Jul-1997' & [ & \(25.8960]\) \\
\hline '18-Jul-1997' & [ & 25.3335] \\
\hline '21-Jul-1997' & [ & 25.0107] \\
\hline '22-Jul-1997' & [ & 25.7083] \\
\hline '23-Jul-1997' & [ & 26.1043] \\
\hline '24-Jul-1997' & [ & 26.2295] \\
\hline '25-Jul-1997' & [ & 26.2915] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '28-Jul-1997' & [ & \(26.5053]\) \\
\hline '29-Jul-1997' & [ & 26.6823 ] \\
\hline '30-Jul-1997' & [ & \(26.9635]\) \\
\hline '31-Jul-1997' & [ & \(27.0107]\) \\
\hline '01-Aug-1997' & [ & \(26.8905]\) \\
\hline ' 04-Aug-1997' & [ & \(26.9217]\) \\
\hline ' 05-Aug-1997' & [ & \(26.7240]\) \\
\hline ' 06-Aug-1997' & [ & \(26.8545]\) \\
\hline '07-Aug-1997' & [ & \(26.5365]\) \\
\hline '08-Aug-1997' & [ & \(26.3283]\) \\
\hline '11-Aug-1997' & [ & \(26.4220]\) \\
\hline '12-Aug-1997' & [ & \(26.2813]\) \\
\hline '13-Aug-1997' & [ & \(26.2760]\) \\
\hline '14-Aug-1997' & [ & 26.2868 ] \\
\hline '15-Aug-1997' & [ & \(25.6980]\) \\
\hline '18-Aug-1997' & [ & \(26.0050]\) \\
\hline '19-Aug-1997' & [ & \(26.4222]\) \\
\hline '20-Aug-1997' & [ & \(26.7190]\) \\
\hline '21-Aug-1997' & [ & \(26.3858]\) \\
\hline ' 22-Aug-1997' & [ & \(25.9793]\) \\
\hline '25-Aug-1997' & [ & \(26.1300]\) \\
\hline '26-Aug-1997' & [ & \(25.9320]\) \\
\hline '27-Aug-1997' & [ & \(26.0730]\) \\
\hline '28-Aug-1997' & [ & 25.9585] \\
\hline ' 29-Aug-1997' & [ & \(25.7135]\) \\
\hline '01-Sep-1997' & [ & NaN] \\
\hline '02-Sep-1997' & [ & 26.1665] \\
\hline '03-Sep-1997' & [ & \(26.5208]\) \\
\hline '04-Sep-1997' & [ & \(26.0158]\) \\
\hline '05-Sep-1997' & [ & \(26.0418]\) \\
\hline '08-Sep-1997' & [ & \(26.0675]\) \\
\hline '09-Sep-1997' & [ & 26.1305] \\
\hline '10-Sep-1997' & [ & \(25.9690]\) \\
\hline '11-Sep-1997' & [ & \(25.2345]\) \\
\hline '12-Sep-1997' & [ & 25.6198] \\
\hline '15-Sep-1997' & [ & 25.7237] \\
\hline '16-Sep-1997' & [ & \(26.2395]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '17-Sep-1997' & [ & \(26.3753]\) \\
\hline '18-Sep-1997' & [ & \(26.3492]\) \\
\hline '19-Sep-1997' & [ & 26.5888] \\
\hline '22-Sep-1997' & [ & \(26.5678]\) \\
\hline '23-Sep-1997' & [ & \(26.3592]\) \\
\hline '24-Sep-1997' & [ & \(26.3333]\) \\
\hline '25-Sep-1997' & [ & 26.4273] \\
\hline '26-Sep-1997' & [ & 26.5313] \\
\hline '29-Sep-1997' & [ & \(26.6773]\) \\
\hline '30-Sep-1997' & [ & \(26.8698]\) \\
\hline '01-Oct-1997' & [ & \(27.2655]\) \\
\hline '02-Oct-1997' & [ & \(27.8180]\) \\
\hline '03-0ct-1997' & [ & \(28.2135]\) \\
\hline '06-0ct-1997' & [ & \(27.7710]\) \\
\hline '07-Oct-1997' & [ & 28.2553] \\
\hline '08-Oct-1997' & [ & 28.0053] \\
\hline '09-0ct-1997' & [ & \(28.0107]\) \\
\hline '10-0ct-1997' & [ & \(27.8908]\) \\
\hline '13-0ct-1997' & [ & \(28.1875]\) \\
\hline '14-0ct-1997' & [ & 28.7190] \\
\hline '15-0ct-1997' & [ & \(28.9425]\) \\
\hline '16-0ct-1997' & [ & \(28.3493]\) \\
\hline '17-Oct-1997' & [ & 27.5888 ] \\
\hline '20-0ct-1997' & [ & \(27.7708]\) \\
\hline '21-Oct-1997' & [ & \(27.8805]\) \\
\hline '22-0ct-1997' & [ & \(27.7920]\) \\
\hline '23-0ct-1997' & [ & \(27.4325]\) \\
\hline '24-Oct-1997' & [ & \(27.6458]\) \\
\hline '27-0ct-1997' & [ & 26.3388 ] \\
\hline '28-Oct-1997' & [ & \(26.8648]\) \\
\hline '29-0ct-1997' & [ & \(27.5730]\) \\
\hline '30-0ct-1997' & [ & \(27.0727]\) \\
\hline '31-0ct-1997' & [ & 27.4737] \\
\hline '03-Nov-1997' & [ & 28.3073] \\
\hline '04-Nov-1997' & [ & 28.6615] \\
\hline '05-Nov-1997' & [ & 28.4585] \\
\hline '06-Nov-1997' & [ & \(28.6670]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ' 07 -Nov-1997' & & \(28.7190]\) \\
\hline '10-Nov-1997' & [ & \(28.6247]\) \\
\hline '11-Nov-1997' & & \(28.6825]\) \\
\hline '12-Nov-1997' & & \(27.9587]\) \\
\hline '13-Nov-1997' & & \(28.2085]\) \\
\hline '14-Nov-1997' & & \(28.8335]\) \\
\hline '17-Nov-1997' & & \(29.6358]\) \\
\hline '18-Nov-1997' & & \(29.7135]\) \\
\hline '19-Nov-1997' & & \(30.2915]\) \\
\hline '20-Nov-1997' & [ & \(30.2918]\) \\
\hline '21-Nov-1997' & & \(31.2705]\) \\
\hline '24-Nov-1997' & [ & \(31.1665]\) \\
\hline '25-Nov-1997' & & 31.1977 ] \\
\hline '26-Nov-1997' & & 31.5263 ] \\
\hline '27-Nov-1997' & [ & NaN ] \\
\hline '28-Nov-1997' & & \(31.6513]\) \\
\hline '01-Dec-1997' & [ & 32.2763 ] \\
\hline '02-Dec-1997' & [ & \(32.2138]\) \\
\hline '03-Dec-1997' & & \(31.7760]\) \\
\hline '04-Dec-1997' & & \(31.1930]\) \\
\hline '05-Dec-1997' & & 31.2862] \\
\hline '08-Dec-1997' & & \(31.4480]\) \\
\hline '09-Dec-1997' & & 31.4482] \\
\hline '10-Dec-1997' & [ & \(31.2395]\) \\
\hline '11-Dec-1997' & & 30.9118 ] \\
\hline '12-Dec-1997' & [ & \(31.2237]\) \\
\hline '15-Dec-1997' & & \(32.1460]\) \\
\hline '16-Dec-1997' & & 32.0678 ] \\
\hline '17-Dec-1997' & [ & 32.2398 ] \\
\hline '18-Dec-1997' & & \(32.3907]\) \\
\hline '19-Dec-1997' & [ & 31.7710] \\
\hline '22-Dec-1997' & [ & \(32.3697]\) \\
\hline '23-Dec-1997' & [ & \(32.5780]\) \\
\hline '24-Dec-1997' & [ & \(31.8753]\) \\
\hline '25-Dec-1997' & [ & \(\mathrm{NaN}]\) \\
\hline '26-Dec-1997' & [ & 31.7660 ] \\
\hline '29-Dec-1997' & [ & \(32.2445]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '30-Dec-1997' & [ & \(33.0210]\) \\
\hline '31-Dec-1997' & [ & \(33.0782]\) \\
\hline '01-Jan-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '02-Jan-1998' & [ & \(33.1405]\) \\
\hline '05-Jan-1998' & [ & \(33.0055]\) \\
\hline '06-Jan-1998' & [ & \(32.7973]\) \\
\hline '07-Jan-1998' & [ & \(32.7392]\) \\
\hline '08-Jan-1998' & [ & \(32.5630]\) \\
\hline '09-Jan-1998' & [ & \(32.1458]\) \\
\hline '12-Jan-1998' & [ & 31.5470 ] \\
\hline '13-Jan-1998' & [ & \(31.6043]\) \\
\hline '14-Jan-1998' & [ & \(32.0263]\) \\
\hline '15-Jan-1998' & [ & \(31.8440]\) \\
\hline '16-Jan-1998' & [ & \(32.0055]\) \\
\hline '19-Jan-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '20-Jan-1998' & [ & \(32.9375]\) \\
\hline '21-Jan-1998' & [ & \(32.9428]\) \\
\hline '22-Jan-1998' & [ & \(32.3282]\) \\
\hline '23-Jan-1998' & [ & \(32.7710]\) \\
\hline '26-Jan-1998' & [ & \(32.5883]\) \\
\hline '27-Jan-1998' & [ & 34.0415] \\
\hline '28-Jan-1998' & [ & \(35.0208]\) \\
\hline '29-Jan-1998' & [ & \(35.4585]\) \\
\hline '30-Jan-1998' & [ & \(35.5780]\) \\
\hline '02-Feb-1998' & [ & \(36.1407]\) \\
\hline '03-Feb-1998' & [ & \(35.9165]\) \\
\hline '04-Feb-1998' & [ & \(36.0572]\) \\
\hline '05-Feb-1998' & [ & \(36.1197]\) \\
\hline '06-Feb-1998' & [ & \(36.1930]\) \\
\hline '09-Feb-1998' & [ & \(36.0470]\) \\
\hline '10-Feb-1998' & [ & \(36.0523]\) \\
\hline '11-Feb-1998' & [ & \(36.7295]\) \\
\hline '12-Feb-1998' & [ & \(36.6303]\) \\
\hline '13-Feb-1998' & [ & \(36.9845]\) \\
\hline '16-Feb-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '17-Feb-1998' & [ & \(37.5628]\) \\
\hline '18-Feb-1998' & [ & \(38.0940]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '19-Feb-1998 ' & [ & 38.1148] \\
\hline ' 20-Feb-1998' & [ & \(38.0730]\) \\
\hline '23-Feb-1998' & [ & \(38.1145]\) \\
\hline '24-Feb-1998' & [ & 37.4483 ] \\
\hline ' 25-Feb-1998' & [ & \(37.1352]\) \\
\hline ' 26-Feb-1998' & [ & 36.67731 \\
\hline ' 27 -Feb-1998 ' & [ & 37.1253 ] \\
\hline ' 02-Mar-1998' & [ & \(36.6405]\) \\
\hline '03-Mar-1998' & [ & 36.6407 ] \\
\hline ' 04 -Mar-1998 ' & [ & \(35.4480]\) \\
\hline ' \(05-\mathrm{Mar}-1998{ }^{\text {' }}\) & [ & 35.0838 ] \\
\hline ' 06-Mar-1998' & [ & 35.2343 ] \\
\hline ' 09-Mar-1998' & [ & \(35.2760]\) \\
\hline '10-Mar-1998' & [ & 35.2867 ] \\
\hline '11-Mar-1998' & [ & \(34.9640]\) \\
\hline '12-Mar-1998' & [ & \(35.2295]\) \\
\hline '13-Mar-1998' & [ & \(35.4112]\) \\
\hline '16-Mar-1998' & [ & \(36.2867]\) \\
\hline '17-Mar-1998' & [ & 35.9013 ] \\
\hline '18-Mar-1998' & [ & 35.6770 ] \\
\hline '19-Mar-1998' & [ & \(35.5055]\) \\
\hline ' \(20-\mathrm{Mar}-1998{ }^{\text {' }}\) & [ & \(35.5315]\) \\
\hline '23-Mar-1998' & [ & \(34.5415]\) \\
\hline '24-Mar-1998' & [ & \(35.4845]\) \\
\hline ' 25 -Mar-1998' & [ & \(35.5835]\) \\
\hline ' 26 -Mar-1998' & [ & 35.8023 ] \\
\hline ' 27 -Mar-1998 ' & [ & \(35.8075]\) \\
\hline '30-Mar-1998' & [ & \(35.3440]\) \\
\hline '31-Mar-1998' & [ & \(35.5415]\) \\
\hline '01-Apr-1998' & [ & \(35.3280]\) \\
\hline ' 02-Apr-1998' & [ & \(36.0108]\) \\
\hline '03-Apr-1998' & [ & \(36.7447]\) \\
\hline '06-Apr-1998' & [ & \(36.3490]\) \\
\hline '07-Apr-1998' & [ & 35.9375 ] \\
\hline '08-Apr-1998' & [ & \(35.6407]\) \\
\hline '09-Apr-1998' & [ & 36.1718 ] \\
\hline '10-Apr-1998' & [ & NaN ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '13-Apr-1998' & [ & \(36.6513]\) \\
\hline '14-Apr-1998' & [ & 37.5938 ] \\
\hline '15-Apr-1998' & [ & \(37.8697]\) \\
\hline '16-Apr-1998' & [ & 37.4480 ] \\
\hline '17-Apr-1998' & [ & \(37.6513]\) \\
\hline '20-Apr-1998' & [ & \(38.3385]\) \\
\hline '21-Apr-1998' & [ & 38.7450 ] \\
\hline '22-Apr-1998' & [ & \(40.1410]\) \\
\hline '23-Apr-1998' & [ & \(41.5365]\) \\
\hline '24-Apr-1998' & [ & 40.6458 ] \\
\hline '27-Apr-1998' & [ & \(40.2138]\) \\
\hline '28-Apr-1998' & [ & \(41.1250]\) \\
\hline '29-Apr-1998' & [ & \(41.2710]\) \\
\hline '30-Apr-1998' & [ & 41.5678 ] \\
\hline '01-May-1998' & [ & \(41.7865]\) \\
\hline '04-May-1998' & [ & 42.4115] \\
\hline '05-May-1998' & [ & \(42.1612]\) \\
\hline '06-May-1998' & [ & \(41.5782]\) \\
\hline '07-May-1998' & [ & \(39.8230]\) \\
\hline '08-May-1998' & [ & \(39.8175]\) \\
\hline '11-May-1998' & [ & \(40.2190]\) \\
\hline '12-May-1998' & [ & \(39.7497]\) \\
\hline '13-May-1998' & [ & \(39.5520]\) \\
\hline '14-May-1998' & [ & \(38.7503]\) \\
\hline '15-May-1998' & [ & \(37.1980]\) \\
\hline '18-May-1998' & [ & 36.7450 ] \\
\hline '19-May-1998' & [ & 36.9843 ] \\
\hline '20-May-1998' & [ & \(37.9843]\) \\
\hline '21-May-1998' & [ & 38.6043 ] \\
\hline '22-May-1998' & [ & \(38.7398]\) \\
\hline '25-May-1998' & , & NaN ] \\
\hline '26-May-1998' & [ & \(37.6095]\) \\
\hline '27-May-1998' & [ & 37.8490 ] \\
\hline '28-May-1998' & [ & \(37.7605]\) \\
\hline '29-May-1998' & [ & \(37.8227]\) \\
\hline '01-Jun-1998' & [ & \(37.1565]\) \\
\hline '02-Jun-1998' & [ & \(36.8175]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 03-Jun-1998' & [ & \(36.6303]\) \\
\hline '04-Jun-1998' & [ & \(36.4220]\) \\
\hline 05-Jun-1998' & [ & \(38.0260]\) \\
\hline 08-Jun-1998' & [ & 38.4428 ] \\
\hline 09-Jun-1998' & [ & 38.6872 ] \\
\hline 10-Jun-1998' & [ & \(39.4430]\) \\
\hline 11-Jun-1998' & [ & 38.9322 ] \\
\hline 12-Jun-1998' & [ & 38.3227 ] \\
\hline 15-Jun-1998' & [ & \(37.6303]\) \\
\hline 16-Jun-1998' & [ & 37.6773 ] \\
\hline 17-Jun-1998' & [ & \(38.1563]\) \\
\hline 18-Jun-1998' & [ & \(37.5313]\) \\
\hline 19-Jun-1998' & [ & \(35.9895]\) \\
\hline 22-Jun-1998' & [ & \(35.9115]\) \\
\hline 23-Jun-1998' & [ & \(36.5415]\) \\
\hline 24-Jun-1998' & [ & 37.3650 ] \\
\hline 25-Jun-1998' & [ & 37.5418 ] \\
\hline 26-Jun-1998' & [ & 36.9790 ] \\
\hline 29-Jun-1998' & [ & 37.6668 ] \\
\hline 30-Jun-1998' & [ & \(35.4115]\) \\
\hline 01-Jul-1998' & [ & \(35.5053]\) \\
\hline 02-Jul-1998' & [ & \(35.3800]\) \\
\hline '03-Jul-1998' & [ & NaN ] \\
\hline 06-Jul-1998' & [ & \(35.2295]\) \\
\hline '07-Jul-1998' & [ & \(35.5105]\) \\
\hline 08-Jul-1998' & [ & \(36.0105]\) \\
\hline '09-Jul-1998' & [ & \(36.8282]\) \\
\hline 10-Jul-1998' & [ & \(37.8125]\) \\
\hline 13-Jul-1998' & [ & \(39.1720]\) \\
\hline 14-Jul-1998' & [ & 39.9063 ] \\
\hline 15-Jul-1998' & [ & \(39.5628]\) \\
\hline 16-Jul-1998' & [ & \(39.0318]\) \\
\hline 17-Jul-1998' & [ & \(39.2815]\) \\
\hline '20-Jul-1998' & [ & 38.8440 ] \\
\hline '21-Jul-1998' & [ & \(37.8753]\) \\
\hline '22-Jul-1998' & [ & 37.2973 ] \\
\hline '23-Jul-1998' & [ & 36.5938 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '24-Jul-1998' & [ & 36.6723] \\
\hline '27-Jul-1998' & [ & \(36.4845]\) \\
\hline '28-Jul-1998' & [ & \(35.5940]\) \\
\hline '29-Jul-1998' & [ & \(35.3907]\) \\
\hline '30-Jul-1998' & [ & \(35.0315]\) \\
\hline '31-Jul-1998' & [ & 34.6565] \\
\hline '03-Aug-1998' & [ & \(34.7190]\) \\
\hline '04-Aug-1998' & [ & \(33.3910]\) \\
\hline '05-Aug-1998' & [ & 33.3598] \\
\hline '06-Aug-1998' & [ & \(33.4223]\) \\
\hline '07-Aug-1998' & [ & \(33.2970]\) \\
\hline '10-Aug-1998' & [ & \(32.9845]\) \\
\hline '11-Aug-1998' & [ & \(32.0470]\) \\
\hline '12-Aug-1998' & [ & \(32.4535]\) \\
\hline '13-Aug-1998' & [ & \(32.1567]\) \\
\hline '14-Aug-1998' & [ & 31.7970 ] \\
\hline '17-Aug-1998' & [ & 31.9378] \\
\hline '18-Aug-1998' & [ & 33.1875] \\
\hline '19-Aug-1998' & [ & \(33.1720]\) \\
\hline '20-Aug-1998' & [ & \(33.5157]\) \\
\hline '21-Aug-1998' & [ & 33.0628] \\
\hline '24-Aug-1998' & [ & 33.37531 \\
\hline '25-Aug-1998' & [ & 34.1098] \\
\hline '26-Aug-1998' & [ & \(33.0313]\) \\
\hline '27-Aug-1998' & [ & 31.7345] \\
\hline '28-Aug-1998' & [ & \(30.7503]\) \\
\hline '31-Aug-1998' & [ & 28.0315] \\
\hline '01-Sep-1998' & [ & \(29.7500]\) \\
\hline '02-Sep-1998' & [ & \(30.2970]\) \\
\hline '03-Sep-1998' & [ & \(28.5940]\) \\
\hline '04-Sep-1998' & [ & \(28.1875]\) \\
\hline '07-Sep-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '08-Sep-1998' & [ & 29.1408] \\
\hline '09-Sep-1998' & [ & 28.0630] \\
\hline '10-Sep-1998' & [ & 27.1253] \\
\hline '11-Sep-1998' & [ & 26.3285] \\
\hline '14-Sep-1998' & [ & \(24.5003]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '15-Sep-1998' & [ & 25.3283] \\
\hline '16-Sep-1998' & [ & \(25.6720]\) \\
\hline '17-Sep-1998' & [ & \(25.5315]\) \\
\hline '18-Sep-1998' & [ & \(25.5315]\) \\
\hline '21-Sep-1998' & [ & \(25.1250]\) \\
\hline '22-Sep-1998' & [ & \(25.2035]\) \\
\hline '23-Sep-1998' & [ & \(26.5940]\) \\
\hline '24-Sep-1998' & [ & \(26.1563]\) \\
\hline '25-Sep-1998' & [ & \(25.6875]\) \\
\hline '28-Sep-1998' & [ & \(26.1565]\) \\
\hline '29-Sep-1998' & [ & 26.0783] \\
\hline '30-Sep-1998' & [ & 25.5003] \\
\hline '01-0ct-1998' & [ & 24.9065] \\
\hline '02-0ct-1998' & [ & \(25.1875]\) \\
\hline '05-0ct-1998' & [ & \(25.0940]\) \\
\hline '06-0ct-1998' & [ & \(25.4220]\) \\
\hline '07-0ct-1998' & [ & \(25.0942]\) \\
\hline '08-0ct-1998' & [ & 23.6095] \\
\hline '09-0ct-1998' & [ & \(23.4222]\) \\
\hline '12-0ct-1998' & [ & 24.6878] \\
\hline '13-0ct-1998' & [ & \(25.2033]\) \\
\hline '14-0ct-1998' & [ & 24.6563] \\
\hline '15-0ct-1998' & [ & \(25.4845]\) \\
\hline '16-0ct-1998' & [ & \(25.5313]\) \\
\hline '19-0ct-1998' & [ & \(25.8285]\) \\
\hline '20-0ct-1998' & [ & 26.9535] \\
\hline '21-0ct-1998' & [ & \(27.4535]\) \\
\hline '22-0ct-1998' & [ & 27.7658] \\
\hline '23-0ct-1998' & [ & \(27.5940]\) \\
\hline '26-0ct-1998' & [ & \(27.8440]\) \\
\hline '27-0ct-1998' & [ & 27.0315] \\
\hline '28-0ct-1998' & [ & 26.4222] \\
\hline '29-0ct-1998' & [ & 26.5625] \\
\hline '30-0ct-1998' & [ & \(26.9380]\) \\
\hline '02-Nov-1998' & [ & 28.5473] \\
\hline '03-Nov-1998' & [ & 29.4378] \\
\hline '04-Nov-1998' & [ & 29.0158] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 05-Nov-1998' & [ & \(29.6255]\) \\
\hline ' 06-Nov-1998' & [ & 30.2345] \\
\hline '09-Nov-1998' & [ & \(29.7660]\) \\
\hline '10-Nov-1998' & [ & \(28.9533]\) \\
\hline '11-Nov-1998' & [ & 28.9690 ] \\
\hline '12-Nov-1998' & [ & \(28.5160]\) \\
\hline '13-Nov-1998' & [ & \(28.9688]\) \\
\hline '16-Nov-1998' & [ & \(29.2035]\) \\
\hline '17-Nov-1998' & [ & 28.9848] \\
\hline '18-Nov-1998' & [ & \(28.8438]\) \\
\hline '19-Nov-1998' & [ & \(28.4065]\) \\
\hline '20-Nov-1998' & [ & 28.4533] \\
\hline '23-Nov-1998' & [ & 29.2813] \\
\hline '24-Nov-1998' & [ & \(30.0003]\) \\
\hline '25-Nov-1998' & [ & \(30.6097]\) \\
\hline '26-Nov-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '27-Nov-1998' & [ & \(31.6720]\) \\
\hline '30-Nov-1998' & [ & \(32.2660]\) \\
\hline '01-Dec-1998' & [ & 31.5313] \\
\hline '02-Dec-1998' & [ & 31.1255] \\
\hline '03-Dec-1998' & I & 31.1253] \\
\hline '04-Dec-1998' & [ & 31.4375] \\
\hline '07-Dec-1998' & [ & 31.2658] \\
\hline '08-Dec-1998' & [ & \(31.9220]\) \\
\hline '09-Dec-1998' & [ & \(33.2348]\) \\
\hline '10-Dec-1998' & [ & \(32.7035]\) \\
\hline '11-Dec-1998' & [ & \(31.8753]\) \\
\hline '14-Dec-1998' & [ & \(30.7188]\) \\
\hline '15-Dec-1998' & [ & \(30.8908]\) \\
\hline '16-Dec-1998' & [ & \(30.8753]\) \\
\hline '17-Dec-1998' & [ & \(30.9220]\) \\
\hline '18-Dec-1998' & [ & 30.6567 ] \\
\hline '21-Dec-1998' & [ & \(30.9220]\) \\
\hline '22-Dec-1998' & , & \(30.6255]\) \\
\hline '23-Dec-1998' & [ & 30.7660 ] \\
\hline '24-Dec-1998' & [ & \(30.6565]\) \\
\hline '25-Dec-1998' & [ & NaN ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '28-Dec-1998' & [ & 30.5315] \\
\hline '29-Dec-1998' & [ & 30.4535] \\
\hline '30-Dec-1998' & [ & 30] \\
\hline '31-Dec-1998' & [ & \(29.9220]\) \\
\hline '01-Jan-1999' & [ & \(\mathrm{NaN}]\) \\
\hline '04-Jan-1999' & [ & \(29.7660]\) \\
\hline '05-Jan-1999' & [ & \(30.3598]\) \\
\hline '06-Jan-1999' & [ & \(30.6565]\) \\
\hline '07-Jan-1999' & [ & \(31.3125]\) \\
\hline '08-Jan-1999' & [ & \(32.4380]\) \\
\hline '11-Jan-1999' & [ & \(34.7657]\) \\
\hline '12-Jan-1999' & [ & \(37.9690]\) \\
\hline '13-Jan-1999' & [ & 36] \\
\hline '14-Jan-1999' & [ & 36.29731 \\
\hline '15-Jan-1999' & [ & \(36.0782]\) \\
\hline '18-Jan-1999' & [ & \(\mathrm{NaN}]\) \\
\hline '19-Jan-1999' & [ & \(36.3595]\) \\
\hline '20-Jan-1999' & [ & \(36.2032]\) \\
\hline '21-Jan-1999' & [ & 34.8128] \\
\hline '22-Jan-1999' & [ & 34.2032] \\
\hline '25-Jan-1999' & [ & 34.7348] \\
\hline '26-Jan-1999' & [ & 34.6723] \\
\hline '27-Jan-1999' & [ & \(33.2348]\) \\
\hline '28-Jan-1999' & [ & \(33.6720]\) \\
\hline '29-Jan-1999' & [ & \(33.2500]\) \\
\hline '01-Feb-1999' & [ & \(33.6410]\) \\
\hline '02-Feb-1999' & [ & \(33.3128]\) \\
\hline '03-Feb-1999' & [ & \(33.5938]\) \\
\hline '04-Feb-1999' & [ & \(33.3282]\) \\
\hline '05-Feb-1999' & [ & 34.1878] \\
\hline '08-Feb-1999' & [ & \(34.0157]\) \\
\hline '09-Feb-1999' & [ & \(33.7657]\) \\
\hline '10-Feb-1999' & [ & 33.9068] \\
\hline '11-Feb-1999' & [ & 34.9223] \\
\hline '12-Feb-1999' & [ & \(35.2505]\) \\
\hline '15-Feb-1999' & [ & \(\mathrm{NaN}]\) \\
\hline '16-Feb-1999' & [ & \(35.1878]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 17-Feb-1999 \({ }^{\prime}\) & [ & \(34.8907]\) \\
\hline '18-Feb-1999' & [ & 34.5313] \\
\hline '19-Feb-1999' & [ & \(34.1875]\) \\
\hline '22-Feb-1999' & [ & \(34.7500]\) \\
\hline 23-Feb-1999 ' & [ & \(35.0313]\) \\
\hline 24-Feb-1999 \({ }^{\prime}\) & [ & \(35.2660]\) \\
\hline 25-Feb-1999 ' & [ & \(34.5782]\) \\
\hline 26-Feb-1999' & [ & \(35.0318]\) \\
\hline 01-Mar-1999' & [ & 34.8598] \\
\hline 02-Mar-1999' & [ & 34.4068] \\
\hline 03-Mar-1999' & [ & \(34.6250]\) \\
\hline 04-Mar-1999' & [ & \(35.0630]\) \\
\hline 05-Mar-1999' & [ & 35.7973 ] \\
\hline 08-Mar-1999' & [ & \(36.3755]\) \\
\hline 09-Mar-1999' & [ & \(34.8755]\) \\
\hline 10-Mar-1999' & [ & 34.6095] \\
\hline 11-Mar-1999' & [ & 34.6098] \\
\hline 12-Mar-1999' & [ & \(36.0473]\) \\
\hline 15-Mar-1999' & [ & \(35.8595]\) \\
\hline 16-Mar-1999' & [ & 35.4068 ] \\
\hline 17-Mar-1999' & [ & \(34.7657]\) \\
\hline 18-Mar-1999' & [ & \(35.3130]\) \\
\hline '19-Mar-1999' & [ & \(35.2035]\) \\
\hline '22-Mar-1999' & [ & \(34.5000]\) \\
\hline '23-Mar-1999' & [ & \(33.3443]\) \\
\hline 24-Mar-1999' & [ & \(33.0628]\) \\
\hline '25-Mar-1999' & [ & \(33.3125]\) \\
\hline '26-Mar-1999' & [ & \(33.0003]\) \\
\hline 29-Mar-1999' & [ & \(33.0160]\) \\
\hline
\end{tabular}

References Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 312-313.
See Also medprice | typprice

\section*{Purpose Week in year \\ Syntax \(\quad[N]=\) weeknum \((D)\) \\ [N] = weeknum(D, W, E)}

Arguments
D Serial date number or a date string.
W (Optional) A numeric representation of the day a week begins. The week start values and their corresponding day are:
- 1 (default) - Sunday
- 2 - Monday
- 3 - Tuesday
- 4 - Wednesday
- 5 - Thursday
- 6 - Friday
- 7 - Saturday

E (Optional) Indicates if the week of the year display is in the European standard. The European standard considers first week of year to be first week longer than 3 days, offset by the given week's start day. Set to 1 to use the European standard. The default setting is 0 .

\section*{Description}
[ \(N\) ] = weeknum ( D ) returns the week of the year given \(D\), a serial date number or a date string.
\([N]=\) weeknum(D, W, E) returns the week of the year given D, a serial date number or a date string, \(W\), a numeric representation of the day a week begins, and when \(E\) is set to 1 , the week of the year is in the European standard.

The weeknum function considers the week containing January 1 to be the first week of the year.

\section*{Examples You can determine the week of the year using a serial date number}
```

N = weeknum(728647)
N =
5 2
or a date string
N = weeknum('19-Dec-1994')
N =
5 2

```

The first week of the year must have at least 4 days in it. For example, January 8, 2004 was a Thursday. The European standard is used because the first week of the year is the first week longer than 3 days.
```

weeknum('08-jan-2004',1,1)

```
ans =
2
You can use weeknum with datenum:
```

weeknum(datenum('01-Jan-2004'):datenum('08-Jan-2004'))
ans =
1

```

The default start day of the week is Sunday. Every day after, and including the first Sunday of the year (04-Jan-2004), returns 2 denoting
the second week. In this case, the first of week of the year started before January 1, 2004.

You can also use weeknum with datenum and specify a \(W\) value of 5 to indicate that the weeks start on Thursday:
weeknum(datenum('01-Jan-2004'):datenum('08-Jan-2004'), 5)
ans =
\(\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 2\end{array}\)

The first week of the year that has 4 or more days, based on the specified start day, is considered week one (even if this isn't the first week in the calendar). Any day falling in (or before) this week is given a week number of 1 .
```

See Also
datenum | datestr | datevec | day

```

\section*{weights2holdings}

Purpose Portfolio values and weights into holdings
Syntax Holdings = weights2holdings(Values, Weights, Prices)
Arguments
\begin{tabular}{ll} 
Values & \begin{tabular}{l} 
Scalar or number of portfolios (NPORTS) vector \\
containing portfolio values.
\end{tabular} \\
Weights & \begin{tabular}{l} 
NPORTS by number of assets (NASSETS) matrix with \\
portfolio weights. The weights sum to the value \\
of a Budget constraint, which is usually 1. (See \\
holdings2weights for information about budget \\
constraints.)
\end{tabular} \\
Prices & NASSETS vector of prices.
\end{tabular}

\section*{Description \\ Holdings = weights2holdings(Values, Weights, Prices) converts portfolio values and weights into portfolio holdings.}

Holdings is a NPORTS-by-NASSETS matrix containing the holdings of NPORTS portfolios that contain NASSETS assets.

Note This function does not create round-lot positions. Holdings are floating-point values.

\footnotetext{
See Also
holdings2weights
}

\section*{Purpose Williams Accumulation/Distribution line}

Syntax
```

wadl = willad(highp, lowp, closep)
wadl = willad([highp lowp closep])
wadlts = willad(tsobj)
wadlts = willad(tsobj, ParameterName, ParameterValue, ...)

```

\section*{Arguments}
\begin{tabular}{ll} 
highp & High price (vector) \\
lowp & Low price (vector) \\
closep & Closing price (vector) \\
tsobj & Time series object
\end{tabular}

\section*{Description}
wadl = willad(highp, lowp, closep) computes the Williams Accumulation/Distribution line for a set of stock price data. The prices needed for this function are the high (highp), low (lowp), and closing (closep) prices. All three are required.
wadl \(=\) willad([highp lowp closep]) accepts a three-column matrix of prices as input. The first column contains the high prices, the second contains the low prices, and the third contains the closing prices.
wadlts = willad(tsobj) computes the Williams
Accumulation/Distribution line for a set of stock price data contained in the financial time series object tsobj. The object must contain the high, low, and closing prices needed for this function. The function assumes that the series are named High, Low, and Close. All three are required. wadlts is a financial time series object with the same dates as tsobj and a single data series named WillAD.
wadlts = willad(tsobj, ParameterName, ParameterValue, ...) accepts parameter name/parameter value pairs as input. These pairs
specify the name(s) for the required data series if it is different from the expected default name(s). Valid parameter names are
- HighName: high prices series name
- LowName: low prices series name
- CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter names.

\section*{Examples Compute the Williams A/D Line}

This example shows how to compute the Williams A/D line for Disney stock and plot the results.
```

load disney.mat
dis_Willad = willad(dis)
plot(dis_Willad)
title('Williams A/D Line for Disney')

```
```

dis_Willad =
desc: WillAD: Walt Disney Company (DIS)
freq: Unknown (0)
'dates: (782)' 'WillAD: (782)
'29-Mar-1996' [21.2920]
'01-Apr-1996' [21.6250]
'02-Apr-1996' [21.8330]
'03-Apr-1996' [21.9580]
'04-Apr-1996' [21.7500]
'05-Apr-1996' [21.7500]
'08-Apr-1996' [21.7500]
'09-Apr-1996' [21.4160]
'10-Apr-1996' [20.5000]
'11-Apr-1996' [20.1250]

```
\begin{tabular}{|c|c|c|}
\hline 12-Apr-1996 \({ }^{\text {' }}\) & [ & \(20.5000]\) \\
\hline 15-Apr-1996' & [ & \(20.7500]\) \\
\hline 16-Apr-1996' & [ & \(21.3330]\) \\
\hline 17-Apr-1996' & [ & \(21.4170]\) \\
\hline '18-Apr-1996' & [ & \(21.5830]\) \\
\hline 19-Apr-1996' & [ & \(21.7080]\) \\
\hline '22-Apr-1996' & [ & \(21.3750]\) \\
\hline 23-Apr-1996' & [ & \(21.0830]\) \\
\hline 24-Apr-1996' & [ & 20.7080] \\
\hline 25-Apr-1996' & , & \(20.9170]\) \\
\hline 26-Apr-1996' & [ & \(21.1250]\) \\
\hline 29-Apr-1996' & [ & \(21.1250]\) \\
\hline 30-Apr-1996' & [ & \(21.2500]\) \\
\hline 01-May-1996' & [ & \(20.7500]\) \\
\hline 02-May-1996' & [ & \(20.5000]\) \\
\hline 03-May-1996' & [ & 19.9170 ] \\
\hline '06-May-1996' & [ & \(20.4170]\) \\
\hline 07-May-1996' & [ & 20.1670 ] \\
\hline '08-May-1996' & [ & \(20.0420]\) \\
\hline 09-May-1996' & [ & \(19.6260]\) \\
\hline '10-May-1996' & [ & \(19.9590]\) \\
\hline 13-May-1996' & [ & \(20.4590]\) \\
\hline 14-May-1996' & [ & \(20.5430]\) \\
\hline 15-May-1996' & [ & 20.2100] \\
\hline 16-May-1996' & [ & \(20.5020]\) \\
\hline '17-May-1996' & [ & \(20.6690]\) \\
\hline '20-May-1996' & [ & \(20.9190]\) \\
\hline '21-May-1996' & [ & \(21.3360]\) \\
\hline '22-May-1996' & [ & \(21.4610]\) \\
\hline '23-May-1996' & [ & \(21.0450]\) \\
\hline '24-May-1996' & [ & \(21.2110]\) \\
\hline '27-May-1996' & [ & \(21.2110]\) \\
\hline '28-May-1996' & [ & \(21.2110]\) \\
\hline '29-May-1996' & [ & \(20.6700]\) \\
\hline '30-May-1996' & [ & \(21.0040]\) \\
\hline '31-May-1996' & [ & \(20.6710]\) \\
\hline '03-Jun-1996' & [ & \(20.5460]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 04-Jun-1996' & [ & 20.4210] \\
\hline '05-Jun-1996' & [ & \(20.7550]\) \\
\hline 06-Jun-1996' & [ & \(21.4210]\) \\
\hline 07-Jun-1996 ' & [ & 22.0870 ] \\
\hline 10-Jun-1996' & [ & 21.7540 ] \\
\hline 11-Jun-1996' & [ & 21.7540 ] \\
\hline 12-Jun-1996' & [ & 21.7540 ] \\
\hline 13-Jun-1996' & [ & 21.5040 ] \\
\hline 14-Jun-1996' & [ & \(21.4210]\) \\
\hline 17-Jun-1996' & [ & \(21.6300]\) \\
\hline 18-Jun-1996' & [ & \(21.2550]\) \\
\hline 19-Jun-1996' & [ & \(21.3380]\) \\
\hline 20-Jun-1996' & [ & \(21.6290]\) \\
\hline 21-Jun-1996' & [ & \(22.1290]\) \\
\hline 24-Jun-1996' & [ & \(21.8790]\) \\
\hline 25-Jun-1996' & [ & \(22.2120]\) \\
\hline 26-Jun-1996' & [ & \(21.9210]\) \\
\hline 27-Jun-1996' & [ & \(22.1710]\) \\
\hline 28-Jun-1996' & [ & 21.8790 ] \\
\hline 01-Jul-1996' & [ & \(21.6710]\) \\
\hline 02-Jul-1996' & [ & \(21.2960]\) \\
\hline 03-Jul-1996' & [ & \(21.1710]\) \\
\hline '04-Jul-1996' & [ & \(21.1710]\) \\
\hline 05-Jul-1996' & [ & \(21.1710]\) \\
\hline '08-Jul-1996' & [ & 20.7960 ] \\
\hline 09-Jul-1996' & [ & 20.2130] \\
\hline 10-Jul-1996' & [ & \(20.5050]\) \\
\hline 11-Jul-1996' & [ & \(19.8380]\) \\
\hline 12-Jul-1996' & [ & \(20.0880]\) \\
\hline 15-Jul-1996' & [ & \(19.0050]\) \\
\hline 16-Jul-1996' & [ & 19.7140 ] \\
\hline 17-Jul-1996' & [ & \(19.7140]\) \\
\hline 18-Jul-1996' & [ & \(20.1300]\) \\
\hline '19-Jul-1996' & [ & \(20.3800]\) \\
\hline '22-Jul-1996' & [ & \(19.9220]\) \\
\hline '23-Jul-1996' & [ & \(19.6300]\) \\
\hline '24-Jul-1996' & [ & \(19.2550]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '25-Jul-1996' & [ & \(19.2550]\) \\
\hline '26-Jul-1996' & [ & \(19.0470]\) \\
\hline '29-Jul-1996' & [ & \(18.5890]\) \\
\hline '30-Jul-1996' & [ & 19.2140] \\
\hline '31-Jul-1996' & [ & \(19.5060]\) \\
\hline '01-Aug-1996' & [ & 20.0890] \\
\hline '02-Aug-1996' & [ & 20.2970] \\
\hline '05-Aug-1996' & [ & 20.4220] \\
\hline '06-Aug-1996' & [ & \(20.6310]\) \\
\hline '07-Aug-1996' & [ & 20.4220] \\
\hline '08-Aug-1996' & [ & \(20.1310]\) \\
\hline '09-Aug-1996' & [ & 20.0060] \\
\hline '12-Aug-1996' & [ & \(20.6730]\) \\
\hline '13-Aug-1996' & [ & 20.5060 ] \\
\hline '14-Aug-1996' & [ & \(20.6310]\) \\
\hline '15-Aug-1996' & [ & 20.2980] \\
\hline '16-Aug-1996' & [ & \(20.4230]\) \\
\hline '19-Aug-1996' & [ & 20.2140] \\
\hline '20-Aug-1996' & [ & 19.9640] \\
\hline '21-Aug-1996' & [ & 20.2980] \\
\hline '22-Aug-1996' & [ & \(20.4230]\) \\
\hline '23-Aug-1996' & [ & \(20.7560]\) \\
\hline '26-Aug-1996' & [ & \(21.1310]\) \\
\hline '27-Aug-1996' & [ & 20.8810] \\
\hline '28-Aug-1996' & [ & \(20.6310]\) \\
\hline '29-Aug-1996' & [ & \(20.4230]\) \\
\hline '30-Aug-1996' & [ & \(20.1730]\) \\
\hline '02-Sep-1996' & [ & \(20.1730]\) \\
\hline '03-Sep-1996' & [ & \(20.1730]\) \\
\hline '04-Sep-1996' & , & 20.0900] \\
\hline '05-Sep-1996' & [ & 19.6740 ] \\
\hline '06-Sep-1996' & , & \(20.1320]\) \\
\hline '09-Sep-1996' & [ & \(20.5490]\) \\
\hline '10-Sep-1996' & [ & 20.4240] \\
\hline '11-Sep-1996' & [ & 20.7580] \\
\hline '12-Sep-1996' & [ & \(21.3830]\) \\
\hline '13-Sep-1996' & [ & \(21.5080]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '16-Sep-1996' & [ & \(21.0080]\) \\
\hline '17-Sep-1996' & [ & \(21.4250]\) \\
\hline '18-Sep-1996' & [ & \(21.5920]\) \\
\hline '19-Sep-1996' & [ & \(22.4670]\) \\
\hline '20-Sep-1996' & [ & \(22.3420]\) \\
\hline '23-Sep-1996' & [ & \(22.5920]\) \\
\hline '24-Sep-1996' & [ & \(22.2590]\) \\
\hline '25-Sep-1996' & [ & \(22.0920]\) \\
\hline '26-Sep-1996' & [ & \(21.5510]\) \\
\hline '27-Sep-1996' & [ & \(22.0090]\) \\
\hline '30-Sep-1996' & [ & \(22.1750]\) \\
\hline '01-0ct-1996' & [ & \(21.8000]\) \\
\hline 02-Oct-1996' & [ & \(21.9250]\) \\
\hline '03-0ct-1996' & [ & \(22.0500]\) \\
\hline '04-0ct-1996' & [ & \(22.3830]\) \\
\hline '07-0ct-1996' & [ & \(22.3830]\) \\
\hline '08-0ct-1996' & [ & \(22.1330]\) \\
\hline '09-0ct-1996' & [ & \(22.0500]\) \\
\hline '10-Oct-1996' & [ & \(22.2580]\) \\
\hline '11-Oct-1996' & [ & \(22.3830]\) \\
\hline '14-Oct-1996' & [ & \(22.4250]\) \\
\hline '15-0ct-1996' & [ & \(22.7160]\) \\
\hline 16-Oct-1996' & [ & \(23.2160]\) \\
\hline '17-Oct-1996' & [ & \(22.8830]\) \\
\hline '18-0ct-1996' & [ & \(23.0500]\) \\
\hline '21-Oct-1996' & [ & \(23.3000]\) \\
\hline '22-0ct-1996' & [ & \(23.6330]\) \\
\hline '23-0ct-1996' & [ & \(23.4670]\) \\
\hline '24-0ct-1996' & [ & \(23.1340]\) \\
\hline '25-0ct-1996' & [ & \(23.5090]\) \\
\hline '28-0ct-1996' & [ & \(23.5920]\) \\
\hline '29-0ct-1996' & [ & \(23.3010]\) \\
\hline '30-0ct-1996' & [ & \(23.1340]\) \\
\hline '31-0ct-1996' & [ & 23.3840 ] \\
\hline '01-Nov-1996' & [ & \(23.0920]\) \\
\hline '04-Nov-1996' & [ & \(23.5920]\) \\
\hline '05-Nov-1996' & [ & \(23.8840]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 06-Nov-1996' & [ & \(24.2590]\) \\
\hline '07-Nov-1996' & [ & \(24.7170]\) \\
\hline '08-Nov-1996' & [ & \(24.5500]\) \\
\hline 11-Nov-1996' & [ & \(25.1750]\) \\
\hline '12-Nov-1996' & [ & \(25.5080]\) \\
\hline '13-Nov-1996' & [ & \(25.3000]\) \\
\hline '14-Nov-1996' & [ & \(25.3000]\) \\
\hline '15-Nov-1996' & [ & \(25.8410]\) \\
\hline '18-Nov-1996' & [ & \(25.5500]\) \\
\hline '19-Nov-1996' & [ & \(25.2170]\) \\
\hline '20-Nov-1996' & [ & \(25.5920]\) \\
\hline '21-Nov-1996' & [ & \(25.8830]\) \\
\hline '22-Nov-1996' & [ & 25.4670 ] \\
\hline '25-Nov-1996' & [ & \(26.1340]\) \\
\hline '26-Nov-1996' & [ & 26.9670 ] \\
\hline '27-Nov-1996' & [ & \(26.2590]\) \\
\hline '28-Nov-1996' & [ & \(26.2590]\) \\
\hline '29-Nov-1996' & [ & \(26.2590]\) \\
\hline '02-Dec-1996' & [ & \(26.2590]\) \\
\hline '03-Dec-1996' & [ & \(25.5500]\) \\
\hline '04-Dec-1996' & [ & \(26.0920]\) \\
\hline '05-Dec-1996' & [ & \(26.0500]\) \\
\hline '06-Dec-1996' & [ & \(25.9250]\) \\
\hline '09-Dec-1996' & [ & \(26.6330]\) \\
\hline '10-Dec-1996' & [ & \(26.8000]\) \\
\hline '11-Dec-1996' & [ & \(26.4250]\) \\
\hline '12-Dec-1996' & [ & 25.7590 ] \\
\hline '13-Dec-1996' & [ & 25.7590 ] \\
\hline '16-Dec-1996' & [ & \(25.2170]\) \\
\hline '17-Dec-1996' & [ & 25.7590 ] \\
\hline '18-Dec-1996' & [ & 25.9670 ] \\
\hline '19-Dec-1996' & [ & \(26.3420]\) \\
\hline '20-Dec-1996' & [ & \(26.3420]\) \\
\hline '23-Dec-1996' & [ & \(26.2590]\) \\
\hline '24-Dec-1996' & [ & \(26.0090]\) \\
\hline '25-Dec-1996' & [ & \(26.0090]\) \\
\hline '26-Dec-1996' & [ & 26.0090 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 27-Dec-1996 \({ }^{\prime}\) & [ & 25.7170] \\
\hline '30-Dec-1996' & [ & \(25.1750]\) \\
\hline '31-Dec-1996' & [ & \(24.9250]\) \\
\hline '01-Jan-1997' & [ & \(24.9250]\) \\
\hline '02-Jan-1997' & [ & \(24.9250]\) \\
\hline '03-Jan-1997' & [ & \(25.5500]\) \\
\hline '06-Jan-1997' & [ & \(25.3000]\) \\
\hline '07-Jan-1997' & [ & \(25.2580]\) \\
\hline '08-Jan-1997' & [ & 24.7580] \\
\hline '09-Jan-1997' & [ & \(24.3410]\) \\
\hline '10-Jan-1997' & [ & \(24.8410]\) \\
\hline '13-Jan-1997' & [ & \(24.8830]\) \\
\hline '14-Jan-1997' & [ & \(25.2990]\) \\
\hline '15-Jan-1997' & [ & \(25.0910]\) \\
\hline '16-Jan-1997' & [ & \(24.9240]\) \\
\hline '17-Jan-1997' & [ & \(25.2990]\) \\
\hline '20-Jan-1997' & [ & \(25.4660]\) \\
\hline '21-Jan-1997' & [ & \(25.2160]\) \\
\hline '22-Jan-1997' & [ & 25.7160 ] \\
\hline '23-Jan-1997' & [ & \(25.2990]\) \\
\hline '24-Jan-1997' & [ & \(25.8820]\) \\
\hline '27-Jan-1997' & [ & \(26.2150]\) \\
\hline '28-Jan-1997' & [ & \(26.5480]\) \\
\hline '29-Jan-1997' & [ & \(26.9230]\) \\
\hline '30-Jan-1997' & [ & \(26.3400]\) \\
\hline '31-Jan-1997' & [ & \(26.5070]\) \\
\hline '03-Feb-1997' & [ & \(26.5070]\) \\
\hline ' 04-Feb-1997' & [ & \(26.3820]\) \\
\hline '05-Feb-1997' & [ & \(26.5900]\) \\
\hline '06-Feb-1997' & [ & \(27.0070]\) \\
\hline ' 07-Feb-1997' & [ & \(27.3400]\) \\
\hline '10-Feb-1997' & [ & \(27.5480]\) \\
\hline '11-Feb-1997' & [ & \(27.2150]\) \\
\hline '12-Feb-1997' & [ & \(27.7570]\) \\
\hline '13-Feb-1997' & [ & \(28.0490]\) \\
\hline '14-Feb-1997' & [ & 28.2990] \\
\hline '17-Feb-1997' & [ & 28.2990] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '18-Feb-1997' & [ & \(28.2990]\) \\
\hline '19-Feb-1997' & [ & \(27.8410]\) \\
\hline '20-Feb-1997' & [ & \(27.2580]\) \\
\hline '21-Feb-1997' & [ & \(27.4660]\) \\
\hline '24-Feb-1997' & [ & \(27.8410]\) \\
\hline '25-Feb-1997' & [ & \(28.2160]\) \\
\hline '26-Feb-1997' & [ & \(27.9250]\) \\
\hline '27-Feb-1997' & [ & \(28.0500]\) \\
\hline '28-Feb-1997' & [ & \(27.5080]\) \\
\hline '03-Mar-1997' & [ & \(27.0080]\) \\
\hline '04-Mar-1997' & [ & \(26.7580]\) \\
\hline '05-Mar-1997' & [ & \(27.3410]\) \\
\hline '06-Mar-1997' & [ & \(27.9250]\) \\
\hline '07-Mar-1997' & [ & \(28.2160]\) \\
\hline '10-Mar-1997' & [ & \(28.7160]\) \\
\hline '11-Mar-1997' & [ & \(28.8410]\) \\
\hline '12-Mar-1997' & [ & \(28.2580]\) \\
\hline '13-Mar-1997' & [ & \(27.5500]\) \\
\hline '14-Mar-1997' & [ & \(28.0500]\) \\
\hline '17-Mar-1997' & [ & \(28.6750]\) \\
\hline '18-Mar-1997' & [ & \(28.3420]\) \\
\hline '19-Mar-1997' & [ & \(28.1750]\) \\
\hline '20-Mar-1997' & [ & \(27.9660]\) \\
\hline '21-Mar-1997' & [ & \(27.7580]\) \\
\hline '24-Mar-1997' & [ & \(28.1330]\) \\
\hline '25-Mar-1997' & [ & \(27.8830]\) \\
\hline '26-Mar-1997' & [ & \(28.0910]\) \\
\hline '27-Mar-1997' & [ & \(27.8830]\) \\
\hline '28-Mar-1997' & [ & \(27.8830]\) \\
\hline '31-Mar-1997' & [ & \(27.8830]\) \\
\hline '01-Apr-1997' & [ & \(27.5080]\) \\
\hline '02-Apr-1997' & [ & \(27.5080]\) \\
\hline '03-Apr-1997' & [ & \(27.9660]\) \\
\hline '04-Apr-1997' & [ & \(28.5910]\) \\
\hline '07-Apr-1997' & [ & \(28.5910]\) \\
\hline '08-Apr-1997' & [ & \(28.8830]\) \\
\hline '09-Apr-1997' & [ & \(28.7580]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '10-Apr-1997' & [ & \(28.8420]\) \\
\hline '11-Apr-1997' & [ & \(28.0920]\) \\
\hline '14-Apr-1997' & [ & \(27.6750]\) \\
\hline '15-Apr-1997' & [ & \(28.5920]\) \\
\hline '16-Apr-1997' & [ & \(29.3420]\) \\
\hline '17-Apr-1997' & [ & \(29.5090]\) \\
\hline '18-Apr-1997' & [ & \(29.9250]\) \\
\hline '21-Apr-1997' & [ & \(30.1330]\) \\
\hline '22-Apr-1997' & [ & \(30.7580]\) \\
\hline '23-Apr-1997' & [ & \(31.0500]\) \\
\hline '24-Apr-1997' & [ & \(30.5080]\) \\
\hline '25-Apr-1997' & [ & \(30.2170]\) \\
\hline '28-Apr-1997' & [ & \(30.3420]\) \\
\hline '29-Apr-1997' & [ & \(31.3840]\) \\
\hline '30-Apr-1997' & [ & 31.9670 ] \\
\hline '01-May-1997' & [ & \(31.6340]\) \\
\hline '02-May-1997' & [ & \(31.2590]\) \\
\hline '05-May-1997' & [ & \(32.0510]\) \\
\hline '06-May-1997' & [ & \(32.3430]\) \\
\hline '07-May-1997' & [ & 31.7590] \\
\hline '08-May-1997' & [ & \(32.2590]\) \\
\hline '09-May-1997' & [ & \(32.6760]\) \\
\hline '12-May-1997' & [ & \(33.4260]\) \\
\hline '13-May-1997' & [ & \(33.1340]\) \\
\hline '14-May-1997' & [ & \(33.1340]\) \\
\hline '15-May-1997' & [ & \(32.8840]\) \\
\hline '16-May-1997' & [ & \(32.2170]\) \\
\hline '19-May-1997' & [ & \(33.0500]\) \\
\hline '20-May-1997' & [ & \(33.6750]\) \\
\hline '21-May-1997' & [ & \(33.1330]\) \\
\hline '22-May-1997' & [ & \(33.1330]\) \\
\hline '23-May-1997' & [ & \(33.5080]\) \\
\hline '26-May-1997' & [ & \(33.5080]\) \\
\hline '27-May-1997' & [ & \(33.5080]\) \\
\hline '28-May-1997' & [ & \(33.8830]\) \\
\hline '29-May-1997' & [ & \(33.5080]\) \\
\hline '30-May-1997' & [ & 33.1750 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 02-Jun-1997' & [ & \(32.6750]\) \\
\hline '03-Jun-1997' & [ & \(32.5500]\) \\
\hline '04-Jun-1997' & [ & \(32.3000]\) \\
\hline '05-Jun-1997' & [ & \(32.5920]\) \\
\hline '06-Jun-1997' & [ & \(33.0090]\) \\
\hline '09-Jun-1997' & [ & \(32.6760]\) \\
\hline '10-Jun-1997' & [ & \(32.9680]\) \\
\hline '11-Jun-1997' & [ & \(32.8010]\) \\
\hline '12-Jun-1997' & [ & \(32.9260]\) \\
\hline '13-Jun-1997' & [ & \(33.5510]\) \\
\hline '16-Jun-1997' & [ & \(33.8420]\) \\
\hline '17-Jun-1997' & [ & \(34.2590]\) \\
\hline '18-Jun-1997' & [ & \(33.7590]\) \\
\hline '19-Jun-1997' & [ & \(34.4260]\) \\
\hline '20-Jun-1997' & [ & \(34.0510]\) \\
\hline '23-Jun-1997' & [ & \(33.4680]\) \\
\hline '24-Jun-1997' & [ & \(34.1350]\) \\
\hline '25-Jun-1997' & [ & \(33.7490]\) \\
\hline '26-Jun-1997' & [ & \(33.5200]\) \\
\hline '27-Jun-1997' & [ & \(32.8530]\) \\
\hline '30-Jun-1997' & [ & \(33.3530]\) \\
\hline '01-Jul-1997' & [ & \(32.7910]\) \\
\hline '02-Jul-1997' & [ & \(32.2280]\) \\
\hline '03-Jul-1997' & [ & \(32.3530]\) \\
\hline '04-Jul-1997' & [ & \(32.3530]\) \\
\hline '07-Jul-1997' & [ & \(32.3530]\) \\
\hline '08-Jul-1997' & [ & \(33.0410]\) \\
\hline '09-Jul-1997' & [ & \(32.5620]\) \\
\hline '10-Jul-1997' & [ & \(32.2080]\) \\
\hline '11-Jul-1997' & [ & \(32.0200]\) \\
\hline '14-Jul-1997' & [ & \(32.3950]\) \\
\hline '15-Jul-1997' & [ & \(32.8530]\) \\
\hline '16-Jul-1997' & [ & \(33.1660]\) \\
\hline '17-Jul-1997' & [ & \(32.7910]\) \\
\hline '18-Jul-1997' & [ & \(32.1660]\) \\
\hline '21-Jul-1997' & [ & \(31.9160]\) \\
\hline '22-Jul-1997' & [ & \(32.7280]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '23-Jul-1997' & [ & \(32.8320]\) \\
\hline '24-Jul-1997' & [ & \(33.7700]\) \\
\hline '25-Jul-1997' & [ & \(33.6650]\) \\
\hline '28-Jul-1997' & [ & \(33.8740]\) \\
\hline '29-Jul-1997' & [ & \(34.0820]\) \\
\hline '30-Jul-1997' & [ & \(34.3530]\) \\
\hline '31-Jul-1997' & [ & \(34.0620]\) \\
\hline '01-Aug-1997' & [ & \(33.8120]\) \\
\hline '04-Aug-1997' & [ & \(34.1870]\) \\
\hline '05-Aug-1997' & [ & \(33.8330]\) \\
\hline '06-Aug-1997' & [ & \(34.2290]\) \\
\hline '07-Aug-1997' & [ & \(33.5210]\) \\
\hline '08-Aug-1997' & [ & \(33.8750]\) \\
\hline '11-Aug-1997' & [ & \(34.5420]\) \\
\hline '12-Aug-1997' & [ & \(33.8750]\) \\
\hline '13-Aug-1997' & [ & \(34.4160]\) \\
\hline '14-Aug-1997' & [ & \(34.0200]\) \\
\hline '15-Aug-1997' & [ & \(33.2700]\) \\
\hline '18-Aug-1997' & [ & \(34.1450]\) \\
\hline '19-Aug-1997' & [ & \(34.7080]\) \\
\hline '20-Aug-1997' & [ & \(35.0830]\) \\
\hline '21-Aug-1997' & [ & \(34.5620]\) \\
\hline '22-Aug-1997' & [ & \(34.3120]\) \\
\hline '25-Aug-1997' & [ & \(34.4580]\) \\
\hline '26-Aug-1997' & [ & \(34.0620]\) \\
\hline '27-Aug-1997' & [ & \(34.6040]\) \\
\hline '28-Aug-1997' & [ & \(34.2290]\) \\
\hline '29-Aug-1997' & [ & \(33.7910]\) \\
\hline '01-Sep-1997' & [ & \(33.7910]\) \\
\hline '02-Sep-1997' & [ & \(33.7910]\) \\
\hline '03-Sep-1997' & [ & \(33.9790]\) \\
\hline '04-Sep-1997' & [ & \(33.3540]\) \\
\hline '05-Sep-1997' & [ & 33.5840 ] \\
\hline '08-Sep-1997' & [ & \(33.1460]\) \\
\hline '09-Sep-1997' & [ & \(33.5000]\) \\
\hline '10-Sep-1997' & [ & \(33.2500]\) \\
\hline '11-Sep-1997' & [ & \(32.5830]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 12-Sep-1997' & [ & \(33.0410]\) \\
\hline 15-Sep-1997' & [ & \(33.1870]\) \\
\hline 16-Sep-1997' & [ & \(33.8120]\) \\
\hline 17-Sep-1997' & [ & \(33.3540]\) \\
\hline '18-Sep-1997' & [ & \(33.8750]\) \\
\hline 19-Sep-1997' & [ & \(34.1040]\) \\
\hline '22-Sep-1997' & [ & \(33.8960]\) \\
\hline 23-Sep-1997' & [ & \(33.6660]\) \\
\hline 24-Sep-1997' & [ & \(33.2490]\) \\
\hline 25-Sep-1997' & [ & \(33.7080]\) \\
\hline 26-Sep-1997' & [ & \(33.4790]\) \\
\hline 29-Sep-1997' & [ & \(33.7710]\) \\
\hline 30-Sep-1997' & [ & \(34.0630]\) \\
\hline 01-Oct-1997' & [ & \(34.5210]\) \\
\hline 02-Oct-1997' & [ & \(35.1260]\) \\
\hline 03-Oct-1997' & [ & \(35.3130]\) \\
\hline '06-0ct-1997' & [ & \(34.8130]\) \\
\hline 07-Oct-1997' & [ & \(35.5420]\) \\
\hline 08-0ct-1997' & [ & \(35.1460]\) \\
\hline 09-0ct-1997' & [ & \(35.4380]\) \\
\hline 10-Oct-1997' & [ & \(35.2710]\) \\
\hline 13-0ct-1997' & [ & \(35.5830]\) \\
\hline 14-Oct-1997' & [ & \(36.1880]\) \\
\hline 15-Oct-1997' & [ & \(36.5630]\) \\
\hline 16-Oct-1997' & [ & \(35.9180]\) \\
\hline '17-0ct-1997' & [ & \(35.1470]\) \\
\hline '20-0ct-1997' & [ & \(35.5010]\) \\
\hline '21-0ct-1997' & [ & \(35.7090]\) \\
\hline 22-Oct-1997' & [ & \(35.2720]\) \\
\hline 23-0ct-1997' & [ & \(35.0220]\) \\
\hline 24-Oct-1997' & [ & \(35.1050]\) \\
\hline '27-0ct-1997' & [ & \(33.4180]\) \\
\hline 28-Oct-1997' & [ & \(35.8560]\) \\
\hline '29-0ct-1997' & [ & \(36.4190]\) \\
\hline '30-0ct-1997' & , & \(35.5860]\) \\
\hline '31-0ct-1997' & [ & \(36.1690]\) \\
\hline '03-Nov-1997' & [ & \(37.2110]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ' 04 -Nov-1997' & & \(37.5860]\) \\
\hline ' 05-Nov-1997' & [ & \(37.1900]\) \\
\hline '06-Nov-1997' & [ & \(37.8150]\) \\
\hline '07-Nov-1997' & & \(37.4190]\) \\
\hline '10-Nov-1997' & & \(36.8150]\) \\
\hline '11-Nov-1997' & & \(37.0030]\) \\
\hline '12-Nov-1997' & & \(35.9200]\) \\
\hline '13-Nov-1997' & & \(36.4610]\) \\
\hline '14-Nov-1997' & & \(37.1280]\) \\
\hline '17-Nov-1997' & [ & \(37.8990]\) \\
\hline '18-Nov-1997' & & \(38.3990]\) \\
\hline '19-Nov-1997' & [ & \(39.1070]\) \\
\hline '20-Nov-1997' & [ & \(38.7940]\) \\
\hline '21-Nov-1997' & & \(40.1480]\) \\
\hline '24-Nov-1997' & [ & \(39.7730]\) \\
\hline '25-Nov-1997' & & \(39.7730]\) \\
\hline '26-Nov-1997' & [ & \(40.0650]\) \\
\hline ' 27 -Nov-1997' & [ & \(40.0650]\) \\
\hline '28-Nov-1997' & & \(40.0650]\) \\
\hline '01-Dec-1997' & [ & \(41.2320]\) \\
\hline '02-Dec-1997' & & \(40.8370]\) \\
\hline '03-Dec-1997' & & \(40.3160]\) \\
\hline '04-Dec-1997' & & \(39.7750]\) \\
\hline '05-Dec-1997' & [ & 40.1080 ] \\
\hline '08-Dec-1997' & & \(40.2530]\) \\
\hline '09-Dec-1997' & [ & \(39.9200]\) \\
\hline '10-Dec-1997' & & \(39.7530]\) \\
\hline '11-Dec-1997' & & \(39.4200]\) \\
\hline '12-Dec-1997' & [ & \(39.6900]\) \\
\hline '15-Dec-1997' & & 40.8570 ] \\
\hline '16-Dec-1997' & [ & \(40.4820]\) \\
\hline '17-Dec-1997' & & \(40.7530]\) \\
\hline '18-Dec-1997' & [ & \(41.1080]\) \\
\hline '19-Dec-1997' & [ & \(40.6080]\) \\
\hline '22-Dec-1997' & [ & \(41.1490]\) \\
\hline '23-Dec-1997' & [ & \(41.1910]\) \\
\hline '24-Dec-1997' & [ & \(40.2950]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '25-Dec-1997' & [ & \(40.2950]\) \\
\hline '26-Dec-1997' & [ & \(40.2950]\) \\
\hline '29-Dec-1997' & [ & \(40.9400]\) \\
\hline '30-Dec-1997' & [ & \(41.6070]\) \\
\hline '31-Dec-1997' & [ & 41.6070 ] \\
\hline '01-Jan-1998' & [ & 41.6070 ] \\
\hline '02-Jan-1998' & [ & 41.6070 ] \\
\hline '05-Jan-1998' & [ & \(40.9620]\) \\
\hline '06-Jan-1998' & [ & \(40.8370]\) \\
\hline '07-Jan-1998' & [ & \(41.2120]\) \\
\hline '08-Jan-1998' & [ & \(40.9420]\) \\
\hline '09-Jan-1998' & [ & \(40.3590]\) \\
\hline '12-Jan-1998' & [ & \(39.7960]\) \\
\hline '13-Jan-1998' & [ & 40.2130] \\
\hline '14-Jan-1998' & [ & \(40.9840]\) \\
\hline '15-Jan-1998' & [ & 40.7130] \\
\hline '16-Jan-1998' & [ & \(41.0050]\) \\
\hline '19-Jan-1998' & [ & \(41.0050]\) \\
\hline '20-Jan-1998' & [ & \(41.0050]\) \\
\hline '21-Jan-1998' & [ & \(40.7960]\) \\
\hline '22-Jan-1998' & [ & \(40.0050]\) \\
\hline '23-Jan-1998' & [ & \(40.7130]\) \\
\hline '26-Jan-1998' & [ & \(40.0670]\) \\
\hline '27-Jan-1998' & [ & \(41.8590]\) \\
\hline '28-Jan-1998' & [ & \(42.6090]\) \\
\hline '29-Jan-1998' & [ & \(43.1510]\) \\
\hline '30-Jan-1998' & [ & \(43.6720]\) \\
\hline '02-Feb-1998' & [ & \(44.3390]\) \\
\hline '03-Feb-1998' & [ & \(44.0680]\) \\
\hline '04-Feb-1998' & [ & 44.4010] \\
\hline '05-Feb-1998' & [ & 44.4010 ] \\
\hline '06-Feb-1998' & [ & \(44.5680]\) \\
\hline '09-Feb-1998' & [ & \(43.9220]\) \\
\hline '10-Feb-1998' & [ & 44.5890] \\
\hline '11-Feb-1998' & [ & \(45.4230]\) \\
\hline '12-Feb-1998' & [ & \(45.1930]\) \\
\hline '13-Feb-1998' & [ & \(45.9010]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '16-Feb-1998' & [ & \(45.9010]\) \\
\hline '17-Feb-1998' & [ & \(45.9010]\) \\
\hline '18-Feb-1998' & [ & \(46.8180]\) \\
\hline '19-Feb-1998' & [ & \(46.3810]\) \\
\hline '20-Feb-1998' & [ & 46.7560 ] \\
\hline ' 23-Feb-1998' & [ & 46.1940 ] \\
\hline '24-Feb-1998' & [ & 45.4860 ] \\
\hline ' 25-Feb-1998' & [ & 45.1940 ] \\
\hline '26-Feb-1998' & [ & \(44.7780]\) \\
\hline ' 27-Feb-1998' & [ & 45.7580 ] \\
\hline '02-Mar-1998' & [ & \(44.9030]\) \\
\hline '03-Mar-1998' & [ & \(45.2370]\) \\
\hline '04-Mar-1998' & [ & \(44.1950]\) \\
\hline '05-Mar-1998' & [ & \(43.6330]\) \\
\hline '06-Mar-1998' & [ & \(43.7990]\) \\
\hline '09-Mar-1998' & [ & \(43.9870]\) \\
\hline '10-Mar-1998' & [ & \(44.1120]\) \\
\hline '11-Mar-1998' & [ & \(43.7580]\) \\
\hline '12-Mar-1998' & [ & \(44.2170]\) \\
\hline '13-Mar-1998' & [ & \(44.5290]\) \\
\hline '16-Mar-1998' & [ & 45.7380 ] \\
\hline '17-Mar-1998' & [ & \(45.0920]\) \\
\hline '18-Mar-1998' & [ & \(44.9670]\) \\
\hline '19-Mar-1998' & [ & 44.5090 ] \\
\hline '20-Mar-1998' & [ & \(45.0510]\) \\
\hline '23-Mar-1998' & [ & \(43.7170]\) \\
\hline '24-Mar-1998' & , & \(45.0300]\) \\
\hline '25-Mar-1998' & [ & \(44.8630]\) \\
\hline '26-Mar-1998' & [ & 45.3840 ] \\
\hline '27-Mar-1998' & [ & \(45.0710]\) \\
\hline '30-Mar-1998' & [ & \(44.4260]\) \\
\hline '31-Mar-1998' & [ & \(44.8420]\) \\
\hline '01-Apr-1998' & [ & \(44.5080]\) \\
\hline '02-Apr-1998' & [ & 45.6540 ] \\
\hline '03-Apr-1998' & [ & \(46.5910]\) \\
\hline '06-Apr-1998' & [ & \(45.6530]\) \\
\hline '07-Apr-1998' & [ & 45.4650 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '08-Apr-1998' & [ & \(45.1320]\) \\
\hline '09-Apr-1998' & [ & 45.9860 ] \\
\hline '10-Apr-1998' & [ & 45.9860 ] \\
\hline '13-Apr-1998' & [ & \(45.9860]\) \\
\hline '14-Apr-1998' & [ & \(46.9650]\) \\
\hline '15-Apr-1998' & [ & \(47.3190]\) \\
\hline '16-Apr-1998' & [ & 46.7980 ] \\
\hline '17-Apr-1998' & [ & \(47.3820]\) \\
\hline '20-Apr-1998' & [ & \(48.0480]\) \\
\hline '21-Apr-1998' & [ & 48.7980 ] \\
\hline '22-Apr-1998' & [ & 50.9020] \\
\hline '23-Apr-1998' & [ & 51.4640 ] \\
\hline '24-Apr-1998' & [ & \(50.9430]\) \\
\hline '27-Apr-1998' & [ & 50.5480 ] \\
\hline '28-Apr-1998' & [ & \(51.4020]\) \\
\hline '29-Apr-1998' & [ & 51.6940 ] \\
\hline '30-Apr-1998' & [ & \(51.9230]\) \\
\hline '01-May-1998' & [ & \(52.3610]\) \\
\hline '04-May-1998' & [ & \(52.8400]\) \\
\hline '05-May-1998' & [ & \(52.4650]\) \\
\hline '06-May-1998' & [ & \(51.6320]\) \\
\hline '07-May-1998' & [ & \(49.9650]\) \\
\hline '08-May-1998' & [ & \(50.1730]\) \\
\hline '11-May-1998' & [ & \(50.6320]\) \\
\hline '12-May-1998' & [ & \(49.9440]\) \\
\hline '13-May-1998' & [ & \(49.5690]\) \\
\hline '14-May-1998' & [ & 48.7570 ] \\
\hline '15-May-1998' & [ & \(46.9440]\) \\
\hline '18-May-1998' & [ & 46.0070 ] \\
\hline '19-May-1998' & [ & \(46.4230]\) \\
\hline '20-May-1998' & [ & \(47.6520]\) \\
\hline '21-May-1998' & [ & \(48.0900]\) \\
\hline '22-May-1998' & [ & \(48.3610]\) \\
\hline '25-May-1998' & [ & \(48.3610]\) \\
\hline '26-May-1998' & [ & \(48.3610]\) \\
\hline '27-May-1998' & [ & \(49.5690]\) \\
\hline '28-May-1998' & [ & \(49.2360]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 29-May-1998 \({ }^{\text {' }}\) & [ & \(48.9030]\) \\
\hline 01-Jun-1998' & [ & \(47.8830]\) \\
\hline '02-Jun-1998' & [ & \(47.2580]\) \\
\hline 03-Jun-1998' & [ & \(46.6540]\) \\
\hline '04-Jun-1998' & [ & \(46.6540]\) \\
\hline 05-Jun-1998' & [ & \(48.3620]\) \\
\hline '08-Jun-1998' & [ & \(49.1120]\) \\
\hline 09-Jun-1998' & [ & \(49.6950]\) \\
\hline '10-Jun-1998' & [ & \(50.3000]\) \\
\hline '11-Jun-1998' & [ & 49.4460 ] \\
\hline '12-Jun-1998' & [ & \(48.9670]\) \\
\hline '15-Jun-1998' & [ & \(48.0090]\) \\
\hline '16-Jun-1998' & [ & \(48.2380]\) \\
\hline '17-Jun-1998' & [ & 48.7170] \\
\hline '18-Jun-1998' & [ & \(47.9040]\) \\
\hline '19-Jun-1998' & [ & \(46.4250]\) \\
\hline '22-Jun-1998' & [ & \(47.8420]\) \\
\hline 23-Jun-1998' & [ & \(48.2170]\) \\
\hline 24-Jun-1998' & [ & \(49.2170]\) \\
\hline 25-Jun-1998' & [ & \(48.7380]\) \\
\hline 26-Jun-1998' & [ & \(48.0710]\) \\
\hline '29-Jun-1998' & [ & \(48.9670]\) \\
\hline '30-Jun-1998' & , & \(46.2590]\) \\
\hline '01-Jul-1998' & [ & \(46.6550]\) \\
\hline '02-Jul-1998' & , & \(47.0510]\) \\
\hline '03-Jul-1998' & [ & \(47.0510]\) \\
\hline '06-Jul-1998' & , & \(47.0510]\) \\
\hline '07-Jul-1998' & [ & \(47.3010]\) \\
\hline '08-Jul-1998' & [ & 47.8840 ] \\
\hline '09-Jul-1998' & [ & \(48.7800]\) \\
\hline '10-Jul-1998' & [ & \(50.4050]\) \\
\hline '13-Jul-1998' & [ & 51.6550] \\
\hline '14-Jul-1998' & [ & \(52.1550]\) \\
\hline '15-Jul-1998' & [ & \(51.2170]\) \\
\hline '16-Jul-1998' & [ & \(51.0920]\) \\
\hline '17-Jul-1998' & [ & \(51.6540]\) \\
\hline '20-Jul-1998' & [ & \(50.4670]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '21-Jul-1998' & [ & \(49.6540]\) \\
\hline '22-Jul-1998' & [ & \(48.8420]\) \\
\hline '23-Jul-1998' & [ & \(47.2170]\) \\
\hline '24-Jul-1998' & [ & \(47.9670]\) \\
\hline '27-Jul-1998' & [ & \(47.7790]\) \\
\hline '28-Jul-1998' & [ & \(46.5290]\) \\
\hline '29-Jul-1998' & [ & \(46.5290]\) \\
\hline '30-Jul-1998' & [ & \(46.3420]\) \\
\hline '31-Jul-1998' & [ & \(45.2800]\) \\
\hline '03-Aug-1998' & [ & \(45.5300]\) \\
\hline '04-Aug-1998' & [ & \(43.1550]\) \\
\hline '05-Aug-1998' & [ & 44.4680 ] \\
\hline ' 06-Aug-1998' & [ & \(43.7810]\) \\
\hline '07-Aug-1998' & [ & \(44.2810]\) \\
\hline '10-Aug-1998' & [ & \(43.5310]\) \\
\hline '11-Aug-1998' & [ & \(42.7810]\) \\
\hline '12-Aug-1998' & [ & \(43.2190]\) \\
\hline '13-Aug-1998' & [ & \(41.5940]\) \\
\hline '14-Aug-1998' & [ & 40.9060 ] \\
\hline '17-Aug-1998' & [ & 41.9690 ] \\
\hline '18-Aug-1998' & [ & \(43.3440]\) \\
\hline '19-Aug-1998' & [ & \(42.6560]\) \\
\hline '20-Aug-1998' & [ & \(43.3430]\) \\
\hline '21-Aug-1998' & [ & \(42.9680]\) \\
\hline '24-Aug-1998' & [ & \(43.5300]\) \\
\hline '25-Aug-1998' & [ & 44.2180] \\
\hline '26-Aug-1998' & [ & \(43.1550]\) \\
\hline '27-Aug-1998' & [ & \(41.9050]\) \\
\hline '28-Aug-1998' & [ & \(40.7800]\) \\
\hline '31-Aug-1998' & [ & \(36.9680]\) \\
\hline '01-Sep-1998' & [ & \(39.9050]\) \\
\hline '02-Sep-1998' & [ & \(37.9050]\) \\
\hline '03-Sep-1998' & [ & \(36.3430]\) \\
\hline '04-Sep-1998' & [ & \(35.8430]\) \\
\hline '07-Sep-1998' & [ & \(35.8430]\) \\
\hline '08-Sep-1998' & [ & \(35.8430]\) \\
\hline '09-Sep-1998' & [ & \(34.5310]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '10-Sep-1998' & [ & 33.7810 ] \\
\hline '11-Sep-1998' & [ & \(31.6560]\) \\
\hline '14-Sep-1998' & [ & \(30.2810]\) \\
\hline '15-Sep-1998' & [ & \(31.3430]\) \\
\hline '16-Sep-1998' & [ & 31.9050 ] \\
\hline '17-Sep-1998' & [ & \(31.8430]\) \\
\hline '18-Sep-1998' & [ & \(31.5310]\) \\
\hline '21-Sep-1998' & [ & \(31.0930]\) \\
\hline '22-Sep-1998' & [ & \(31.3430]\) \\
\hline '23-Sep-1998' & [ & 32.9680 ] \\
\hline '24-Sep-1998' & [ & \(31.7180]\) \\
\hline '25-Sep-1998' & [ & 31.3430 ] \\
\hline '28-Sep-1998' & [ & 31.9680 ] \\
\hline '29-Sep-1998' & [ & 31.4050 ] \\
\hline '30-Sep-1998' & [ & \(30.5920]\) \\
\hline '01-0ct-1998' & [ & \(30.1550]\) \\
\hline '02-Oct-1998' & [ & 30.9050 ] \\
\hline '05-0ct-1998' & [ & 30.4680 ] \\
\hline '06-0ct-1998' & [ & \(30.9050]\) \\
\hline 07-Oct-1998' & [ & \(29.9050]\) \\
\hline '08-0ct-1998' & [ & 28.4670 ] \\
\hline 09-0ct-1998' & [ & \(29.6550]\) \\
\hline 12-Oct-1998' & [ & \(30.5920]\) \\
\hline '13-0ct-1998' & [ & 31.9040 ] \\
\hline '14-0ct-1998' & [ & 30.6540 ] \\
\hline '15-0ct-1998' & [ & \(32.3410]\) \\
\hline '16-0ct-1998' & [ & 31.8410 ] \\
\hline '19-0ct-1998' & [ & 32.7790 ] \\
\hline '20-0ct-1998' & [ & 33.7790 ] \\
\hline '21-0ct-1998' & [ & 34.4040 ] \\
\hline '22-0ct-1998' & [ & 35.3410 ] \\
\hline '23-0ct-1998' & [ & 35.0910 ] \\
\hline '26-0ct-1998' & [ & 35.5290 ] \\
\hline '27-0ct-1998' & [ & 34.4040 ] \\
\hline '28-0ct-1998' & [ & 33.7790 ] \\
\hline '29-0ct-1998' & [ & 34.2790 ] \\
\hline '30-0ct-1998' & [ & 34.6540 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 02-Nov-1998 \({ }^{\text {' }}\) & [ & \(36.5290]\) \\
\hline '03-Nov-1998' & [ & \(37.2790]\) \\
\hline '04-Nov-1998' & [ & \(35.6540]\) \\
\hline '05-Nov-1998' & [ & \(37.9040]\) \\
\hline '06-Nov-1998' & [ & \(38.3410]\) \\
\hline '09-Nov-1998' & [ & \(37.2790]\) \\
\hline '10-Nov-1998' & [ & \(36.5910]\) \\
\hline 11-Nov-1998' & [ & \(36.5910]\) \\
\hline '12-Nov-1998' & [ & \(36.2790]\) \\
\hline '13-Nov-1998' & [ & \(37.1540]\) \\
\hline '16-Nov-1998' & [ & 36.4040 ] \\
\hline '17-Nov-1998' & [ & 36.4040 ] \\
\hline '18-Nov-1998' & [ & \(36.2790]\) \\
\hline 19-Nov-1998' & [ & \(35.5920]\) \\
\hline '20-Nov-1998' & [ & 35.9670 ] \\
\hline 23-Nov-1998' & [ & \(36.9670]\) \\
\hline '24-Nov-1998' & [ & \(37.2800]\) \\
\hline '25-Nov-1998' & [ & \(38.5930]\) \\
\hline '26-Nov-1998' & [ & \(38.5930]\) \\
\hline '27-Nov-1998' & [ & \(38.5930]\) \\
\hline '30-Nov-1998' & [ & \(39.2180]\) \\
\hline '01-Dec-1998' & [ & \(38.5300]\) \\
\hline '02-Dec-1998' & [ & \(38.2180]\) \\
\hline '03-Dec-1998' & [ & \(37.1550]\) \\
\hline '04-Dec-1998' & [ & \(37.6550]\) \\
\hline '07-Dec-1998' & [ & \(36.8420]\) \\
\hline '08-Dec-1998' & [ & 37.7170 ] \\
\hline '09-Dec-1998' & [ & \(39.2800]\) \\
\hline '10-Dec-1998' & [ & \(38.0300]\) \\
\hline '11-Dec-1998' & [ & \(37.5920]\) \\
\hline '14-Dec-1998' & [ & \(36.2170]\) \\
\hline '15-Dec-1998' & [ & \(36.3420]\) \\
\hline '16-Dec-1998' & [ & \(36.3420]\) \\
\hline '17-Dec-1998' & [ & 36.4670 ] \\
\hline '18-Dec-1998' & [ & \(36.3420]\) \\
\hline '21-Dec-1998' & [ & \(37.0290]\) \\
\hline '22-Dec-1998' & [ & \(34.2790]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 23-Dec-1998 \({ }^{\text {' }}\) & [ & \(35.2790]\) \\
\hline '24-Dec-1998' & [ & \(34.8420]\) \\
\hline '25-Dec-1998' & [ & \(34.8420]\) \\
\hline '28-Dec-1998' & [ & \(34.8420]\) \\
\hline '29-Dec-1998' & [ & \(34.8420]\) \\
\hline '30-Dec-1998' & [ & \(34.2170]\) \\
\hline '31-Dec-1998' & [ & \(34.6540]\) \\
\hline 01-Jan-1999' & [ & \(34.6540]\) \\
\hline '04-Jan-1999' & [ & \(34.6540]\) \\
\hline 05-Jan-1999' & [ & 35.6540 ] \\
\hline '06-Jan-1999' & [ & \(36.8420]\) \\
\hline 07-Jan-1999' & [ & \(38.5920]\) \\
\hline '08-Jan-1999' & [ & \(39.4050]\) \\
\hline '11-Jan-1999' & [ & \(42.0920]\) \\
\hline '12-Jan-1999' & [ & \(44.8420]\) \\
\hline '13-Jan-1999' & [ & \(42.9670]\) \\
\hline '14-Jan-1999' & [ & \(41.7800]\) \\
\hline '15-Jan-1999' & [ & \(41.0920]\) \\
\hline '18-Jan-1999' & [ & \(41.0920]\) \\
\hline '19-Jan-1999' & [ & \(41.0920]\) \\
\hline '20-Jan-1999' & , & \(40.1540]\) \\
\hline '21-Jan-1999' & [ & \(38.7170]\) \\
\hline '22-Jan-1999' & , & \(38.2790]\) \\
\hline '25-Jan-1999' & , & \(39.1540]\) \\
\hline '26-Jan-1999' & & \(38.3420]\) \\
\hline '27-Jan-1999 ' & [ & 36.7170 ] \\
\hline '28-Jan-1999' & & \(37.2790]\) \\
\hline '29-Jan-1999' & [ & \(36.2790]\) \\
\hline '01-Feb-1999' & [ & 36.9670 ] \\
\hline '02-Feb-1999 ' & [ & \(36.6540]\) \\
\hline '03-Feb-1999' & [ & \(37.0290]\) \\
\hline '04-Feb-1999' & [ & \(36.0910]\) \\
\hline '05-Feb-1999' & [ & \(37.2160]\) \\
\hline '08-Feb-1999' & [ & \(36.9660]\) \\
\hline '09-Feb-1999' & [ & \(35.8410]\) \\
\hline '10-Feb-1999' & [ & \(36.5910]\) \\
\hline '11-Feb-1999' & [ & \(37.9660]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{12-Feb-1999} \\
\hline \multicolumn{2}{|l|}{16-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{'17-Feb-1999'} \\
\hline & '18-Feb-1999' \\
\hline \multicolumn{2}{|l|}{'19-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{'22-Feb-1999'} \\
\hline & '23-Feb-1999' \\
\hline \multicolumn{2}{|l|}{'24-Feb-1999'} \\
\hline \multicolumn{2}{|l|}{'25-Feb-1999'} \\
\hline & eb \\
\hline \multicolumn{2}{|l|}{01-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'02-Mar-1999'} \\
\hline & '03-Mar-1999' \\
\hline \multicolumn{2}{|l|}{'04-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'05-Mar-1999'} \\
\hline & 08-Mar-1999 \\
\hline \multicolumn{2}{|l|}{09-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'10-Mar-1999'} \\
\hline & -Ma \\
\hline \multicolumn{2}{|l|}{'12-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'15-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'16-Mar-1999'} \\
\hline & -Mar-1999 \\
\hline \multicolumn{2}{|l|}{'18-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'19-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'22-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{23-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{'24-Mar-1999'} \\
\hline \multicolumn{2}{|l|}{25-Mar-1999'} \\
\hline & 26-Mar-1999' \\
\hline & Mar-1999 \\
\hline
\end{tabular}
\(38.8410]\)
\(38.8410]\)
38.8410 ]
38.4660]
38.0910]
37.7160 ]
38.4660 ]
38.4660 ]
38.6540 ]
37.9040 ]
39.0290 ]
\(38.5920]\)
\(37.5920]\)
\(37.9040]\)
38.5920 ]
39.2170]
39.8420 ]
\(38.0920]\)
37.5290 ]
\(38.0920]\)
\(39.4670]\)
\(38.7790]\)
37.4040 ]
36.3410 ]
37.2790 ]
36.5290 ]
35.8410 ]
34.6540 ]
34.6540 ]
35.1540 ]
\(34.7170]\)
35.0300 ]

References Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 314-315.
See Also ..... adline | adosc | willpctr

\section*{Purpose}

Williams \%R
Syntax
```

wpctr = willpctr(highp, lowp, closep, nperiods)
wpctr = willpctr([highp, lowp, closep], nperiods)
wpctrts = willpctr(tsobj)
wpctrts = willpctr(tsobj, nperiods)
wpctrts = willpctr(tsobj, nperiods, ParameterName, ParameterValue,
...)

```

\section*{Arguments}
\begin{tabular}{ll} 
highp & High price (vector) \\
lowp & Low price (vector) \\
closep & Closing price (vector) \\
nperiods & Number of periods (scalar). Default = 14. \\
tsobj & Financial time series object
\end{tabular}

\section*{Description}
wpctr = willpctr(highp, lowp, closep, nperiods) calculates the Williams \%R values for the given set of stock prices for a specified number of periods nperiods. The stock prices needed are the high (highp), low (lowp), and closing (closep) prices. wpetr is a vector that represents the Williams \%R values from the stock data.
wpctr = willpctr([highp, lowp, closep], nperiods) accepts the price input as a three-column matrix representing the high, low, and closing prices, in that order.
wpctrts = willpctr(tsobj) calculates the Williams \%R values for the financial time series object tsobj. The object must contain at least three data series named High (high prices), Low (low prices), and Close (closing prices). wpotrts is a financial time series object with the same dates as tsobj and a single data series named WillPctR.
wpctrts = willpctr(tsobj, nperiods) calculates the Williams \%R values for the financial time series object tsobj for nperiods periods.
wpctrts \(=\) willpctr(tsobj, nperiods, ParameterName, ParameterValue, ...) accepts parameter name/parameter value pairs as input. These pairs specify the name(s) for the required data series if it is different from the expected default name(s). Valid parameter names are
- HighName: high prices series name
- LowName: low prices series name
- CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter names.

\section*{Examples Compute the Williams \%R Values}

This example shows how to compute the Williams \%R values for Disney stock and plot the results.
```

load disney.mat
dis_Wpctr = willpctr(dis)
plot(dis_Wpctr)
title('Williams %R for Disney')

```
```

dis_Wpctr =

```
    desc: WillPctR: Walt Disney Company (DIS)
    freq: Unknown (0)
    'dates: (782)' 'WillPctR: (782)'
    '29-Mar-1996' [ -31.8058]
    '01-Apr-1996' [ -13.6388]
    '02-Apr-1996' [ -2.2913]
    '03-Apr-1996' [ 0]
    '04-Apr-1996' [ -11.3475]
    '05-Apr-1996' [ NaN]
    '08-Apr-1996' [ -22.7496]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Apr} \\
\hline \multicolumn{2}{|l|}{15-Apr-1996'} \\
\hline \multicolumn{2}{|l|}{'16-Apr-1996'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'19-Apr-1996'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'23-Apr-1996} \\
\hline \multicolumn{2}{|l|}{'24-Apr-1996'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{26-Apr-1996'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{- May} \\
\hline & \\
\hline \multicolumn{2}{|l|}{03-May-1996 '} \\
\hline \multicolumn{2}{|l|}{'06-May-1996'} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{'09-May-1996'} \\
\hline \multicolumn{2}{|l|}{'10-May-1996'} \\
\hline \multicolumn{2}{|l|}{-May-1996} \\
\hline \multicolumn{2}{|l|}{'14-May-1996'} \\
\hline \multicolumn{2}{|l|}{-May} \\
\hline \multicolumn{2}{|l|}{y} \\
\hline \multicolumn{2}{|l|}{,} \\
\hline \multicolumn{2}{|l|}{May-} \\
\hline \multicolumn{2}{|l|}{'21-May-1996'} \\
\hline \multicolumn{2}{|l|}{y} \\
\hline \multicolumn{2}{|l|}{23-May-1996} \\
\hline \multicolumn{2}{|l|}{'} \\
\hline \multicolumn{2}{|l|}{-May-1996} \\
\hline \multicolumn{2}{|l|}{'28-May-1996'} \\
\hline & \\
\hline
\end{tabular}
-36.3884]
-86.3612]
-95.4719]
-77.3050]
-68.1942]
-61.3748]
-59.0835]
-50.0273]
-45.4446]
-54.5554]
-70.4855]
-83.3714]
-71.4286]
-56.4308]
-45.1588]
-41.9055]
-80.6352]
-90.6227]
-90.2225]
-68.2670]
-82.9040]
-80.4280]
-93.4760]
- 71.8154 ]
-41.0462]
-38.4615]
-48.7385]
-32.3446]
-20.5508]
-3.0545]
-2.6606]
-2.4610]
-23.2272]
-13.9587]
\(\mathrm{NaN}]\)
-20.9380]
-56.3692]
\begin{tabular}{|c|c|c|}
\hline '30-May-1996 ' & & -53.2800] \\
\hline '31-May-1996' & [ & -74.0444] \\
\hline '03-Jun-1996' & [ & -85.1556] \\
\hline '04-Jun-1996' & & -86.1755] \\
\hline '05-Jun-1996' & [ & -73.2800] \\
\hline '06-Jun-1996' & & -29.4284] \\
\hline '07-Jun-1996' & [ & -11.7855] \\
\hline '10-Jun-1996' & & -32.3218] \\
\hline '11-Jun-1996' & & -32.3218] \\
\hline '12-Jun-1996' & & -32.3218] \\
\hline '13-Jun-1996' & [ & -47.0713] \\
\hline '14-Jun-1996' & & -52.9287] \\
\hline '17-Jun-1996' & [ & -41.1433] \\
\hline '18-Jun-1996' & & -64.7142] \\
\hline '19-Jun-1996' & [ & -61.7502] \\
\hline '20-Jun-1996 ' & & -47.0713] \\
\hline '21-Jun-1996' & & -17.6429] \\
\hline '24-Jun-1996' & [ & -35.2858] \\
\hline '25-Jun-1996' & & -17.4322] \\
\hline '26-Jun-1996' & & -39.9760] \\
\hline '27-Jun-1996' & & -9.9640] \\
\hline '28-Jun-1996' & [ & -30.4802] \\
\hline '01-Jul-1996' & [ & -52.1921] \\
\hline '02-Jul-1996' & [ & -86.9520] \\
\hline '03-Jul-1996' & & -73.3600] \\
\hline '04-Jul-1996' & [ & \(\mathrm{NaN}]\) \\
\hline '05-Jul-1996' & [ & -100] \\
\hline '08-Jul-1996' & & -94.9610] \\
\hline '09-Jul-1996' & [ & -100] \\
\hline '10-Jul-1996' & [ & -86.5251] \\
\hline '11-Jul-1996' & [ & -98.4127] \\
\hline '12-Jul-1996' & [ & -88.7340] \\
\hline '15-Jul-1996' & & -97.2387] \\
\hline '16-Jul-1996' & [ & -78.4629] \\
\hline '17-Jul-1996' & [ & -78.4629] \\
\hline '18-Jul-1996' & [ & -61.9804] \\
\hline '19-Jul-1996' & [ & -58.8215] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'30-Jul-1996'} \\
\hline \multicolumn{2}{|l|}{31-Jul-1996} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Aug} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-1996} \\
\hline \multicolumn{2}{|l|}{'08-Aug-} \\
\hline & \\
\hline \multicolumn{2}{|l|}{2-Aug-1} \\
\hline \multicolumn{2}{|l|}{,} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'16-Aug-1996'} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'21-Aug-1996'} \\
\hline \multicolumn{2}{|l|}{22 - Aug-1996} \\
\hline \multicolumn{2}{|l|}{'23-Aug-1996 '} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'28-Aug-1996 '} \\
\hline \multicolumn{2}{|l|}{29-Aug-1} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'02-Sep-1996'} \\
\hline \multicolumn{2}{|l|}{-3-sep-1996} \\
\hline \multicolumn{2}{|l|}{'04-sep-1906'} \\
\hline \multicolumn{2}{|l|}{05-Sep-1} \\
\hline \multicolumn{2}{|l|}{06-sep-1996} \\
\hline \multicolumn{2}{|l|}{'09-Sep-1996'} \\
\hline & \\
\hline
\end{tabular}
'22-Jul-1996'
'23-Jul-1996'
'24-Jul-1996'
'25-Jul-1996'
'26-Jul-1996'
'29-Jul-1996'
'30-Jul-1996'
'31-Jul-1996'
' 01-Aug-1996'
' 02-Aug-1996'
' 05-Aug-1996'
' 06-Aug-1996'
' 07-Aug-1996'
' 08-Aug-1996'
' 09-Aug-1996'
' 12-Aug-1996'
' 13 -Aug-1996'
'14-Aug-1996'
' 15 -Aug-1996'
' 16-Aug-1996'
' 19 -Aug-1996'
20-Aug-1996
' 22-Aug-1996'
' 23-Aug-1996'
' 26-Aug-1996'
'27-Aug-1996'
' 28-Aug-1996'
' 29-Aug-1996'
' 30 -Aug-1996'
02-Sep-1996
'04-Sep-1996'
'05-Sep-1996'
'06-Sep-1996'
'10-Sep-1996'
. 6400
-74.9885]
-92.2935]
-91.9866]
-89.0975
-97.4805]
-58.9538]
-51.2615]
-15.3846]
-13.6388]
-6.8194]
-2.0940]
-12.7681]
-27.6302]
-34.0143]
-10.6231]
-19.1522]
-17.0072]
-21.2462]
-17.3800]
\(-25.7202]\)
-60.0384]
-47.5429]
-38.0571]
-28.5714]
0]
-23. 0627 ]
-46.1255]
-61.5314]
-81.5111]
            \(\mathrm{NaN}]\)
-81.5111]
-88.8889]
    -100]
-66.6909]
- 36.3636 ]
-45.4545]
\begin{tabular}{|c|c|c|}
\hline '11-Sep-1996' & [ & -27.2727] \\
\hline '12-Sep-1996' & [ & -2.4610] \\
\hline '13-Sep-1996' & [ & -6.8194] \\
\hline '16-Sep-1996' & [ & -24.4978] \\
\hline '17-Sep-1996' & [ & -10.1911] \\
\hline '18-Sep-1996' & [ & -8.1333] \\
\hline '19-Sep-1996' & [ & 0] \\
\hline '20-Sep-1996' & [ & -4.7619] \\
\hline '23-Sep-1996' & [ & 0] \\
\hline '24-Sep-1996' & [ & -12.2969] \\
\hline '25-Sep-1996' & [ & -13.8479] \\
\hline '26-Sep-1996' & [ & -26.4040] \\
\hline '27-Sep-1996' & [ & -11.7647] \\
\hline '30-Sep-1996' & [ & -10.0288] \\
\hline '01-Oct-1996' & [ & -27.5345] \\
\hline '02-0ct-1996' & [ & -25.0375] \\
\hline '03-0ct-1996' & [ & -18.7406] \\
\hline '04-0ct-1996' & [ & -12.8000] \\
\hline '07-Oct-1996' & [ & -15.6039] \\
\hline '08-0ct-1996' & [ & -29.0473] \\
\hline '09-0ct-1996' & [ & -39.9616] \\
\hline '10-Oct-1996' & [ & -36.0231] \\
\hline 11-Oct-1996' & [ & -24.0154] \\
\hline '14-Oct-1996' & [ & -19.9808] \\
\hline '15-0ct-1996' & [ & -12.0077] \\
\hline '16-0ct-1996' & [ & -3.1508] \\
\hline '17-Oct-1996' & [ & -29.6000] \\
\hline '18-0ct-1996' & [ & -25.8667] \\
\hline '21-Oct-1996' & [ & -7.3778] \\
\hline '22-0ct-1996' & [ & -3.1508] \\
\hline '23-0ct-1996' & [ & -15.6039] \\
\hline '24-0ct-1996' & [ & -34.3586] \\
\hline '25-0ct-1996' & [ & -12.5281] \\
\hline '28-0ct-1996' & [ & -13.4670] \\
\hline '29-0ct-1996' & [ & -30.1599] \\
\hline '30-0ct-1996' & [ & -38.2199] \\
\hline '31-0ct-1996' & [ & -30.9773] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{-Nov-1996 '} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'11-Nov-1996'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{'14-Nov-1996'} \\
\hline \multicolumn{2}{|l|}{'15-Nov-1996'} \\
\hline \multicolumn{2}{|l|}{\({ }^{1}\)} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{21 -Nov-1996} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{26-Nov-1996'} \\
\hline \multicolumn{2}{|l|}{27 -Nov-1996'} \\
\hline \multicolumn{2}{|l|}{28-Nov-1996'} \\
\hline \multicolumn{2}{|l|}{\({ }^{\prime}\)} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{,} \\
\hline \multicolumn{2}{|l|}{\({ }^{\prime}\)} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'} \\
\hline \multicolumn{2}{|l|}{'09-Dec-1996'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'11-Dec-1996'} \\
\hline \multicolumn{2}{|l|}{'12-Dec-1996'} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{'16-Dec-1996'} \\
\hline \multicolumn{2}{|l|}{'17-Dec-1996'} \\
\hline \multicolumn{2}{|l|}{'18-Dec-1996'} \\
\hline \multicolumn{2}{|l|}{'19-Dec-1996'} \\
\hline \multicolumn{2}{|l|}{'20-Dec-1996'} \\
\hline \multicolumn{2}{|l|}{23 - Dec-1996} \\
\hline
\end{tabular}
-41.8848]
-4.1000]
0 ]
-7.1979]
0 ]
-12.5281]
0 ]
-9.6030]
-13.6941]
-13.6941]
-9.5238]
-20.6095]
-25.3714]
-15.8476]
-9.8386]
-18.4889]
-1.7995]
-12.9988]
-36]
\(\mathrm{NaN}]\)
-44.2565]
-44.2565]
-70.4957]
-76.3525]
-78.1850]
-74.2160]
-53.2327]
-51.6067]
-66.1247]
-90.3213]
-88.8762]
-92.2935]
-64.4267]
-53.3333]
-37.7600]
-31.7145]
-33.2923]
'24-Dec-1996'
'25-Dec-1996'
'26-Dec-1996'
'27-Dec-1996'
'30-Dec-1996'
'31-Dec-1996'
'01-Jan-1997'
'02-Jan-1997'
'03-Jan-1997'
'06-Jan-1997'
'07-Jan-1997'
'08-Jan-1997'
'09-Jan-1997'
'10-Jan-1997'
'13-Jan-1997'
'14-Jan-1997'
'15-Jan-1997'
'16-Jan-1997'
'17-Jan-1997'
'20-Jan-1997'
'21-Jan-1997'
'22-Jan-1997'
'23-Jan-1997'
'24-Jan-1997'
'27-Jan-1997'
'28-Jan-1997'
'29-Jan-1997'
'30-Jan-1997'
'31-Jan-1997'
'03-Feb-1997'
' 04-Feb-1997'
' 05-Feb-1997'
' 06-Feb-1997'
' 07-Feb-1997'
'10-Feb-1997'
'11-Feb-1997'
'12-Feb-1997'
-46.1538] \(\mathrm{NaN}]\)
-48.6769]
-51.2615]
-76.9231]
-82.0308]
\(\mathrm{NaN}]\)
-91.0844]
-64.2949]
-67.8526]
-69.6528]
-83.9263]
-86.6667]
-74.4637]
-71.7267]
-50.0261]
-52.1648]
-52.4000]
-12.1455]
-8.3333]
-25]
-2.8000]
-23.8286]
-7.1429]
-4.5281]
-25.3940]
-11.9628]
-34.5550]
-27.7778]
-29.4118]
-34.0211]
-34.0480]
-13.6314]
-6.1214]
-17.7632]
-26.6800]
-5]
\begin{tabular}{|c|c|c|}
\hline 13-Feb-1997 \({ }^{\text {' }}\) & [ & -18.1818] \\
\hline 14-Feb-1997' & [ & -15.5151] \\
\hline 17-Feb-1997' & [ & \(\mathrm{NaN}]\) \\
\hline 18-Feb-1997' & [ & -24.1622] \\
\hline '19-Feb-1997' & [ & -43.1113] \\
\hline 20-Feb-1997' & [ & -62.0604] \\
\hline '21-Feb-1997' & [ & -54.4000] \\
\hline 24-Feb-1997' & [ & -50.9053] \\
\hline 25-Feb-1997 \({ }^{\prime}\) & [ & -50] \\
\hline 26-Feb-1997' & [ & -65.2061] \\
\hline 27-Feb-1997' & [ & -58.6854] \\
\hline 28-Feb-1997' & [ & -86.9588] \\
\hline 03-Mar-1997' & [ & -90.4015] \\
\hline 04-Mar-1997' & [ & -96.3111] \\
\hline 05-Mar-1997' & [ & -76.6800] \\
\hline 06-Mar-1997' & [ & -45.9914] \\
\hline '07-Mar-1997' & [ & -32.0211] \\
\hline 10-Mar-1997' & [ & -9.1107] \\
\hline '11-Mar-1997' & [ & -8.5291] \\
\hline 12-Mar-1997' & [ & -38.3044] \\
\hline '13-Mar-1997' & [ & -74.4637] \\
\hline 14-Mar-1997' & [ & -48.9275] \\
\hline 17-Mar-1997' & [ & -27.6813] \\
\hline 18-Mar-1997' & [ & -36.1593] \\
\hline 19-Mar-1997' & [ & -44.6885] \\
\hline 20-Mar-1997' & [ & -53.2176] \\
\hline '21-Mar-1997' & [ & -61.6956] \\
\hline '24-Mar-1997' & [ & -44.6885] \\
\hline 25-Mar-1997' & [ & -65.7064] \\
\hline '26-Mar-1997' & [ & -54.3210] \\
\hline 27-Mar-1997' & [ & -60.0137] \\
\hline '28-Mar-1997' & [ & NaN ] \\
\hline 31-Mar-1997' & [ & -86.8056] \\
\hline '01-Apr-1997' & [ & -75.0136] \\
\hline '02-Apr-1997' & [ & -75.0136] \\
\hline '03-Apr-1997' & [ & -70.4855] \\
\hline '04-Apr-1997' & [ & -50.0273] \\
\hline
\end{tabular}
'07-Apr-1997'
-40.5581]
' 08-Apr-1997'
'09-Apr-1997'
-37.8326]
'10-Apr-1997'
'11-Apr-1997'
'14-Apr-1997'
'15-Apr-1997'
'16-Apr-1997'
'17-Apr-1997'
'18-Apr-1997'
'21-Apr-1997'
'22-Apr-1997'
'23-Apr-1997'
'24-Apr-1997'
'25-Apr-1997'
'28-Apr-1997'
'29-Apr-1997'
'30-Apr-1997'
' 01-May-1997'
' 02-May-1997'
' 05-May-1997'
' 06-May-1997'
' 07 -May-1997'
' 08-May-1997'
' 09-May-1997'
'12-May-1997'
'13-May-1997'
'14-May-1997'
'15-May-1997'
' 16-May-1997'
' 19-May-1997'
' 20 -May-1997'
'21-May-1997'
'22-May-1997'
'23-May-1997'
'26-May-1997'
'27-May-1997'
-40.5581]
-35.1071]
-70.2790]
-85.7143]
-33.3143]
\(0]\)
-10.4000]
-3.8026]
-13.3200]
-7.3747]
-5.4150]
-17.1140]
-26.3025]
-23.6817]
-1.1714]
-6.1851]
-12.3701]
-18.8800]
-4.1091]
-3.4340]
-28.5898]
-20.0192]
-4.0646]
-7.7990]
-18.7477]
-18.7477]
-28.5714]
-61.8237]
-34.8772]
-30.2455]
-55.8036]
-55.8036]
-34.8772]
\(\mathrm{NaN}]\)
-25.5580]
\begin{tabular}{|c|c|c|}
\hline 28-May-1997 \({ }^{\text {' }}\) & [ & -28.6008] \\
\hline '29-May-1997' & [ & -51.4403] \\
\hline 30-May-1997' & [ & -61.0667] \\
\hline 02-Jun-1997' & [ & -83.3333] \\
\hline 03-Jun-1997' & [ & -87.4813] \\
\hline 04-Jun-1997' & [ & -100] \\
\hline 05-Jun-1997' & [ & -79.3931] \\
\hline 06-Jun-1997' & [ & -64.7142] \\
\hline 09-Jun-1997' & [ & -73.5356] \\
\hline 10-Jun-1997' & [ & -52.9287] \\
\hline 11-Jun-1997' & [ & -64.7142] \\
\hline 12-Jun-1997' & [ & -58.8567] \\
\hline '13-Jun-1997' & [ & -14.7495] \\
\hline 16-Jun-1997' & [ & -5.9280] \\
\hline '17-Jun-1997' & [ & -8.3333] \\
\hline 18-Jun-1997' & [ & -41.6667] \\
\hline 19-Jun-1997' & [ & -22.2000] \\
\hline 20-Jun-1997' & [ & -47.2000] \\
\hline 23-Jun-1997' & [ & -83.3333] \\
\hline 24-Jun-1997' & [ & -41.6667] \\
\hline 25-Jun-1997' & [ & -55.8927] \\
\hline 26-Jun-1997' & [ & -72.5232] \\
\hline 27-Jun-1997' & [ & -98.6000] \\
\hline 30-Jun-1997' & [ & -73.3333] \\
\hline 01-Jul-1997' & [ & -89.3862] \\
\hline 02-Jul-1997' & [ & -94.4822] \\
\hline 03-Jul-1997' & [ & -89.7581] \\
\hline '04-Jul-1997' & [ & \(\mathrm{NaN}]\) \\
\hline 07-Jul-1997' & [ & -89.0680] \\
\hline '08-Jul-1997' & [ & -64.9615] \\
\hline 09-Jul-1997' & [ & -75.9293] \\
\hline '10-Jul-1997' & [ & -77.6130] \\
\hline 11-Jul-1997' & [ & -83.0245] \\
\hline '14-Jul-1997' & [ & -71.4233] \\
\hline '15-Jul-1997' & [ & -60.0167] \\
\hline '16-Jul-1997' & [ & -44.5462] \\
\hline '17-Jul-1997' & [ & -50.0000] \\
\hline
\end{tabular}
'18-Jul-1997'
'21-Jul-1997'
'22-Jul-1997'
'23-Jul-1997'
'24-Jul-1997'
'25-Jul-1997'
'28-Jul-1997'
'29-Jul-1997'
'30-Jul-1997'
'31-Jul-1997'
' 01-Aug-1997'
'04-Aug-1997'
' 05 -Aug-1997'
' 06-Aug-1997'
' 07-Aug-1997'
'08-Aug-1997'
'11-Aug-1997'
'12-Aug-1997'
'13-Aug-1997'
' 14-Aug-1997'
' 15 -Aug-1997'
'18-Aug-1997'
'19-Aug-1997'
'20-Aug-1997'
'21-Aug-1997'
'22-Aug-1997'
' 25 -Aug-1997'
'26-Aug-1997'
'27-Aug-1997'
' 28-Aug-1997'
'29-Aug-1997'
' 01-Sep-1997'
'02-Sep-1997'
'03-Sep-1997'
'04-Sep-1997'
'05-Sep-1997'
'08-Sep-1997'
-82.6504]
-75.7911]
-32.9641]
-29.0506]
-5.3664]
-10.7843]
-3.1000]
-4.7533]
-4.1952]
-11.0857]
-14.2857]
-9.5238]
-22.2095]
-11.0857]
-32.5333]
-38.8164]
-39.7340]
-63.8519]
-62.3521]
-65.2053]
-97.5709]
-53.8502]
-35.1266]
-18.5826]
-46.4844]
-59.4857]
-55.9429]
-71.4286]
-45.9144]
-62.1271]
-82.4254]
\(\mathrm{NaN}]\)
-35.1492]
-22.9572]
-63.4890]
-63.8867]
-72.1479]
\begin{tabular}{|c|c|c|}
\hline 09-Sep-1997 \({ }^{\text {' }}\) & [ & -53.4326] \\
\hline '10-Sep-1997' & [ & -71.6486] \\
\hline '11-Sep-1997' & [ & -76.9393] \\
\hline '12-Sep-1997' & [ & -52.7704] \\
\hline '15-Sep-1997' & [ & -51.6623] \\
\hline '16-Sep-1997' & [ & -18.6807] \\
\hline '17-Sep-1997' & [ & -23.6448] \\
\hline '18-Sep-1997' & [ & -16.1074] \\
\hline '19-Sep-1997' & [ & -5.3691] \\
\hline '22-Sep-1997' & [ & -11.8224] \\
\hline '23-Sep-1997' & [ & -21.5281] \\
\hline '24-Sep-1997' & [ & -26.8973] \\
\hline '25-Sep-1997' & [ & -10.7383] \\
\hline '26-Sep-1997' & [ & -12.9066] \\
\hline '29-Sep-1997' & [ & -15.2263] \\
\hline '30-Sep-1997' & [ & -11.6159] \\
\hline '01-Oct-1997' & [ & -5.7710] \\
\hline '02-Oct-1997' & [ & -1.7112] \\
\hline '03-0ct-1997' & [ & -17.0341] \\
\hline 06-Oct-1997' & [ & -34.8716] \\
\hline 07-Oct-1997' & [ & -7.7410] \\
\hline '08-Oct-1997' & [ & -23.9587] \\
\hline '09-Oct-1997' & [ & -21.4597] \\
\hline '10-Oct-1997' & [ & -28.0841] \\
\hline '13-0ct-1997' & [ & -15.7081] \\
\hline '14-Oct-1997' & [ & -5.0435] \\
\hline '15-Oct-1997' & [ & -10.8080] \\
\hline '16-0ct-1997' & [ & -33.0801] \\
\hline 17-Oct-1997' & [ & -64.3229] \\
\hline '20-Oct-1997' & [ & -60.7372] \\
\hline '21-Oct-1997' & [ & -63.4518] \\
\hline '22-Oct-1997' & [ & -73.0503] \\
\hline '23-0ct-1997' & [ & -84.5870] \\
\hline '24-Oct-1997' & [ & -83.6641] \\
\hline '27-Oct-1997' & [ & -100] \\
\hline '28-Oct-1997' & [ & -42.9173] \\
\hline '29-0ct-1997' & [ & -38.0473] \\
\hline
\end{tabular}
'30-0ct-1997'
-56.0993]
'31-0ct-1997'
' 03-Nov-1997'
' 04-Nov-1997'
' 05 -Nov-1997'
' 06-Nov-1997'
' 07 -Nov-1997'
'10-Nov-1997'
'11-Nov-1997'
' 12 -Nov-1997'
'13-Nov-1997'
'14-Nov-1997'
'17-Nov-1997'
'18-Nov-1997'
' 19-Nov-1997'
' 20 -Nov-1997'
'21-Nov-1997'
'24-Nov-1997'
'25-Nov-1997'
' 26 -Nov-1997'
' 27 -Nov-1997'
'28-Nov-1997'
' 01-Dec-1997'
' 02-Dec-1997'
'03-Dec-1997'
'04-Dec-1997'
'05-Dec-1997'
'08-Dec-1997'
'09-Dec-1997'
'10-Dec-1997'
'11-Dec-1997'
'12-Dec-1997'
'15-Dec-1997'
'16-Dec-1997'
'17-Dec-1997'
'18-Dec-1997'
'19-Dec-1997'
-42.4491]
-18.0520]
-4.2635]
-10.5012]
-3.1912]
-9.5032]
-16.5107]
-11.9990]
-35.4932]
-22.5102]
-6.5035]
-8.1064]
-10.8224]
0 ]
-10.9671]
0 ]
-9.6277]
-9.6277]
-7.1150]
\(\mathrm{NaN}]\)
-3.5575]
-2.0976]
-9.7281]
-21.4704]
-42.9329]
-38.6631]
-41.6258]
-48.7293]
-59.4466]
-87.2319]
-73.4423]
-13.8407]
-32.9928]
-19.1522]
-10.6231]
-34.7599]
\begin{tabular}{|c|c|c|}
\hline '22-Dec-1997' & [ & -9.6016] \\
\hline '23-Dec-1997' & [ & -15.5245] \\
\hline '24-Dec-1997' & [ & -54.3590] \\
\hline '25-Dec-1997' & [ & NaN] \\
\hline '26-Dec-1997' & [ & -53.3800] \\
\hline '29-Dec-1997' & & -23.3100] \\
\hline '30-Dec-1997' & [ & -15.2803] \\
\hline '31-Dec-1997' & [ & -16.9581] \\
\hline '01-Jan-1998' & [ & NaN] \\
\hline '02-Jan-1998' & [ & -8.9546] \\
\hline '05-Jan-1998' & [ & -25.8000] \\
\hline '06-Jan-1998' & [ & -30.8000] \\
\hline '07-Jan-1998' & & -30] \\
\hline '08-Jan-1998' & [ & -51.5412] \\
\hline '09-Jan-1998' & [ & -79.9899] \\
\hline '12-Jan-1998' & & -87.8497] \\
\hline '13-Jan-1998' & [ & -80.0000] \\
\hline '14-Jan-1998' & [ & -59.1232] \\
\hline '15-Jan-1998' & [ & -70.4384] \\
\hline '16-Jan-1998' & [ & -64.3424] \\
\hline '19-Jan-1998' & [ & NaN] \\
\hline '20-Jan-1998' & [ & -19.1232] \\
\hline '21-Jan-1998' & [ & -26.0960] \\
\hline '22-Jan-1998' & & -59.1232] \\
\hline '23-Jan-1998' & [ & -18.1862] \\
\hline '26-Jan-1998' & [ & -38.4093] \\
\hline '27-Jan-1998' & [ & -13.0114] \\
\hline '28-Jan-1998' & [ & -13.2651] \\
\hline '29-Jan-1998' & & -14.3407] \\
\hline '30-Jan-1998' & [ & -10.2564] \\
\hline '02-Feb-1998' & [ & -2.9078] \\
\hline '03-Feb-1998' & [ & -8.5909] \\
\hline '04-Feb-1998' & [ & -6.7067] \\
\hline '05-Feb-1998' & [ & -8.1305] \\
\hline '06-Feb-1998' & [ & -6.2012] \\
\hline '09-Feb-1998' & [ & -14.5561] \\
\hline '10-Feb-1998' & [ & -8.4498] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '11-Feb-1998' & [ & \(0]\) \\
\hline '12-Feb-1998' & [ & -4.9946] \\
\hline '13-Feb-1998' & [ & -1.4588] \\
\hline '16-Feb-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '17-Feb-1998' & [ & \(0]\) \\
\hline '18-Feb-1998' & [ & -3.7730] \\
\hline '19-Feb-1998' & [ & -14.5667] \\
\hline '20-Feb-1998' & [ & -12.5000] \\
\hline '23-Feb-1998' & [ & -18.2290] \\
\hline ' 24-Feb-1998' & [ & -41.1936] \\
\hline '25-Feb-1998' & [ & -48.6539] \\
\hline '26-Feb-1998' & [ & -62.1473] \\
\hline '27-Feb-1998' & [ & -41.1936] \\
\hline '02-Mar-1998' & [ & -85.7200] \\
\hline '03-Mar-1998' & [ & -83.6316] \\
\hline '04-Mar-1998' & [ & -80.2278] \\
\hline '05-Mar-1998' & [ & -95.4706] \\
\hline '06-Mar-1998' & [ & -91.5378] \\
\hline '09-Mar-1998' & [ & -89.8291] \\
\hline '10-Mar-1998' & [ & -89.2596] \\
\hline '11-Mar-1998' & [ & -96.1488] \\
\hline '12-Mar-1998' & [ & -86.2569] \\
\hline '13-Mar-1998' & [ & -83.0248] \\
\hline '16-Mar-1998' & [ & -36.3636] \\
\hline '17-Mar-1998' & [ & -59.8545] \\
\hline '18-Mar-1998' & [ & -64.4000] \\
\hline '19-Mar-1998' & [ & -74.3752] \\
\hline '20-Mar-1998' & [ & -58.4125] \\
\hline '23-Mar-1998' & [ & -96.5660] \\
\hline '24-Mar-1998' & [ & -42.2424] \\
\hline '25-Mar-1998' & [ & -43.1113] \\
\hline '26-Mar-1998' & [ & -31.8990] \\
\hline '27-Mar-1998' & [ & -37.9396] \\
\hline '30-Mar-1998' & [ & -61.1916] \\
\hline '31-Mar-1998' & [ & -44.8490] \\
\hline '01-Apr-1998' & [ & -55.1924] \\
\hline '02-Apr-1998' & [ & -15.5151] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '03-Apr-1998' & [ & \(0]\) \\
\hline '06-Apr-1998' & [ & -33.3452] \\
\hline '07-Apr-1998' & [ & -39.2819] \\
\hline '08-Apr-1998' & [ & -49.6267] \\
\hline '09-Apr-1998' & [ & -25.2044] \\
\hline '10-Apr-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '13-Apr-1998' & [ & -15.0192] \\
\hline '14-Apr-1998' & [ & -0.7578] \\
\hline '15-Apr-1998' & [ & -12.6671] \\
\hline '16-Apr-1998' & [ & -28.4933] \\
\hline '17-Apr-1998' & [ & -14.5504] \\
\hline '20-Apr-1998' & [ & -4.5804] \\
\hline '21-Apr-1998' & [ & -1.6175] \\
\hline '22-Apr-1998' & [ & \(0]\) \\
\hline '23-Apr-1998' & [ & -17.9543] \\
\hline '24-Apr-1998' & [ & -25.0786] \\
\hline '27-Apr-1998' & [ & -30.4800] \\
\hline '28-Apr-1998' & [ & -19.5257] \\
\hline '29-Apr-1998' & [ & -20.0674] \\
\hline '30-Apr-1998' & [ & -16.3911] \\
\hline '01-May-1998' & [ & -12.0186] \\
\hline '04-May-1998' & [ & -7.4678] \\
\hline '05-May-1998' & [ & -10.0824] \\
\hline '06-May-1998' & [ & -25] \\
\hline '07-May-1998' & [ & -61.5184] \\
\hline '08-May-1998' & [ & -63.9784] \\
\hline '11-May-1998' & [ & -59.1156] \\
\hline '12-May-1998' & [ & -99.3456] \\
\hline '13-May-1998' & [ & -95.1720] \\
\hline '14-May-1998' & [ & -95.6198] \\
\hline '15-May-1998' & [ & -99.6463] \\
\hline '18-May-1998' & [ & -96.7537] \\
\hline '19-May-1998' & [ & -90.2920] \\
\hline '20-May-1998' & [ & -71.2022] \\
\hline '21-May-1998' & [ & -64.3989] \\
\hline '22-May-1998' & [ & -61.3280] \\
\hline '25-May-1998' & [ & NaN ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 26-May-1998 \({ }^{\text {' }}\) & [ & -77.9473] \\
\hline 27-May-1998' & [ & -56.9284] \\
\hline 28-May-1998' & [ & -64.6074] \\
\hline 29-May-1998' & [ & -63.7779] \\
\hline 01-Jun-1998' & [ & -83.4138] \\
\hline 02-Jun-1998' & [ & -87.2248] \\
\hline 03-Jun-1998' & [ & -93.4842] \\
\hline 04-Jun-1998' & [ & -82.7348] \\
\hline 05-Jun-1998' & [ & -23.7569] \\
\hline 08-Jun-1998' & [ & -10.0829] \\
\hline 09-Jun-1998' & [ & -2.9006] \\
\hline 10-Jun-1998' & [ & -11.8194] \\
\hline 11-Jun-1998' & [ & -30.1161] \\
\hline 12-Jun-1998' & [ & -39.7935] \\
\hline 15-Jun-1998' & [ & -64.5161] \\
\hline 16-Jun-1998' & [ & -58.6065] \\
\hline 17-Jun-1998' & [ & -46.2452] \\
\hline 18-Jun-1998' & [ & -66.1419] \\
\hline 19-Jun-1998' & [ & -94.6383] \\
\hline 22-Jun-1998' & [ & -72.0126] \\
\hline 23-Jun-1998' & [ & -65.4355] \\
\hline 24-Jun-1998' & [ & -46.0794] \\
\hline 25-Jun-1998' & [ & -47.3237] \\
\hline 26-Jun-1998' & [ & -60.4977] \\
\hline 29-Jun-1998' & [ & -42.8007] \\
\hline 30-Jun-1998' & [ & -96.0421] \\
\hline 01-Jul-1998' & [ & -85.4000] \\
\hline 02-Jul-1998' & [ & -83.5078] \\
\hline 03-Jul-1998' & [ & \(\mathrm{NaN}]\) \\
\hline 06-Jul-1998' & [ & -88.8180] \\
\hline 07-Jul-1998' & [ & -79.2333] \\
\hline 08-Jul-1998' & [ & -59.5995] \\
\hline 09-Jul-1998' & [ & -31.1189] \\
\hline 10-Jul-1998' & [ & -10.5278] \\
\hline 13-Jul-1998' & [ & -4.0649] \\
\hline '14-Jul-1998' & [ & -7.0595] \\
\hline 15-Jul-1998' & [ & -17.4512] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline '16-Jul-1998' & [ & -18.6047] \\
\hline '17-Jul-1998' & [ & -17.4512] \\
\hline '20-Jul-1998' & [ & -32.5581] \\
\hline '21-Jul-1998' & [ & -47.6837] \\
\hline '22-Jul-1998' & [ & -58.1395] \\
\hline '23-Jul-1998' & [ & -75.5907] \\
\hline '24-Jul-1998' & [ & -70.2811] \\
\hline '27-Jul-1998' & [ & -76.9616] \\
\hline '28-Jul-1998' & [ & -94.0571] \\
\hline '29-Jul-1998' & [ & -94.0571] \\
\hline '30-Jul-1998' & [ & -79.2016] \\
\hline '31-Jul-1998' & [ & -93.0619] \\
\hline '03-Aug-1998' & [ & -89.1019] \\
\hline '04-Aug-1998' & [ & -99.1000] \\
\hline '05-Aug-1998' & [ & -82.4933] \\
\hline '06-Aug-1998' & [ & -85.8267] \\
\hline '07-Aug-1998' & [ & -82.1796] \\
\hline '10-Aug-1998' & [ & -89.1304] \\
\hline '11-Aug-1998' & [ & -89.3273] \\
\hline '12-Aug-1998' & [ & -82.0209] \\
\hline '13-Aug-1998' & [ & -92.8571] \\
\hline '14-Aug-1998' & [ & -90.5891] \\
\hline '17-Aug-1998' & [ & -77.0162] \\
\hline '18-Aug-1998' & [ & -45.7143] \\
\hline '19-Aug-1998' & [ & -54.2857] \\
\hline '20-Aug-1998' & [ & -38.4691] \\
\hline '21-Aug-1998' & [ & -47.6987] \\
\hline '24-Aug-1998' & [ & -23.4173] \\
\hline '25-Aug-1998' & [ & -17.5414] \\
\hline '26-Aug-1998' & [ & -47.3758] \\
\hline '27-Aug-1998' & [ & -78.3467] \\
\hline '28-Aug-1998' & [ & -87.8486] \\
\hline '31-Aug-1998' & [ & -83.4484] \\
\hline '01-Sep-1998' & [ & -49.6432] \\
\hline '02-Sep-1998' & [ & -55.3983] \\
\hline '03-Sep-1998' & [ & -73.3771] \\
\hline '04-Sep-1998' & [ & -74.1022] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 07-Sep-1998 \({ }^{\text {' }}\) & [ & NaN ] \\
\hline 08-Sep-1998' & [ & -64.0308] \\
\hline 09-Sep-1998' & [ & -79.1321] \\
\hline 10-Sep-1998' & [ & -87.7647] \\
\hline '11-Sep-1998' & [ & -99.2951] \\
\hline 14-Sep-1998' & [ & -94.2256] \\
\hline '15-Sep-1998' & [ & -81.1594] \\
\hline 16-Sep-1998' & [ & -76.5625] \\
\hline '17-Sep-1998' & [ & -77.3375] \\
\hline 18-Sep-1998' & [ & -78.9000] \\
\hline 21-Sep-1998' & [ & -84.3750] \\
\hline 22-Sep-1998' & [ & -79.2016] \\
\hline 23-Sep-1998' & [ & -53.4611] \\
\hline 24-Sep-1998' & [ & -68.3193] \\
\hline 25-Sep-1998' & [ & -72.2794] \\
\hline 28-Sep-1998' & [ & -54.2213] \\
\hline '29-Sep-1998' & [ & -47.6987] \\
\hline 30-Sep-1998' & [ & -63.0815] \\
\hline 01-Oct-1998' & [ & -67.2923] \\
\hline 02-Oct-1998' & [ & -71.4286] \\
\hline 05-Oct-1998' & [ & -78.5524] \\
\hline 06-Oct-1998' & [ & -66.6667] \\
\hline 07-Oct-1998' & [ & -83.3143] \\
\hline 08-Oct-1998' & [ & -80.5556] \\
\hline 09-Oct-1998' & [ & -74.3135] \\
\hline 12-Oct-1998' & [ & -54.0541] \\
\hline 13-0ct-1998' & [ & -35.1351] \\
\hline '14-Oct-1998' & [ & -53.8518] \\
\hline 15-0ct-1998' & [ & -16.9333] \\
\hline '16-0ct-1998' & [ & -26.1629] \\
\hline 19-Oct-1998' & [ & -3.3894] \\
\hline '20-0ct-1998' & [ & -8.7400] \\
\hline 21-Oct-1998' & [ & -3.5619] \\
\hline '22-Oct-1998' & [ & \(0]\) \\
\hline '23-0ct-1998' & [ & -4.5455] \\
\hline '26-0ct-1998' & [ & -1.1273] \\
\hline '27-0ct-1998' & [ & -21.5818] \\
\hline
\end{tabular}

18-2032
\begin{tabular}{|c|c|c|}
\hline '28-0ct-1998' & [ & -28.4000] \\
\hline '29-0ct-1998' & [ & -36.0703] \\
\hline '30-0ct-1998' & [ & -27.8594] \\
\hline '02-Nov-1998' & [ & -6.3196] \\
\hline '03-Nov-1998' & [ & -3.3621] \\
\hline '04-Nov-1998' & [ & -31.7073] \\
\hline '05-Nov-1998' & [ & -1.2098] \\
\hline '06-Nov-1998' & [ & -7.6923] \\
\hline '09-Nov-1998' & [ & -21.7846] \\
\hline '10-Nov-1998' & [ & -35.8974] \\
\hline '11-Nov-1998' & [ & -35.8974] \\
\hline '12-Nov-1998' & [ & -42.2974] \\
\hline '13-Nov-1998' & [ & -30.7692] \\
\hline '16-Nov-1998' & [ & -32.0410] \\
\hline '17-Nov-1998' & [ & -34.7111] \\
\hline '18-Nov-1998' & [ & -40.0049] \\
\hline '19-Nov-1998' & [ & -72.5447] \\
\hline '20-Nov-1998' & [ & -79.0845] \\
\hline '23-Nov-1998' & [ & -41.8683] \\
\hline '24-Nov-1998' & [ & -36.1593] \\
\hline '25-Nov-1998' & [ & 0] \\
\hline '26-Nov-1998' & [ & \(\mathrm{NaN}]\) \\
\hline '27-Nov-1998' & [ & -6.2500] \\
\hline '30-Nov-1998' & [ & -18.7400] \\
\hline '01-Dec-1998' & [ & -32.5000] \\
\hline '02-Dec-1998' & [ & -38.7400] \\
\hline '03-Dec-1998' & [ & -45] \\
\hline '04-Dec-1998' & [ & -35] \\
\hline '07-Dec-1998' & [ & -40] \\
\hline '08-Dec-1998' & [ & -22.5000] \\
\hline '09-Dec-1998' & [ & -3.3244] \\
\hline '10-Dec-1998' & [ & -25.6000] \\
\hline '11-Dec-1998' & [ & -41.1765] \\
\hline '14-Dec-1998' & [ & -75.7576] \\
\hline '15-Dec-1998' & [ & -82.7586] \\
\hline '16-Dec-1998' & [ & -82.7586] \\
\hline '17-Dec-1998' & [ & -79.3103] \\
\hline
\end{tabular}
'18-Dec-1998'
-79.6583]
'21-Dec-1998'
'22-Dec-1998'
'23-Dec-1998'
'24-Dec-1998'
'25-Dec-1998'
'28-Dec-1998'
'29-Dec-1998'
'30-Dec-1998'
'31-Dec-1998'
'01-Jan-1999'
'04-Jan-1999'
'05-Jan-1999'
'06-Jan-1999'
'07-Jan-1999'
'08-Jan-1999'
'11-Jan-1999'
'12-Jan-1999'
'13-Jan-1999'
'14-Jan-1999'
'15-Jan-1999'
'18-Jan-1999'
'19-Jan-1999'
'20-Jan-1999'
'21-Jan-1999'
'22-Jan-1999'
'25-Jan-1999'
'26-Jan-1999'
'27-Jan-1999'
'28-Jan-1999'
'29-Jan-1999'
'01-Feb-1999'
' 02-Feb-1999'
'03-Feb-1999'
'04-Feb-1999'
'05-Feb-1999'
'08-Feb-1999'
-74.5864]
-100]
-73.7671]
-83.6044]
\(\mathrm{NaN}]\)
-86.8835]
-86.6667]
-95.7454]
-86.0160]
\(\mathrm{NaN}]\)
-90.8959]
-61.8092]
-50.9017]
-27.2833]
-7.0166]
-4]
-7.2897]
-27.1562]
-27.8131]
-28.4806]
\(\mathrm{NaN}]\)
-23.1829]
-28.4806]
-43.7063]
-50.7000]
-41.9557]
-47.4793]
-83.6364]
-86.4667]
-94.8000]
-78.6644]
-84.9408]
-77.9529]
-89.7176]
-63.2471]
-69.1294]

-75.4831]
-48.8277]
-11.0953]
-4.3478]
\(\mathrm{NaN}]\)
-29.4007]
-35.2997]
-47.0662]
-58.8328]
-37.5000]
-37.5000]
-34.8716]
-55.8243]
-30.2196]
-44.1757]
-82.8532]
-75]
-40.6000]
-9.3500]
-9.3006]
-74.4048]
-81.3988]
-76.1905]
-23.8095]
-30.9714]
-61.9048]
-83.3524]
-47.6190]
-61.9048]
-90.2458]
-90.3226]
-86.1432]
-81.5407]
-92.0518]
-88.8776]


\footnotetext{
References Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 316-317.

See Also stochosc | willad
}

\section*{Purpose Number of working days between dates}
```

Syntax Days = wrkdydif(StartDate, EndDate, Holidays)

```

\section*{Arguments}
```Description
Days = wrkdydif(StartDate, EndDate, Holidays) returns the number of working days between dates StartDate and EndDate inclusive. Holidays is the number of holidays between the given dates, an integer. Enter dates as serial date numbers or date strings.
```


## Examples

```
Days = wrkdydif('9/1/2000', '9/11/2000', 1)
```

Days = wrkdydif('9/1/2000', '9/11/2000', 1)
or
Days = wrkdydif(730730, 730740, 1)
returns
Days =
6

```

\section*{See Also \\ busdate | datewrkdy | days360 | days365 | daysact | daysdif | holidays | yearfrac}

\section*{x2mdate}

Purpose Excel serial date number to MATLAB serial date number
```

Syntax MATLABDate = x2mdate(ExcelDateNumber, Convention)

```

\section*{Arguments}

ExcelDateNumber A vector or scalar of Excel serial date numbers.
Convention (Optional) Excel date system. A vector or scalar. When Convention = 0 (default), the Excel 1900 date system is in effect. When Convention = 1, the Excel 1904 date system is used.

In the Excel 1900 date system, the Excel serial date number 1 corresponds to January 1, 1900 A.D. In the Excel 1904 date system, date number 0 is January 1, 1904 A.D.
Due to a software limitation in Excel software, the year 1900 is considered a leap year. As a result, all DATEVALUEs reported by Excel software between Jan. 1, 1900 and Feb. 28, 1900 (inclusive) differ from the values reported by 1 . For example:
- In Excel software, Jan. 1, \(1900=1\)
- In MATLAB, Jan. 1, \(1900=2\)

Vector arguments must have consistent dimensions.

\section*{Description}

DateNumber = x2mdate(ExcelDateNumber, Convention) converts Excel serial date numbers to MATLAB serial date numbers. MATLAB date numbers start with \(1=\) January 1, 0000 A.D., hence there is a difference of 693960 relative to the 1900 date system, or 695422 relative to the 1904 date system. This function is useful with Spreadsheet Link EX software.
Examples Given Excel date numbers in the 1904 system
ExDates = \(\left[\begin{array}{lll}35423 & 35788 & 36153\end{array}\right] ;\)convert them to MATLAB date numbers
MATLABDate = x2mdate(ExDates, 1)
MATLABDate =
730845 731210 731575
and then to date strings.
datestr(MATLABDate)
ans =
25-Dec-2000
25-Dec-2001
25-Dec-2002
See Also
datenum | datestr | m2xdate

\section*{xirr}

Purpose Internal rate of return for nonperiodic cash flow
```

Syntax Return = xirr(CashFlow, CashFlowDates)
Return = xirr(CashFlow, CashFlowDates, Guess, MaxIterations,
Basis)

```

\section*{Description}

Return \(=\mathrm{xirr}(\) CashFlow, CashFlowDates) returns the internal rate of return for a schedule of nonperiodic cash flows.
```

Return = xirr(CashFlow, CashFlowDates, Guess,

```
MaxIterations,

Basis) returns the internal rate of return for a schedule of nonperiodic cash flows with optional inputs.

\section*{Input}

Arguments

\section*{CashFlow}

A vector or matrix of cash flows. If CashFlow is a matrix, each column represents a separate stream of cash flows whose internal rate of return is calculated. The first cash flow of each stream is the initial investment, entered as a negative number.

\section*{CashFlowDates}
(Required) A vector or matrix of serial date numbers the same size as CashFlow, or a cell array of date strings the same size as CashFlow. Each column of CashFlowDate represents the dates of the corresponding column of CashFlow.

\section*{Guess}

The initial estimate of the internal rate of return. Guess is a scalar applied to all streams, or a vector the same length as the number of streams.

Default: 0.1 (10\%)

\section*{Maxlterations}

The positive integer number of iterations used by Newton's method to solve the internal rate of return. MaxIterations is a scalar applied to all streams, or a vector the same length as the number of streams.

Default: 50

\section*{Basis}

Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.
Default: 0

\section*{Output Arguments}

\section*{Return}

Vector of the annualized internal rate of return of each cash flow stream. A NaN indicates that a solution is not found.

\section*{xirr}

\section*{Examples Find the internal rate of return for an investment of \$10,000 that returns the following nonperiodic cash flow. The original investment is the first cash flow and is a negative number.}
\begin{tabular}{ll}
Cash Flow & Dares \\
\((\$ 10000)\) & January 12, 2007 \\
\(\$ 2500\) & February 14, 2008 \\
\(\$ 2000\) & March 3, 2008 \\
\(\$ 3000\) & June 14, 2008 \\
\(\$ 4000\) & December 1, 2008
\end{tabular}

Calculate the internal rate of return for this nonperiodic cash flow:
CashFlow = [-10000, 2500, 2000, 3000, 4000];
CashFlowDates = ['01/12/2007'
'02/14/2008'
'03/03/2008'
'06/14/2008'
'12/01/2008'];
Return = xirr(CashFlow, CashFlowDates)
This returns:
Return =
\[
0.1006 \text { (or } 10.0644 \% \text { per annum) }
\]

References Brealey and Myers, Principles of Corporate Finance, McGraw-Hill Higher Education, Chapter 5, 2003.

Sharpe, William F., and Gordon J. Alexander, Investments. Englewood Cliffs, NJ: Prentice-Hall. 4th ed., 1990.

See Also fvvar | irr | mirr | pvvar
Purpose Year of date
Syntax Year = year(Date)
Year = year(Date, F)
Description Year = year(Date) returns the year of a serial date number or a date string.Year = year(Date, F) returns the year, given a serial date number ordate string, in a specified date format.
Examples Year \(=\) year(731798.776)or
Year = year('05-Aug-2003')
returns
 Year =
 2003
You can also use the \(F\) argument to designate a country-specific date format:
```

Year = year('2003/08/05','yyyy/mm/dd')
Year =

```
2003.00
See Also datevec | day | month | yeardays

Purpose Number of days in year
Syntax Days = yeardays(Year, Basis)
Arguments
\begin{tabular}{ll}
Year & \begin{tabular}{l}
Enter as a four-digit integer. \\
Basis \\
(Optional) Day-count basis of the instrument. A \\
vector of integers.
\end{tabular} \\
& - \(0=\) actual/actual (default) \\
& - \(1=30 / 360\) (SIA) \\
& - \(2=\) actual/360 \\
& - \(3=\) actual/365 \\
- \(4=30 / 360\) (BMA) \\
& - \(5=30 / 360\) (ISDA) \\
& - \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 E ~(I C M A) ~\) \\
- \(12=\) actual/actual (ISDA) \\
- \(13=\mathrm{BUS} / 252\)
\end{tabular}

For more information, see basis on page Glossary-2.

Days = yeardays(Year, Basis) returns the number of days in the given year, based upon the day-count basis.
```

Examples Days = yeardays(2000)
Days =
366
Days = yeardays(2000, 1)
Days =
3 6 0

```

See Also days360 | days365 | daysact | year | yearfrac

Purpose Fraction of year between dates
```

Syntax YearFraction = yearfrac(StartDate, EndDate, Basis)

```

Arguments
StartDate Enter as serial date numbers or date strings.
EndDate Enter as serial date numbers or date strings.
Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

All specified arguments must be number of instruments (NUMINST)-by-1 or 1-by-NUMINST conforming vectors or scalar arguments.

Description

Definitions

\section*{Examples}

YearFraction = yearfrac(StartDate, EndDate, Basis) returns a fraction based on the number of days between dates StartDate and EndDate using the given day-count basis. Note, the number of days in a year (365 or 366) is equal to the number of days in the calendar year after the StartDate. If EndDate is earlier than StartDate, Fraction is negative.

The difference between yearfrac and date2time is that date2time counts full periods as a whole integer, even if the number of actual days in the periods are different. yearfrac does not count full periods. For example,
```

yearfrac('1/1/2000', '1/1/2001', 9)

```
ans =
1.0167
yearfrac for Basis 9 (ACT/360 ISMA) will calculate \(366 / 360=1.0167\). So, even if the dates have the same month and date, with a difference of 1 in the year, the returned value may not be exactly 1 . On the other hand, date2time will calculate one full year period:
```

date2time('1/1/2000', '1/1/2001', 1, 9)
ans =

```
 1

\section*{Compute yearfrac When the Calendar Year After the StartDate is Not a Leap Year}

Given a Basis of 0 and a Basis of 1, compute yearfrac.
Define the StartDate and EndDate using a Basis of 0.
```

YearFraction = yearfrac('14 mar 01', '14 sep 01', 0)

```
```

YearFraction =
0.5041
Define the StartDate and EndDate using a Basis of 1.
YearFraction = yearfrac('14 mar 01', '14 sep 01', 1)
YearFraction =
0.5000

```

\section*{Compute yearfrac When the Calendar Year After the StartDate is a Leap Year}

Given a Basis of 0 , compute yearfrac when the calendar after StartDate is in a leap year.

Define the StartDate and EndDate using a Basis of 0.
```

yearFraction = yearfrac(' 14 mar 03', '14 sep 03', 0)

```
yearFraction =
 0.5027

There are 184 days between March 14 and September 14, and the calendar year after the StartDate is a leap year, so yearfrac returns \(184 / 366=0.5027\).

See Also days360 | date2time | days365 | daysact | daysdif | months |

Purpose Yield of discounted security
```

Syntax
Yield = ylddisc(Settle, Maturity, Face, Price, Basis)

```

\section*{Arguments}
\begin{tabular}{ll}
Settle & \begin{tabular}{l}
Settlement date. Enter as serial date number or date \\
string. Settle must be earlier than Maturity.
\end{tabular} \\
Maturity & \begin{tabular}{l}
Maturity date. Enter as serial date number or date \\
string.
\end{tabular} \\
Face & \begin{tabular}{l}
Redemption (par, face) value. \\
Price
\end{tabular} \\
Discounted price of the security. \\
(Optional) Day-count basis of the instrument. A \\
& vector of integers. \\
& - \(0=\) actual/actual (default) \\
& - \(1=30 / 360\) (SIA) \\
& - \(2=\) actual/360 \\
& - \(3=\) actual/365 \\
& - \(4=30 / 360\) (BMA) \\
& - \(5=30 / 360\) (ISDA) \\
& - \(6=30 / 360\) (European) \\
& - \(7=\) actual/365 (Japanese) \\
& - \(8=\) actual/actual (ICMA) \\
& - \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 E ~(I C M A) ~\)
\end{tabular}

For more information, see basis on page Glossary-2.

\section*{Description Yield = ylddisc(Settle, Maturity, Face, Price, Basis) finds the yield of a discounted security.}

\section*{Examples}

\section*{Find the Yield of a Discounted Security}

This example shows how to find the yield of the following discounted security.
```

Settle = '10/14/2000';
Maturity = '03/17/2001';
Face = 100;
Price = 96.28;
Basis = 2;
Yield = ylddisc(Settle, Maturity, Face, Price, Basis)
Yield =
0.0903

```
References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition. Formula 1.
See Alsoacrudisc | bndprice | bndyield | prdisc | yldmat | yldtbill

Purpose Yield with interest at maturity
```

Syntax
Yield = yldmat(Settle, Maturity, Issue, Face, Price,
CouponRate, Basis)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Settle & Settlement date. Enter as serial date number or date string. Settle must be earlier than Maturity. \\
\hline Maturity & Maturity date. Enter as serial date number or date string. \\
\hline Issue & Issue date. Enter as serial date number or date string. \\
\hline Face & Redemption (par, face) value. \\
\hline Price & Price of the security. \\
\hline CouponRate & Coupon rate. Enter as decimal fraction. \\
\hline Basis & (Optional) Day-count basis of the instrument. A vector of integers. \\
\hline & - \(0=\) actual/actual (default) \\
\hline & - \(1=30 / 360\) (SIA) \\
\hline & - 2 = actual/360 \\
\hline & - 3 = actual/365 \\
\hline & - \(4=30 / 360\) (BMA) \\
\hline & - \(5=30 / 360\) (ISDA) \\
\hline & - \(6=30 / 360\) (European) \\
\hline & - \(7=\) actual/365 (Japanese) \\
\hline & - \(8=\) actual/actual (ICMA) \\
\hline & - 9 = actual/360 (ICMA) \\
\hline
\end{tabular}
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- \(12=\) actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

\section*{Description}

Yield = yldmat(Settle, Maturity, Issue, Face, Price, CouponRate, Basis) returns the yield of a security paying interest at maturity.

\section*{Examples Find the Yield of a Security Paying Interest at Maturity}

This example shows how to find the yield of a security paying interest at maturity for the following.
```

Settle = '02/07/2000';
Maturity = '04/13/2000';
Issue = '10/11/1999';
Face = 100;
Price = 99.98;
CouponRate = 0.0608;
Basis = 1;
Yield = yldmat(Settle, Maturity, Issue, Face, Price,...
CouponRate, Basis)

```
Yield =
 0.0607

\author{
References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition. Formula 3.
}

See Also acrubond | bndprice | bndyield | prmat | ylddisc | yldtbill

\section*{Purpose Yield of Treasury bill}
```

Syntax Yield = yldtbill(Settle, Maturity, Face, Price)

```

\section*{Arguments}

\section*{Description \\ Yield = yldtbill(Settle, Maturity, Face, Price) returns the} yield for a Treasury bill.

\section*{Examples Find the Yield for a Treasury Bill}

This example shows how to return the yield for a Treasury bill, given the settlement date of a Treasury bill is February 10, 2000, the maturity date is August 6,2000 , the par value is \(\$ 1000\), and the price is \(\$ 981.36\).

Yield = yldtbill('2/10/2000', '8/6/2000', 1000, 981.36)

Yield =
0.0384

\section*{References \\ Bodie, Kane, and Marcus, Investments, pages 41-43.}

See Also beytbill | bndyield | prtbill | yldmat

\section*{zbtprice}

Purpose Zero curve bootstrapping from coupon bond data given price
```

Syntax [ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle, OutputCompounding)

```

\section*{Arguments}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{Bonds} & \multicolumn{2}{|l|}{Coupon bond information used to generate the zero curve. An n-by-2 to n-by-6 matrix where each row describes a bond. The first two columns are required; the rest are optional but must be added in order. All rows in Bonds must have the same number of columns.} \\
\hline & Columns ar [Maturity EndMonthRu & ponRate Face Period Basis where \\
\hline & Maturity & Maturity date of the bond, as a serial date number. Use datenum to convert date strings to serial date numbers \\
\hline & CouponRate & Coupon rate of the bond, as a decimal fraction. \\
\hline & Face & (Optional) Redemption or face value of the bond. Default \(=100\). \\
\hline & Period & (Optional) Coupons per year of the bond, as an integer. Allowed values are 0, 1, 2 (default), \(3,4,6\), and 12. \\
\hline
\end{tabular}
(Optional) Day-count basis of the bond:
- 0 = actual/actual (default)
- 1 = 30/360 (SIA)
- 2 = actual/360
- \(3=\) actual/ 365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\mathrm{actual} / 365\) (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

\section*{zbtprice}
\begin{tabular}{ll}
EndMonthRule & \begin{tabular}{l}
(Optional) End-of-month flag. \\
\\
This flag applies only when \\
Maturity is an end-of-month \\
date for a month having 30 or
\end{tabular} \\
& fewer days. 0 = ignore flag, \\
& meaning that a bond's coupon \\
payment date is always the \\
& same day of the month. \(1=\) set \\
flag (default), meaning that a \\
bond's coupon payment date \\
is always the last day of the \\
month.
\end{tabular}
Prices \begin{tabular}{ll}
Settle & \begin{tabular}{l}
Column vector containing the clean price (price \\
without accrued interest) of each bond in \\
Bonds, respectively. The number of rows (n) \\
must match the number of rows in Bonds.
\end{tabular} \\
OutputCompounding & \begin{tabular}{l}
Settlement date, as a scalar serial date number. \\
This represents time zero for deriving the \\
zero curve, and it is normally the common \\
settlement date for all the bonds. \\
(Optional) Scalar that sets the compounding \\
frequency per year for the output zero rates in \\
ZeroRates. Allowed values are:
\end{tabular} \\
1 & \begin{tabular}{l}
Annual compounding
\end{tabular} \\
2 & \begin{tabular}{l}
Semiannual compounding \\
(default)
\end{tabular} \\
3 & \begin{tabular}{l}
Compounding three times per \\
year \\
Quarterly compounding
\end{tabular} \\
4 & Bimonthly compounding
\end{tabular}

Monthly compounding
Continuous compounding

\section*{Description}
[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle, OutputCompounding) uses the bootstrap method to return a zero curve given a portfolio of coupon bonds and their prices. A zero curve consists of the yields to maturity for a portfolio of theoretical zero-coupon bonds that are derived from the input Bonds portfolio. The bootstrap method that this function uses does not require alignment among the cash-flow dates of the bonds in the input portfolio. It uses theoretical par bond arbitrage and yield interpolation to derive all zero rates; specifically, the interest rates for cash flows are determined using linear interpolation. For best results, use a portfolio of at least 30 bonds evenly spaced across the investment horizon.
\begin{tabular}{ll}
ZeroRates & \begin{tabular}{l}
An m-by-1 vector of decimal fractions that \\
are the implied zero rates for each point \\
along the investment horizon represented \\
by CurveDates; \(m\) is the number of bonds of \\
unique maturity dates. In aggregate, the rates \\
in ZeroRates constitute a zero curve. \\
If more than one bond has the same maturity \\
date, zbtprice returns the mean zero rate \\
for that maturity. Any rates before the first \\
maturity are assumed to be equal to the rate at \\
the first maturity, that is, the curve is assumed
\end{tabular} \\
to be flat before the first maturity. \\
CurveDates & \begin{tabular}{l}
An m-by-1 vector of unique maturity dates (as \\
serial date numbers) that correspond to the \\
zero rates in ZeroRates; \(m\) is the number of \\
bonds of different maturity dates. These dates \\
begin with the earliest maturity date and end
\end{tabular}
\end{tabular}

\section*{zbtprice}
with the latest maturity date Maturity in the Bonds matrix.

\section*{Examples Compute a Zero Curve Given a Portfolio of Coupon Bonds and Their Prices}

Given data and prices for 12 coupon bonds, two with the same maturity date, and given the common settlement date.
```

Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0;
datenum('7/1/2000') 0.06 100 2 0 0;
datenum('7/1/2000') 0.09375 100 6 1 0;
datenum('6/30/2001') 0.05125 100 1 3 1;
datenum('4/15/2002') 0.07125 100 4 1 0;
datenum('1/15/2000') 0.065 100 2 0 0;
datenum('9/1/1999') 0.08 100 3 3 0;
datenum('4/30/2001') 0.05875 100 2 0 0;
datenum('11/15/1999') 0.07125 100 2 0 0;
datenum('6/30/2000') 0.07 100 2 3 1;
datenum('7/1/2001') 0.0525 100 2 3 0;
datenum('4/30/2002') 0.07 100 2 0 0];
Prices = [99.375;
99.875;
105.75;
96.875;
103.625;
101.125;
103.125;
99.375;
101.0 ;
101.25 ;
96.375;
102.75 ];
Settle = datenum('12/18/1997');

```

Set semiannual compounding for the zero curve.
OutputCompounding = 2;
Execute the function zbtprice which returns the zero curve at the maturity dates. Note the mean zero rate for the two bonds with the same maturity date.
[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle,... OutputCompounding)

ZeroRates =
0.0616
0.0609
0.0658
0.0590
0.0647
0.0655
0.0606
0.0601
0.0642
0.0621
0.0627

CurveDates =

729907
730364
730439
730500
730667
730668
730971

18-2061

\section*{zbtprice}

731032
731033
731321
731336

\title{
References Fabozzi, Frank J. "The Structure of Interest Rates." Ch. 6 in Fabozzi, Frank J. and T. Dessa Fabozzi, eds. The Handbook of Fixed Income Securities. 4th ed. New York: Irwin Professional Publishing. 1995. \\ McEnally, Richard W. and James V. Jordan. "The Term Structure of Interest Rates." Ch. 37 in Fabozzi and Fabozzi, ibid. \\ Das, Satyajit. "Calculating Zero Coupon Rates." Swap and Derivative Financing. Appendix to Ch. 8, pp. 219-225. New York: Irwin Professional Publishing. 1994.
}

\section*{See Also \\ zbtyield}

Purpose
Syntax

Arguments

Zero curve bootstrapping from coupon bond data given yield
[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle, OutputCompounding)
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{5}{*}{Bonds} & \multicolumn{2}{|l|}{Coupon bond information used to generate the zero curve. An n-by-2 to n-by- 6 matrix where each row describes a bond. The first two columns are required; the rest are optional but must be added in order. All rows in Bonds must have the same number of columns. Columns are [Maturity CouponRate Face Period Basis EndMonthRule] where} \\
\hline & Maturity & Maturity date of the bond, as a serial date number. Use datenum to convert date strings to serial date numbers. \\
\hline & CouponRate & Coupon rate of the bond, as a decimal fraction. \\
\hline & Face & (Optional) Redemption or face value of the bond. Default = 100. \\
\hline & Period & (Optional) Coupons per year of the bond, as an integer. Allowed values are \(0,1,2\) (default), \(3,4,6\), and 12 . \\
\hline
\end{tabular} the bond.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\mathrm{actual} / 365\) (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- \(12=\) actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

EndMonthRule (Optional) End-of-month flag This flag applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore flag, meaning that a bond's coupon payment date is always the same day of the month. \(1=\) set flag (default), meaning that a bond's coupon payment date is always the last day of the month.
Yields Column vector containing the yield to maturity of each bond in Bonds, respectively. The number of rows (n) must match the number of rows in Bonds. Yield to maturity must be compounded semiannually.
\begin{tabular}{ll}
Settle & Settlement date, as a scalar serial date \\
& number. This represents time zero for deriving
\end{tabular} the zero curve, and it is normally the common settlement date for all the bonds.
OutputCompounding (Optional) Scalar that sets the compounding frequency per year for the output zero rates in ZeroRates. Allowed values are:

1
2

3

4
6

Annual compounding
Semiannual compounding (default)

Compounding three times per year
Quarterly compounding
Bimonthly compounding

\section*{zbtyield}

Monthly compounding
Continuous compounding

Description [ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle, OutputCompounding) uses the bootstrap method to return a zero curve given a portfolio of coupon bonds and their yields. A zero curve consists of the yields to maturity for a portfolio of theoretical zero-coupon bonds that are derived from the input Bonds portfolio. The bootstrap method that this function uses does not require alignment among the cash-flow dates of the bonds in the input portfolio. It uses theoretical par bond arbitrage and yield interpolation to derive all zero rates; specifically, the interest rates for cash flows are determined using linear interpolation. For best results, use a portfolio of at least 30 bonds evenly spaced across the investment horizon.

ZeroRates

CurveDates
An m-by-1 vector of decimal fractions that are the implied zero rates for each point along the investment horizon represented by CurveDates; \(m\) is the number of bonds of different maturity dates. In aggregate, the rates in ZeroRates constitute a zero curve.

If more than one bond has the same maturity date, zbtyield returns the mean zero rate for that maturity. Any rates before the first maturity are assumed to be equal to the rate at the first maturity, that is, the curve is assumed to be flat before the first maturity.

An m-by-1 vector of unique maturity dates (as serial date numbers) that correspond to the zero rates in ZeroRates; \(m\) is the number of bonds of different maturity dates. These dates begin with the earliest maturity date and end
with the latest maturity date Maturity in the Bonds matrix. Use datestr to convert serial date numbers to date strings.

\section*{Examples \\ Compute a Zero Curve Given a Portfolio of Coupon Bonds and Their Yields}

Given data and yields to maturity for 12 coupon bonds, two with the same maturity date; and given the common settlement date.
```

Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0;
datenum('7/1/2000') 0.06 100 2 0 0;
datenum('7/1/2000') 0.09375 100 6 1 0;
datenum('6/30/2001') 0.05125 100 1 3 1;
datenum('4/15/2002') 0.07125 100 4 1 0;
datenum('1/15/2000') 0.065 100 2 0 0;
datenum('9/1/1999') 0.08 100 3 3 0;
datenum('4/30/2001') 0.05875 100 2 0 0;
datenum('11/15/1999') 0.07125 100 2 0 0;
datenum('6/30/2000') 0.07 100 2 3 1;
datenum('7/1/2001') 0.0525 100 2 3 0;
datenum('4/30/2002') 0.07 100 2 0 0];
Yields = [0.0616
0.0605
0.0687
0.0612
0.0615
0.0591
0.0603
0.0608
0.0655
0.0646
0.0641
0.0627];

```

\section*{zbtyield}

Settle \(=\) datenum('12/18/1997');

Set semiannual compounding for the zero curve.
OutputCompounding \(=2\);

Execute the function zbtyield which returns the zero curve at the maturity dates. Note the mean zero rate for the two bonds with the same maturity date.
[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,... OutputCompounding)

ZeroRates =
0.0616
0.0603
0.0657
0.0590
0.0649
0.0650
0.0606
0.0611
0.0643
0.0614
0.0627

CurveDates =

729907
730364
730439
730500
730667
730668

730971
731032
731033
731321
731336

\author{
References Fabozzi, Frank J. "The Structure of Interest Rates." Ch. 6 in Fabozzi, Frank J. and T. Dessa Fabozzi, eds. The Handbook of Fixed Income Securities. 4th ed. New York: Irwin Professional Publishing. 1995. \\ McEnally, Richard W. and James V. Jordan. "The Term Structure of Interest Rates." Ch. 37 in Fabozzi and Fabozzi, ibid. \\ Das, Satyajit. "Calculating Zero Coupon Rates." Swap and Derivative Financing. Appendix to Ch. 8, pp. 219-225. New York: Irwin Professional Publishing. 1994.
}

\section*{See Also \\ zbtprice}

How To
- "Term Structure of Interest Rates" on page 2-41

\section*{zero2disc}

Purpose Discount curve given zero curve
```

Syntax
[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle,
Compounding, Basis)

```

\section*{Arguments}
\begin{tabular}{ll}
ZeroRates & \begin{tabular}{l}
Number of bonds (NUMBONDS)-by-1 vector of \\
annualized zero rates, as decimal fractions. In \\
aggregate, the rates constitute an implied zero \\
curve for the investment horizon represented by \\
CurveDates.
\end{tabular} \\
CurveDates & \begin{tabular}{l}
NUMBONDS-by-1 vector of maturity dates (as serial \\
date numbers) that correspond to the zero rates.
\end{tabular} \\
Settle & \begin{tabular}{l}
Serial date number that is the common settlement \\
date for the zero rates; that is, the settlement \\
date for the bonds from which the zero curve was \\
bootstrapped.
\end{tabular} \\
Compounding & \begin{tabular}{l}
(Optional) Scalar that indicates the compounding \\
frequency per year used for annualizing the input \\
zero rates in ZeroRates. Allowed values are:
\end{tabular}
\end{tabular}

1 Annual compounding
2 Semiannual compounding (default)
3 Compounding three times per year
4 Quarterly compounding
6 Bimonthly compounding
12 Monthly compounding
365 Daily compounding
```

-1 Continuous compounding
Basis (Optional) Day-count basis used for annualizing the input zero rates.

- 0 = actual/actual (default)
- $1=30 / 360$ (SIA)
- 2 = actual/360
- $3=$ actual $/ 365$
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- 7 = actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/actual (ISDA)
- 13 = BUS/252

```

For more information, see basis on page Glossary-2.

\section*{Description}
[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle, Compounding, Basis) returns a discount curve given a zero curve and its maturity dates.

\section*{zero2disc}
\begin{tabular}{ll}
DiscRates & \begin{tabular}{l}
A NUMBONDS-by-1 vector of discount factors, as \\
decimal fractions. In aggregate, the factors in \\
constitute a discount curve for the investment \\
horizon represented by CurveDates.
\end{tabular} \\
CurveDates \(\quad\)\begin{tabular}{l}
A NUMBONDS-by-1 vector of maturity dates (as serial \\
date numbers) that correspond to the discount \\
rates. This vector is the same as the input vector \\
CurveDates.
\end{tabular}
\end{tabular}

\section*{Examples Compute a Discount Curve Given a Zero Curve and Maturity Dates}

Given a zero curve over a set of maturity dates and a settlement date.
```

ZeroRates = [0.0464
0.0509
0.0524
0.0525
0.0531
0.0525
0.0530
0.0531
0.0549
0.0536];
CurveDates = [datenum('06-Nov-2000')
datenum('11-Dec-2000')
datenum('15-Jan-2001')
datenum('05-Feb-2001')
datenum('04-Mar-2001')
datenum('02-Apr-2001')
datenum('30-Apr-2001')
datenum('25-Jun-2001')
datenum('04-Sep-2001')
datenum('12-Nov-2001')];

```
```

Settle = datenum('03-Nov-2000');
The zero curve is compounded daily on an actual/365 basis.
Compounding = 365;
Basis = 3;
Execute the function zero2disc which returns the discount curve DiscRates at the maturity dates CurveDates.
[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,... Settle, Compounding, Basis)
DiscRates =
0.9996
0.9947
0.9896
0.9866
0.9826
0.9787
0.9745
0.9665
0.9552
0.9466
CurveDates =
730796
730831
730866
730887
730914
730943

```

\section*{zero2disc}

730971
731027
731098
731167

For readability, ZeroRates and DiscRates are shown here only to the basis point. However, MATLAB® software computed them at full precision. If you enter ZeroRates as shown, DiscRates may differ due to rounding.

\section*{See Also}
disc2zero
How To
- "Term Structure of Interest Rates" on page 2-41
\begin{tabular}{ll}
Purpose & Forward curve given zero curve \\
Syntax & \begin{tabular}{l}
[ForwardRates, CurveDates] \(=\) zero2fwd (ZeroRates, CurveDates,
\end{tabular} \\
& Settle, Compounding, Basis)
\end{tabular}

Arguments
\begin{tabular}{ll}
ZeroRates & \begin{tabular}{l}
Number of bonds (NUMBONDS)-by-1 vector of \\
annualized zero rates, as decimal fractions. In \\
aggregate, the rates constitute an implied zero \\
curve for the investment horizon represented by \\
CurveDates. The first element pertains to forward \\
rates from the settlement date to the first curve date.
\end{tabular} \\
CurveDates & \begin{tabular}{l}
NUMBONDS-by-1 vector of maturity dates (as serial \\
date numbers) that correspond to the zero rates.
\end{tabular} \\
Settle & \begin{tabular}{l}
Serial date number that is the common settlement \\
date for the zero rates.
\end{tabular} \\
Compounding & \begin{tabular}{l}
(Optional) Scalar that sets the compounding \\
frequency per year used to annualize the input zero \\
rates and the output implied forward rates. Allowed \\
values are:
\end{tabular}
\end{tabular}

1 Annual compounding
2 Semiannual compounding (default)
3 Compounding three times per year
4 Quarterly compounding
6 Bimonthly compounding
12 Monthly compounding
365 Daily compounding
\begin{tabular}{ll}
& \(-1 \quad\) Continuous compounding \\
Basis & (Optional) Day-count basis used to construct the \\
input zero and output implied forward rate curves. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- \(2=\) actual/360 \\
- \(3=\) actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360 ~(E u r o p e a n) ~\) \\
- \(7=\) actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 E\) (ICMA) \\
- \(12=\) actual/actual (ISDA) \\
- \(13=\) BUS/252 \\
For more information, see basis on page Glossary- 2.
\end{tabular}

Description [ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle, Compounding, Basis) returns an implied forward rate curve given a zero curve and its maturity dates.
\begin{tabular}{ll}
ForwardRates & \begin{tabular}{l}
A NUMBONDS-by-1 vector of decimal fractions. In \\
aggregate, the rates in ForwardRates constitute a \\
forward curve over the dates in CurveDates.
\end{tabular} \\
CurveDates & \begin{tabular}{l}
A NUMBONDS-by-1 vector of maturity dates (as serial \\
date numbers) that correspond to the forward rates \\
in. This vector is the same as the input vector \\
CurveDates.
\end{tabular}
\end{tabular}

\section*{Examples Compute an Implied Forward Rate Curve Given a Zero Curve and Maturity Dates}

Given a zero curve over a set of maturity dates, a settlement date, and a compounding rate, compute the forward rate curve.
```

ZeroRates = [0.0458
0.0502
0.0518
0.0519
0.0524
0.0519
0.0523
0.0525
0.0541
0.0529];
CurveDates = [datenum('06-Nov-2000')
datenum('11-Dec-2000')
datenum('15-Jan-2001')
datenum('05-Feb-2001')
datenum('04-Mar-2001')
datenum('02-Apr-2001')
datenum('30-Apr-2001')
datenum('25-Jun-2001')
datenum('04-Sep-2001')
datenum('12-Nov-2001')];

```
```

Settle = datenum('03-Nov-2000');
Compounding = 1;
Execute the function zero2fwd to return the forward rate curve ForwardRates at the maturity dates CurveDates.
[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,... Settle, Compounding)
ForwardRates =
0.0458
0.0506
0.0535
0.0522
0.0541
0.0498
0.0544
0.0531
0.0594
0.0476
CurveDates =
730796
730831
730866
730887
730914
730943
730971
731027
731098
731167

```

For readability, ZeroRates and ForwardRates are shown here only to the basis point. However, MATLAB® software computed them at full precision. If you enter ZeroRates as shown, ForwardRates may differ due to rounding.

\section*{See Also \\ fwd2zero}

How To . "Term Structure of Interest Rates" on page 2-41

\section*{zero2pyld}

Purpose Par yield curve given zero curve

\author{
Syntax [ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates, Settle, Compounding, Basis, InputCompounding)
}

\section*{Arguments}
\begin{tabular}{ll}
ZeroRates & \begin{tabular}{l}
A number of bonds (NUMBONDS)-by-1 vector of \\
annualized zero rates, as decimal fractions. In \\
aggregate, the rates constitute an implied zero \\
curve for the investment horizon represented \\
by CurveDates.
\end{tabular} \\
CurveDates & \begin{tabular}{l}
A NUMBONDS-by-1 vector of maturity dates (as \\
serial date numbers) that correspond to the \\
zero rates.
\end{tabular} \\
Settle & \begin{tabular}{l}
A serial date number that is the common \\
settlement date for the zero rates. \\
(Optional) Scalar value representing the
\end{tabular} \\
periodicity in which the output par rates are \\
compounded when annualized. Allowed values \\
are: \\
1 & Annual compounding
\end{tabular}

Basis (Optional) Day-count basis used to annualize the implied zero rates.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/actual (ISDA)
- 13 = BUS/252

For more information, see basis on page Glossary-2.

InputCompounding (Optional) Scalar value representing the periodicity in which the input zero rates were compounded when annualized. The default is the value for Compounding.
[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates, Settle, Compounding, Basis, InputCompounding) returns a par yield curve given a zero curve and its maturity dates.

ParRates A NUMBONDS-by-1 vector of annualized par yields, as decimal fractions. (Par yields = coupon rates.) In aggregate, the yield rates in ParRates constitute a par yield curve for the investment horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the par yield rates. This vector is the same as the input vector CurveDates.

\section*{Examples Given}
- A zero curve over a set of maturity dates and
- A settlement date
- Annual compounding for the input zero curve and monthly compounding for the output par rates
compute a par yield curve.
```

ZeroRates = [0.0457
0.0487
0.0506
0.0507
0.0505
0.0504
0.0506
0.0516
0.0539
0.0530];
CurveDates = [datenum('06-Nov-2000')
datenum('11-Dec-2000')
datenum('15-Jan-2001')
datenum('05-Feb-2001')
datenum('04-Mar-2001')

```
```

        datenum('02-Apr-2001')
        datenum('30-Apr-2001')
        datenum('25-Jun-2001')
        datenum('04-Sep-2001')
        datenum('12-Nov-2001')];
    Settle = datenum('03-Nov-2000');
InputCompounding = 1;
Compounding = 12;
[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...
Settle, Compounding, [] , InputCompounding)
ParRates =
0.0479
0.0511
0.0530
0.0531
0.0526
0.0524
0.0525
0.0534
0.0555
0.0543
CurveDates =
730796
7 3 0 8 3 1
7 3 0 8 6 6
730887
730914
730943
7 3 0 9 7 1
731027
731098

```

\section*{731167}

For readability, ZeroRates and ParRates are shown only to the basis point. However, MATLAB software computed them at full precision. If you enter ZeroRates as shown, ParRates may differ due to rounding.

\section*{See Also \\ pyld2zero}

How To . "Term Structure of Interest Rates" on page 2-41

\section*{Bibliography}
- "Bond Pricing and Yields" on page A-2
- "Term Structure of Interest Rates" on page A-3
- "Derivatives Pricing and Yields" on page A-4
- "Portfolio Analysis" on page A-5
- "Investment Performance Metrics" on page A-6
- "Financial Statistics" on page A-8
- "Standard References" on page A-9
- "Credit Risk Analysis" on page A-11
- "Portfolio Optimization" on page A-12
- "Stochastic Differential Equations" on page A-13

Note For the well-known algorithms and formulas used in Financial Toolbox software (such as how to compute a loan payment given principal, interest rate, and length of the loan), no references are given here. The references here pertain to less common formulas.

\section*{Bond Pricing and Yields}

The pricing and yield formulas for fixed-income securities come from:
[1] Golub, B.W. and L.M. Tilman, Risk Management: Approaches for Fixed Income Markets Wiley, 2000.
[2] Martellini, L., P. Priaulet, and S. Priaulet Fixed Income Securities Wiley, 2003.
[3] Mayle, Jan, Standard Securities Calculation Methods New York: Securities Industry Association, Inc. Vol. 1, 3rd ed., 1993, ISBN 1-882936-01-9. Vol. 2, 1994, ISBN 1-882936-02-7.
[4] Tuckman, B. Fixed Income Securities: Tools for Today's Markets Wiley, 2002.

In many cases these formulas compute the price of a security given yield, dates, rates, and other data. These formulas are nonlinear, however; so when solving for an independent variable within a formula, Financial Toolbox software uses Newton's method. See any elementary numerical methods textbook for the mathematics underlying Newton's method.

\section*{Term Structure of Interest Rates}

The formulas and methodology for term structure functions come from:
[5] Fabozzi, Frank J., "The Structure of Interest Rates." Ch. 6 in Fabozzi, Frank J. and T. Dessa Fabozzi, eds. The Handbook of Fixed Income Securities. 4th ed. New York: Irwin Professional Publishing, 1995, ISBN 0-7863-0001-9.
[6] McEnally, Richard W. and James V. Jordan, "The Term Structure of Interest Rates." Ch. 37 in Fabozzi and Fabozzi, ibid.
[7] Das, Satyajit, "Calculating Zero Coupon Rates." Swap and Derivative Financing. Appendix to Ch. 8, pp. 219-225, New York: Irwin Professional Publishing., 1994, ISBN 1-55738-542-4.

\section*{Derivatives Pricing and Yields}

The pricing and yield formulas for derivative securities come from:
[8] Chriss, Neil A., "Black-Scholes and Beyond: Option Pricing Models," Chicago: Irwin Professional Publishing, 1997, ISBN 0-7863-1025-1.
[9] Cox, J., S. Ross, and M. Rubenstein, "Option Pricing: A Simplified Approach", Journal of Financial Economics 7, Sept. 1979, pp. 229-263.
[10] Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003, ISBN 0-13-009056-5.

\section*{Portfolio Analysis}

The Markowitz model is used for portfolio analysis computations. For a discussion of this model see Chapter 7 of:
[11] Bodie, Zvi, Alex Kane, and Alan J. Marcus, Investments, Burr Ridge, IL: Irwin. 2nd. ed., 1993, ISBN 0-256-08342-8.

\section*{Investment Performance Metrics}

The risk and ratio formulas for investment performance metrics come from:
[12] Daniel Bernoulli, "Exposition of a New Theory on the Measurement of Risk," Econometrica, Vol. 22, No 1, January 1954, pp. 23-36 (English translation of "Specimen Theoriae Novae de Mensura Sortis," Commentarii Academiae Scientiarum Imperialis Petropolitanae, Tomus V, 1738, pp. 175-192).
[13] Martin Eling and Frank Schuhmacher, Does the Choice of Performance Measure Influence the Evaluation of Hedge Funds?, Working Paper, November 2005.
[14] John Lintner, "The Valuation of Risk Assets and the Selection of Risky Investments in Stocks Portfolios and Capital Budgets," Review of Economics and Statistics, Vol. 47, No. 1, February 1965, pp. 13-37.
[15] Malik Magdon-Ismail, Amir F. Atiya, Amrit Pratap, and Yaser S. Abu-Mostafa, "On the Maximum Drawdown of a Brownian Motion," Journal of Applied Probability, Volume 41, Number 1, March 2004, pp. 147-161.
[16] Malik Magdon-Ismail and Amir Atiya, "Maximum Drawdown," http://www.risk.net/risk-magazine, October 2004.
[17] Harry Markowitz, "Portfolio Selection," Journal of Finance, Vol. 7, No. 1, March 1952, pp. 77-91.
[18] Harry Markowitz, Portfolio Selection: Efficient Diversification of Investments, John Wiley \& Sons, 1959.
[19] Jan Mossin, "Equilibrium in a Capital Asset Market," Econometrica, Vol. 34, No. 4, October 1966, pp. 768-783.
[20] Christian S. Pedersen and Ted Rudholm-Alfvin, "Selecting a Risk-Adjusted Shareholder Performance Measure," Journal of Asset Management, Vol. 4, No. 3, 2003, pp. 152-172.
[21] William F. Sharpe, "Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk," Journal of Finance, Vol. 19, No. 3, September 1964, pp. 425-442.
[22] Katerina Simons, "Risk-Adjusted Performance of Mutual Funds," New England Economic Review, September/October 1998, pp. 34-48.

\section*{Financial Statistics}

The discussion of computing statistical values for portfolios containing missing data elements derives from the following references:
[23] Little, Roderick J.A. and Donald B. Rubin, Statistical Analysis with Missing Data, 2nd ed., John Wiley \& Sons, Inc., 2002.
[24] Meng, Xiao-Li, and Donald B. Rubin, "Maximum Likelihood Estimation via the ECM Algorithm," Biometrika, Vol. 80, No. 2, 1993, pp. 267-278.
[25] Sexton, Joe and Anders Rygh Swensen, "ECM Algorithms That Converge at the Rate of EM," Biometrika, Vol. 87, No. 3, 2000, pp. 651-662.
[26] Dempster, A.P., N.M. Laird, and Donald B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm," Journal of the Royal Statistical Society, Series B, Vol. 39, No. 1, 1977, pp. 1-37.

\section*{Standard References}

Standard references include:
[27] Addendum to Securities Industry Association, Standard Securities Calculation Methods: Fixed Income Securities Formulas for Analytic Measures, Vol. 2, Spring 1995. This addendum explains and clarifies the end-of-month rule.
[28] Brealey, Richard A. and Stewart C. Myers, Principles of Corporate Finance, New York: McGraw-Hill. 4th ed., 1991, ISBN 0-07-007405-4.
[29] Daigler, Robert T., Advanced Options Trading. Chicago: Probus Publishing Co., 1994, ISBN 1-55738-552-1.
[30] A Dictionary of Finance. Oxford: Oxford University Press., 1993, ISBN 0-19-285279-5.
[31] Fabozzi, Frank J. and T. Dessa Fabozzi, eds. The Handbook of Fixed-Income Securities. Burr Ridge, IL: Irwin. 4th ed., 1995, ISBN 0-7863-0001-9.
[32] Fitch, Thomas P., Dictionary of Banking Terms. Hauppauge, NY: Barron's. 2nd ed., 1993, ISBN 0-8120-1530-4.
[33] Hill, Richard O., Jr., Elementary Linear Algebra. Orlando, FL: Academic Press. 1986, ISBN 0-12-348460-X.
[34] Luenberger, David G., Investment Science, Oxford University Press, 1998. ISBN 0195108094.
[35] Marshall, John F. and Vipul K. Bansal, Financial Engineering: A Complete Guide to Financial Innovation. New York: New York Institute of Finance. 1992, ISBN 0-13-312588-2.
[36] Sharpe, William F., Macro-Investment Analysis. An "electronic work-in-progress" published on the World Wide Web, 1995, at http://www.stanford.edu/~wfsharpe/mia/mia.htm.
[37] Sharpe, William F. and Gordon J. Alexander, Investments. Englewood Cliffs, NJ: Prentice-Hall. 4th ed., 1990, ISBN 0-13-504382-4.
[38] Stigum, Marcia, with Franklin Robinson, Money Market and Bond Calculations. Richard D. Irwin., 1996, ISBN 1-55623-476-7.

\section*{Credit Risk Analysis}

The credit rating and estimation transition probabilities come from:
[39] Altman, E., "Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy," Journal of Finance, Vol. 23, No. 4, (Sep., 1968), pp. 589-609.
[40] Basel Committee on Banking Supervision, International Convergence of Capital Measurement and Capital Standards: A Revised Framework, Bank for International Settlements (BIS), comprehensive version, June 2006.
[41] Hanson, S. and T. Schuermann, "Confidence Intervals for Probabilities of Default," Journal of Banking \& Finance, Elsevier, vol. 30(8), August 2006, pp. 2281-2301.
[42] Jafry, Y. and T. Schuermann, "Measurement, Estimation and Comparison of Credit Migration Matrices," Journal of Banking \& Finance, Elsevier, vol. 28(11), November 2004, pp. 2603-2639.
[43] Löffler, G. and P. N. Posch, Credit Risk Modeling Using Excel and VBA,West Sussex, England: Wiley Finance, 2007.
[44] Schuermann, T., "Credit Migration Matrices," in E. Melnick and B. Everitt (eds.), Encyclopedia of Quantitative Risk Analysis and Assessment, Wiley, 2008.

\section*{Portfolio Optimization}

The Markowitz model is used for portfolio optimization computations.
[45] Kelley, J. E., "The Cutting-Plane Method for Solving Convex Programs," Journal of the Society for Industrial and Applied Mathematics, Vol. 8, No. 4, December 1960, pp. 703-712.
[46] Markowitz, H., "Portfolio Selection," Journal of Finance, Vol. 7, No. 1, March 1952, pp. 77-91.
[47] Markowitz, H. M., Portfolio Selection: Efficient Diversification of Investments, John Wiley \& Sons, Inc., 1959.
[48] Rockafellar, R. T. and S. Uryasev, "Optimization of Conditional Value-at-Risk," Journal of Risk, Vol. 2, No. 3, Spring 2000, pp. 21-41.
[49] Rockafellar, R. T. and S. Uryasev, "Conditional Value-at-Risk for General Loss Distributions," Journal of Banking and Finance, Vol. 26, 2002, pp. 1443-1471.
[50] Konno, H. and H. Yamazaki, "Mean-Absolute Deviation Portfolio Optimization Model and Its Application to Tokyo Stock Market," Management Science, Vol. 37, No. 5, May 1991, pp. 519-531.

\section*{Stochastic Differential Equations}

The SDE formulas come from:
[51] Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426.
[52] Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999.
[53] Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.
[54] Hull, J. C., Options, Futures, and Other Derivatives,5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.
[55] Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley \& Sons, 1995.
[56] Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.

\section*{active return}

Amount of return achieved in excess of the return produced by an appropriate benchmark (for example, an index portfolio).

\section*{active risk}

Standard deviation of the active return. Also known as the tracking error on page Glossary-17.

\section*{American option}

An option that can be exercised any time until its expiration date. Contrast with European option.

\section*{amortization}

Reduction in value of an asset over some period for accounting purposes. Generally used with intangible assets. Depreciation is the term used with fixed or tangible assets.

\section*{annuity}

A series of payments over a period of time. The payments are usually in equal amounts and usually at regular intervals such as quarterly, semiannually, or annually.

\section*{antithetic sampling}

A variance reduction technique that pairs a sequence of independent normal random numbers with a second sequence obtained by negating the random numbers of the first. The first sequence simulates increments of one path of Brownian motion, and the second sequence simulates increments of its reflected, or antithetic, path. These two paths form an antithetic pair independent of any other pair.

\section*{arbitrage}

The purchase of securities on one market for immediate resale on another market to profit from a price or currency discrepancy.

\section*{basis point}

One hundredth of one percentage point, or 0.0001.

\section*{basis}

Day count basis determines how interest accrues over time for various instruments and the amount transferred on interest payment dates. The calculation of accrued interest for dates between payments also uses day count basis. Day count basis is a fraction of Number of interest accrual days/Days in the relevant coupon period. Supported day count conventions and basis values are:
\begin{tabular}{l|l}
\hline \begin{tabular}{l}
Basis \\
Value
\end{tabular} & Day Count Convention \\
\hline \(\mathbf{0}\) & \begin{tabular}{l}
actual/actual (default) - Number of days in both a period \\
and a year is the actual number of days.
\end{tabular} \\
\hline \(\mathbf{1}\) & \begin{tabular}{l}
30/360 SIA - Year fraction is calculated based on a 360 \\
day year with 30-day months, after applying the following
\end{tabular} \\
\hline \(\mathbf{2}\) & \begin{tabular}{l}
actual/360 - Number of days in a period is equal to the \\
actual number of days, however the number of days in a year \\
is 360.
\end{tabular} \\
\hline \(\mathbf{3}\) & \begin{tabular}{l}
actual/365 - Number of days in a period is equal to the \\
actual number of days, however the number of days in a year \\
is 365 (even in a leap year).
\end{tabular} \\
\hline \(\mathbf{4}\) & \begin{tabular}{l}
30/360 PSA - Number of days in every month is set to 30 \\
(including February). If the start date of the period is either \\
the 31st of a month or the last day of February, the start \\
date is set to the 30th, while if the start date is the 30th of a \\
month and the end date is the 31st, the end date is set to the \\
30th. The number of days in a year is 360.
\end{tabular} \\
\hline 5 & \begin{tabular}{l}
30/360 ISDA - Number of days in every month is set to 30, \\
except for February where it is the actual number of days. If \\
the start date of the period is the 31st of a month, the start \\
date is set to the 30th while if the start date is the 30th of a \\
month and the end date is the 31st, the end date is set to the \\
30th. The number of days in a year is 360.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis Value & Day Count Convention \\
\hline 6 & \(30 \mathrm{E} / 360\) - Number of days in every month is set to 30 except for February where it is equal to the actual number of days. If the start date or the end date of the period is the 31 st of a month, that date is set to the 30th. The number of days in a year is 360 . \\
\hline 7 & actual/365 Japanese - Number of days in a period is equal to the actual number of days, except for leap days (29th February) which are ignored. The number of days in a year is 365 (even in a leap year). \\
\hline 8 & actual/actual ICMA - Number of days in both a period and a year is the actual number of days and the compounding frequency is annual. \\
\hline 9 & actual/360 ICMA - Number of days in a period is equal to the actual number of days, however the number of days in a year is 360 and the compounding frequency is annual. \\
\hline 10 & actual/365 ICMA - Number of days in a period is equal to the actual number of days, however the number of days in a year is 365 (even in a leap year) and the compounding frequency is annual. \\
\hline 11 & 30/360 ICMA - Number of days in every month is set to 30, except for February where it is equal to the actual number of days. If the start date or the end date of the period is the 31st of a month, that date is set to the 30th. The number of days in a year is 360 and the compounding frequency is annual. \\
\hline 12 & actual/365 ISDA - The day count fraction is calculated using the following formula: (Actual number of days in period that fall in a leap year / 366) + (Actual number of days in period that fall in a normal year / 365). \\
\hline 13 & bus/252 - The number of days in a period is equal to the actual number of business days. The number of business days in a year is 252 . \\
\hline
\end{tabular}

Glossary-3

\section*{beta}

The price volatility of a financial instrument relative to the price volatility of a market or index as a whole. Beta is commonly used with respect to equities. A high-beta instrument is riskier than a low-beta instrument.

\section*{binomial model}

A method of pricing options or other equity derivatives in which the probability over time of each possible price follows a binomial distribution. The basic assumption is that prices can move to only two values (one higher and one lower) over any short time period.

\section*{Black-Scholes model}

The first complete mathematical model for pricing options, developed by Fischer Black and Myron Scholes. It examines market price, strike price, volatility, time to expiration, and interest rates. It is limited to only certain kinds of options.

\section*{Bollinger band chart}

A financial chart that plots actual asset data along with three other bands of data: the upper band is two standard deviations above a user-specified moving average; the lower band is two standard deviations below that moving average; and the middle band is the moving average itself.

\section*{bootstrapping, bootstrap method}

An arithmetic method for backing an implied zero curve out of the par yield curve.

\section*{Brownian motion}

A zero-mean continuous-time stochastic process with independent increments (also known as a Wiener process).

\section*{building a binomial tree}

For a binomial option model: plotting the two possible short-term price-changes values, and then the subsequent two values each, and then the subsequent two values each, and so on over time, is known as "building a binomial tree." See also binomial model on page Glossary-4.

\section*{call}
a. An option to buy a certain quantity of a stock or commodity for a specified price within a specified time. See also put on page Glossary-13. b. A demand to submit bonds to the issuer for redemption before the maturity date. c. A demand for payment of a debt. d. A demand for payment due on stock bought on margin.

\section*{callable bond}

A bond that allows the issuer to buy back the bond at a predetermined price at specified future dates. The bond contains an embedded call option; that is, the holder has sold a call option to the issuer. See also puttable bond on page Glossary-14.

\section*{candlestick chart}

A financial chart usually used to plot the high, low, open, and close price of a security over time. The body of the "candle" is the region between the open and close price of the security. Thin vertical lines extend up to the high and down to the low, respectively. If the open price is greater than the close price, the body is empty. If the close price is greater than the open price, the body is filled. See also high-low-close chart on page Glossary-10.

\section*{cap}

Interest-rate option that guarantees that the rate on a floating-rate loan will not exceed a certain level.

\section*{cash flow}

Cash received and paid over time.

\section*{clean price}

The price of a bond excluding any interest that has accrued since issue or the most recent coupon payment.

\section*{collar}

Interest-rate option that guarantees that the rate on a floating-rate loan will not exceed a certain upper level nor fall below a lower level. It is designed to protect an investor against wide fluctuations in interest rates.

\section*{convexity}

A measure of the rate of change in duration; measured in time. The greater the rate of change, the more the duration changes as yield changes.

\section*{correlation}

The simultaneous change in value of two random numeric variables.

\section*{correlation coefficient}

A statistic in which the covariance is scaled to a value between minus one (perfect negative correlation) and plus one (perfect positive correlation).

\section*{coupon}

Detachable certificate attached to a bond that shows the amount of interest payable at regular intervals, usually semiannually. Originally coupons were actually attached to the bonds and had to be cut off or "clipped" to redeem them and receive the interest payment.

\section*{coupon dates}

The dates when the coupons are paid. Typically a bond pays coupons annually or semiannually.

\section*{coupon rate}

The nominal interest rate that the issuer promises to pay the buyer of a bond.

\section*{covariance}

A measure of the degree to which returns on two assets move in tandem. A positive covariance means that asset returns move together; a negative covariance means they vary inversely.

\section*{credit rating}

A credit rating evaluates a potential borrower's ability to repay debt.

\section*{day count convention}

A convention used to determine the number of days between two coupon dates, which is important in calculating accrued interest and present value when the next coupon payment is less than a full coupon period away. See also basis on page Glossary-2

\section*{delta}

The rate of change of the price of a derivative security relative to the price of the underlying asset; that is, the first derivative of the curve that relates the price of the derivative to the price of the underlying security.

\section*{depreciation}

Reduction in value of fixed or tangible assets over some period for accounting purposes. See also amortization on page Glossary-1.

\section*{derivative}

A financial instrument that is based on some underlying asset. For example, an option is a derivative instrument based on the right to buy or sell an underlying instrument.

\section*{diffusion}

The function that characterizes the random (stochastic) portion of a stochastic differential equation. See also stochastic differential equation.

\section*{dirty price}

The price of a bond including the accrued interest.

\section*{discount curve}

The curve of discount rates versus maturity dates for bonds.

\section*{discretization error}

Errors that may arise due to discrete-time sampling of continuous stochastic processes.

\section*{drawdown}

The peak to trough decline during a specific record period of an investment or fund.

\section*{drift}

The function that characterizes the deterministic portion of a stochastic differential equation. See also stochastic differential equation.

\section*{duration}

The expected life of a fixed-income security considering its coupon yield, interest payments, maturity, and call features. As market interest
rates rise, the duration of a financial instrument decreases. See also Macaulay duration on page Glossary-11.

\section*{efficient frontier}

A graph representing a set of portfolios that maximizes expected return at each level of portfolio risk. See also Markowitz model on page Glossary-11.

\section*{efficient portfolio}

Portfolios satisfying the criteria of minimum risk for a given level of return and maximum return for a given level of risk. See also Markowitz model on page Glossary-11.
elasticity
See Lambda on page Glossary-10.

\section*{Euler approximation}

A simulation technique that provides a discrete-time approximation of a continuous-time stochastic process.

\section*{European option}

An option that can be exercised only on its expiration date. Contrast with American option.

\section*{ex-ante}

Referring to future events, such as the future price of a stock.

\section*{ex-post}

Referring to past events, when uncertainty of the result has been eliminated.

\section*{exercise price}

The price set for buying an asset (call) or selling an asset (put). The strike price.

\section*{face value}

The maturity value of a security. Also known as par value, principal value, or redemption value.

\section*{fixed-income security}

A security that pays a specified cash flow over a specific period. Bonds are typical fixed-income securities.

\section*{floor}

Interest-rate option that guarantees that the rate on a floating-rate loan will not fall below a certain level.

\section*{forward curve}

The curve of forward interest rates versus maturity dates for bonds.

\section*{forward rate}

The future interest rate of a bond inferred from the term structure, especially from the yield curve of zero-coupon bonds, calculated from the growth factor of an investment in a zero held until maturity.

\section*{future value}

The value that a sum of money (the present value) earning compound interest will have in the future.

\section*{gamma}

The rate of change of delta for a derivative security relative to the price of the underlying asset; that is, the second derivative of the option price relative to the security price.

\section*{greeks}

Collectively, "greeks" refer to the financial measures beta, delta, gamma, lambda, rho, theta, and vega, which are sensitivity measures used in evaluating derivatives.

ISDA
International Swaps and Derivatives Association.

\section*{ISMA}

International Securities Market Association.

\section*{hedge}

A securities transaction that reduces or offsets the risk on an existing investment position.

\section*{high-low-close chart}

A financial chart usually used to plot the high, low, open, and close price of a security over time. Plots are vertical lines whose top is the high, bottom is the low, open is a short horizontal tick to the left, and close is a short horizontal tick to the right.

\section*{implied volatility}

For an option, the variance that makes a call option price equal to the market price. Given the option price, strike price, and other factors, the Black-Scholes model computes implied volatility.

\section*{information ratio}

The ratio of relative return to relative risk.

\section*{internal rate of return}
a. The average annual yield earned by an investment during the period held. b. The effective rate of interest on a loan. c. The discount rate in discounted cash flow analysis. d. The rate that adjusts the value of future cash receipts earned by an investment so that interest earned equals the original cost. See also yield on page Glossary-17.

\section*{issue date}

The date a security is first offered for sale. That date usually determines when interest payments, known as coupons, are made.

\section*{Ito process}

Statistical assumptions about the behavior of security prices. For details, see the book by Hull in "Derivatives Pricing and Yields" on page A-4.

\section*{key rate duration}

Key rate duration measures the sensitivity of a portfolio's (or security's) value in relation to changes in specific maturities of the zero or spot curve.

\section*{Lambda}

The percentage change in the price of an option relative to a \(1 \%\) change in the price of the underlying security. Also known as elasticity.

\section*{long position}

Outright ownership of a security or financial instrument. The owner expects the price to rise in order to make a profit on some future sale.

\section*{long rate}

The yield on a zero-coupon Treasury bond.

\section*{lower partial moment}

A model for the moments of asset returns that fall below a minimum acceptable level of return.

\section*{Macaulay duration}

A widely used measure of price sensitivity to yield changes developed by Frederick Macaulay in 1938. It is measured in years and is a weighted average-time-to-maturity of an instrument. The Macaulay duration of an income stream, such as a coupon bond, measures how long, on average, the owner waits before receiving a payment. It is the weighted average of the times payments are made, with the weights at time T equal to the present value of the money received at time \(T\).

\section*{Markowitz model}

A model for selecting an optimum investment portfolio, devised by H . M. Markowitz. It uses a discrete-time, continuous-outcome approach for modeling investment problems, often called the mean-variance paradigm. See also efficient portfolio on page Glossary-8 and efficient frontier on page Glossary-8.

\section*{maturity date}

The date when the issuer returns the final face value of a bond to the buyer.

\section*{mean}
a. A number that typifies a set of numbers, such as a geometric mean or an arithmetic mean. \(\mathbf{b}\). The average value of a set of numbers.

\section*{modified duration}

The Macaulay duration discounted by the per-period interest rate; that is, divided by (1+rate/frequency).

\section*{Monte-Carlo simulation}

A mathematical modeling process. For a model that has several parameters with statistical properties, pick a set of random values for the parameters and run a simulation. Then pick another set of values, and run it again. Run it many times (often 10,000 times) and build up a statistical distribution of outcomes of the simulation. This distribution of outcomes is then used to answer whatever question you are asking.

\section*{moving average}

A price average that is adjusted by adding other parametrically determined prices over some time period.

\section*{moving-averages chart}

A financial chart that plots leading and lagging moving averages for prices or values of an asset.

\section*{normal (bell-shaped) distribution}

In statistics, a theoretical frequency distribution for a set of variable data, usually represented by a bell-shaped curve symmetrical about the mean.

\section*{odd first or last period}

Fixed-income securities may be purchased on dates that do not coincide with coupon or payment dates. The length of the first and last periods may differ from the regular period between coupons, and thus the bond owner is not entitled to the full value of the coupon for that period. Instead, the coupon is prorated according to how long the bond is held during that period.

\section*{on-the-run treasury bonds}

The most recently auctioned issue of a U.S. Treasury bond or note of a particular maturity.

\section*{option}

A right to buy or sell specific securities or commodities at a stated price (exercise or strike price) within a specified time. An option is a type of derivative.

\section*{par value}

The maturity or face value of a security or other financial instrument.

\section*{par yield curve}

The yield curve of bonds selling at par, or face, value.

\section*{point and figure chart}

A financial chart usually used to plot asset price data. Upward price movements are plotted as X's and downward price movements are plotted as O's.

\section*{present value}

Today's value of an investment that yields some future value when invested to earn compounded interest at a known interest rate; that is, the future value at a known period in time discounted by the interest rate over that time period.

\section*{principal value}

See par value on page Glossary-12.

\section*{proportional sampling}

A stratified sampling technique that ensures that the proportion of random draws matches its theoretical probability. One of the most common examples of proportional sampling involves stratifying the terminal value of a price process in which each sample path is associated with a single stratified terminal value such that the number of paths equals the number of strata.

See also stratified sampling.
PSA
Public Securities Association.

\section*{purchase price}

Price actually paid for a security. Typically the purchase price of a bond is not the same as the redemption value.
put
An option to sell a stipulated amount of stock or securities within a specified time and at a fixed exercise price. See also call on page Glossary-5.

\section*{puttable bond}

A bond that allows the holder to redeem the bond at a predetermined price at specified future dates. The bond contains an embedded put option; that is, the holder has bought a put option. See also callable bond on page Glossary-5.

\section*{Quant}

A quantitative analyst; someone who does numerical analysis of financial information in order to detect relationships, disparities, or patterns that can lead to making money.

\section*{redemption value}

See par value on page Glossary-12.

\section*{regression analysis}

Statistical analysis techniques that quantify the relationship between two or more variables. The intent is quantitative prediction or forecasting, particularly using a small population to forecast the behavior of a large population.

\section*{rho}

The rate of change in a derivative's price relative to the underlying security's risk-free interest rate.

\section*{return proxy}

The proxy for return is a function that characterizes either the gross benefits or net benefits associated with portfolio choices.

\section*{risk proxy}

The proxy for risk is a function that characterizes either the variability or losses associated with portfolio choices.

\section*{sensitivity}

The "what if" relationship between variables; the degree to which changes in one variable cause changes in another variable. A specific synonym is volatility.

\section*{settlement date}

The date when money first changes hands; that is, when a buyer actually pays for a security. It need not coincide with the issue date.

\section*{Sharpe ratio}

The ratio of the excess return of an asset divided by the asset's standard deviation of returns.

\section*{short rate}

The annualized one-period interest rate.

\section*{short sale, short position}

The sale of a security or financial instrument not owned, in anticipation of a price decline and making a profit by purchasing the instrument later at a lower price, and then delivering the instrument to complete the sale. See also long position on page Glossary-11.

\section*{SIA}

Securities Industry Association.

\section*{spot curve, spot yield curve}

See zero curve, zero-coupon yield curve on page Glossary-18.

\section*{spot rate}

The current interest rate appropriate for discounting a cash flow of some given maturity.

\section*{spread}

For options, a combination of call or put options on the same stock with differing exercise prices or maturity dates.

\section*{standard deviation}

A measure of the variation in a distribution, equal to the square root of the arithmetic mean of the squares of the deviations from the arithmetic mean; the square root of the variance.

\section*{stochastic}

Involving or containing a random variable or variables; involving chance or probability.

\section*{stochastic differential equation}

A generalization of an ordinary differential equation, with the addition of a noise process, that yields random variables as solutions.

\section*{straddle}

A strategy used in trading options or futures. It involves simultaneously purchasing put and call options with the same exercise price and expiration date, and it is most profitable when the price of the underlying security is very volatile.

\section*{strata}

See stratified sampling.

\section*{stratified sampling}

A variance reduction technique that constrains a proportion of sample paths to specific subsets (or strata) of the sample space.

\section*{strike}

Exercise a put or call option.

\section*{strike price}

See exercise price on page Glossary-8.

\section*{swap}

A contract between two parties to exchange cash flows in the future according to some formula.

\section*{swaption}

A swap option; an option on an interest-rate swap. The option gives the holder the right to enter into a contracted interest-rate swap at a specified future date. See also swap on page Glossary-16.

\section*{term structure}

The relationship between the yields on fixed-interest securities and their maturity dates. Expectation of changes in interest rates affects term structure, as do liquidity preferences and hedging pressure. A yield curve is one representation in the term structure.

\section*{theta}

The rate of change in the price of a derivative security relative to time. Theta is usually very small or negative since the value of an option tends to drop as it approaches maturity.

\section*{tracking error}

See active risk on page Glossary-1.

\section*{Treasury bill}

Short-term U.S. government security issued at a discount from the face value and paying the face value at maturity.

\section*{Treasury bond}

Long-term debt obligation of the U.S. government that makes coupon payments semiannually and is sold at or near par value in \(\$ 1000\) denominations or higher. Face value is paid at maturity.

\section*{variance}

The dispersion of a variable. The square of the standard deviation.

\section*{vega}

The rate of change in the price of a derivative security relative to the volatility of the underlying security. When vega is large, the security is sensitive to small changes in volatility.

\section*{volatility}
a. Another general term for sensitivity. b. The standard deviation of the annualized continuously compounded rate of return of an asset. c. A measure of uncertainty or risk.

\section*{Wiener process}

See Brownian motion.

\section*{yield}
a. Measure of return on an investment, stated as a percentage of price. Yield can be computed by dividing return by purchase price, current market value, or other measure of value. b. Income from a bond expressed as an annualized percentage rate. c. The nominal annual interest rate that gives a future value of the purchase price equal to the redemption value of the security. Any coupon payments determine part of that yield.

\section*{yield curve}

Graph of yields (vertical axis) of a particular type of security versus the time to maturity (horizontal axis). This curve usually slopes upward,
indicating that investors usually expect to receive a premium for securities that have a longer time to maturity. The benchmark yield curve is for U.S. Treasury securities with maturities ranging from three months to 30 years. See also term structure on page Glossary-16.

\section*{yield to maturity}

A measure of the average rate of return that will be earned on a bond if held to maturity.

\section*{zero curve, zero-coupon yield curve}

A yield curve for zero-coupon bonds; zero rates versus maturity dates. Since the maturity and duration (Macaulay duration) are identical for zeros, the zero curve is a pure depiction of supply/demand conditions for loanable funds across a continuum of durations and maturities. Also known as spot curve or spot yield curve.

\section*{zero-coupon bond, or zero}

A bond that, instead of carrying a coupon, is sold at a discount from its face value, pays no interest during its life, and pays the principal only at maturity.```

[^0]: References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003.

[^1]: See Also
 blsdelta | blsgamma | blslambda | blsprice | blsrho | blstheta

[^2]: References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John Wiley \& Sons, 2002.

[^3]: References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John Wiley \& Sons, 2002.

 Mayle, Jan, "Standard Securities Calculations Methods: Fixed Income Securities Formulas for Analytic Measures", SIA, Vol 2, Jan 1994.

 Stigum, Marcia, and Franklin Robinson, Money Market and Bond Calculations, McGraw-Hill, 1996.

 See Also accrfrac|cfdates | cftimes | cpncount | cpndaten | cpndatenq | cpndatep | cpndatepq | cpndaysn | cpndaysp

[^4]: References Achelis, Steven B., Technical Analysis from A to Z, Second printing, McGraw-Hill, 1995, pp. 91-94.

 See Also adline

[^5]: Concepts

 - "Portfolio Problem Specification" on page 4-3

[^6]: Algorithms

 ## Examples

 ## References

 When you specify the required input parameters as arrays, they are associated with a specific parametric form. By contrast, when you specify either required input parameter as a function, you can customize virtually any specification.

 Accessing the output parameters with no inputs simply returns the original input specification. Thus, when you invoke these parameters with no inputs, they behave like simple properties and allow you to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input specification. This is useful for validating and designing methods.
 When you invoke these parameters with inputs, they behave like functions, giving the impression of dynamic behavior. The parameters accept the observation time t followed by a state vector X_{t}, and return an array of appropriate dimension. Even if you originally specified an input as an array, cir treats it as a static function of time and state, thereby guaranteeing that all parameters are accessible by the same interface.
 "Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion Models" on page 17-30

 Ait-Sahalia, Y., "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385-426.

 Ait-Sahalia, Y., "Transition Densities for Interest Rate and Other Nonlinear Diffusions," The Journal of Finance, Vol. 54, No. 4, August 1999.

[^7]: References Achelis, Steven B., Technical Analysis from A to Z, Second Edition, McGraw-Hill, 1995, pp. 268-271.

[^8]: Description Given NUMSERIES assets with NUMSAMPLES returns in a NUMSAMPLES-by-NUMSERIES matrix Asset, a NUMSAMPLES vector of Benchmark returns, and either a scalar Cash return or a NUMSAMPLES vector of Cash returns, compute risk-adjusted alphas and returns for one or more methods specified by Choice.

[^9]: Tips
 Use dot notation to simulate multivariate normal asset return scenarios from data for a CVaR portfolio object.

[^10]: See Also
 periodicreturns

[^11]: Default: \{'AAA','AA','A','BBB','BB','B','CCC','D'\}

    ```
    'snapsPerYear'
    ```

